On the Untapped Potential of Encoding Predicates by
Arithmetic Circuits and Their Applications

Shuichi Katsumata *

Abstract

Predicates are used in cryptography as a fundamental tool to control the disclosure of
secrets. However, how to embed a particular predicate into a cryptographic primitive is usually
not given much attention. In this work, we formalize the idea of encoding predicates as
arithmetic circuits and observe that choosing the right encoding of a predicate may lead to
an improvement in many aspects such as the efficiency of a scheme or the required hardness
assumption. In particular, we develop two predicate encoding schemes with different properties
and construct cryptographic primitives that benefit from these: verifiable random functions
(VRFs) and predicate encryption (PE) schemes.

- We propose two VRFs on bilinear maps. Both of our schemes are secure under a non-
interactive @-type assumption where @ is only poly-logarithmic in the security parameter,
and they achieve either a poly-logarithmic verification key size or proof size. This is a
significant improvement over prior works, where all previous schemes either require a strong
hardness assumption or a large verification key and proof size.

- We propose a lattice-based PE scheme for the class of multi-dimensional equality (MultD-Eq)
predicates. This class of predicate is expressive enough to capture many of the appealing ap-
plications that motivates PE schemes. Our scheme achieves the best in terms of the required
approximation factor for LWE (we only require poly(\)) and the decryption time. In par-
ticular, all existing PE schemes that support the class of MultD-Eq predicates either require
a subexponential LWE assumption or an exponential decryption time (in the dimension of
the MultD-Eq predicates).

1 Introduction

A predicate is a function P : X — {0,1} that partitions an input domain X into two distinct
sets according to some relation. Due to its natural compatibility with cryptographic primitives,
predicates have been used in many scenarios to control the disclosure of secrets. This may ei-
ther come up explicitly during construction (e.g., attribute-based encryptions [SW05, GPSW06],
predicate encryptions [BW07, SBCT07, KSW08]) or implicitly during security proofs (e.g., in the
form of programmable hashes [HK08, ZCZ16], admissible hashes [BB04a, CHKP10]). However,
how to express predicates as (arithmetic) circuits is usually not given much attention in these
works. Since the way we embed predicates into a cryptographic primitive has a direct effect
on the concrete efficiency of the schemes, it is important to know how efficiently we can embed
predicates. In this paper, we propose an efficient encoding for a specific class of predicates and
focus on two primitives that benefit from this: verifiable random functions (VRFs) and predicate
encryptions (PE) schemes.

*The University of Tokyo, National Institute of Advanced Industrial Science and Technology (AIST).

Verifiable Random Functions. VRFs introduced by Micali, Rabin and Vadhan [MRV99] are a
special form of pseudorandom functions (PRFs), which additionally enables a secret key holder to
create a non-interactive and publicly verifiable proof that validates the output value. An attractive
property for the VRF to have is the notion of all the desired properties coined by [HJ16], which
captures the following features: an exponential-sized input space, adaptive pseudorandomness,
and security under a non-interactive complexity assumption.

There currently exist two approaches for constructing VRFs with all the desired properties.
The first approach is to use a specific number theory setting (mainly bilinear groups) to hand-
craft VRFs [HW10, BMR10, ACF14, Jagl5, HJ16, Yam17], and the second approach is to use a
more generic approach and build VRFs from general cryptographic primitives [GHKW17, Bit17,
BGJS17]. While the second approach provides us with better insight on VRFs and allows us to
base security on hardness assumptions other than bilinear map based ones, the major drawback
is the need for large verification key / proof sizes or the need for strong hardness assumptions
such as the subexponential Learning with Errors (LWE) assumption to instantiate the underlying
primitives. Concretely, all generic approaches require general non-interactive witness indistin-
guishable proofs (NIWIs) and constrained PRF's for admissible hash friendly functions, which we
currently do not know how to simultaneously construct compactly and base security under a weak
hardness assumption.

The first approach is more successful overall in light of compactness and the required hardness
assumptions, however, they come with their own shortcomings. Notably, [Yam17] presents three
constructions where only w(log) group elements' are required for either the verification key or
the proof. In particular, in one of their schemes, only sub-linear group elements are required for
both verification key and proof. However, all three schemes require an L-DDH? assumption where
L = Q()\). In contrast, [Jagl5] presents a scheme secure under a much weaker L-DDH assumption
where L = O(log A\) and [HJ16] under the DLIN assumption. However, these approaches require
a linear number of group elements in the verification key and proof in the security parameter.
Therefore, we currently do not know how to construct VRF's that are both compact and secure
under a weak hardness assumption.

Predicate Encryption. A predicate encryption (PE) scheme [BW07, SBCT07, KSW0§] is a
paradigm for public-key encryption that supports searching on encrypted data. In predicate
encryption, ciphertexts are associated with some attribute X, secret keys are associated with
some predicate P, and the decryption is successful if and only if P(X) = 1. The major difficulty
of constructing predicate encryption schemes stems from the security requirement that enforces
the privacy of the attribute X and the plaintext even amidst multiple secret key queries.

Some of the motivating applications for predicate encryption schemes that are often stated
in the literatures are: inspection of recorded log files for network intrusions, credit card fraud
investigation and conditional disclosure of patient records. Notably, all the above applications only
require checking whether a subset or range conjunction predicate is satisfied. (For a more thorough
discussion, see [BW07, SBCT07, KSWO08].) Therefore, in some sense many of the applications that
motivates for predicate encryption schemes can be implemented by predicate encryption schemes
for the class of predicates that are expressive enough to support subset or range conjunctions.

On the surface, the present situation on lattice-based predicate encryption schemes seem
bright. We have concrete constructions based on LWE for the class of predicates that supports

"Here, w(f()\)) denotes any function that grows asymptotically faster than f()), e.g., log? A = w(log \)

2 The L-DDH problem is where we are given (h, g, g%, - - - ,gO‘L, ¥) and have to decided whether ¥ = e(g, h)l/o‘
or a uniform random element.

equality [ABB10, CHKP10], inner-products [AFV11], multi-dimensional equality (MultD-Eq)?
[GMW15], and all circuits [GVW15, GKW17, WZ17]*. Therefore, in theory, we can realize all
the above applications in a secure manner, since subset or range conjunctions can be efficiently
encoded by any predicate as expressive as the MultD-Eq predicate, i.e., the works of [GMW15,
GVW15, GKW17, WZ17] are all sufficient for the above applications. However, all of these
schemes may be too inefficient to use in real-life applications. Namely, the scheme of [GMW15]
highly resembles the bilinear map based construction of [SBCT07] and inherits the same problem;
it takes Q(2”) decryption time where D roughly corresponds to the number of set elements
specifying the subset predicate or the number of conjunctions used in the range conjunction
predicate. Further, the schemes of [GVW15, GKW17, WZ17] are powerful and elegant, albeit
they all require subexponential LWE assumptions. Therefore, aiming at predicate encryption
schemes with the above applications in mind, we currently do not have satisfactorily efficient
lattice-based schemes. In particular, we do not know how to construct efficient lattice-based PE
schemes for the class of MultD-Eq predicates. This is in sharp contrast with the bilinear map
setting where we know how to obtain efficient schemes for the above applications [BW07].

1.1 Owur Contributions

In this paper, we provide two results: a compact VRF under a weak assumption and an efficient
lattice-based PE scheme for the class of MultD-Eq predicates. For the time being, it suffices to
think of the MultD-Eq predicate as simply a predicate that supports the subset predicate. Here,
although the two results may seem independent, they are in fact related by a common theme that
they both implicitly or explicitly embed the subset predicates in their constructions.

Our idea is simple. We first detach predicates from cryptographic constructions, and view
predicates simply as a function. Then, we introduce the notion of predicate encoding schemes®,
where we encode predicates as simple (arithmetic) circuits that have different properties fit for
the underlying cryptographic applications. For example, we might not care that a predicate P
outputs 0 or 1. We may only care that P behaves differently on satisfied /non-satisfied inputs,
e.g., P outputs a value in Sy when it is satisfied and S; otherwise, where Sy, S1 are disjoint
sets. In particular, we provide two predicate encoding schemes PESgp and PES|;, with different
properties encoding the MultD-Eq predicates. Then, based on these encoded MultD-Eq predicates,
we construct our VRFs, and PE schemes for the class of MultD-Eq predicates. The following is a
summary of our two results.

VRF. We propose two VRF's with all the desired properties. A detailed comparison is provided
in Table 1. Note that we intentionally excluded the recent VRF constructions of [Bit17, BGJS17,
GHKW17] from the table, since their schemes cannot be instantiated efficiently due to the lack
of efficient (general) NIWIs and constrained PRF's.

3 The precise definition and discussions of this predicate are given in Sec. 4.2. For the time being, it is enough
to view it as a subset predicate.

4 [GKW17, WZ17] give a generic conversion from ABEs to PEs that uses an obfuscation for a specific program
proven secure under the subexponential LWE assumption. Therefore, we have provably secure lattice-based PEs
for all circuits using the lattice-based ABE of [GVW13, BGG™14].

® We note that the term “predicate encoding” has already been used in a completely different context by [Weel4].
See the section of related work for the differences.

Table 1: Comparison of VRFs with all the desired properties.

Schemes VK| |sk] |7 Assumption Reduction

(#0fG) (#0fZ,) (#ofG) Cost
[BMRI10] o) o) o) O()\)-DDH O(e/\)
[HW10] Oo(\) O(\) O(\) O(\Q/e)-DDHE O(e2/2Q)
[ACF14] o) O(\) O(\) O(\)-DDH O(e"1/Qv)*
[Jag15) 00) 00 0() O(os(@/0)DDH O /Q")"
[HLJ16] o\ o) O(\) DLIN O+ /AQ¥)*
[Yam17]: Sec. 7.1. w(Alog)) w(logA) w(log \) w(Alog\)-DDH O(e**t1/QV)*
[Yam17): Sec. 7.3. w(logA) w(log)) w(vAlog)) w(Alog\)-DDH O(e"t1/Q")*
[

)
)
Yaml7]: App. C. w(log)) w(log)) poly(\) poly(\)-DDH O(e2/72Q)
Ours: Sec. 5.2. wlog?) w(og®X) wAlog?)) w(log?A)-DDH O(e*t1/Q¥)*
Ours: Sec. 5.4. w(vAlog)) w(og?X) w(log) w(log® \)-DDH O(e"+1/Q¥)*

To measure the verification key size |vk| and proof size |7| (resp. secret key size |sk|), we count
the number of group elements in G (resp. Z,). @, € denotes the number of adversarial queries
and advantage, respectively. We measure all the reduction cost using the techniques of [BR09].
w(f(A)) means that it can be taken as any function that grows asymptotically faster than f(\);
for simplicity one can instead interpret the above w(f(\)) terms as O(log A - f(A)). poly(A)
represents a fixed polynomial that does not depend on @, €.

* 1 is a constant satisfying ¢ = 1 — 271/¥, where ¢ is the relative distance of the underlying
error correcting code C : {0,1}" — {0, 1}*. We can make v arbitrary close to 1 by choosing
¢ < 1/2 appropriately and setting ¢ large enough. (For further detail, see [Gol08], Appendix
E.1)

Our constructions are inspired by the bilinear map based VRF's of [Yam17], where they noticed
that an admissible hash function [BB04b, CHKP10] can be represented much more compactly by
using a subset predicate®. We improve their works by further noticing that subset predicates,
when viewed as simply a function, can be encoded in various ways into a circuit. In particular, we
propose a more efficient circuit encoding (PESgp) of the subset predicates that is compatible with
the underlying algebraic structure of the VRF. We note that at the technical level the constructions
are quite different; [Yam17] uses the inversion-based techniques [DY05, BMR10] whereas we do
not. Here, simply using PESgp already provides us with an improvement over previous schemes,
however, by exploiting a special linear structure in PESgp, we can further improve the efficiency
using an idea native to our scheme. Namely, we can skip some of the verification steps required to
check the validity of the proof, hence, lowering the number of group elements in the verification
key. Our schemes can be viewed as combining the best of [Jagl5] and [Yam17]. In the following,
to compare the efficiency, we count the number of group elements of the verification key and proof.

e In our first scheme, the verification key size is w(log? \), the proof size is w(Alog? \), and
the scheme is proven secure under the L-DDH assumption with L = w(log?). This is the
first scheme that simultaneously achieves a small verification key size and security under an
L-DDH assumption where L is poly-logarithm in the security parameter.

e Our second scheme is a modification of our first VRF with some additional ideas; the
verification key size is w(v/Alog \), the proof size is w(log A), and the scheme is proven secure
under the L-DDH assumption with L = w(log? \). This achieves the smallest verification

6 In particular, our idea is inspired by the VRFs based on the admissible hash function of [Yam17], Sec. 6.
However, the construction is more similar to the VRF based on the variant of Water’s hash in their Appendix C.

key and proof size among all the previous schemes while also reducing the underlying L of
the L-DDH assumption significantly to poly-logarithm.

PE Schemes for the MultD-Eq Predicates. Based on the predicate encoding scheme PES,;, for
the MultD-Eq predicates, we propose a lattice-based PE scheme for the MultD-Eq predicates. Due
to the symmetry of the MultD-Eq predicates, we obtain key-policy and ciphertext-policy predicate
encryption schemes for the class of predicates that can be expressed as MultD-Eq, such as subset
and range conjunction. A detailed comparison is provided in Table 2. Note that we exclude the
generic constructions of [GVW15, GKW17, WZ17] to keep the presentation simple. Although the
generic constructions are very powerful and elegant, they all require subexponential LWE even if
we restrict the underlying ABE to simple circuit classes and determining the concrete efficiency
is not obvious, e.g., in [GKW17] the secret key size depends on the underlying FHE scheme.

Table 2: Comparison of lattice PEs for MultD-Eq predicates (over Z]? xh,

Schemes [mpk| |sk| |ct] LWE param Dec. Time
(# of Zp"™) (# of Z*™) (# of Z7") 1/a (# of IP)

[GMW15] O(DY) O(DY) O(DY) O(D -n'?)t o(LP)

Ours: Sec. 6.2 O(D/p) 1 O(Dtp) O(max{\/”?iep,\/Dép ‘n}) 1

To compare (space) efficiency, we measure the master public key size |mpk|, secret key size |sk|
and ciphertext size |ct| by the required number of elements in Zy™™, 72, L', respectively. We
measure the decryption time as the number of inner products computed between vectors in ng.

T To be fair, we provided a more rigorous analysis for their parameter selections (as we did
with our scheme).

Our scheme achieves the best efficiency in terms of decryption time and the required modulus
size ¢; recall [GMW15] needs to perform Q(2”) number of inner product operations (between
secret key vectors and ciphertext vectors) to decrypt a ciphertext, and [GVW15, GKW17, WZ17]
require subexponential LWE for security. Furthermore, compared with [GMW15], the number of
secret keys (i.e., vectors in Z2™) we require are only one, whereas they require at least O(D). Our
construction follows very naturally from the predicate encoding scheme PESy;, for the MultD-Eq
predicates, and builds upon the proof techniques of [AFV11, BGG114].

Other Applications. We also show how to make the identity-based encryption (IBE) scheme
of [Yam17] more efficient by using our predicate encoding scheme for the MultD-Eq predicate.
In particular, we are able to lower the approximation factor of the LWE problem from O(nll)
to O(n°®) (with some additional analysis). Furthermore, we are able to significantly reduce the
parallel complexity of the matrix multiplications required during encryption and key generation.
Notably, our construction does not rely on the sequential matrix multiplication technique of
[GV15] as the IBE scheme of [Yam17]. Finally, we note that the size of the public matrices and
ciphertexts are unchanged.

1.2 Related Works

The idea of encoding predicates to another form has already been implicitly or explicitly used
in other works. The notion of randomized encoding [IK00, ATK04] (not specific to predicates)
aims to trade the computation of a “complex” function f(z) for the computation of a “simpler”
randomized function f(z;7) whose output distribution on an input z encodes the value for f(z).
The notion of predicate encoding [Weeld, CGW15] (and also the related notion of pair encoding

[Att14, Att16]) has already been used previously, in a completely different context, as a generic
framework that abstracts the concept of dual system encryption techniques for bilinear maps, and
not as a tool for lowering the circuit complexity of predicates.

2 Technical Overview

We now give a brief overview of our technical approaches. A formal treatment is given in the
main body. We break our overview in two pieces. First, we give intuition for our notion of
predicate encoding schemes PES and illustrate the significance of the MultD-Eq predicates. Then,
we overview how the different types of PES schemes for the MultD-Eq predicates can be used to
construct VRFs, and PE schemes for the MultD-Eq predicates.

Different Ways of Encoding Predicates. Predicates are often times implicit in cryptographic
constructions and in some cases there lies an untapped potential. To highlight this, we recall the
observation of [Yam17]. An admissible hash function is one of the central tools used to prove
adaptive security (e.g., digital signatures, identity-based encryptions, verifiable random functions).
At a high level, during the security proof, it allows the simulator to secretly partition the input
space into two disjoint sets, so there is a noticeable probability that the input values submitted
by the adversary as challenge queries fall inside the intended sets. Traditionally, the partition
made by the admissible hash function is viewed as a bit-fixing predicate; a bit-fixing predicate is
specified by a string K € {0,1, L}* where the number of non-_L symbols are O(log \), and the
input space {0, 1}¢ is partitioned by the rule whether the string z € {0, 1}’ matches the string K
on all non-1 symbols.

[Yam17] observed that a bit-fixing predicate can be encoded as a subset predicate; an obser-
vation not made since the classical works of [BB04b, CHKP10]. In particular, Yamada observed
that K has many meaningless | symbols and only has O(log A) meaningful non- L symbols. Under
this observation, he managed to encode K into a very small set Tg (e.g., |Tx| = O(log? £)) where
each element indicates the position of the non-1 symbols. Now, the partition of the input space
is done by checking whether the input includes the set T g or not. Since admissible hash functions
are implicitly embedded in the public parameters, this idea allowed them to significantly reduce
the number of public parameters for identity-based encryption (IBE) schemes and the size of the
verification key (or the proof size) for VRFs.

We take this observation one step further. A predicate defines a function, but often a function
may be represented as a polynomial” in various ways depending on what kind of properties we
require. This is easiest to explain through an example. Let us continue with the above example
of the subset predicate used in [Yam17]: Py : 22" — {0,1}, where Pr(S) = 1 iff T C S. Here,
assume |T| = m and all the inputs to Pr have cardinality n. One of the most natural ways to
represent the subset predicate as a polynomial is by its boolean circuit representation:

ﬁ(l_ﬁ(l_ﬁ<1_<ti,k—$j,k)2>))_{(1) i Iéz , (1)

i=1 j=1 k=1

~
1S t,':Sj?

is t;€S?

where ¢ = [log2n| + 1, T = {ti}icimsS = {sj}jem) € [2n] and t;4,s;, are the k-th bit of
the binary representation of t;,s;. Here Eq. (1) is the polynomial representation of the boolean

" It might be more precise to state that a predicate is represented by a circuit, however, in this section we adopt
the view of polynomials to better convey the intuition.

logic Aiepm Viem) Nreje(tie = sjk). This is essentially what was used for the lattice-based
IBE construction of [Yam17] with very short public parameters. Observe that this polynomial
has degree 2mn(, which is O()\log3 A) if we are considering the subset predicate specifying the
admissible hash function, where we have m = O(log? \),n = O(\) and ¢ = O(log). However, in
general, using a high degree polynomial may be undesirable for many reasons, even if it is only
of degree linear in the security parameter. For the case of the IBE scheme of [Yam17], due to the
highly multiplicative structure, the encryption and key generation algorithms require to rely on a
linear number of heavy sequentialized matrix multiplication technique of [GV15]. Therefore, it is
a natural question to ask whether we can embed a predicate into a polynomial with lower degree,
and in some cases into a linear polynomial.

Indeed, we show that it is possible for the above predicate. Namely, we can do much better
by noticing the extra structure of subset predicates; we know there exists at most one j € [n] that
satisfies t; = s;. Therefore, we can equivalently express Eq. (1) as the following polynomial:

m n (.
ST (1 i~ 0?) = {1 rres 2)
it 0 if TEZS

1

=17

This polynomial is now down to degree 2m(. When this subset predicate specifies the admissible
hash function, Eq. (2) significantly lowers the degree down to O(log® \). Furthermore, if we do
not require the output to be exactly 0 or 1, and only care that the predicate behaves differently on
satisfied /non-satisfied inputs, we can further lower the degree down to 2¢. In particular, consider
the following polynomial:

m n (.
0 if TCS
m=3 (1 — (tik — Sch)Q) = { 0o if Tes (3)
i=1 j=1 k=1 # ! Z

which follows from the observation that |T| = m. Since, the output of the polynomial is different
for the case T C S and T ¢ S, Eq. (3) indeed properly encodes the information of the subset
predicate. Using this polynomial instead of Eq. (1) already allows us to significantly optimize the
concrete parameters of the lattice-based IBE of [Yam17]. In fact, by encoding the inputs T,S in
a different way and with some additional ideas, we can encode the subset predicate into a linear
polynomial.

To summarize, depending on what we require for the encoding of a predicate (e.g., preserve the
functionality, linearize the encoding) one has the freedom of choosing how to express a particular
predicate. We formalize this idea of a “right encoding” by introducing the notion of predicate
encoding schemes. In the above we used the subset predicate as an motivating example, however,
in our work we focus on a wider class of predicates called the multi-dimensional equality MultD-Eq
predicates, and propose two encoding schemes PESgp and PES|;, with different applications in
mind.

Finally, we state two justifications for why we pursue the construction of predicate encod-
ing schemes for the class of MultD-Eq predicates. First, the MultD-Eq predicates are expressive
enough to encode many useful predicates that come up in cryptography (e.g., bit-fixing, subset
conjunction, range conjunction predicates), that being for constructions of cryptographic prim-
itives or for embedding secret information during in the security proof. Second, in spite of its
expressiveness, the MultD-Eq predicates have a simple structure that we can exploit and offers us
plenty of freedom on the types of predicate encoding schemes we can achieve. The definition and
a more detailed discussion on the expressiveness of MultD-Eq are provided in Sec. 4.2, 4.3 and
Appendix B.1.

Constructing VRFs. Similarly to many of the prior works [BMR10, ACF14, Jagl5, Yam17]
on VRFs with all the desired properties, we use admissible hash functions and base security on
the L-DDH assumption, which states that given (h,g,g%,--- ,gO‘L,) it is hard to distinguish
whether ¥ = e(g, h)l/ @ or a random element. Here, we briefly review the core idea used during
the security proof of [Yam17] for the pseudorandomness property of the VRF. We note that many
of the arguments made below are informal for the sake of intuition. Their observation was that
the admissible hash function embedded during simulation can be stated in the following way using
a subset predicate:

Fr(X) = where S(X) = {2i — C(X); | i € [n]}.

0 if TCS(X)

1 if TZS(X)
Here, C(+) is a public hash function that maps an input X (of the VRF) to a bit string {0,1}",
and T C [2n] is a set defined as T = {2i — K, | i € [n], K; # L} where K is the secret string in
{0,1, L}™ that specifies the partition made by the admissible hash. Since, the number of non-_1
symbols in K are O(log2 A), the above function can be represented by a set T with cardinality
O(log?). During security proof, by the property and definition of Ft, we have

<T z S(X<1>)) A e A (T z S(X(Q))> A (T C S(X*)),

with non-negligible probability, where X* is the challenge input and X, ... | X(@) are the inputs
for which the adversary has made evaluation queries. The construction of [Yam17] is based
on previous inversion-based VRFs [DY05, BMR10]. Here, we ignore the problem of how to
add verifiability to the scheme and overview on how they prove pseudorandomness of the VRF
evaluation. Informally, during simulation, the simulator uses the following polynomial to encode
the admissible hash function:

ML) st 4 poly(a) if T CS(X)
Q(a)/<gg(“”’ 8])>_{po|y(o¢) if TZS(X)' W

where Q(«) is some fixed polynomial with degree roughly 4n independent of the input X. Here,
recall a € Zj, is that of the L-DDH problem, and notice that in Eq. (4) the polynomial will have
a in the denominator if and only if T C S(X). Although this may not seem quite like it, this
polynomial is indeed an encoding of the subset predicate® since it acts differently depending on
T CS(X) and T € S(X). Finally, we note that the output Y of the VRF is obtained by simply
putting the above polynomial in the exponent of e(g, h).

Now, if the simulator is given enough (gal)ie[L] as the L-DDH challenge, it can create a
valid evaluation Y for inputs X such that T ¢ S(X), since it can compute terms of the form
e(gPY(@) h) = e(g, h)PY(®) . Furthermore, for the challenge query X* it will use W; if ¥ =
e(g,h)"* it can correctly simulate for the case T C S(X*), otherwise the evaluation Y* of the
VRF is independent of X*. Therefore, under the hardness of the L-DDH assumption, the output
is proven pseudorandom. Observe that for the simulator to compute e(g, h)PY(@) from Eq. (4),
it needs to have (gal)iem where L = O(n). Then, since n = O()\), we need to base this on
an L-DDH assumption where L = O()).” To reflect the above polynomial, the verification keys

8 To be strict, this does not exactly fit the definition of predicate encoding we define in Sec. 4. However, we can
do so by appropriately arguing the size of a or by viewing « as an indeterminate.

9 In the actual construction we require L = w(Alog \), since we need to simulate a higher degree polynomial in
the exponent.

are set as (h, g, (W; = ¢g"*)) in the actual construction. During simulation the parameters are
(roughly) set as § = g9, gwi = goth,

The above construction is rather naive in that it checks whether T C S(X) in a brute-force
manner (as also noted in [Yam17]). Our idea is to instead use the polynomial from Eq. (2) to
represent the admissible hash function. In other words, we embed the following polynomial during

simulation:

11

=17

RImr

TN (L4 poly(a) if TCS(X)
> 11 (1 (ot ss0”) = {Poly(a) it TgS(X) ®

We note that in our actual construction, we use an optimized version of Eq. (2) called PESgp.
Similarly to above, we put the above polynomial in the exponent of e(g, h) for the VRF evalua-
tion. The difference is that the degree of the polynomial in Eq. (5) is significantly lowered down
to merely 2m(, which is O(log® \). Therefore, when the simulator needs to compute (g, h)PoM(®)
during simulation, we only require (gal)iE[L] for L = O(log® \). Hence, we significantly reduced
the required L of the L-DDH assumption to poly-logarithm. Note that we need to validate
the output in a different way now, since the terms «,t;,s; that appear in the left-hand poly-
nomial are not in the denominator as in Eq. (4). Now, to generate the proof, we take the
so called “step ladder approach” [Lys02, ACF09, HW10], where we publish values of the form

(gei’)i/E[m]’ (gei,j,k’)(i,j,k’)e[m} x[n]x[¢] defined as follows:

kl

Oy = ﬁ i f[(1 — (Wi — Sj,k)2>a Oijw = || (1 — (Wi — Sj,k)2>a

i=1j=1 k=1 k=1

where we (roughly) set g¥i*t as g®tti+ during simulation. Although this scheme achieves a very

short verification key, it comes at the cost of a rather long proof size of O(mn¢) = O(Xlog® \).
Finally, we describe how to make the proof much shorter, while still maintaining a sub-linear
verification key size. As a first step, we can use the simple trick used in [Yam17] to make the
proof much shorter. Namely, we add helper components to the verification key so that anyone can
compute (6; ;) publicly. However, as in [Yam17], this leads to a long verification key with size
Q()\) Interestingly, for our construction, we can do much better and shorten the verification key
by a quadratic factor by in a sense skipping some ladders. The main observation is the additive
structure in (6;/)y. In particular, if each 6;; were simply a large product H”k (1 — (wi g — sj,k)Q),
we would have to prepare all the necessary helper components in the verification key that would
allow to compute g%-.¢. This is because in the step ladder approach, after computing g%-i-<, we
have to reuse this as an input to the bilinear map to validate the next term in the ladder. However,
in our case, we only need the ability to publicly compute e(g, g)%#<. Here, we crucially rely on

Oijc by ourselves; thus the

the additive structure in 6 that allows us to compute e(g, g)zje[n]
notion of skipping some ladders. Note that we are not able to publicly compute e(g, g)HJ'E[n] Oiic
Finally, we continue with the step ladder approach for the outer H;lzl products. Therefore, since
we only need the ability to generate e(g, g)%7¢ rather than ¢%s<, we can reduce quadratically

the number of helper components we have to publish in the verification key.

Constructing PE for the MultD-Eq Predicates. Our proposed predicate encryption scheme
for the MultD-Eq predicates follows the general framework of [AFV11, BGG'14], which allows
us to compute an inner product of a private attribute vector X associated to a ciphertext and
a (public) predicate vector Y associated to a secret key. To accommodate this framework, we
use our proposed linear predicate encoding scheme PES|;, for the MultD-Eq predicates. In the

overview, we continue with our examples with the subset predicate for simplicity. The core idea
is the same as for the MultD-Eq predicates. Essentially, PES;, will allow us to further modify
Eq. (3), to the following linear polynomial:

L :
f TC

Zaixi: ! 1 =° ; (6)

= #0 if TZS

where (X;)ic(r), (@i)ie[r) € ZqL are encodings of the attribute set T and the predicate set S, respec-
tively.

Following the general framework, the secret key for a user with predicate set S is a short vector
e such that [A|Bs]e = u for a random public vector u, where Bg is defined as in Eq. (7) below.
Furthermore, we privately embed an attribute set T into the ciphertext as

[ef |-+ lef]=s"B1+XiG |-+ | BL+X.G] + [z |- | z]].

Using the gadget matrix G of [MP12], a user corresponding to the predicate set S can transform
the ciphertext without knowledge of T as follows:

L L L L
S el G @G =T (S BiG N aiG) + Y aiX; G) +3 2/ G aG). (7)
i=1 =1 =1 =1

= Bs = z (noise term)

Observe the matrix Bs is defined independently of X (i.e., the attribute set S). By Eq. (6) and
the correctness of the predicate encoding scheme PESy;,, we have Eie[1 a;X; = 0 when the subset
predicate is satisfied, as required for decryption. To prove security, we set the matrices {Bi}ie[1]
as B; = AR; — X7 - G, where A is from the problem instance of LWE, R; is a random matrix
with small coefficients and (X;‘)iem is the encoding of the challenge attribute set T*. During
simulation we have

L L

Bs = ARs— > a;X"G, where Rs=)» R,G '(a,G).

i=1 i=1
for any set S. Here, we have Zz‘e[I a; X* # 0 iff T* € S. Therefore, for the key extraction queries
for S such that T* € S, we can use Rg as the G-trapdoor [MP12] for the matrix [A|Bs]| to
simulate the secret keys. We are able to generate the challenge ciphertext for the subset T* by
computing

(s"TA+2ZN[IRy|--- R]=s"[AB;1 +X{G|--- B, + X;G] + 2z [I|Ry| - - - |R]

LWE Problem simulation noise term

A subtle point here is that the simulation noise term is not distributed correctly as in Eq. (7).
However, this can be resolved by the noise rerandomization technique of [KY16].1
Finally, we propose a technique to finer analyze the growth of the noise term z = Zie[I z; G 1(a;G)

and the G-trapdoor Rs = _,c(y R;G!(a;G) used during simulation. This allows us to choose
narrower Gaussian parameters and let us base security on a weaker LWE assumption. The main
observation is that G~'(a;G) € {0,1}"**"¥ is a block-diagonal matrix with n square matrices
with size k along its diagonals where n = O(\) and k = O(log\). Exploiting this additional
block-diagonal structure, we are able to finer control the growth of ||v||2 and s;(Rs) (i.e., the
largest singular value of Rg).

10" Alternatively, we could have used the techniques of [AFV11, BGGT14] and altered the real scheme by multi-
plying the error vectors of the ciphertexts by random matrices with small coefficients.

10

3 Preliminaries

Notations. We use {-} to denote sets and use (-) to denote a finite ordered list of elements.
When we use notations such as (wi ;) (i j)en]x[m] for n,m € N, we assume the elements are sorted
in the lexicographical order. For n,m € N with n < m, denote [n] as the set {1,--- ,n} and [n,m]
as the set {n,--- ,m — 1,m}. For a vector v € R", denote ||v||2 as the Euclidean norm. For a
matrix R € R™*", denote ||[R||gs as the longest column of the Gram-Schmidt orthogonalization
of R and denote s1(R) as the largest singular value.

3.1 Verifiable Random Functions

We define a verifiable random function VRF = (Gen, Eval, Verify) as a tuple of three probabilistic
polynomial time algorithms [MRV99].

Gen(1*) — (vk,sk): The key generation algorithm takes as input the security parameter 1* and
outputs a verification key vk and a secret key sk.

Eval(sk, X) — (Y, 7): The evaluation algorithm takes as input the secret key sk and an input
X €{0,1}", and outputs a value Y €) and a proof 7, where) is some finite set.

Verify(vk, X, (Y, 7)) — 0/1: The verification algorithm takes as input the verification key vk,
X €{0,1}™, Y € Y and a proof 7, and outputs a bit.

Definition 1. We say a tuple of polynomial time algorithms VRF = (Gen, Eval, Verify) is a veri-
fiable random function if all of the following requirements hold:

Correctness. For all A € N, all (vk,sk) < Gen(1*) and all X € {0,1}", if (Y, 7) + Eval(sk, X)
then Verify(vk, X, (Y, 7)).

Uniqueness. For an arbitrary string vk € {0,1}* (not necessarily generated by Gen) and all
X € {0,1}™, there exists at most a single Y € Y for which there exists an accepting proof .

Pseudorandommness. This security notion is defined by the following game between a challenger
and an adversary A.

Setup. The challenger runs (vk,sk) < Gen(1*) and gives vk to A.

Phase 1. A adaptively submits an evaluation query X € {0,1}™ to the challenger, and the
challenger returns (Y,) < Eval(sk, X).

Challenge Query. At any point, A may submit a challenge input X* € {0,1}". Here,
we require that A has not submitted X* as an evaluation query in Phase 1. The challenger
picks a random coin coin <— {0, 1}. Then it runs (Y,) < Eval(sk, X*) and picks Y{* <).
Finally it returns Y, to A.

Phase 2. A may continue on submitting evaluation queries as in Phase 1 with the added
restriction that X # X*.

—_

Guess. Finally, A outputs a guess coin for coin.

The advantage of A is defined as |Pr[(5ﬁ1 = coin] — 3|. We say that the VRF satisfies (adaptive)

pseudorandomness if the advantage of any probabilistic polynomial time algorithm A is negligible.

11

3.2 Predicate Encryptions

We present the definition of predicate encryption [BW07, KSWO08, AFV11]. A predicate en-
cryption PE scheme with attribute space X and predicate space P consists of four probabilistic
polynomial time algorithms (Setup, KeyGen, Encrypt, Decrypt).

Setup(1*) — (mpk, msk): The setup algorithm takes as input a security parameter 1* and outputs
a master public key mpk and a master secret key msk.

KeyGen(mpk, msk, P) — skp: The key generation algorithm takes as input the master public key
mpk, the master secret key msk, and a predicate P € P. It outputs a secret key skp. We
assume the description of P is implicitly included in skp.

Encrypt(mpk, X, M) — ct: The encryption algorithm takes as input a master public key mpk, an
attribute vector X € X and a message M. It outputs a ciphertext ct.

Decrypt(mpk,skp,ct) — M or L: The decryption algorithm takes as input the master public
key mpk, a secret key skp, and a ciphertext ct. It outputs the message M or 1, which means
that the ciphertext is not in a valid form.

Definition 2. We say a tuple of algorithms PE = (Setup, KeyGen, Encrypt, Decrypt) is a predicate
encryption scheme if all of the following requirements hold:

Correctness. For all \ €N, all X € X, P € P such that P(X) = 1'! and all M in the specified
message space, Pr[Decrypt(mpk,skp, Encrypt(mpk, X, M)) = M] = 1 — negl(\) holds, where the
probability is taken over the randomness used in all of the algorithms.

Security. This security notion is defined by the following game between a challenger and an
adversary A.

Setup. At the outset of the game, A submits to the challenger an attribute X* € X on
which it wishes to be challenged. Then, the challenger runs (mpk, msk) < Setup(1?) and
gives the public parameter mpk to A.

Phase 1. A adaptively submits key extraction queries. If A submits a predicate P € P to
the challenger, the challenger returns skp < KeyGen(mpk, msk, P). Here, we require the
predicates P to satisfy P(X*) =0 (that is, skp does not decrypt the challenge ciphertext).

Challenge Phase. At any point, A outputs a message M*. The challenger picks a random
coin coin < {0,1} and a random ciphertext cti from the ciphertext space. If coin = 0, it
runs ctfy <— Encrypt(mpk, X*,M*) and gives the challenge ciphertext cty to A. If coin =1,
it gives ct] to A.

Phase 2. A may continue to make key extraction queries as in Phase 1.

—_

Guess. Finally, A outputs a guess coin for coin.

The advantage of A is defined as | Pr[&)ﬁ] = coin| —% . We say that the PE scheme is selectively

secure and weakly attribute hiding, if the advantage of any PPT A is negligible.

11 We follow the convention that P(X) = 1 signifies the ability to decrypt. This is opposite to the convention
used in the recent lattice-based schemes, and is done purely for convenience of our presentation.

12

3.3 Background on Lattices

A (full-rank-integer) m-dimensional lattice A in Z™ is a set of the form {}_,c;,, zibi|z; € Z},
where B = {by, -+ ,b,,} are m linearly independent vectors in Z™. We call B the basis of the
lattice A. For any positive integers n,m and ¢ > 2, a matrix A € ngm and a vector u € Zg, we
define A*(A) = {z € Z™|Az =0 mod ¢}, and AL(A) = {z € Z"|Az =u mod ¢}

Gaussian Measures. For an m-dimensional lattice A, the discrete Gaussian distribution over A
with center ¢ and parameter o is defined as Dy 5.¢(X) = po.c(X)/po,c(A) for all x € A, where p, (%)
is a Gaussian function defined as exp(—7|x—c|[?/c?) and py.c(A) = 3, cp Poc(x). Further for an
m-dimensional shifted lattice A + t, we define the Gaussian distribution Dp¢, with parameter
o as the process of adding the vector t to a sample from Dy , _¢. Finally, we call D a B-bounded
distribution, if all the elements in the support of D have absolute value smaller than B.

Hardness Assumption. We define the Learning with Errors (LWE) problem introduced by
Regev [Reg05].

Definition 3 (Learning with Errors). For integersn = n(\),m = m(n), a prime ¢ = q(n) > 2, an
error distribution over x = x(n) over Z, and a PPT algorithm A, an advantage for the learning
with errors problem LWE,, ,,, , of A is defined as follows:

Adv;WE”’m‘q’X = ‘ Pr [A(A,ATS + z) = 1] —Pr [.A(A,W + z) = 1]‘

where A < Zyp*™, s < Zy, w + L', z < X. We say that the LWE assumption holds if

AV s negligible for all PPT A.

The (decisional) LWE,, 15, . D, ., for ag > 2y/n has been shown by Regev [Reg05] to be as hard

as approximating the worst-case SIVP and GapSVP problems to within O(n/a) factors in the
lo-norm in the worst case. In the subsequent works, (partial) dequantumization of the reduction
were achieved [Pei09, BLP13].

Random Matrices. The following lemmas state the properties of random matrices. They will
be used to obtain a more precise analysis of our lattice-based scheme.

Lemma 1 ([LPRTJ05, ABB10]). Let m,k be positive integers such that k > m. If R is sampled
uniformly in {—1,1}™*F then s1(R) < 20v/m + k with overwhelming probability in m.

The proof for the following lemma appears in Appendix A.

Lemma 2. Let {,n,k be positive integers and set m = nk, and let D be a B-bounded distribution.
Let R < D™ and U be an arbitrary block diagonal matriz U = diag(UM ... UM) e {0,1}m>™
where UMW) € {0, 1Y%k for w € [n]. Then, there exists a universal constant C' > 0 such that we
have s1(RU) < C'- Bmvk = C - Bnk3/? with all but negligible probability in m.

Lemma 3 (Leftover Hash Lemma). Let ¢ > 2 be a prime, m,n,k be positive integers such that
m > (n+1)logq + w(logn), k = poly(n) and let R + {—1,1}™**. Let A and B be matrices
chosen uniformly in Zg*™ and ZZXk respectively. Then the distribution of (A, AR) is negligibly
close in n to the distribution of (A, B).

Discrete Gaussian Lemmas. The following lemmas are used to manipulate and obtain mean-
ingful bounds on discrete Gaussian vectors.

13

Lemma 4 ([ABB10], Lem. 8). Let n,m,q be positive integers with m > n, A € Zy*™ be a
matriz, w € Z7 be a vector, Ta € Z™ ™ be a basis for A-(A), and o > |Talles - w(v/Iogm).
Then, if we sample a vector X <= Dy 1 (a) ,, we have Pr[[|x|[2 > /mo] < negl(n).

07

Lemma 5 (Noise Rerandomization, [KY16], Lem. 1). Let q,f,m be positive integers and r a
positive real satisfying r > max{w(ylogm),w(vIogl)}. Let b € Z]' be arbitrary and z chosen
from Dgm .. Then for any V & 7%t and positive real o > s1(V), there exists a PPT algorithm
ReRand(V,b+z,r o) that outputs b'T =b'V+2'T ¢ Zf; where 2z’ is distributed statistically close
to Dzé727,o..

Gadget Matrix. We use the gadget matrix G € Zg*™ defined in [MP12]. Without loss of
generality, we will always assume that n|m. Here, G is a full rank matrix such that the lattice
A+(G) has a publicly known basis Tg with |Tg|lgs < v/5. With an abuse of notation, we also
define a deterministic polynomial time algorithm G~! that given an input U & Zy™™ outputs
a matrix V € {0,1}™*™ such that GV = U mod ¢. In particular, for any t € Z,, G71(t - G)
returns a block diagonal matrix with n square matrices with size m/n along its diagonals.

Sampling Algorithms. The following lemma states useful algorithms for sampling short vectors
from lattices.

Lemma 6. ([GPV08, ABB10, CHKP10, MP12]) Let n,m,q > 0 be integers with m > 2n[logq].

— TrapGen(1™,1™,q) — (A, TAa): There exists a randomized algorithm that outputs a matriz A €
Zy*™ and a full-rank matriz Ta € Z™*™, where Ta is a basis for AL (A), A is statistically

close to uniform and || Tallgs = O(v/nlogq).

— SampleLeft(A,B,u,Ta,0) — e : There exists a randomized algorithm that, given matrices
A B € Zy*™, a vector u € Zy, a basis Ta € Z™*™ for A (A), and a Gaussian parameter
o > || Talles - w(vIogm), outputs a vector e € Z*™ sampled from a distribution which is
negl(n)-close to D1 ((aB)),0-

— SampleRight(A, G,R,t,u,Tg,0) — e: There exists a randomized algorithm that, given a full-
rank matriz A, G € ngm, an invertible element t € Zy, a matrix R € Z™*™, a vector u € Ly,
a basis Tg for AH(G), and a Gaussian parameter o > s1(R) - || Ta|lcs - w(v/Iogm), outputs a
vector e € Z*™ sampled from a distribution which is negl(n)-close to Dy (ajAR+G)

)0

3.4 Background on Bilinear Maps.

Certified Group Generators. We define certified bilinear group generators as introduced in
[HJ16]. We require that there is an efficient bilinear group generator algorithm GrpGen that
on input 1* outputs a description of bilinear groups G, G with prime order p and a map e :
G x G — Gr. We also require that GrpGen is certified. Namely, there is an efficient algorithm
GrpVfy that on input a (possibly incorrectly generated) description of the bilinear groups and
outputs whether the description is valid or not. Furthermore, we require that each group element
has unique encoding, which can be efficiently recognized.

Definition 4. A bilinear group generator is a PPT algorithm GrpGen that takes as input a security
parameter 1* and outputs 11 = (p, G, G, 0,07, e, (1)) such that the following requirements are
satisfied.

14

1. p is prime and log(p) = Q(A).

2. G and Gt are subsets of {0,1}*, defined by the algorithmic descriptions of maps ¢ : Z, - G
and o1 : Ly — Gr.

3. o and or are algorithmic descriptions of efficiently computable (in the security parameter)
maps o : G x G — Gp and or : Gy x Gp — G, such that

e (G,0) and (Gp,or) form algebraic groups
e ¢ is a group isomorphism from (Z,,+) to (G,o)

e o7 is a group isomorphism from (Z,,+) to (Gr,or)

4. e is an algorithmic description of an efficiently computable (in the security parameter) bi-
linear map e : G x G — Gp. We require that e is non-degenerate, that is,

r#0 = e(o(x),0(x) # ¢r(0).

Definition 5. We say that a group generator GrpGen is certified, if there exists a deterministic
polynomial time algorithm GrpVfy with the following properties.

1. Parameter validation. Given a string I1 (which is not necessarily generated by GrpGen),
algorithm GrpVfy(Il) outputs 1 if and only if I1 has the form

= (pa G: GT7 o, 0T, ¢, (Z)(l))
and all requirements from Definition J are satisfied.

2. Recognition and unique representation of elements of G. Each element in G has a
unique representation that is efficiently recognizable. Namely, on input two strings I1 and
s, GrpVfy(I1, s) outputs 1 if and only if GrpVfy(Il) = 1 and it holds that s = ¢(x) for some
x € Ly. Here ¢ : Z, — G denotes the fized group isomorphism contained in II to specify the
representation of elements of G (see Definition /).

Hardness Assumption.

Definition 6 (L-Diffie-Hellman Assumption). For a PPT algorithm A, an advantage for the
decisional L-Diffie-Hellman problem L-DDH of A with respect to GrpGen is defined as follows:

AdVJL‘\-DDH = |PI'[A(H,g, haga7ga27 T 7gaL7 \IJO) — 1} - Pr[A(va7 hagavga27 T 7gaL7 \Ijl) — 1”7
where II < GrpGen (1), a + Zy, g, h < G, ¥ = e(g, RV and Uy < Gp. We say that L-DDH

assumption holds if Adv{j{DDH 1s megligible for all PPT A.

3.5 Other Facts.
The following lemma is taken from [KY16], and is implicit in [BR09, Jagl5, Yam16].

Lemma 7 ([KY16], Lem. 8). Let us consider a VRF and an adversary A that breaks pseu-
dorandommness with advantage €. Let the input space be X and consider a map = that maps a
sequence of inputs to a value in [0,1]. We consider the following experiment. We first execute
the security game for A. Let X* be the challenge input and X1,---,X¢q be the inputs for which

15

evaluation queries were made. We denote X = (X*, X1,--- ,Xqg). At the end of the game, we set
coin’ € {0,1} as coin’ = coin with probability v(X) and coin’ <+ {0,1} with probability 1 — ~(X).
Then, the following holds.

Ymax — Ymin

. . 1
Pr[coin’ = coin] — 5 > Ymin * € — 5

where Ymin (T€SP. Ymax) i the mazimum (resp. minimum) of v(X) taken over all possible X.

As noted in [Yam17], the lemma was originally proven for IBE schemes in [KY16], however,
the exact same proof works for VRFs.

4 Encoding Predicates with Arithmetic Circuits

Here, we formalize the intuition outlined in the introduction on how to encode predicates as
circuits. In doing so, we first define predicates and arithmetic circuits. Notably, to capture the
algebraic properties of circuits, we adapt the view of treating circuits as polynomials and vice
versa. (For further details, see [SY10].)

Predicates. A predicate is simply a function P : X — {0,1} over some domain X with image
{0,1}. In particular, predicate P divides the input space X into two disjoint sets according to
some specified relation. Often times, it will be more meaningful to consider a set of predicates
P={P|P:X — {0,1}}.

Arithmetic Circuits. An arithmetic circuit C over a ring R and a set of variables X =
{z1, - ,z,} is a directed acyclic graph as follows, where the vertices of C' are called gates. Every
gate in C of in-degree 0 (input gate) is labelled by either a variable from X or a ring element
in R. Every other gate in C is labeled by either + (addition gate) of x (product gate) and has
in-degree >2. The unique gate of out-degree 0 is called an output gate.'?> The depth of C is the
length of the longest directed path reaching to the output gate. For two gates w and v in C, if
(u,v) is an edge in C, then wu is called a child of v, and v is called a parent of u. For a gate v in
C, define C, to be the sub-circuit of C rooted at v.

An arithmetic circuit computes a polynomial in a natural way. For a gate v in C, define
Py € R[X] to be the polynomial computed by C, as follows: If v is an input gate labelled
by « € R U X, then p, = «a. If v is an addition gate with vi,vse,--- ,v; as children, then
Dy = Zie[k] Do, - If v is a product gate with vy, ve, -+ , vy as children, then p, = Hie[k} Pv,- For a
polynomial p € R[X], and a gate v in C, we say that v computes p if p = C,,. In particular, we
say p is a polynomial representation of C' when the output gate of C' computes p. We define the
degree of C to be the degree of the maximal-degree monomial of the polynomial representation
of C.

Finally, it is clear that given some representation of a polynomial, we can uniquely reconstruct
the original arithmetic circuit by iteratively converting each monomials into gates beginning from
the most inner monomials and moving outward. Note that since one function may be expressed
as a polynomial in number of ways, the reconstructed arithmetic circuit may be different even
if it has the same functionality, e.g., although (x; + m2)2 and x% + 2z129 + x% have the same
functionality, (z1 + z2)? will be of depth 2 consisting of 1 addition gate and 1 product gate, but
22 + 22129 + 23 will be of depth 2 consisting of 1 addition gate and 3 product gates. In the
following work, we will use the terms circuits and polynomials interchangeably.

2 Here, we only consider arithmetic circuits with a single output.

16

4.1 Predicate Encoding Scheme

We formalize our main tool: predicate encoding scheme.

Definition 7 (Predicate Encoding Scheme). Let P = {Py}aen be a family of set of efficiently
computable predicates where Py is a set of predicates of the form P : X\ — {0,1} for some input
space Xy, and let R = {Ra}aen be a family of rings. We define a predicate encoding scheme
over a family of rings R for a family of set of predicates P, as a tuple of deterministic polynomzial
time algorithms PES = (Enclnpt, EncPred) such that

e Enclnpt(1?, x) — & : The input encoding algorithm takes as inputs the security parameter
1* and input « € Xy, and outputs an encoding & € {0g,,1r, }* C RE, where t = t(\) is an
integer valued polynomial and OR, ,1r, denote the zero and identity element of the ring R,
respectively.

e EncPred(1*,P) — — C : The predicate encoding algorithm takes as inputs the security pa-
rameter 1 and a predicate P € Py, and outputs a polynomial representation of an arith-
metic circuit C RY — Ra. We denote Cx as the set of arithmetic circuits {C’ | C «+
EncPred(1*, P),VP € P,}.

Correctness. We require a predicate encoding scheme over a family of rings R for a family of
set of predicates P to satisfy the following: for all X € N and all b € {0, 1}, there exist disjoint
subsets Sy 0,501 C Ry (i.e., SxoNSx1 = @), such that for all predicates P € Py, all inputs
xe Xy if P(x) =b then C(&) € Sy p, where & + Enclnpt(1?,), C' + EncPred(1*, P).

Degree. We say that a predicate encoding scheme PES is of degree d = d(\) if the mazimal degree
of the circuits in Ca (in their polynomial representation) is d. In case d = 1, we say PES is linear.

In the following, we will be more loose in our use of notations. For simplicity, we omit the
subscripts expressing the domain or the security parameter such as O, Sy, Re when it is clear
from context. We also omit the expression family and simply state that it is a predicate encoding
scheme over a ring R for a set of predicates P. Finally, in the following we assume that the
algorithms Enclnpt(1?,), EncPred(1%,-) will implicitly take the security parameter 1* as input
and omit it stated otherwise.

The following is an illustrative example showing that the equality predicate Eq,, : {0, 1} —
{0, 1} where Eq,(x) = 1 iff y = = can be encoded in a variety of ways into an arithmetic circuit
with different properties.

Example. (Encoding Equality Predicates) Let P be a set of predicates {Eq,| y € {0,1}*}
where Eq,, is defined as above, and let the input domain be X' = {0, 1}5 where we denote X > x =
(z1,- -+ ,x¢). We first consider a predicate encoding scheme PES; over the finite field Zy. Namely,
for all Eq,, € P, let EncPred(1*, Eq,,) output Cy : Z4 — 7y such that Cy(Z) = e (1 — & — 3i)
where & = x € {0,1}¢ (resp. § = y) is the output of Enclnpt(x) (resp. Enclnpt(y)). Recalling
—1 = 1 over Zgy, it can be checked that we have correctness with Sy = {0}, 51 = {1}, and the
degree of PES; is d = ¢. Next, we consider a predicate encoding scheme PES, over the ring Z,
with a much lower degree where d = 1. In particular, for all Eq, € P and any integer ¢ > ¢, let

EncPred(Eq,,) output Cy : Z — Zq such that Cy(&) =1~ 2 ielg ((1—9;) + (=1+2¢;) - &;) where
&,9 € {0,1}* are encoded in the same way as above. Now, observing

(L =9) + (=14 20) - 2 = 239 + (1 —) (1 — 3s), (8)

17

it can be checked that C'y = Oifand only if #; = §; = 0 or 2; = §; = 1, i.e., Eq, (z) = 1. Therefore,
we have correctness with Sop = {1,--- ,¢}, S; = {0}. Furthermore, since d = 1, PES; is linear. In
the following, we continue on to use the left hand form of Eq. (8) to express equality.

Remark 1 (An alternative notion for the input encoding algorithm). We remark that an alter-
native more liberal way of defining the Enclnpt algorithm is to allow it to encode the input x as
any element in R, rather than only in {Og,1r}. Then, for ezample, we may create a trivial PES
scheme with degree d = 1 for the equality predicate Eq, by encoding elements x € {0, 1} as an
element in R = Zge, and encoding Eq,, as an arithmetic circuit C’y(:f:) =& — 9y over the ring R.
Howewver, in this work, we limit ourselves to the stricter notation of simply encoding inputs as 0, 1
elements, since it will provide a more useful and natural compatibility with the algebraic structure
of the underlying cryptographic schemes we consider.

4.2 Encoding Multi-Dimensional Equality Predicates

Here, we propose two predicate encoding schemes for the multi-dimensional equality predicate'?
(MultD-Eq) whose constructions are motivated by different applications. As we show later, the
multi-dimensional equality predicate is expressive enough to encode many useful predicates that
come up in cryptography (e.g., bit-fixing, subset conjunction, range conjunction predicates), that
being for constructions of cryptographic primitives or for embedding secret information during in
the security proof.

We first define the domains on which the multi-dimensional equality predicates MultD-Eq are
defined over, and then formally define what they are.

Definition 8 (Compatible Domains for MultD-Eq). Let p, D, ¢ be positive integers. We call a pair
of domains (X,Y) C ZPDXK X ZEXE to be compatible with the multi-dimensional equality predicates
if it satisfies the following:

For all X € X,Y € Y and for all i € [D], there exists at most one j € [{] such that X; j =Y, j,
where X; ; and Y; j denotes the (i, j)-th element of X and Y respectively.

Definition 9 (MultD-Eq Predicates). Let p, D, ¢ be positive integers and let (X,Y) C nge XZ]?XK
be any compatible domains for MultD-Eq. Then, for all Y €), the multi-dimensional equality
predicate MultD-Eqy : X — {0,1} is defined as follows:

1 if Vie[D], Junique j € [€] such that X;; =Y;;
MultD-Eqy (X) = {0 otherwise]]

where X; ; and Y; j denotes the (i, j)-th element of X and Y respectively.

Note that MultD-Eqy (X) is satisfied only if for each i € [D], there exists exactly one j € [/]
such that X;; = Y; ;. Furthermore, since we restrict (X,Y) to be over the compatible domains
(X,Y) for MultD-Eq, for all ¢ € [D] we will never have X;; = Y;; and X; =Y, ;s for distinct
J,7" € [f]. This restriction may appear contrived and inflexible at first, however, this proves to
be very useful for constructing predicate encoding schemes with nice qualities, and in fact does
not seem to lose much generality in light of expressiveness of the predicate. In particular, by

'3 This predicate is presented in the works of [GCMW15] as the AND-OR-EQ predicate satisfying the so called “at
most one” promise. We state the conceptual differences between their formalization and ours: they view predicates
as functions on both variables X and Y, whereas we view only X as a variable and treat Y as a constant. (Compare
[GMW15] Sec. 3.1 and our Def. 9).

18

appropriately instantiating the compatible domains, we can embed many useful predicates into
the MultD-Eq predicate. Further discussions are given in the next section and in Appendix B.
We now present two types of predicate encoding schemes for the MultD-Eq predicate.

Functionality Preserving Encoding Scheme PESgp. Our first predicate encoding scheme
preserves the functionality of the multi-dimensional equality predicate and can be viewed as an
efficient polynomial representation of the circuit computing MultD-Eqy .

Lemma 8. Let ¢ = q(\),p = p(A),D = D(X),{ = ¢(\) be positive integers and let (X,)) C
ZI?XEXZI?XE be any compatible domains for the MultD-Eq predicate. Further, let P = {MultD-Eqy :
X —{0,1} | Y € Y} be a set of MultD-Eq predicates. Then the following algorithms PESgp =
(Enclnptgp, EncPredgp) is a predicate encoding scheme over the ring Zy with degree d = D(where

¢ =|logp| +1:

e Enclnptpp(X) — X : It takes as input X € X, and outputs an encoding X € {0,1}P% as
follows:

X = (Xi,j,k)(i,j,k)e[D]x[ﬁ}X[C}’

where X; j 1 is the k-th bit of the binary representation of the (i,j)-th element of X. Here,
the output tuple (X; ;) is sorted in the lexicographical order. (See Sec. 3.)

e EncPredgp(MultD-Eqy) — Cy : It takes as input o predicate MultD-Eqy € P, and outputs

the following polynomial representation of an arithmetic circuit Cy:Z DZC — Lyg:
D ¢
=112 11 (Yijn) + (=1+2Yij) Xz‘,j,k)a
i=1j=1 k=1

where)A(,? € {0,1}P% are encodings of X,Y respectively.

The correctness of PESgp holds for the two disjoint subsets Sy = {0}, S1 = {1} C Z,.

Proof of Correctness. First, observe that the most inner product equals 1 if X;; = Y;; and 0
otherwise, due to Eq. (8). Here, recall that X is encoded as (Xi k) and X; ; denotes the (4, j)-th
element of X. In the following, denote X;,Y; as the i-th row of X, Y, respectively. Now, since X and
Y come from compatible domains of the MultD-Eq predicate, for each i € [D], we have X; j # Y ;
for all j € [/] when MultD-Eqy, (X;) = 0. Therefore, we have the following for all i € [D]:

1 if MultD-Eqy, (X;) = 1

0 otherwise

IS
Z H < Yijk) + (=1 +2Y;) - Xi,j,k) = { 9)
Finally, since MultD-Eqy(X) = 1 if and only if MultD-Eqy,(X;) = 1 for all i € [D], we have
Cy(X) = b when MultD-Eqy (X) = b for b € {0,1}. Thus, we have Sy = {0}, S; = {1}. O

Linear Encoding Scheme PES(;,. Our second construction is a linear predicate encoding
scheme. It achieves linearity by increasing the length of the encoded input X and takes advantage
of the fact that we can change the functionality of the encoded arithmetic circuit C; the output
of C' can be values other than 0 or 1, whereas outputs of predicates are defined to be in {0, 1}.

19

Lemma 9. Let ¢ = q(\),p = p(A\),D = D(X), £ = ¢(\) be positive integers such that ¢ > D and
let (X,Y) C ZPDXE X ZZ?XE be any compatible domains for the MultD-Eq predicate. Further, let
P = {MultD-Eqy : X — {0,1} | Y € Y} be a set of MultD-Eq predicates. Then the following
algorithms PESLin = (Enclnpty;,, EncPrediin) is a predicate encoding scheme over the ring Zq with
degree d =1, i.e., a linear scheme, where we set L = 2¢ and ¢ = llogp| + 1 below.

e Enclnpt;,(X) — X : It takes as input X € X, and outputs an encoding X € {0,1}PL defined
as follows:

¢
“;I wsk) ><i,j,w>e[D1x[elx[L1’

where wy, and X; ;. 1s the k-th bit of the binary representation of w — 1'* and the (i,7)-th
element of X, respectively. In case X; j, = wy = 0, we define (X;)" to be 1.

e EncPred;;,(MultD-Eqy) — Cy : It takes as input a predicate MultD-Eqy € P, and outputs
the following polynomial representation of an arithmetic circuit Cy : Z(?KL — Lyg:

D ¢ L
X)=D=> 3> aijw Xijuw
i=1 j=1w=1

where a; j € {—1,0,1} C Z, is the coefficient for the term X, j., = ngl(xi,j,k)wk of the
polynomial

f[(Yijk) + (=14 2Y k) - xi’j,k)_

Here we treat Y as a constant.

The correctness of PESiin holds for the two disjoint subsets So = {1,---,D}, S = {0} C Z,.

Proof of Correctness. First, it is easy to check that a; j., € {—1,0,1} for all (i, 7, w) € [D] x [€] x
[L], since we have (1 =Y, ;) € {0,1} and (—1+42Y; ;%) € {1, 1} for any Y € Y. The rest of the

proof is similar to the previous proof for PESgp. First, notice that the term Z 1 Zw 1 Qi jw vaw
is the same as the left hand side of Eq. (9). Therefore, we have the followmg for all ¢ € [D]:

t L . 1 if MultD-Eqy. (X;) =1
7j=1w=1

0 otherwise

where X;,Y; are the i-th row of X, Y, respectively. Now, since MultD-Eqy (X) = 1 if and only if
MultD-Eqy, (X;) = 1 for all i € [D], we have the following:

DL) D if MultD-Eqy (X) = 1
DD i Xijw = . .
€[0,D —1]

i=1 j=1 w=1 otherwise

Finally, subtracting the above by D and from the fact that ¢ > D, we obtain correctness. O

14This inconvenient notion is due to the fact that the bit length of p and L may differ by one in case p = 2" — 1
for n € N.

20

Remark 2. In some applications, the compatible domains (X,)) for MultD-Eq will have some
additional structures that we can exploit to obtain more efficient encoding schemes. For an exam-
ple, in some case for all X € X, all of the rows of X will be equal, i.e., X; = Xy for all i,i" € [D]
where X; denotes the i-th row of X. In this case, we can reduce the output length of Enclnpt by
a factor of D by discarding the redundant terms. We will see some concrete examples in the
following section and in Appendix B.

4.3 Expressiveness of Multi-Dimensional Equality Predicates

In this section, we will look at the expressiveness of multi-dimensional equality predicates MultD-Eq.
In particular, the following are some predicates that can be expressed as the multi-dimensional
equality predicate instantiated with appropriate compatible domains (&X',)). Combining this with
the result of the previous section, we obtain a functionality preserving (PESgp) or a linear (PESy;,)
encoding scheme for all the following predicates. Note that the choice of the compatible domains
are not unique, and different applications would motivate for different constructions. (For further
details, see also [BW07, SBCT07, GMW15].) For completeness, in Appendix B.1, we provide
discussions on how to obtain the following predicates from the MultD-Eq predicate.

Bit-fixing predicates. For a vector v € {0, 1, ?}¢ the bit-fixing predicate PEF : {0,1}¢ — {0,1}
is defined as

PEFx)=1 — A((Vizxi)\/(vi:?))-

For example this can be built from MultD-Eq predicates with compatible domains Xgr, Vg C
Z§X2. This predicate is also known as the hidden-vector predicate [BWO07].

Equality conjunction predicates. For some finite alphabet ¥ and a vector v € ¥¢ the equality
conjunction predicate PEC : 22¢ — {0, 1} is defined as

L
PECx)=1 «— /\ (vi =xi).
1=1

For example this can be built from MultD-Eq predicates with compatible domains Xgc, Vec C
quul’?“, where w}? = |X|.

Subset conjunction predicates. For some finite alphabet ¥, let T; € 2% for i € [(] and set
T=(Ty,---,Ty). Then the subset conjunction predicate P_I‘f_‘c : Hle 2% — {0, 1} is defined as

¢
SC/g
PSS =1 <= N\(T.Cs)),
i=1
where S = (S1,-++,S¢). For example this can be built from MultD-Eq predicates with compatible
domains Xsc, Ysc C Z?Xm, where m = Zle |T;|. In particular, when ¢ = 1, we simply call this
predicate as the subset predicate P3° : 2% — {0,1}.

Range conjunction predicates. For T € N and a = (aj,--- ,a7),b = (by,--- ,by) € [T}, the
comparison conjunction predicate P[F;ﬁo] 2 [T] — {0, 1} is defined as

l
P[Eﬁ)](x) =1 = /\ (ai <x; < by).
=1

21

For example this can be built from MultD-Eq predicates with compatible domains Xrc, Yrc C
Z£X2ﬂogT]
T+1 '

5 Verifiable Random Functions

5.1 Modified Admissible Hash Functions

To construct our VRF, we use the notion of partitioning function as introduced in [Yam17], which
is a generalization of the standard admissible hash function [BB04b, CHKP10, FHPS13, Jagl5].
At a high level, partitioning functions are similar to programmable hash functions, however, unlike
programable hash functions that are defined on specific algebraic structures such as bilinear groups
[HKO8] and lattices [ZCZ16], partitioning functions are purely informational theoretic primitives.

Definition 10 (Partitioning Function). Let F = {Fy : Ky x X\ — {0,1}}ren be a family of func-

tions. We say that F is a partitioning function, if there exists a PPT algorithm PrtSmp(1*, Q(N), €())),

which takes as input a polynomially bounded function Q = Q(\) where @ : N — N and a noticeable
function € = €(\) where e : N — (0,1/2], and outputs a partitioning key K such that

1. There exists \g € N such that
Pr [K €Ky K PrtSmp(l)‘, Q(A),e()\))] —1

for all A > Xg. Here A\g may depend on the functions QQ and e.

2. For X >), there exists functions Ymax(A) and ymin(\) that depend on functions Q and €
such that for XU, ... XQW) X* e X\ with X* ¢ {X1),... Xx@QN)}

Ymin(A) < Pr [F(K,X(l)) = =F(K, X)) = 1 AF(K,X") = o] < Ymax(A) (10)
holds and the function T(\) defined as

7(A) == Ymin(A) - €(\) — Ymax(A) ;%nin()\))

is noticeable. The probability is taken over the choice of K « PrtSmp(1*, Q(\), €(N)).

In this work, we consider the particular partitioning function called the modified admissible
hash function. This allows us to use the same techniques employed by admissible hash functions,
while providing for a more compact representation. The following is obtained by the results of
[Jagl5] and [Yam17].

Definition 11. (Modified Admissible Hash Function) Let n = n(\),f = £(\) and n = n(\) be
an integer-valued function of A such that n,¢ = O(X) and n = w(logA), and {C,, : {0,1}" —
{0,1}}en be a family of error correcting codes with minimal distance ¢ - £ for a constant ¢ €
(0,1/2). Let

KCMAH = {T C [2@ | |T’ < 77} and XMAH = {0, 1}”.

22

Then, we define the modified admissible hash function Fyap : Kman X Xman — {0,1} as

0, if TCS(X)

1, otherwise

FMAH(T,X) = { where S(X) = {Qi — C(X)Z | 1 € [5]} (12)

In the above, C(X); is the i-th bit of C(X) € {0,1}~.

Theorem 1. There exists an efficient algorithm PrtSmpyan (1%, Q(N), €()\)) which takes as input
a polynomially bounded function @ = Q(\) where @ : N — N and a noticeable function € = €(\)
where € : N — (0,1/2], and outputs T with cardinality exactly n' = n'(\), where

el

such that Eq. (10) and (11) hold with respect to F := Fpan, PrtSmp := PrtSmpyay and 7(A) =
2= =1 ¢. In particular, Fyan is a partitioning function.

5.2 Construction

Intuition. In our VRF construction, we implicitly embed the partitioning function Fpay in the
output Y during simulation. In particular, as we mentioned in the technical overview, the strategy
is to embed Fyan in the exponent of g using an L-DDH assumption with the smallest possible L.

Since Fpman checks whether the subset predicate PTS-Ub LT N {0,1} is satisfied or not,
which is a special case of the subset conjunction predicate presented in Sec. 4.3, it can be en-
coded as the multi-dimensional equality predicate MultD-Eq with (exploitable) compatible do-
mains Xsup, Vsub < Z‘;}Xf as we show in Appendix B. For our VRF construction, we consider the
functionality preserving encoding scheme PESgp for this MultD-Eq predicate with compatible do-
mains (Xsub, Ysub), and set up the verification keys so that the following polynomial is implicitly
embedded during the security reduction:

n £ ¢
e =TI I ((1 — S+ (—1+25;,) - Tk) (13)

i=1j=

H

el
Il

—

where (informaly) T;,S;, corresponds to the k-th bit of the binary representation of the i-th
and j-th element in the set T,S C [2/], respectively. From the correctness of PESgp, we have
C‘%”b(g) = (T CS) as desired. Here, recall that the set S = S(X) is uniquely constructed for each
input X € {0,1}". Finally, since n = w(log\), £ = O(\),(= O(log A), the above polynomial will
be of degree w(log2 A). Thus, this allows us to simulate the proof = and evaluation Y (and hence
prove security of our VRF) under a L-DDH assumption where L = w(log? \).

Construction. For simplicity of presentation, we deviate slightly from the notations used above.
Below, n,¢,n,S(-) are the parameters and function specified by the modified admissible hash
function (Def. 11) and (is set as |logp| + 1.

Gen(1*): On input 1%, it runs II + GrpGen(1*) to obtain a group description. It then chooses
random generators g, h <— G* and wo, w; i, < Z, for (i,k) € [n] x [¢]. Finally, it outputs

vk = <H,g7 h, go = g"*, <gi,k = gwi‘k) >’ and sk = (wO’ (wivk)(i,k)e[n}X[C])'

(3,k) €] x[c]

23

Eval(sk, X): On input X € {0,1}", it first computes S(X) = {s1,---, s¢} € [2¢]. In the following,
let s; 1 be the k-th bit of the binary representation of s;, where k € [(]. It then computes

/

i L

¢
917 = H Z H ((1 - Sj’k) + (—1 + 28j’k) . wi,k), and Qi,j,k’ = H ((1 - Sng) + (—1 + 25j,k) : w@k)
k=1

i=1j=1 k=1

for ¢ € [n] and (4, j, k") € [n] x [€] x [¢], and defines 6 := 6,,. Finally, it outputs

; (m,j,kf = ggi’f”“’)

(6,4, k") €[] x [€] x [c]) '

Y = e(g’h)e/w07 and 7 = (Wo = gg/woa <7Ti/ = gei’) (1]
Z/En

Verify(vk, X, (Y, m)): First, it checks the validity of vk. It outputs 0 if any of the following
properties are not satisfied.

1. vk is of the form (H,g, h, g0, (givk)(i,k)e[n]x[g]>‘
2. GrpVfy(IT) = 1 and GrpVfy(Il, s) = 1 for all s € (g,h, 90) U (9i k) (i,k)e[n] x[c]-

Then, it checks the validity of X,Y and 7. In doing so, it first prepares the terms ®;, g; ; i/
for all i’ € [n], (i,7,k) € [n] x [f] x [¢] defined as

)4
Oy = [mige and G =g " - (gaw) TR
j=1
It outputs 0 if any of the following properties are not satisfied.
3. X €{0,1}"Y € Gp, 7 is of the form (7T0, (ﬂi/)i,e[n], (Wi,j,k/)(z’,j,k’)dﬁ]xmx[d).
4. Tt holds that for all ' € [n — 1] and (i, 5, k") € [n] x [£] x [¢ — 1],

e(m1,9) = e(®1,9), e(mij1,9) = e(gij1,9),

6(7Tz"+179) = 6(¢’¢'+1,7Tz'/), e(m,j,k'+1,g) = e(gi,j,k’—i-lyﬂi,j,k’)-
5. It holds that e(m,, g) = e(mo, go) and e(mg,h) =Y.

If all the above checks are passed, it outputs 1.

5.3 Correctness, Unique Provability, and Pseudorandomness

Theorem 2 (Correctness and Unique Provability). Our scheme forms a correct verifiable random
function and satisfies the unique provability requirement.

Proof. We first prove the correctness of the scheme. It is easily seen that when Gen and Eval are
properly run, then it passes Step 1, 2, 3 of the verification algorithm. Next, observe that

L
@y = [[g = g5m 00 = gZim T (Amspm (14250 w00)
J=1

Gijh = gl_sj,k’ . (gi,k’)_1+28j’k/ — g((l_sj,k’)+(_1+25j,k’)‘wz’,k’)

)

24

for all ¢ € [n] and (¢,4,k") € [n] x [¢] x [¢]. Since ®; = m; and g; ;1 = 7 1, the first two equation
in Step 4 holds. The equality of the rest of the equations in Step 4 follow using the additional
observation that

IS
b1 =0+ (D2 TT (0 =530+ (~142830) - wisne))

]:1 k=1)

O g1 =0 s - (1= sjp41) + (=1 + 28 p41) - wigr11)

for all i/ € [np— 1] and (i,4,k') € [n] x [f] x [¢ — 1]. Finally, since by definition 7, = ¢ = ¢’
Step 5 holds. This completes the proof of the correctness of the scheme.

Next, we turn to prove the unique provability of the scheme. We have to show that for any
vk € {0,1}* and X € {0,1}", there does not exist any (Yo, mo, Y1, 1) such that Yy # Y7 and
Verify(vk, X, (Yo, m0)) = Verify(vk, X, (Y1,m1)) = 1.

e First of all, in Step 1 and Step 2, the verification algorithm checks whether II contains valid
certified bilinear group parameters and checks whether all group elements g, h, go, (gi,j)(i,j)e[n] x[¢]
are valid group elements with respect to II. Thus, in the following, we may assume that all
these group elements are valid and have a unique encoding.

e In Step 3, it is checked whether X € {0,1}", Y € Gy and 7 is in the proper form. In Step 4
and Step 5 it inductively checks whether all the equality holds. Now, since the bilinear
group is satisfied, i.e., each group element has a unique encoding and the bilinear map is
non-degenerate, there exists only one unique 7 such that correctness holds.

Therefore, the value of (Y, 7) is uniquely determined by the input X and the verification key vk.
This completes the proof. O

Theorem 3 (Pseudorandomness). Our scheme satisfies pseudorandomness assuming L-DDH with
L =n¢ = w(log?\).

Proof. Let A be a PPT adversary that breaks the pseudorandomness of the scheme with non-
negligible advantage. Let e = €(\) be its advantage and @ = Q()\) be the upper bound on the num-
ber of evaluation queries it makes. Here, since A is a valid adversary, () is a polynomially bounded
function and there exists a noticeable function €y = €p(A) such that €(A) > eg(\) holds for infinitely
many \. Then combining Def. 10 and Thm. 1 together, for T < PrtSmpyan (1%, Q(N), e0(N)) , we
have T C [2/] and | T| < n with probability 1 for all sufficiently large A. Therefore, in the following,
we assume this condition always holds. We show security of the scheme through a sequence of
games. In each game, a value coin’ € {0,1} is defined. While it is set coin’ = coin in the first
game, these values might be different in the later games. In the following we define E; to be the
event that coin’ = coin in Game;.

Gameg : This is the actual security game. Since)V = Gp, when coin = 1, a random element
Y < Gr is returned to A as the challenge query. At the end of the game, A outputs
a guess coin for coin. Finally, the challenger sets coin’ = coin. By assumption on the
adversary A, we have

1 1 1
‘Pr[EO] — 2’ = ‘Pr[coin' = coin| — 2' = ‘Pr[coin = coin] — 3| =¢

25

Gamej : In this game, we change Gameg so that the challenger performs an additional step at the
end of the game. Namely, the challenger first runs T <~ PrtSmppyan (1%, Q()), €0(N)) from
Thm. 1. As noted earlier, we have |T| C [2¢] and |T| < 1. Then, it checks whether the
following condition holds:

FMAH(T,X(I)) =1 A ---= A FMAH(T,X(Q)) =1 A FMAH(T,X*) =0
— <T§§S(X(1))> A A (TgS(X(Q))) A (TgS(X*)) (14)

where X* is the challenge input and {X (i)}ie[Q] are the inputs for which A has queried the
evaluation of the function. If it does not hold, the challenger ignores the output coin of A
and sets coin’ < {0,1}. In this case, we say that the challenger aborts. If condition (14)
holds, the challenger sets coin’ = coin. By Lem. 7 and Thm. 1 (See also Def. 10, Item 2),
the following holds for infinitely many A:

Ymax — Ymin
2

Ymax — VYmin

2

1
Pr[El] - 2‘ > Ymin * € —

> Ymin * €0 —

>,

where 7 = 7()\) is a noticeable function. Recall that vmax, Ymin, 7 are functions specified by
Q, ¢ and the underlying partitioning function Fyan.

Gamey : In this game, we change the way wo, (Wi k) (i ke x[¢) are chosen. First, at the beginning
of the game, the challenger picks T < PrtSmpyay (1%, Q(A),€0(A)) and parses it as T =
{t1,--- ,t,y} C [2(]. Note that changing the time on which the adversary runs the algorithm
is only conceptual. Now, recalling that by our assumption 1’ < 7, it sets t; = 0 for i €
[+ 1,m]. Next, it samples o < Zy and wo, W; 1, Zp for (i,k) € [n] x [(]. Finally, the
challenger sets

wo = W * Q, Wy | = U~J@'7k o+ ti,k for (i, k) c [T]} X [C], (15)

where t; ;. is the k-th bit of the binary representation of ¢;. The rest of the game is identical
to Game;. Here, the statistical distance of the distributions of wo, (w; k) (i k)epm)x (¢ iIn Gamer
and Games is at most (n¢ 4+ 1)/p, which is negligible. Therefore, we have

|Pr[E;1] — Pr[E2]| = negl()).

Before, getting into Games, we introduce polynomials (associated with each input X) that
implicitly embeds the information on the partitioning function Fpyan(T, X), i.e., the form of the
polynomials depend on whether T C S(X) or not. For any T C [2¢] with |T| =/ < n and
X € {0,1}" (i.e., for any S(X)), we define the polynomial Prcs(x)(Z) : Zy — Z, as

n £ ¢
Presn () =D 11 ((1 = sjk) + (=1 +2s58) - (WikZ + ti,k))v (16)

i=1 j=

H
el
Il
—

where {s;x}(jreigxic] and {tik} @ remx(q are defined as in Games. Note that Prcsix)(a) = 6.
Our security proof is built upon the following lemma on the partitioning function.

26

Lemma 10. There evists Rrcs(x)(Z) : Zp — Zy such that

1+ Z-Rycsx)(Z), if Fman(T,X) =0

P Z .
resel2) = {z Rresoo)(2), if Fuan(T,X) =1

In other words, Prcs(x)(Z) is not divisible by Z if and only if T C S(X).

So as not to interrupt the proof of Thm. 3, we intentionally skip the proof of Lem. 10 for the
time being. Furthermore, with an abuse of notation, for all X € {0,1}", we define the following
polynomials that map Z, to Z,, which are defined analogously to the values computed during
Eval:

i/

4

ST (= 850 + (-1 2850 (@047 + 1:1))
i=1j=1k=1

k'

07540 (H (= 8jk) + (=1 + 28;5) (W5 k2 + ti,k))
for i’ € [n] and (i, j, k) € [n]x[¢]x[¢], and define 6 (Z) := 6; (Z). Note that we have Prcg(x)(Z) =
0%(2), 00 = 05X (), 0: j = 05 s (), and 6 = 6% (av).

Games : Recall that in the previous game, the challenger aborts at the end of the game if condi-
tion (14) is not satisfied. In this game, we change the game so that the challenger aborts as
soon as the abort condition becomes true. Since this is only a conceptual change, we have

PI‘[EQ] = PI‘[Eg]

Gamey : In this game, we change the way the evaluation queries are answered. When the adversary
A queries an input X to be evaluated, it first checks whether Fpyan (T, X) = 1, i.e., it checks
if condition (14) is satisfied. If it does not hold, it aborts as in Games. Otherwise, it
computes the polynomial Rycs(x)(Z) € Zp[Z] such that Prcs(x)(Z) = Z - Rrcs(x)(Z), and
returns

Y = e(gRrese(@)/@o p), (17)

T = <7r0 _ gRTQS(X)(O‘)/im’ <7r/ _ g ; (a)) (18)

= gl (@)
><7Tw,k g)(i,j,k')e[n]x[é]X[C])

i'eln]
Note that existence of such a polynomial Prcs(x)(Z) is guaranteed by Lem. 10. By the
definition of 63 (Z) and Hfj’k,(Z), the components 7y and m; ;s are correctly generated.
Furthermore, we have

Rresx) (@) _ o Rresx) (@) _ Preson(a) 6

’LZ)O [0 ’U~)0 wo wo

Therefore, Y and mg are also correctly generated, and the challenger simulates the evaluation
queries perfectly. Hence,

PI‘[Eg] = PI‘[E4].

27

Games : In this game, we change the way the challenge ciphertext is created when coin = 0.
Recall in the previous games when coin = 0, we created a valid Y = Eval(sk, X*) as in
the real scheme. If coin = 0 and Fman(X™) = 0 (i.e., if it does not abort), to create Y,
the challenger first computes the polynomial Rycs(x+)(Z) € Zy[X] such that Prcgx+)(Z) =
1+Z- RTgs(X*)(Z), whose existence is guaranteed by Lem. 10. It then sets,

1/w
Y5 = (elg,)1 - e(g, h)frescen (@) s

and returns it to A. Here, the above term can be written equivalently as

1/

(6(9, h)l/a . e(g, h)RTgs(x*)(a)) — e(g(l-l—ozRTgS(Xﬂ(Oc))/ozu?o’h) _ e(gPTCS (x*)(@)/wo h) - e(6 /wo h)

Therefore, the view of the adversary in unchanged. Hence,

Pr[E4] = Pr[Es).

Gameg : In this game, we change the challenge value to be a random value in G regardless of
whether coin = 0 of coin = 1. Namely, the challenger sets Y* < Gp. As we will show in
Lem. 11, assuming L-DDH is hard for L = n¢, we have | Pr[Es] = Pr[Eg] |= negl(\).

Analysis. From the above, we have

1 1 <
Pr[E6]—2’ = |Pr[E{] — §+Z Eis1] — Pr[Ei])
=1
5
> |Pr[Ey] —' > [Pr[Eitq] — Pr[Ej]]
=1
> 7(A) — negl(}), (19)

for infinitely many \. Since Pr[Eg] = 1/2, this implies 7(A) < negl(\) for infinitely many A, which
is a contradiction. O

To complete the proof of Thm. 3, it remains to prove Lem. 10 and 11.
Proof of Lem. 10. First, we can rewrite Eq.(16) as

n £ ¢
Preso)(Z) =Z-Rreso (D) + [D11 ((1 —sjk) + (=1 +2s5%) - tz’,k),

i=1j=1 k=1

=C

for some polynomial Rycg(x)(Z) with degree at most 1¢. Observe the constant term C' is comput-
ing the circuit outputted by the functionality preserving encoding scheme PESgp for the subset
predicate (See Lem. 8 and Appendix B.2). Therefore, we have C =1if T C S < Fyan(T, X) =0,
and C' = 0 otherwise, as desired.]

Lemma 11. For any PPT adversary A, there exists another PPT adversary B such that
|Pr[Es] — Pr[Eg]| < AdvgPPH,

where L = n¢. In particular, under the L-DDH assumption, we have |Pr[Es] — Pr[Eg]| = negl(n).

28

Proof. Suppose an adversary A that has non-negligible advantage in distinguishing Game; and
Gameg. We use A to construct an L-DDH algorithm denoted B, which proceeds as follows.

Instance. B is given the problem instance of L-DDH(II, g, h,{g" }icr, V) for L = n¢, where
U =e(g,h)"* or ¥« Gr.

Setup. To construct the verification key vk, it samples Wy, w; ; < Zj for (i,k) € [n] x [(] as in
Gamey, and implicitly sets wo and (w; k) kel x[c] @5 in Eq. (15). Then, since wo, (Wi k) (i) x [c]
are all at most degree 1 polynomials in «, B can efficiently compute go, (gi k) (i,k)enx[¢] from the
problem instance. Finally, it returns vk = (IL, g, h, go, (9i.k) (i,k)efn) x[c]) t0 A. B also picks a random
bit coin <— {0, 1} and keeps it secret.

Phase 1 and Phase 2. The evaluation queries made by A are answered as in Eq. (17) of Gamey.
Observe that this can be done efficiently, since Rycs(x)(Z) is degree at most L = (.

Challenge Query. When A makes the challenge query for the challenge input X*, B first
computes Fyan(X*). Then, it aborts and sets coin’ < {0,1} if Fyap(X*) = 1. Otherwise, it
proceeds as follows. If coin = 0, it computes

1/
Yy = <\I/ . e(g,h)RTQS(X*>(a)> /o

Note that e(g, h) Rres(x) (@) can be efficiently computed from the problem instance, since Rrcs(x+)(2)
is of degree at most L = n(. In the case of coin = 1, B sets Y* <— Gr. In both cases, B returns
Y* to A.

Guess. At last, A outputs its guess coin (if the abort condition has not been satisfied). Then, B
sets coin’ = coin. Finally, B outputs 1 if coin’ = coin and 0 otherwise.

1/

Analysis. It can be seen that B perfectly simulates the view of A in Games if ¥ = e(g, h)"/“ and

Gameg if ¥ <+ Gp. We therefore conclude that
AdvEPPH — |pr[E5] — Pr[Eg]|

for L = nC as desired.

5.4 Achieving Smaller Proof Size

In this section, we propose a variant of the VRF presented in Sec. 5.2 with a much shorter proof
size. Recall the VRF we constructed in the previous section had a very small verification key size
Ivk| = ¢ = w(log? \) with a rather large proof size |r| ~ 7f¢ = w(Xlog? \), where we count the
number of group elements for size. A first attempt is to use a similar trick used in [Yam17] to
add some helper terms in the verification key to make the proof size smaller. In particular, we
can convert our VRF to have a very small proof size |r| = w(log\) by allowing the verification
key size to grow quasi-linearly in the security parameter, i.e., [vk| = w(Alog A).

However, we can do much better with an additional idea; we obtain a VRF with proof size
|| = w(log A\) and verification key size |vk| = w(v/Alog \), which is now sublinear.
Preparation. We define power tuples P(W) for a tuple W, analogously to power sets. Namely,
we create a tuple that contains all the subsequence of W in lexicographical order, i.e., P(W) =
(w1, wa, w3, wws, WiwW3, wWows, wiwews) for W = (w1, we, w3). Here, we do not consider the empty
string as a subsequence of W. For a group element g € G or Gy and a tuple W with elements in
Zy,, we denote g7W) as the tuple (¢ | w € P(W)). Furthermore, for tuples W, W’ with elements

29

in Z, we define e(gPM), gPV)) to be the tuple (e(g,9)"™ | w € W,w' € W’). Assume all the
tuples are sorted in the lexicographical order.

Construction. Below, we provide a VRF with small proof size.

Gen(1*): On input 1%, it runs II + GrpGen(1*) to obtain a group description. It then chooses
random generators g, h < G, wo, w; = Zyp for (i, k) € [n] x [(] and sets L; = (w; x)re[|¢/2))
and R; = (w;)ke[|¢/2)+1,¢]- Finally, it outputs

vk = (H7ga h,g() = gwoa (glp(Li)7g,P(Ri))i€[T]}>u and sk = <w07 (wl,k)(l,k)e[n]x[d) '

Note that we have e(gP(L), gP(E)) = ¢(g,)P where W; = (wi k) kelc)-

Eval(sk, X): On input X € {0,1}", it first computes S(X) = {s1,---, s¢} € [2¢]. In the following,
let s; 5 be the k-th bit of the binary representation of s;, where k € [¢]. It then computes

&::EZII(Un—%¢)+(—1+2%w)4mﬁ)

IS
010 = E:II(Uf—%$)+(—1+2%$)%wk)

9

@
Il
—
<
Il
i
e
Il
i

\

for i € [n],i" € [2,m] and sets 0 := 0;.,). Note that we do not require i’ = 1 since 01 = 0;.).
Finally, it outputs

Y = e(g’ h)e/wo’ and T = <7T0 = ge/woa <7T'i = goi)ie[n}, (77[1:’5’] = ge[l:i,]>i/e[2 77]> ’

Verify(vk, X, (Y, 7)): First, it checks the validity of vk. It outputs 0 if any of the following
properties are not satisfied.

L. vk is of the form (H7gv h7g(]7 (gP(Li)7gP(Ri))i€[77]> ’
2. GrpVfy(II) = 1 and GrpVfy(Il,s) = 1 for all s € (g, h,go) U (gP(Li),gP(Ri))iem.

Then, it checks the validity of X,Y and w. In doing so, it first computes the coefficients
(as)sc(e of the multi-variate polynomial

14

p(Zi,-,Z20) =)]] ((1 — Sjk) + (—1+28a’,k)‘zk> = as[] 2z

j=1k=1 SCl¢] k€S

Next, for all i € [n] and S C [(], it sets Lg = SN [[¢(/2]] and Rg = SN [|(/2] + 1,(], and
computes ®; g as

wj Wy
B; 5 = e(gllrers i gllieng wir),

Here, in case Lg = ¢ (resp. Rg = ¢), we define [[,c; wix (vesp. [[rcp, wik) to be 1.
Note that these values can be computed efficiently, since g¥) gP(Fi) are given as part of
the verification key. It outputs 0 if any of the following properties are not satisfied.

30

3. X €{0,1}"Y € Gy, 7 is of the form 7 = (my, (ﬂi)ie[n]a (ﬂ-[l:i’])i’e[Q,n})'
4. It holds that for all i € [n] and ' € [3,7)],

e(mi, g) = H @ffé, and 6(77[1:2]79) = e(m,m2), and 6(77[1:1'/],9) :e(ﬁ[lziul],ﬂz")
SC[¢]

5. It holds that e(m[.,}, g) = e(m0, g0) and e(mp, h) =Y.
If all the above checks are passed, it outputs 1.

The correctness, unique provability and pseudorandomness of the above VRF can be proven in
a similar manner to the VRF in Sec. 5.2. For completeness, we provide some details in Appendix C.
Finally, we end this section by discussing the efficiency of the above construction.

Remark 3. Our second VRF has verification key size |vk| = w(v/Alog\) and proof size |n| =
w(log \). To see this, observe that for all i € [n] we have |P(L;)|, |P(R;)| < 21</21, which follows
from |L;|,|R;| < [(/2]. Neuxt, since £ = O(X), there exists some positive constant ¢ such that
(X)) < ¢ for large enough A € N. Then, since ¢ = [logl| + 1, we have ((\) < log A + logc + 1.
Therefore, 21¢/21 < 9C/2+1 — J\1/2 for some positive constant ¢’. Thus, we obtain the upper
bound |gF L, |gP)| = O(V/X). Since we consider this for all i € [n] where n = w(log), we
conclude |vk| = w(v/Alog\). Note that this means that we can take vk for example as small as
Ivk| = O(v/Alog? \). A detailed comparison is provided in Sec. 1.1, Table 1.

6 Predicate Encryption for MultD-Eq Predicates

In this section, we show how to construct a predicate encryption scheme for the multi-dimensional
equality predicates MultD-Eq. This directly yields predicate encryption schemes for all the pred-
icates presented in Sec. 4.3. Due to the symmetry of the MultD-Eq predicate and the compatible
domains (X)), we obtain both key-policy and ciphertext-policy predicate encryption schemes.

6.1 Embedding Predicate Encoding Schemes into Matrices

[BGGT14] provides us with a generic way of constructing a lattice-based attribute-based encryp-
tion (ABE) scheme from three deterministic algorithms (Evalpy, Evalct, Evalgim). In this paper, we
slightly modify the syntax of the Evalg algorithm so that the three deterministic algorithms yield
a predicate encryption (equivalently, a predicate hiding ABE) scheme.

Definition 12. We say that the deterministic algorithms (Evalpk, Evalet-priv, Evalsim) are ac-
predicate encryption (PE) enabling for a family of arithmetic circuits C = {C : Zg — Zq} if
they are efficient and satisfy the following properties:

e Eval, (C eC, By, (By), , €Zi*™) = Bg € Z*™

i€t

o Evaleyiv (C €€, o, (e), 0y € Z7) = cc €27

e Evalyn (C €C, Ro, (Ri), € mem) 5 Rg € Zmxm

1€t]

We further require that the following holds:

31

1. Evalpk(C, (AR() - G), (AR.Z - sz)ze[t]) = A Evalsim(C, Ro, (Rl)ze[t]) - C(X)G for any
= (33‘1, s ,$t) € {O, 1}t.

2. Ifco = (Bg+G)'s +29 and ¢; = (B; + 2;G)"s + z; for some s € Zy, and zo,2; <
Dym g,z; € {0,1} for all i € [t], then |lcc — (Bo + C(x)G)"s|l2 < ac - Bv/m with all but
negligible probability.

3. If Ry < {—1,1}™*™ for all i € [0,t], then s1(R¢) < ac with all but negligible probability.

There are two major differences between the notions from [BGG*14]. First, Evalcipriv does
not take (z;);cy € {0,1}" as input to the homomorphic evaluation of the ciphertexts. On one
hand this limits us to perform only linear operations over the ciphertexts, however, on the other
hand this will allow the decryptor to create cc without knowledge of the predicate associated to
the ciphertext (See also [AFV11]). Second, we loosen the condition on z, R in Requirement 1, 2
to hold with overwhelming probability. This allows us to obtain tighter bounds on the behavior of
the random matrices and error vectors. Finally, we make a minor change by additionally including
(Bo, co, Ro) as inputs to the algorithms to cope with the constant terms of the polynomials being
evaluated.

ac-PE enabling algorithms for MultD-Eq predicates. We show that the linear predicate en-

coding scheme PESy;, for the MultD-Eq predicates (Sec. 4.2, Lem. 9) provides us with a family of

arithmetic circuits C that allows for as-PE enabling algorithms (Evalp, Evaletpriv, Evalsim). Let all

the parameters be defined as in Lem. 9 and denote C as the set {C’y | Cy + EncPredy;n (MultD-Eqy), YMultD-Eqy €
P}. The three algorithms are defined as follows:'®

Evalpk (C’y € é, By, (Bi:jvw)(z‘,j,w)e[D}x[e]x[L]) : It outputs
D ¢

By = By - B Z ijow - Bijw € Z3"™.

i=1 j=1 w=1

Evalct-priv (C’y € (f, Co, (Ci’j’w)(i,j,w)e[D]x[é]x[L]) : It outputs

D 7 L
(G DG C() Z Z Z Qijw - Cijw € Zgn.

i=1 j=1 w=1
Evalgim (C’y €C, Ry, (Rivjvw)(i,j,w)g[D]x[é]x[L]) : It outputs
D ¢
Ry =Ry G =D Z aijao Rijw € 2™
=1 j=1w=1

Lemma 12. The above algorithms (Eval,y, Evalci_priv, Evalsim) are as-PE enabling algorithms

for the family of arithmetic circuits ¢ defined by the predicate encoding scheme PESy;, for the
MultD-Eq predicates defined over ZEXE, where ap = C' - max{my/m/n,/Dlpm} for some abso-
lute constant C' > 0.

15 Recall that when we use the notation (Aijw),jw)elD]x g x[L], We assume the elements are sorted in the
lexicographical order.

32

Proof. We check that all the requirements of Def. 12 are satisfied. First, by the property of
the gadget matrix G and the fact that a; ;. € {—1,0,1}, we have a;jIn = G_l(ai,j,w - G).
Then, by plugging in By = ARy — G and B; ;. = AR, —)A(M,WG, we can see that By =
ARy — C’y(X)G Hence, Requirement 1 holds. Furthermore, simple calculation shows that in
case cg = (Bg 4+ G)"s + zp and Cijow = (Bijuw+)A(i,j,wG)Ts + 2; jw, we have

D ¢ L
c=(By+ (X&) s+ ((G1(DG) 20— 33> aizu s). (20)

i=1 j=1w=1

:=e; (noise)

:=e2 (noise)

Recall that the discrete Gaussian distribution Dzm g is subgaussian with parameter C'- 3 for some
absolute constant C. In the following, with an abuse of notation, we will denote any absolute
constant as C. Then by the property of G™!, we can use Lem. 2 with B = C and ¢ = 1 to obtain
llei]l2 < C - pm+/m/n. Note that we assume n|m without loss of generality. Next, from Lem. 4
and the linearity of subgaussian variables, we have [|ez||2 < C-vmD{LS. Combining this together
with the fact L = 21°8P)+1 we obtain |je; — es2 < C'- (m//n+ /Dlp) - v/mp < ag - /mB with
all but negligible probability. This shows that Requirement 2 holds.

Finally, we show that Requirement 3 holds. First, since the absolute values of each element
is bounded by 1, every entry of Rg, R, ;. are subgaussian variables with parameter C. Then,
following a similar argument as above, Ry is a subgaussian matrix with parameter C - (m/\/n +
/DZp)-y/m. Then using the Lem. 2.9 of [MP12], we have that s;(Ry) < C-(m+/m/n++/Dlpm) <
C - max{m+/m/n,/Dlpm} < ap with all but negligible probability. O

6.2 Construction

Given as-PE enabling algorithms (Evalpy, Evaletpriv, Evalsim) for a family of arithmetic circuits
defined by the predicate encoding scheme PES(;, = (Enclnpt;,, EncPred;;,) for the MultD-Eq
predicates with compatible domains (X,)), we build a predicate encryption scheme for the same
family of predicates.

Parameters. In the following, let n,m,q,p, D,£ be positive integers such that ¢ is a prime
and ¢ > D, and let o,,d’ be positive reals denoting the Gaussian parameters. Furthermore,
let (X,Y) € ZI?XE X ZZ?XZ be any compatible domains for the MultD-Eq predicates, let P =
{MultD-Eqy : X — {0,1} | Y € Y} be the set of multi-dimensional predicates and ¢ = {Cy |
Cy « EncPred(MultD-Eqy), VMultD-Eqy € P} be the set of polynomials representing the multi-
dimensional predicates. Finally, let ¢ = |logp| + 1 and L = 2. Here, we assume that all of the
parameters are a function of the security parameter A € N. We provide a concrete parameter
selection of the scheme in Sec. 6.3. The following is our PE scheme.

Setup(1*): It first runs (A, Ta) < TrapGen(1™,1™, q) to obtain A € Zy*™ and Tp € Z™*™. Tt
also picks u < Zy, Bo, B; jw « Zy*™ for (i,j,w) € [D] x [¢] x [L] and outputs

mpk = (A, B, (Bi.0) and msk = T.

(i,jw)€[D]x [[L]’ “)

KeyGen(mpk, msk, MultD-Eqy): Given a predicate MultD-Eqy € P for Y € ZEXZ as input, it runs
Cy «— EncPredy;,(MultD-Eqy) and computes

Evalpk (éy, By, (Bi7j7w)(i,j,w)G[D}X[Z]X[L]) — By € Z;‘Xm

33

Then, it runs
e < SampleLeft(A,By,u,Ta,0),
where [A|By]e = u mod ¢, and finally returns sky = e € Z?™.

Enc(mpk, X, M): Given an attribute X € ZEXZ as input, it first runs X < Enclnpty;,(X) where
X € {0,1}PL. Then it samples s < Ly, z = Dz.aq, %20, Zijuw < Dzm arq for (i,j,w) €
[D] x [¢] x [L], and computes

¢ =u'st+z+M-|g/2],
B c =ATs+z,
X = co =Bo+G)"s+z,

Cijw = (Bi,j,w +>A<i7j7wG)TS+Zi7j7w for (z',j,w) € [D] X M] X [L],

where)A(M’w is the (i, j,w)-th element of X. Finally, it returns the ciphertext cx € Ly %
(Zm)D2L+2
i .

Dec(mpk, (Cy, sky), cx): To decrypt the ciphertext cx = (¢, ¢, co, (¢ ju)) given a predicate and
a secret key (Cv,sky), it computes

Evalct-priv (Cy, o, (c@j,w)(Z.J’w)e[D]X[e]X[L}) —cCcE ZZ”.
Then using the secret key sky = e € Z?™, it computes
d=c—[c'lc'] e €z,
Finally, it returns |d — |¢/2]| < g/4 and 0 otherwise.

6.3 Correctness and Parameter Selection

Lemma 13 (correctness). If the predicate is satisfied, assuming o > «, the error term on the
decrypted values are bounded by O(\/mo/aéaq) with overwhelming probability.

Proof. By the definition of a;-PE enabling algorithms, when the cryptosystem is operated as
specified, we have during decryption

d=c—[c'lc"]Te=M-|q/2] +2— (20 +2) e,

where z is defined as in Eq. (20) (i.e., z := e; — e2). Further, we have the following upper bound
on the noise.

Iz = (20 +2) "ella < |2 + (|lzg e]l2 + |z el|2)
< Vmagq + 2v/mad’ agoq
= O(Vmad'az0q).

The first inequality follows from the CauchySchwarz inequality and the second inequality follows
from Lem. 4, Requirement 2 of the a-PE enabling algorithms and the linearity of subgaussian
variables. o

34

Parameter selection. To satisfy the correctness requirement and make the security proof follow
through, we need the following:

- the error term is less than ¢/5 with overwhelming probability (i.e., O(v/md'as0q) < q/5. See
Lem. 13),

- the correctness of PES;, holds. (i.e., ¢ > D. See Lem. 9),
- the TrapGen algorithm works as specified during Setup. (i.e., m > 2n[logq]. See Lem. 6),

- the leftover hash lemma can be applied in the security proof (i.e., m > (n+ 1)logq + w(logn).
See. Lem. 3),

- the SampleLeft algorithm works as specified during KeyGen. (i.e., o > ||Ta||lgs - w(v/logm). See
Lem. 6),

- the SampleRight algorithm in the security proof works as specified. (i.e., o > s1(Ry) - || Ta|lgs -
w(vIogm) < 0 > ap - w(v/logm). See Lem. 6, Def. 12),

- the ReRand algorithm in the security proof works as specified (i.e., ¢//2a > s1(R*), ag >
w(yv/1logmDIL) where R* is defined as in Gamey. See Lem. 5),

- the worst case to average case reduction works (i.e., ag > 2y/n).

To satisfy the above requirements, one way to set the parameters are as follows:

m = O(nlogq), q=+vm-(\/Dtp)~t- o% -w(logm), o =ag-w(y/logm),
ap = O(max{m/logq,/Dlpm}) o= (\/Dlp) - 0452 -w(logm) ™, o = O(y/Dlpm -),

and round up g to the nearest larger prime. Here, D, ¢, p are chosen accordingly to the types of
MultD-Eq predicates one wants to use.

6.4 Security Proof

Theorem 4. Given the PE enabling algorithms (Evalpk, Evalei-priv, Evalsim) for the family of arith-

metic circuits C defined above, our predicate encryption scheme is selectively secure and weakly at-
tribute hiding with respect to the MultD-Eq predicates, assuming the hardness of I\WEy, 141,4,D; ., -

Proof. The proof proceeds in a sequence of games where the first game is identical to the real
predicate encryption security game from Def. 2. In the last game in the sequence, the adversary
has zero advantage. In the following, let A be a PPT adversary that breaks the security of the
scheme with advantage €, and define E; to be the event that A wins in Game;.

Gamey : This is the real security game between the attacker A against our scheme. By definition,
we have |Pr[Eg] — 1/2] = e. In the following, let X* € ZI?XZ denote the challenge attribute
A submits.

Gamey : In this game, we change the way By, B; ;. are chosen. At the beginning of the game,
the challenger samples Rg, R, . < {—1,1}"*™ for (i,j,w) € [D] x [£] x [L]. Then, we
define By and B; j,, as

Bo == ARO - G and Bi,j,w = ARi,j,w -)A<*

Z7]7w

G, (21)

35

where X* < Enclnpt;;,(X*) and X;,j,w
Lem. 3, the distributions

is the (i,7, w)-th element of X* € {0,1}P£. By
(A,Bo, (Bi,j,w)(i,j,w)e[D}x[e]x[L]) and (A,AR07 (ARi,j,w)(i,j,w)e[D]X[g]x[L])
are negligibly close, where Bo, B; ;. < Zg ™. Therefore, we have

[Pr[Eo] — Pr[Ey]| = negl(A).

Before continuing to our next game, we make the following observation. From Requirement 1
of Def. 12, for all MultD-Eqy € P and Cy < EncPred|;,(MultD-Eqy), we have

Evaly (éy, (AR — G), (AR .0 — >A<;j7wc;)(i,j,w)) = ARy — Cy(X)G
where Ry = Evalgm(Cy, Ro, (Rijw)(ijw)) Furthermore, we have [Ryll2 < an < o from Re-

quirement 3 and our parameter selection. Now by the correctness of the PESy;, scheme (Lem. 9),
we have

ARy — Cy(X)G =

{ARY if MultD-Eqy (X*) (22)

1
ARy —tG for 3t e {1,---D} if MultD-Eqy(X*) =0
Note that since ¢ > D and ¢ a prime, ¢ is always invertible in Z,.

Games : In this game, we change how A is sampled. Namely, in Games, we generate A as a
random matrix in Z"*™ instead of generating it with a trapdoor. By Lem. 6, this makes only
negligible difference. To respond to a key extraction query for a predicate MultD-Eqy € P
made by A, it first runs Cy « EncPredyi,(MultD-Eqy) and computes

Evalgim (C'Y, Ry, (Ri,j,w)(i,j,w)e[D]x[é}x[L}) — Ry.

If A is a valid adversary, then all the predicates submitted as a key extraction query satisfies
MultD-Eqy (X*) = 0, and by Eq. (22) we have ¢t = Cy(X*) for some invertible element
t € {1,---,D} C Zq. Then, using the SampleRight algorithm from Lem. 6, it samples the
secret key

SampleRight(A, G, Ry,t,u, Tg,0) — e.
Note that in the previous game the key was sampled as
SampleLeft(A,By,u, Ta,0) — e.

By the definition of Evalgy,, SampleRight, SampleLeft and for our choice of o, the distribu-
tion of the secret key is negligibly close to the distribution of that in the previous game.
Therefore, the above alters the view of A only negligibly. Thus, we have

|Pr[E1] — Pr[Eg]| = negl()).

36

Gamegs : In this game, we change the way the challenge ciphertext is created when coin = 0.
Recall in the previous games when coin = 0, we created a valid challenge ciphertext as in
the real scheme. If coin = 0, to create the challenge ciphertext, the challenger first picks
S < Zy,z < Dz,0q,% < Dzgm oq and computes v = u's+ze Zq and v = ATs+zc VS
It then sets R* = [Rg|Ry11| - [Rp] € Z™*PLAD™ and runs

O/
ReRand ([Im|R*},v, aq, 7) — ¢ € ZPrrm
@
from Lem. 5, where I, is the identity matrix with size m. Finally, it parses ¢’ appropriately
into DIL + 2 size m vectors (c, co, (Cijw) (i jw)) and outputs the challenge ciphertext as

(c =v+M-[g/2], ¢, co (Cz',xw)(i,j,w)e[D}XW[LO' 29)

We claim this change alters the view of A only negligibly. To see this, we apply the noise
rerandomization lemma (Lem. 5) with V = [I,,|R*],b = ATs and z = z to obtain that the
distribution of ¢’ is negligibly close to the following:

C/T — STA[Im’R*] + Z/T
—sT[A|ARg|ARy 11]---|ARp] + 27
=s'[A[By+GBii, + >A<>f,1,1G’ ~+|Bper + >A(*D’&LG] + 2T e zPtLA2m

where the last equality follows from Eq. (21), and 2z’ is distributed negligibly close to
Dypert2ym o Here, we can apply the noise rerandomization lemma since

o//2a > QOm > s1([Ln|R]),

for our parameter selection, where we use Lem. 1 for the second inequality. It can be seen
that the challenge ciphertext is distributed statistically close to Games. Therefore, we may
conclude that

[Pr[Es] — Pr[Es]| = negl()).

Gamey : In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, to create the challenge ciphertext the challenger first picks w « Zg,w < Z",
2 < Dz 04, and z < Dzm o4 and computes v = w + 2 € Zg and v =w + 2z € ZZ”. It then
sets R* and runs the ReRand algorithm as in Game,. Finally, it sets the challenge ciphertext
as in Eq. (23). We claim that |Pr[Es] — Pr[E4]| is negligible assuming the hardness of the
LWE,, im+1,4, Dz.og problem. To show this, we use A to construct an LWE adversary B as
follows:

B is given the problem instance of LWE as (A, v/ = w' +7Z) € ZZX(mH) x ZI"1 where
z' < Dym+1 4. The task of Bis to distinguish whether w' = A’Ts for s < Z!" or w’ « Z".
In the following, let the first column of A’ be u € Zq and the remaining columns be
A € Zg*™. Further, let the first coefficient of v/ be v and the remaining coefficients be
v € Zy'. Using these terms, B sets the master public keys as in Eq. (21). During the game,
key extractions queries made by A are answered as in Games without knowledge of the
trapdoor of A. To generate the challenge ciphertext, it first picks coin < {0,1}. If coin = 0,

37

it generates the challenge ciphertext as in Eq. (23) using v, v, and returns it to A. Note
that all B needs to do to generate the ciphertext is to run the ReRand algorithm, which it
can do without knowledge of the secret randomness s,z’. If coin = 1, B returns a random
ciphertext. At the end of the game, coin’ is defined. Finally, B outputs 1 if coin’ = coin and
0 otherwise. It can be seen that if A’, v/ is a valid LWE sample (i.e., v/ = A’"s), the view of

the adversary corresponds to Gamesz. Otherwise (i.e., v/ + Z;”H), it corresponds to Gamey.
We therefore conclude that assuming the hardness of the LWE,, ;;,11,4,z,, problem we have

[Pr[Es] — Pr[E4]| = negl()).

Games : In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, the challenger samples w < Zy, W < Zg', z < Dz aq, 7z Dz(DéL-i,-Q)m’a/q, sets
R* as in the previous games and computes v = w + z € Z,. Then, it computes

CIT _ WT[Im‘R*] + 7T e Z((JDZL+2)m7

and parses ¢’ appropriately into DIL + 2 size m vectors (c,€o, (Cijw)(ijw))- Finally, it
sets the challenge ciphertext as in Eq. (23). Using the same argument we made to move
from Games and Games concerning the noise rerandomization lemma, we can check that the
above change alters the distribution of the challenge ciphertext only negligibly. Thus, we
have

[Pr[E4] - Pr[Es]] = negl(A).

Gameg : In this game, we change the challenge ciphertext to be a random vector, regardless of the
value of coin. Namely, the challenger creates the challenge ciphertext (c, ¢, o, (Ci jw)(i,jw)) €

Ly X Z((JDZL—M) " by properly formatting (DL + 2)m + 1 random elements from Z,. In this
game, the value coin is independent from the view of A. Therefore, Pr[Eg] = 1/2.

It remains to upper bound |Pr[Es] — Pr[Eg]|. Since Games and Gameg differs only in the
creation of the challenge ciphertext when coin = 0, we focus on this case. First, it is easy to
see that c is uniformly random over Z, and independent of the other terms of the ciphertext

in both games. Therefore, we are left to show that the distribution of € = (¢, €0, (€ij.w) (i j,w))
in Gamey is negligibly close to the uniform distribution over Z((JDZLH)m. First, observe that

the following distributions are negligibly close:
(A,AR*, w' w'R*)~ (A,A,w' w')~ (A, AR*,w',w'")

where A « Zp*™, A « ZZX(DZLH)m, R* « {—1,1}x(DADm % o Zy* and W'

ZgDMH)m. It can be seen that the first and the second distributions are negligibly close,
by applying Lem. 3 for [AT|w]" € Z((Inﬂ)xm and R*. It can also be seen that the second

and the third distributions are negligibly close, by applying the same lemma for A and
R*. Adding a noise vector z’ to the above w' R* does not change the statistical distance
between the distributions. Therefore, we may conclude that

[Pr(Es] — Pr[Eq]] = negl(\).

38

Analysis. Combining everything together, we have

5
€ = |Pr[Eo] —‘ > (Pr Z+1])+Pr[E6]—%
5)
<3 [PriE]) ~PriEcal + PriEd) g
< negl(A).
Therefore, the probability that A wins Gameg is negligible. O

Remark 4. As noted in Remark 2 and Appendiz B.2, in some cases we can compress the size
of the ciphertext by taking advantage of the underlying compatible domains (X,Y). For example,
in case we construct a predicate encryption scheme for the subset conjunction predicate, we can
decrease the size of the ciphertext by a factor of D.

Acknowledgement. We would like to thank the anonymous reviewers of Asiacrypt 2016 for
insightful comments. In particular, we are grateful for Takahiro Matsuda and Shota Yamada
for precious comments on the earlier version of this work. We also thank Atsushi Takayasu,
Jacob Schuldt and Nuttapong Attrapadung for helpful comments on the draft. The research was
partially supported by JST CREST Grant Number JPMJCR1302 and JSPS KAKENHI Grant
Number 17J05603.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h) ibe in the
standard model. In EUROCRYPT, pages 553-572. Springer, 2010. 3, 13, 14

[ACF09] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from
identity-based key encapsulation. In FUROCRYPT, pages 554-571. Springer, 2009.
9

[ACF14] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions: Re-
lations to identity-based key encapsulation and new constructions. Journal of Cryp-
tology, 27(3):544-593, 2014. 2, 4, 8

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In ASIACRYPT,
pages 21-40. Springer, 2011. 3, 5, 9, 10, 12, 32

[ATKO04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptograpcrhy in NC°. In
FOCS, pages 166-175, 2004. 5

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more. In
EUROCRYPT, pages 557-577. Springer, 2014. 6

[Att16] Nuttapong Attrapadung. Dual system encryption framework in prime-order groups
via computational pair encodings. In ASIACRYPT, pages 591-623. Springer, 2016.
6

39

[BBO4a]

[BBO4b]

[BGG114]

[BGJS17]

[Bit17]

[BKOS00]

[BLP*13]

[BMR10]

[BROY]

[BWO7]

[CGW15]

[CHKP10]

[DY05]

[FHPS13]

Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In Advances in Cryptology-EUROCRYPT, pages 223-238.
Springer, 2004. 1

Dan Boneh and Xavier Boyen. Secure identity based encryption without random
oracles. In CRYPTO, pages 443-459. Springer, 2004. 4, 6, 22

Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit abe and compact garbled circuits. FU-
ROCRYPT, pages 533-556, 2014. 3, 5, 9, 10, 31, 32

Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. A note
on vrfs from verifiable functional encryption. Cryptology ePrint Archive, Report
2017/051, 2017. https://eprint.iacr.org/2017/051.pdf. 2, 3

Nir Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. Cryptology ePrint Archive, Report 2017/18, 2017. https:
//eprint.iacr.org/2017/018.pdf. 2, 3

Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf.
Computational geometry. In Computational geometry. Springer, 2000. 44

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575-584, 2013. 13

Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseu-
dorandom functions with improved efficiency from the augmented cascade. In CCS,
pages 131-140. ACM, 2010. 2, 4, 8

Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Sim-
plified proof and improved concrete security for waters ibe scheme. In FEUROCRYPT,
pages 407-424. Springer, 2009. 4, 15

Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, pages 535-554. Springer, 2007. 1, 2, 3, 12, 21, 44

Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system abe in prime-order
groups via predicate encodings. In FUROCRYPT, pages 595-624. Springer, 2015. 5

David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, pages 523-552. Springer, 2010. 1, 3, 4, 6,
14, 22

Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short
proofs and keys. In PKC, pages 416-431. Springer, 2005. 4, 8

Eduarda SV Freire, Dennis Hofheinz, Kenneth G Paterson, and Christoph Striecks.
Programmable hash functions in the multilinear setting. In CRYPTO, pages 513-530.
Springer, 2013. 22

40

https://eprint.iacr.org/2017/051.pdf
https://eprint.iacr.org/2017/018.pdf
https://eprint.iacr.org/2017/018.pdf

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic

[GKW17]

[GMW15]

[Gol0g]

[GPSW06]

[GPVOS]

[GV15]

[GVW13]

[GVW15]

[HJ16]

[HKO8]

[HW10]

[IK0O]

[Jaglh]

[KSWO8]

approach to constructing and proving verifiable random functions. Cryptology ePrint
Archive, Report 2017/021, 2017. https://eprint.iacr.org/2017/021.pdf. 2, 3

Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. Cryptol-
ogy ePrint Archive, Report 2017/274, to appear in FOCS 2017. https://eprint.
iacr.org/2017/274.pdf. 3, 5

Romain Gay, Pierrick Méaux, and Hoeteck Wee. Predicate encryption for multi-
dimensional range queries from lattices. In PKC, pages 752-776. Springer, 2015. 3,
5, 18, 21, 44

Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008. 4

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In CCS, pages 89-98.
ACM, 2006. 1

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197-206. ACM, 2008. 14

Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient
ABE for branching programs. In ASIACRYPT, pages 550-574. Springer, 2015. 5, 7,
46, 47, 49

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In STOC, pages 545-554. ACM, 2013. 3

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from lwe. In CRYPTO, pages 503-523. Springer, 2015. 3, 5, 44

Dennis Hofheinz and Tibor Jager. Verifiable random functions from standard as-
sumptions. In TCC, pages 336-362. Springer, 2016. 2, 4, 14

Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications.
In CRYPTO, pages 21-38. Springer, 2008. 1, 22

Susan Hohenberger and Brent Waters. Constructing verifiable random functions with
large input spaces. In FUROCRYPT, pages 656-672. Springer, 2010. 2, 4, 9

Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In FOCS, 2000. 5

Tibor Jager. Verifiable random functions from weaker assumptions. In TCC, pages
121-143. Springer, 2015. 2, 4, 8, 15, 22

Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. FUROCRYPT, pages 146—
162, 2008. 1, 2, 12

41

https://eprint.iacr.org/2017/021.pdf
https://eprint.iacr.org/2017/274.pdf
https://eprint.iacr.org/2017/274.pdf

[KY16]

[LPRTJO5]

[Lys02]

[MP12]

[MRV99)

[Pei09)]

[Reg05]

[SBC+07]

[SWO5]

[SY10]

[Verll]

[Weel4]

[WZ17]

[Yam16]

[Yam17]

Shuichi Katsumata and Shota Yamada. Partitioning via non-linear polynomial func-
tions: more compact ibes from ideal lattices and bilinear maps. In ASIACRYPT,
pages 682—-712. Springer, 2016. 10, 14, 15, 16

Alexander E Litvak, Alain Pajor, Mark Rudelson, and Nicole Tomczak-Jaegermann.
Smallest singular value of random matrices and geometry of random polytopes. Ad-
vances in Mathematics, 195(2):491-523, 2005. 13

Anna Lysyanskaya. Unique signatures and verifiable random functions from the dh-
ddh separation. In CRYPTO, pages 597-612. Springer, 2002. 9

Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700-718. Springer, 2012. 10, 14, 33, 43, 48

Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In
FOCS, pages 120-130. IEEE, 1999. 2, 11

Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC, pages 333-342. ACM, 2009. 13

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84-93. ACM Press, 2005. 13

Elaine Shi, John Bethencourt, TH Hubert Chan, Dawn Song, and Adrian Perrig.
Multi-dimensional range query over encrypted data. In S& P, pages 350-364. IEEE,
2007. 1,2, 3, 21, 44

Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457-473. Springer, 2005. 1

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends® in Theoretical Computer Science,
5(3-4):207-388, 2010. 16

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
Lecture Notes, 2011. Available at http://www-personal.umich.edu/romanv/papers/
non-asymptotic-rmt-plain.pdf. 43

Hoeteck Wee. Dual system encryption via predicate encodings. In T'CC, pages 616—
637. Springer, 2014. 3, 5

Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under lwe. Cryptology ePrint Archive, Report 2017/276, to appear in FOCS 2017.
http://eprint.iacr.org/2017/276. 3, 5

Shota Yamada. Adaptively secure identity-based encryption from lattices with
asymptotically shorter public parameters. In FUROCRYPT, pages 32—-62. Springer,
2016. 15

Shota Yamada. Asymptotically compact adaptively secure lattice ibes and verifiable
random functions via generalized partitioning techniques. Cryptology ePrint Archive,
Report 2017/096, to appear in CRYPTO 2017. http://eprint.iacr.org/2017/096.
2,4,5,6,7,8,9, 16, 22, 29, 46, 47, 48, 50

42

http://eprint.iacr.org/2017/276
http://eprint.iacr.org/2017/096

[ZCZ16] Jian Zhang, Yu Chen, and Zhenfeng Zhang. Programmable hash functions from
latties: Short signatures and ibes with small key sizes. In CRYPT0, pages 303—-332.
Springer, 2016. 1, 22

A Proof of Lemma 2

Proof. We first show RU is subgaussian with parameter Byv/mk. Note that we say that a random
matrix X is subgaussian with parameter o > 0 if all of its one-dimensional marginals u' Xv
for unit vectors u,v are subgaussian with parameters o, i.e., E[exp(s - u' Xv)] < exp(c2s?/2).
Observe that

m

¢
W RUV = 3 3 Ry (u Z Uit)

=1 t=1

where R;; is the (i,t)-th element of R. (Other terms Uy j, u;, v; are defined analogously.) Then,
we have

Elexp(s - u' RUV)] = E[exp (é Zm: Ri: (Uz zm: Ut,j”j))}
: =

_ EﬁE[exp (sRit w Y Uyjv,)}

< ljllf[lexp (32 2 (u Eijt,,uJ)2/2) (24)
gﬁﬁexp< iuw iv) (25)
< oY S0 uk/2) (26)
= eXp(BQSQ;”L:kl /t2:)1

where Eq. (24) follows from the fact that any B-bounded symmetric random variable X (i.e.,
|X| < B) is a subgaussian with parameter B, Eq. (25) follows from the CauchySchwarz inequality,
and Eq. (26) follows from the fact that v is a unit vector and that there are at most k ones in
each row of U. Hence, we have that RU is a subgaussian parameter with parameter Bv/mk.
Finally, using the Lem. 2.9 of [MP12] (See [Verll] for further details), we obtain the statement
in the above lemma. O

B A Note on MultD-Eq Predicates

B.1 On the Expressiveness of MultD-Eq Predicates

For completeness, we discuss here how we can encode the predicates presented in Sec. 4.3 as
MultD-Eq predicates with appropriate compatible domains (X',)). This will show that MultD-Eq
predicates are at least as expressive as any predicate that are used in motivating applications for

43

PE schemes. Despite the syntactical differences, the followings are a compilation of many previous
works, e.g., [BW07, SBCT07, GVW15]. Furthermore, it should be noted that the following
encoding is only one example; there are possibly many more “efficient” ways of encoding the
predicates as MultD-Eq predicates, where the meaning of efficient may depend on the application
in one’s mind.

Bit-fixing predicates. Let PEF : {0,1}¢ — {0,1} for v € {0,1,?}. Without loss of generality,
we set “?” to be 2. Then, map v € {0,1,2} and x € {0,1}* to the following domains XgF, Vgr C
Z§X2:

x] 2 Vi Vi

X2 2 Vo V9
x—=xX=|. .| €aXpF vov=|_ | €V

Xy 2 Vy Vy

It is easy to check that Agf, Ve C ZgXQ are indeed compatible with the MultD-Eq predicates,
i.e., for all i € [¢] there exists at most one j € [2] such that X;; = V; ;. Furthermore, we have
PBF(x) = 1 if and only if MultD-Eqy(X) = 1.

Equality conjunction predicates. Let PEC: %¢ — {0,1} for v € X¢. The most natural way is
to simply map X¢ into Zfzp and define Xgc = Vec = Z|e2X1|1' This domain is trivially compatible
with the MultD-Eq predicate, and we have PEC(x) = 1 if and only if MultD-Eqy(X) = 1. Similarly,

we can also map ¥ into Z%2 where w}? = |%|, and define Xgc = Vec = Z{w2*1.

Subset conjunction predicates. For simplicity of presentation, we first consider an encoding
for the subset predicate PP : 2% — {0,1} for T € 2¥. Further, we assume that all the inputs to
P2UB(.) have fixed cardinality of n < |¥| (as in the case for the subset predicate embedded in the
modified admissible hash function. See. Sec. 5.1). Below, let T = {t1, -+ ¢}, S={s1, - ,sn}
where m = |T|, and view elements in ¥ as elements in Zy|. Then, we can map the sets T,S € 2%

to matrices in the following domains Xsup, Vsup C ZET":
ty ot o 1 s1 8y --- Sp
ot e o b sy s s,
T->T=|. . .| €EXswp, S—=S=| . . .| € Vsub. (27)
tm tm o tm S1 S22 -+ Sp

It can be checked that Xsup, Vsub € ZE‘X" are compatible with the MultD-Eq predicates. Further-
more, we have P2'®(S) = 1 if and only if MultD-Eq+(S) = 1.

To get rid of the restriction that every input to P?“b(-) needs to have cardinality n, we can use
the embedding given in [GMW15], Sec. 3.2, where they map T, S to domains in Z?le. Finally, to
obtain an encoding for the subset conjunction predicate we can simply concatenate the encodings

of the subset predicates for each T;.

Range conjunction predicates. We can use the tree data structure for storing intervals known
as segment trees to encode range conjunction predicates as MultD-Eq predicates. Since the en-
coding is classical and rather contrived, we only present the results here, and refer the readers
to [BKOS00], Chap.10 and [GMW15], Sec. 3.3 for further details. In particular, we can en-
code range conjunction predicates P[ESD} . [T)* — {0,1} as MultD-Eq predicates with compatible

. . x [log T
domains Xrc, Vrc in Zp .

44

B.2 Exploitable Structures for More Efficient PES Schemes

Here we comment on Remark. 2. In some cases, the compatible domains X',) for the multidimen-
sional predicates MultD-Eq may have additional structures that we can exploit to obtain a more
efficient predicate encoding PES scheme. We illustrate this in the following using as example the
subset predicate implicit in our VRF construction from Sec. 5.2.

For our VRF construction, we used a special type of subset predicate P-?“b 12Y {0,1} where
the inputs have fixed cardinality of n, as discussed in Appendix B.1. We showed in Eq. (27)
that this particular subset predicate can be encoded as a MultD-Eq predicate with compatible
domains (Xsub, Vsub) € ZE‘X” ZET" Therefore, for example, by Lem. 8 we can construct
a functionality preserving predicate encoding scheme PESgp for the the subset predicate with

p=1|%|,D =m,{=n. Namely, for any S € Xs,, and T € Vs, we have
Enclnptgp(S) — S= (Sijk)
EncPredep(MultD-Eqy) — (3,

(i,4,k) €[m] x [n] x[C]

N

where (139(3) = HZH(Tiak) + (14250 S

=1 j=1 k=1

where ¢ = [log(|X|)] + 1 and T; £, S; jx are the k-th bit of the binary representation of TH7 Si,
respectively. However, as it can be observed from Eq. (27), for all k € [(], we have TZ 1k = Tijk
for all j € [m], and Sy ; = S; ;1 for all i € [n]. Therefore, we can in fact consider a more efficient
predicate encoding scheme PESgp that takes advantage of this redundancy:

Enclnptep(S) = S = (S1) yepnixia
EncPredrp(MultD-Eqs) — (i*%“b,

n

. omon ¢ . .
where C‘%“b S) = 1:[Z_: H ((1- Tl k)T (=1+ 2T1,j,k) : Si,l,k>'

Note that this encoding scheme (written slightly differently using the symmetry of -T_l,j,k and

Si1x) is what we present in Sec. 5.2, Eq. (13). This extra optimization allows us to decrease
a factor of m in the output size of Enclnptgp. Since this idea translates to PESy, as well, in
applications such as the predicate encoding scheme we provide in Sec. 6.2, this will directly yield
a PE scheme with shorter ciphertexts by a factor of D.

C Omitted Proofs for Our VRF in Sec. 5.4

Here, we show correctness, unique provability and pseudorandomness of our VRF. The proofs
follow closely to the ones given in Sec. 5.3. We omit the proof for the unique provability, since it
is the same as the one given in Sec. 5.3.

Theorem 5 (Correctness). Our VRF from Sec. 5.4 forms a correct verifiable random function.

Proof. We first prove the correctness of the scheme. It is easily seen that when Gen and Eval are
properly run, then it passes Step 1, 2, 3 of the verification algorithm. Next, observe that for all

i € [n] we have
[T 025 = T (claTers s, lens moy)os
SC[C] S€[d]

45

= [(e(g, g)Hresir)®s
SC[¢]

)ngg] as [lres wik

e(g,9
= e(g, g)P(wi,lv“‘ Wi)

Since 0; = p(w;1,--+ ,wi¢), the first equation in Step 4 holds. The equality of the rest of the
equations in Step 4 follow using the additional observation that y.;1-0; 11 = (1., for i’ € [n—1],
where 0[1.;) = 0;. Finally, since by definition 7., = g%tm = g% | Step 5 holds. This completes
the proof of the correctness of the scheme.]

The proof of pseudorandomness follows very closely to the proof given in Sec. 5.3. Notably,
the VRF is proven under the L-DDH assumption where L = n¢ = w(log? \). Therefore, to avoid
being redundant, we point out the main differences between the proof in Sec. 5.3 and restrict
ourselves to an overview of the security proof.

Proof Sketch. At a high level, the strategy of the proof is the same; we show that we can simulate
all the components in the verification key and a valid output Y* for the challenge input X* using
the L-DDH instance {go‘l}ie[nq. Here, note that if we can simulate a valid output Y*, we can also
simulate a valid proof for any input X such that T € S(X). We first show that the challenger can
correctly simulate the verification key. As in Gameg, Eq. (15) of the previous proof, the challenger
sets

wo=Wo -, Wik =W o+t for (i,k) e [n] x[C].

To create the rest of (g7(%4), gP(Ri))ie[n}, it can simply use {g® }iene) since the terms in P(L;), P(R;)
are at most degree (. Recall L; = (wik)ie(|¢c/2)) and Ri = (w;k)re[|¢c/2)+1:¢]- Furthermore, since
we use the same degree n¢ polynomial Ptcs(x)(Z) as in Eq. (16) to embed the partitioning func-

tion Fpman, we can correctly simulate the proof as in Games using {go‘i}ie[nd. Thus, we have that
our VRF is adaptively pesudorandom. O

Combining everything together, our second VRF satisfies all the desired properties under the
L-DDH assumption where L = w(log? \).

D Other Applications: Improvement on [Yam17] IBE

In this section, we give an (informal) overview on how to make the identity-based encryption
(IBE) scheme of [Yam17] more efficient using the preicate encoding scheme of Eq. (3) in Sec. 2.
Notably, we are able to lower the approximation factor of the LWE problem from é(nll) to
O(n5'5) by exploiting the additive structure of our embedded polynomial and with some additional
techniques concerning random matrices used in our proof of Lem. 2. Furthermore, we are able
to parallelize the encryption and key generation algorithm, whereas the algorithms of [Yam17]
are inherently unparallelizable since they rely heavily on the sequential matrix multiplication
technique of [GV15].

Recall that [Yam17] provides a modular construction of IBEs. They first define the notion of
compatible algorithms for partitioning functions (See Def. 10). Then, they propose a generic con-
struction of IBE schemes from a partitioning function with its associating compatible algorithms.
In particular, they obtain an IBE scheme by instantiating this framework with the compatible
algorithms for the modified admissible hash function Fyap (See Def. 11). Below, we provide the
definition of compatible algorithms.

46

Definition 13. ([Yam17], Def. 8) We say that the deterministic algorithms (Encode, PubEval, TrapEval)
are 6-compatible with a function family {F : K x X — {0,1}} if they are efficient and satisfy the
following properties:

e Encode(K € K) — xk € {0,1}*
e PubBEval(X € X, {B; € Z;*™ }icp)) — Bx € Zy*™
e TrapEval(K € K, X € X, A € Z"™ {R; € Z™ M }icpy) — Rx € 2™
We require the following to hold:
PubEval(K, X, A, {AR; + kG }ic)) = ARx + F(K, X)G,

where k; € {0,1} is the i-th bit of kK = Encode(K) € {0,1}*. Furthermore, if R; € {—1,0,1}"*™
for all i € [u], we have |Rx|loc <.

At a high level, PubEval is a public algorithm used to compute the hash of an ID € X and
TrapEval is a secret algorithm used by the simulator to recover the G-trapdoor Rx. Therefore,
since Rx is used as a trapdoor to sample a secret key for user X, the quality of Rx has a direct
effect on the efficiency and required hardness assumption for LWE. In particular, the value of §
has a quadratic effect on the approximation factor of the LWE problem used in the underlying
IBE scheme. Thus, compatible algorithms for Fpay with a smaller § will directly yield a more
efficient IBE construction.

In thier work, they (basically) used Eq. (1) to compute Fman (See Eq. (12)) and obtained
d-compatible algorithms (Encodevam, PubEvalyay, TrapEvaly,,,) for Fpman where 6 = (5(/\4), which
can be obtained by plugging in the values from Thm. 1. Furthermore, due to the multiplica-
tive structure of Eq. (1), they heavily rely on the sequential matrix multiplication technique of
[GV15] in order to control the growth of §. This is the reason why their scheme is inherently
unparallelizable.

We provide two ideas to improve their scheme. First, we can do much better by using Eq. (3)
to compute Fpman. Namely, we use the following polynomial defined over Z,, which is a slight
modification of Eq. (3):

(D)

=17

< 0 if T CS(X)
kl;[l <(1 —sjk) + (=1 +23j,k)'ti,k> = {e (o) if TEsX) (28)

A subtle point here is that we have to alter Def. 13 so that the function family can take output
over Zq. Recall that in the above we required Fman (T, X) € {0,1}. However, we can easily show
that for the security proof for the IBE scheme to follow through, we do not necessarily need the
output to be in {0, 1}, as long as we have Fpyap (T, X) =0 iff T C S(X).

For completeness, we provide the algorithms for PubEval, TrapEval following the notations of
[Yam17], Sec. 5.1. The Encode algorithm is defined as in [Yam17].

4

1

PubEval(X, {Bik} (i k)emx(c] € Zg*™) : It first computes S(X) = {s1,---,s¢} C [2(]. Let s;. €
{0,1} be the k-th bit of the binary representation of s;. It then proceeds as follows:

1. For (i,7,k) € [n] x [€(] x [¢], it sets V; ;1= (1 —s;k) - G+ (—=1+2s;%) - By
X

2. For (i,j) € [n] x [f], set V;;nq) = Vij1 and compute Vi1 == Vijrr -
G_l(Vi,j,[lzk]) fOI' kf € [C — 1] Then set Vl,j = Vi,j,[l!(]‘

47

3. Finally, it outputs Bx =71 -G — Zie[n] Zje[z] Vi,

TrapEval(T, X, A, {Rir} (i r)epx[c] € Zg*™) : It first computes S(X) = {s1,---,s¢} C [2{] and
parses T — (t1,---,ty) C [2(], where nf < n. It then sets t,y4 = --- =t;, = 0. In
the following, let t; s;x € {0,1} be the k-th bit of the binary representation of t;,s;,
respectively. It then proceeds as follows:

1. For (i,j.k) € [n] % [6] x [C], it sets Sq 1 = (—1 + 254) - Ri
2. For (i,7) € [n]x[€], set S; j j1.1] := Sij,1 and compute S; ; 11.511] := Ripy1-G 1V, 1)+
(=14 255841) - Sijx) for k € [(— 1], where V; ;1. is defined as above. Then set

Si;j = Sijsq-
3. Finally, it outputs Rx =3 _;c,1 > e i

Lemma 14. The above algorithms (Encode, PubEval, TrapEval) are mqnl-compatible algorithms
for Fman. In particular, if we instantiate Fpyan using Def. 11, m¢nl = O(\?).

Proof. First observe the inequality

1S jik+1lloe = IRigs1 - G (Vijpa) + (=1 + 285541) - Sijijnn lloo

<m-

|Ri,k+1||oo + ||Si,j,[1:k]||oo
<m+[IS; j,1:4] oo

where we use (—1 4+ 2s;511) € {0,1},R; 141 € {—1,0,1}™*. Therefore by induction, we have
1Si jlloc < m(. Hence, we obtain the bound. O

Note that the poly-log factor hidden in the O(-) notation is the same as [Yam17]. Our ¢ is
a O(\?) factor smaller than the scheme of [Yam17], and since J has a quadratic effect on the
approximation factor of the LWE problem, we are able to lower the approximation factor down
by O(A*). Finally, we make the following subtle observations:

e Using subgaussian arguments, the error term can be bounded by O(a/ov/mq) instead of
O(d/omq). (See [Yam17], Lem. 13).

e Since Ry € Z™*™ is subgaussian with parameter ¢ (which follows from ||R|oc < J), we have
s1(Rx) < C - /md with overwhelming probability for some positive constant C' ([MP12],
Lem. 2.9). Therefore, we can use o > O(ay/md), instead of o/ > O(amd). (See [Yam17],
Sec. 6.2).

e Use the sampling algorithm of [MP12] to obtain o > Q(y/md) instead of o > Q(md) (See.
[Yam17], Lem. 3).

Combining this together, we obtain a candidate parameter selection as follows:

m = O(nlogq), qg=n?-6% w(og?n), o=m-0-w(y/logm),

aq = 3v/n o'qg=5yn-m-é.
Plugging in our d-compatible algorithm for the Fpan function, we obtain an approximation factor
of O(n®?) for the LWE problem. Recall that the approximation factor of [Yam17] was O(n'!).

Finally, we are also able to improve significantly on the parallel complexity of the IBE scheme.
Notably, our compatible algorithms (Encode, PubEval, TrapEval) for the modified admissible hash

48

function Fpap allows for high parallelization of the encryption and key generation algorithm.
(Recall PubEval is used to compute the hash of an ID € X.) We obtain parallel speed up because
our encoded polynomial of Fpan has an additive structure, and we do not have to rely on the
sequential matrix multiplication technique of [GV15] to control the growth of Rx.

49

Contents

1 Introduction
1.1 Our Contributions o o e e e e
1.2 Related Works e

2 Technical Overview

3 Preliminaries
3.1 Verifiable Random Functions o oL
3.2 Predicate Encryptions L
3.3 Background on Lattices L
3.4 Background on Bilinear Maps. Lo L L
3.5 Other Facts. o L o

4 Encoding Predicates with Arithmetic Circuits
4.1 Predicate Encoding Scheme oL
4.2 Encoding Multi-Dimensional Equality Predicates
4.3 Expressiveness of Multi-Dimensional Equality Predicates

5 Verifiable Random Functions
5.1 Modified Admissible Hash Functions
5.2 Construction e e e e e e e e
5.3 Correctness, Unique Provability, and Pseudorandomness
5.4 Achieving Smaller Proof Sizeo oL

6 Predicate Encryption for MultD-Eq Predicates
6.1 Embedding Predicate Encoding Schemes into Matrices
6.2 Construction
6.3 Correctness and Parameter Selection
6.4 Security Proof L

A Proof of Lemma 2

B A Note on MultD-Eq Predicates
B.1 On the Expressiveness of MultD-Eq Predicates
B.2 Exploitable Structures for More Efficient PES Schemes

C Omitted Proofs for Our VRF in Sec. 5.4

D Other Applications: Improvement on [Yam17| IBE

50

11
11
12
13
14
15

16
17
18
21

22
22
23
24
29

31
31
33
34
35

43

43
43
45

45

46

	Introduction
	Our Contributions
	Related Works

	Technical Overview
	Preliminaries
	Verifiable Random Functions
	Predicate Encryptions
	Background on Lattices
	Background on Bilinear Maps.
	Other Facts.

	Encoding Predicates with Arithmetic Circuits
	Predicate Encoding Scheme
	Encoding Multi-Dimensional Equality Predicates
	Expressiveness of Multi-Dimensional Equality Predicates

	Verifiable Random Functions
	Modified Admissible Hash Functions
	Construction
	Correctness, Unique Provability, and Pseudorandomness
	Achieving Smaller Proof Size

	Predicate Encryption for MultD-Eq Predicates
	Embedding Predicate Encoding Schemes into Matrices
	Construction
	Correctness and Parameter Selection
	Security Proof

	Proof of Lemma 2
	A Note on MultD-Eq Predicates
	On the Expressiveness of MultD-Eq Predicates
	Exploitable Structures for More Efficient PES Schemes

	Omitted Proofs for Our VRF in Sec. 5.4
	Other Applications: Improvement on Yam17 IBE

