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Abstract. Secure channels are one of the most pivotal building blocks
of cryptography today. Internet connections, secure messaging, protected
IoT data, etc., all rely upon the security of the underlying channel. In
this work we define channel protocols, as well as security for channels
constructed from stateful length-hiding authenticated encryption (stL-
HAE) schemes. Furthermore, we initiate the concept of secure termina-
tion where, upon receipt of a signifying message, a receiver is guaranteed
to have received every message that has been sent, and will ever be sent,
on the channel. We apply our results to real-world protocols, linking
the channel environment to previous analyses of TLS 1.2, and demon-
strating that TLS 1.2 achieves secure termination via fatal alerts and
close_notify messages, per the specification of the Alert Protocol.
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(stLHAE), authenticated encryption with associated data (AEAD), secure ter-
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1 Introduction
Communication security is built on a fundamental cornerstone commonly re-
ferred to as a secure channel. Creation of secure channels is the essential goal
of secure email, end-to-end encrypted messaging applications, end-to-end en-
crypted VOIP, HTTPS internet connections and TLS in general, WPA2 WiFi
protection, SSH, IPSec, Bluetooth, etc. Examples are innumerable. Additionally,
many constructs rely on the existence of secure channels once established, e.g.
key transport. Despite this, a general understanding of what secure channels are
and how they are constructed is lacking. Research relating to secure channels
has spiraled concentrically around the topic with frequently contradicting goals,
particularly in the analysis of real-world protocols.

Authenticated encryption with associated data (AEAD), or even simply au-
thenticated encryption (AE), has been argued as the foundational secure channel
building block. Extensive work has been done on both AEAD [32], and AE in
their various forms [3, 17, 21, 34, 16, 33]. Stateful length-hiding AE (stLHAE) is
often the apparent goal of real-world protocols and has consequently been used
frequently in their analysis [20, 23, 29]. Work has also been undertaken for build-
ing secure channels explicitly from AE schemes [28]. However, the view of secure
channels as simply AEAD or AE is incomplete. In real-world protocols, multiple
instances of a protocol may be run, session resumption/renegotiation may be



performed, and message authentication (MAC), encryption, and even exporter
keys may be derived from a single master session key output of a key exchange
protocol. Essentially, the real-world is not simple. Cross protocol attacks, rene-
gotiation attacks [13], and triple handshake attacks [5] are just some attack
examples that cannot be captured when considering secure channels as AEAD
or AE under a single communication flow.

Expanding on the modeling of channels, authenticated and secure channel
establishment (ACCE) was proposed, which considers both key exchange and
channels established under the derived key in the context of stLHAE [20]. Fur-
thermore, ACCE considers parallel sessions – an improvement over the basic,
low-level view of secure channels as the stLHAE primitive. Work analyzing the
TLS protocol [20, 23] has employed ACCE as the foundational secure channel
building block, as TLS does not achieve key indistinguishability. However, not
all protocols suffer from a lack of key indistinguishability (e.g. the current TLS
1.3 draft [30]), thus rendering the ACCE pre-accept/post-accept phase combina-
tion unnecessary. Similarly to ACCE, Augmented Secure Channels (ASC) have
been proposed as a means of capturing more of the channel context than an
AEAD primitive allows [2]. ASC is developed in the vein of constructive cryp-
tography, but still suffers from the same underlying drawbacks as ACCE; namely
the inability to model communication flows, under potentially different security
demands, which are protected by keying material derived from the same master
secret. Neither ACCE nor ASC model session resumption – despite its impor-
tance in TLS 1.2 (analyzed in the ACCE model) and TLS 1.3 (analyzed in the
ASC model for draft 8). Work has also been done on multi-key channels [14],
focusing on the evolution of a master key over time, and requirements on it (e.g.
forward secrecy), but lacking formal definitions for the channel context. It also
uses a single, fixed AEAD construction, lacking flexibility in scheme selection,
and does not address termination in the channel environment.

In response to these issues, we define keyed two-party controllable channel
protocols which capture parallel and consecutive sessions, with security con-
trolled via the underlying primitives. Each session at a principal is initiated via
the generation of a master session key – as would be the case at the conclusion
of a key exchange protocol. In turn, the session is modeled by a collection of
read and write connections, with connection keys derived from the master ses-
sion key. Channels are defined by a shared key between a pair of read and write
connections. This captures the behavior of real-world protocols: for example,
a master session key may be used to derive a MAC key as well as an encryp-
tion key, which would result in parallel connections under the different channel
keys. Simultaneously, this higher-level view of the channel environment provides
a framework for analysis of session resumption; connections can be closed, and
channel keys destroyed, with new connections instantiated and channel keys de-
rived from the original session keying material. Compared to the ACCE model,
our model permits separate consideration of session and connection keys and
even consideration of connection closure.
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Security for keyed two-party controllable channel protocols is realized via the
cryptographic schemes and key derivation functions (KDF) used for connections.
In real-world correlations, TLS 1.2 uses cipher suites – for example, the partial
suite AES_128_GCM_SHA256, which defines both a scheme for securing the
channel (AES_128_GCM) and pseudo-random function for key derivation of
the channel key (HMAC using SHA256). Our model captures such real-world
protocols by considering channel security under both a scheme (e.g. stLHAE)
goal and a KDF goal. Considering secure channels in the context of stLHAE
allows certain analysis benefits; statefulness gives assurance that the i-th packet
processed on the receiving end of a channel is the same as i-th packet output
on the sending end. However, the stLHAE framework is again incomplete. How
does a receiver know that all sent packets have been received? If an adversary
drops the last n packets on a channel, the receiver could convinced that the
transmission is shorter than in reality. When final messages contain critical in-
formation, warnings, etc., this scenario should undoubtedly be considered as an
attack. Classically, this is referred to as a truncation attack. In order to capture
this attack in our secure channel environment, we define secure termination.

Truncation attacks have been shown to be a very real problem [35], including
effects on voting. Usually these attacks follow from a failure of the implemen-
tation to check for the closure alert (if TLS), or from a misinterpretation of
what constitutes a “terminate” message. While the importance of the former is
highlighted by our model, the latter is at the heart of secure termination. Most
analyses of truncation attacks are ad-hoc, essentially cryptanalyses based on
weaknesses discovered in a particular protocol. Some of these have been against
the TLS protocol [27, 35], leveraging and exploiting implementation faults. Other
recent work on protocol termination, albeit in an unrelated aspect, highlights a
growing interest in the final stages of a cryptographic protocol run [10]. Con-
sequently, we define secure termination in the interest of providing a formal
framework for modeling truncation attacks, by modeling finalization and com-
pletion guarantees on received communication flows.

Channels To discuss secure channels and channel termination it is vital to
clearly define what a channel actually is. Past work using channels has provided
mixed descriptions of this concept – Hoepman [18] describes unidirectional and
bidirectional channels, hence conceptually equating a channel to a transport link
between entities. In this sense, a bidirectional channel for a real-world protocol
such as TLS would have separate keys for each direction, but all keys would be
considered to be within the same channel. Meanwhile, another line of research
[26, 25] defines a channel in a unidirectional sense, with messages input from a
sender and output to a receiver. Ultimately, this formulation allows for a modular
analysis of channel security, with channel keys being used for sending messages
at one end of the channel and for receiving messages at the other end. This
practice has met with wide-spread acceptance, with channels generally being
modeled by three interfaces (sender, receiver, and adversary) based on various
adversarial capabilities [2].
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In 2001, Canetti and Krawczyk [9] defined a secure channel as “a link between
a pair of parties” which provides message authentication and confidentiality via
a key obtained via a key-exchange protocol. As in many other works on key
exchange and secure channel analysis [20, 23, 4], the authors consider sessions at
principals as participants in the key exchange protocol, and call the resulting
key the session key. This session key is then used to secure the channel (e.g.
encryption and authentication keys are derived from the session key).

One salient issue arises when the standard conceptualization of a session key
is compared with the modeling of a channel, as discussed above. Namely, a key
exchange protocol should minimally result in a set of two channel keys. This
assumption follows from standard real-world protocols which maintain separate
session keys for sending channels and receiving channels [11, 19, 31]. In consid-
eration of this, we undertake to formalize channels in the context of sessions for
bi-directional communication. With sent messages at a session being not neces-
sarily independent from received messages (particularly, as we will see, in the
context of secure termination), this new, “big picture” view of session modeling
raises interesting questions for channel analysis. One recent work [24] similarly
aims to address bi-directional channels, but does not consider sub-connections
(parallel channels after key derivation) or channel termination.

While TLS and similar protocols have been analyzed under the assumption
of discrete messages, important work has been done considering AEAD in the
streaming setting [12]. We view our work as easily adaptable to the streaming
security context, since the security of our channel protocol model is reliant upon
underlying, “plug-in” primitives and their security games.

Cryptographic Agility While channels generally use separate keys for sending
and receiving, these keys are often generated from the same master session key.
This is indeed the case in many real-world protocols such as TLS. Moreover,
it is possible that the same master session key could be re-used with different
concrete cryptographic algorithms, which may be controllable by the adversary.
We account for this possibility by requiring agile [1, 15] channel key derivation in
our channel security analysis. Bhargavan et al. [6] analyzed cryptographic agility
in TLS, focusing on the public key algorithms used in the handshake protocol.
Agility definitions appear App. B (adapted from [1]), and we apply agile key
derivation functions in our results in order to provide strong channel security.

Paper Outline Introducing keyed two-party controllable channel protocols, §2
defines sessions, connections, schemes, channels, and connection/channel closure,
outlining the fundamental structure of the channel environment even before
consideration of security. Combinations of security schemes and key derivation
functions (for the channel key) comprise suites.

Subsequently, §3 describes security. We focus on channel stLHAE security
due to it being a frequent real-world objective. Our security experiments here
are broad, and encompass the situation where parallel and consecutive connec-
tions may employ various suites. We expect that this work can be extended to
situations where parallel and consecutive connections may employ combinations
of various authentication suites, stLHAE suites, AEAD suites, etc.
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Additionally, we provide constructions of channel protocol environments where
channels are constructed from various stLHAE schemes. Proving security for our
constructions, we provide a reduction from the channel security to the security
of the underlying schemes used in the construction.

Linking our definitions and constructions to the ACCE model, we further-
more demonstrate that channel stLHAE security can be reduced to ACCE se-
curity in the post-accept phase (channel phase of ACCE), when the session key
is used directly as the channel key and only one connection for the session is ini-
tialized (§5.1). Thus our channel protocol can be used as a refined post-accept
phase for the ACCE model, if such a model is necessary due to lack of key indis-
tinguishability. Formally, the one-connection and session key restrictions on the
reduction arise from the formalization of the ACCE model, as keyed two-party
controllable channel protocols encompass a wider vision of protocol interaction,
based on real-world protocol implementations.

In §4 secure termination and the secure termination experiment are defined.
Additionally, we associate secure termination and channel protocol security by
reductions between the former and the latter, under the generic case of par-
allel and consecutive connections constructed from various stLHAE suites. We
demonstrate that TLS 1.2 achieves secure termination on receipt of Alert or
close_notify messages by combining our work on secure channels with previ-
ous analyses of the TLS 1.2 protocol in the ACCE model.

While presented in detail in the following sections, the notation for channel
protocols, schemes, and respective security games is summarized in Table 1. This
provides a reference point, highlighting the differences between similar terms and
notation, and is an extension of previously established notation.

ChannelSnd Send and receive algorithms for a keyed two-party controllable
ChannelRcv channel protocol Chnl[{(Π,KDF)}].
ChnlEnc Security experiment oracles for a keyed two-party controllable
ChnlDec channel protocol Chnl[{(Π,KDF)}], where {Π} are stLHAE schemes.
SendT Security experiment oracles for the secure termination of a channel
ReceiveT protocol experiment.
Enc & Dec Encrypt and decrypt algorithms for a stLHAE scheme.

Table 1. Notation reference for protocols, schemes, and experiments.

2 Channels

In this section we formalize the natural real-world protocol environment of ses-
sions, connections, and channels. Fig. 1 provides a depiction of this environment.

2.1 Definitions

Every channel protocol will be associated with one or more cryptographic schemes.
Typical schemes include authentication schemes, under a message authentication
code, and stLHAE, but many other types are possible. We define abstractly the
elements of any such scheme.
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Fig. 1. Communication diagram with sessions πPs and πP
′

s , write and read connections
cxnW and cxnR for each session, and channels between connections protected by the
channel keys πPs .cxniW.CK, etc. Each principal may be modeled by multiple sessions.

Definition 1 (Scheme). Let M be a message space, K a key space, and C an
output space, and let the elements of C be called ciphertexts. A scheme Π is a
tuple of algorithms:

– Kgn() $→ k: A probabilistic key gen. algorithm that outputs a key k ∈ K.
– Snd(k,m, stS) $→ (c, st′S): A probabilistic send algorithm that takes as input

a key k ∈ K, a message m ∈ M, and a write state stS, and outputs an
outgoing ciphertext c ∈ C or an error symbol ⊥, and an updated state st′S.

– Rcv(k, c, stR) → (m, st′R): A deterministic receive algorithm that takes as
input a key k ∈ K, a ciphertext c ∈ C, and a read state stR, and outputs
either a message m ∈M or a error symbol ⊥, and an updated state st′R.

On first use, stS and stR are initialized to st0S and st0R, resp. If, for
Snd(k,m, stS) $→ (c, st′S) and Rcv(k, c, stR) → (m,α, st′R), st′S = ⊥ and
st′R = ⊥, then Π is said to be stateless. Otherwise Π is said to be stateful.

Correctness Consider the following: i ≥ 0, all mi ∈ M, all k $← Kgn(),
initial states st0S and st0R, and a sequence (ci, sti+1

S ) $← Snd(k,mi, st
i
S), where

ci 6= ⊥ for all i. Then, for a matching sequence of message receipts, we have
(mi, st

i+1
R )← Rcv(k, ci, stiR). Further correctness requirements may hold, depen-

dent on the scheme. In §3, stLHAE schemes will be considered; however, many
scheme types are possible. Other types of schemes include signatures schemes
and authentication schemes.

Definition 2 (Principals and Sessions). For a collection of principals
{P1, . . . , Pp}, where p ∈ N, each Pl ∈ {P1, . . . , Pp} is (potentially) in possession
of a long-term private/public key pair (skP , pkP ), and is modeled by a collection
of session oracles {πPl

s1
, . . . , πPl

sn
}.

Correspondingly and wlog, each session πPs is an oracle with access to the
(potential) long-term key pair of P and the (potential) long-term public keys
pk1, . . . , pkp of all other principals. Furthermore, a session πPs at a principal P
maintains a collection of variables ({πPs .cxnirole}, πPs .(P ′, s), πPs .α, πPs .SK):
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– {cxnirole}: A collection of connections, where role ∈ {W, R}, representing
‘write’ and ‘read’ connections, respectively.
If role = W, then role denotes R, and vice versa.

– (P ′, [s]): An identifier for the partner and (optionally) the partner’s session.
– α: A status variable in {0, 1}, where the session is active if α = 1 and

inactive if α = 0. A session must be active to send or receive messages.
– SK: A session key shared with the partner session.

Any P may maintain several sessions, both in parallel and consecutively.

The following definition uses a key derivation function (KDF). We follow
standard assumptions by requiring KDF to be a PRF [8]; KDFs may also be
defined more explicitly (see [22]).

Definition 3 (Connection). A connection cxnrole with role ∈ {W, R} is defined
by a set of variables (cxnrole.CK, cxnrole.status, cxnrole.suite, cxnrole.substate).
Let the notation e.g. cxnrole.CK denote variables at a specific connection:

– CK: A channel key corresponding to the connection and role.
– status: A status variable in {active, terminated}.
– suite: A variable identifying the scheme/KDF pair (Π,KDF) implemented

on the connection. If no pair is specified for the connection, then
cxnrole.suite← ⊥.

– substate: Any additional scheme-specific connection state variables.

The connection substate variable models other state information, which may
be defined by suite. For example, this variable may handle protocol state if Π
is a stLHAE scheme. Exact use of this variable can be seen in the concrete
constructions provided in §3. We abuse notation and use cxnrole as an identifier
by which an entity may refer to the collection of variables, without having access
to them.

Definition 4 (Keyed Two-Party Controllable Channel Protocol). Let
M = AD × AED be a message space and L an optional length space. A keyed
two-party controllable channel protocol Chnl[{(Π,KDF)}] over a set of scheme,
key derivation function pairs {(Π,KDF)} is a tuple of algorithms:

– SessionKeyGen(1λ, P, P ′, s, s) $→ SK: A probabilistic session key generation
algorithm that takes as input a security parameter λ, identities P and P ′,
and session indices s and s. It sets the respective partner identifiers and
session status πPs .α← 1, and outputs a shared session key SK.

– ConnectionInit(SK, πPs , [Π], [KDF], i) $→ (πPs .cxniW, πPs .cxniR): A probabilis-
tic connection initiation algorithm that takes as input a tuple of a shared
session key SK, a session πPs , an optional scheme Π, an optional key deriva-
tion function KDF used to derive CK, and connection index i, and outputs
the i-th ‘read’ and ‘write’ connections at the session, πPs .cxniW and πPs .cxniR,
or a distinguishing failure symbol ⊥.
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– ChannelSnd(m, [`], cxniW) $→ (c, cxni ′W ): A probabilistic channel sending al-
gorithm that takes as input a message m ∈ M = AD × AED, an optional
output length ` ∈ L, and a connection cxniW, and outputs a ciphertext c ∈ C
or a distinguishing failure symbol ⊥, and an updated connection cxni ′W .

– ChannelRcv(p, cxniR)→ (m, cxni ′R ): A deterministic channel receiving algo-
rithm that takes as input a packet p ∈ P = AD × C and a connection cxniR,
and outputs a message m ∈ M = AD × AED or a distinguishing failure
symbol ⊥, and an updated connection cxni ′R .

The packet space P is a set induced by Chnl[Π,KDF] for each Π ∈ {Π}, the
length space L, and the message spaceM, whereM is a tuple of the data space of
authenticated transmissions AD, and a data space of authenticated and encrypted
transmissions AED. Consequently, P is a tuple of AD and a ciphertext space
C, where C is defined by the scheme used onM. The i-th read-write connection
pair at a session πPs is denoted (πPs .cxniW, πPs .cxniR).

We define correctness in the logical way where ConnectionInit outputs the
failure symbol if the session is not active, and ChannelSnd and ChannelRcv,
respectively, output the failure symbol if the connection status variable is not
active.

Correctness is defined as follows:

– For all SK ← SessionKeyGen(1λ, P, P ′, s, s):
• If ConnectionInit(·, πPs , ·, ·, i) has previously been called, then
∗ ⊥ ← ConnectionInit(SK, πPs , [Π], [KDF], i).

• If CK * K, i.e. the output key space of KDF is not a subset of the input
key space of Π, then
∗ ⊥ ← ConnectionInit(SK, πPs , [Π], [KDF], i).

• Else, (πPs .cxniW, πPs .cxniR)← ConnectionInit(SK, πPs , [Π], [KDF], i) if
∗ πPs .α = 1 and πPs .cxniW.CK ← KDF(SK, (P, s), (P ′, s), i) and πPs .cxniR.CK ←

KDF(SK, (P ′, s), (P, s), i), where πPs .cxniW.CK, πPs .cxniR.CK ∈ K the
key space of Π, and

∗ ⊥ ← ConnectionInit(SK, πPs , [Π], [KDF], i) otherwise.
– If SK is not the output of any previous run of SessionKeyGen(1λ, P, P ′, s, s),

then ⊥ ← ConnectionInit(SK, πPs , [Π], [KDF], i).
– For all
• SK ← SessionKeyGen(1λ, P, P ′, s, s),
• (πPs .cxniW, πPs .cxniR)← ConnectionInit(SK, πPs , [Π], [KDF], i), and
• (πP ′s .cxniW, π

P ′

s .cxniR)← ConnectionInit(SK, πP ′s , [Π], [KDF], i),
we have that πPs .cxnirole.CK = πP

′

s .cxni
role

.CK.
– For sending:
• For all m ∈M,
∗ (c, πPs .cxni

′

W )← ChannelSnd(m, [`], πPs .cxniW), provided that πs.cxniW.status =
active, and

∗ (⊥, πPs .cxni
′

W )← ChannelSnd(m, [`], πPs .cxniW) otherwise.
• If πs.cxniW.status = active, then for all m ∈M:
∗ (c, πPs .cxni

′

W )← ChannelSnd(m, `, πPs .cxniW), where |c| = `, or
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∗ (⊥, πPs .cxni
′

W )← ChannelSnd(m, `, πPs .cxniW).
– For receiving, for all m = (ad,m) ∈M and p = (ad, c), where

• (c, πPs .cxni
′

W )← ChannelSnd(m, [`], πPs .cxniW) and
• πPs .cxniW.CK = πP

′

s .cxniR.CK,

we have
• (m,πP ′s .cxni

′

R )← ChannelRcv(p, πP ′s .cxniR), provided that
∗ πP ′s .cxniR.status = active, and
∗ πP ′s .cxniR.substate and πPs .cxniW.substate satisfy any substate condi-

tions (e.g. Π scheme-specific statefulness conditions), and
• (⊥, πP ′s .cxni

′

R )← ChannelRcv(p, πP ′s .cxniR) otherwise.

Remark 1. Note that there is no restriction on the number of calls made to
ConnectionInit(SK, πPs , πP

′

s , [Π], [KDF], i), for a given session key SK and ses-
sions πPs and πP

′

s . This models real-world protocols where session resumption
is possible. Particularly, connections πPs .cxnirole and πPs .cxn

i
role

may be termi-
nated, resulting in the connections being destroyed completely; later resumption
based on the session keying material is possible by calling ConnectionInit again.

Remark 2. We explicitly allow ConnectionInit to be used to create connections
at only one session. Matching connections can be created by using the algorithm
again: ConnectionInit(SK, πP ′s , πPs , [Π], [KDF], i). This matches real-world pro-
tocols where each session derives its connection keys independently, regardless
of whether or not the partner session is still active.

Chnl may take as input several schemes which may each be used to initialize
different connections. If no KDF is used to derive channel keys, then either the
session key is used directly in the channel, or no security scheme Π is imple-
mented (i.e. the ([], []) suite). In either case [] is included in the list of functions
{KDF}, and represents the identity function.

Definition 5 (Channel). If Chnl is a keyed two-party controllable channel
protocol, and πPs .cxniW and πP ′s .cxnjR

– share a channel key πPs .cxniW.CK = πP
′

s .cxnjR.CK and
– implement the same scheme/KDF suite such that πPs .cxniW.suite = πP

′

s .cxnjR.suite,

then we say that πPs .cxniW has a channel to πP ′s .cxnjR. Moreover, if πPs .cxniW.suite =
(Π,KDF) = πP

′

s .cxnjR.suite, then we say that πPs .cxniW has a Π-channel to
πP
′

s .cxnjR.

By not demanding that i = j in Def. 5, we enable modeling of unknown key
share. Namely, any two connections using the same channel key and suite share
a channel, regardless if they were correctly initiated via ConnectionInit.
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3 Keyed Two-Party stLHAE Channel Protocol Security

As discussed in the introduction and §2, channel protocols may take as input
Π-schemes of various types as well as various KDF-functions. In this section,
we introduce stateful length-hiding authenticated encryption (stLHAE) channel
security and provide concrete constructions of channels where the set {Π} is
comprised of stLHAE schemes (see App. A.2).

While the following definition, Def. 6, is not necessary for defining the channel
protocol environment, it is essential for consideration of its security. Termination
messages affect connection status, and therefore the ability to send or receive
messages. Consequently, an adversary could use the encryption of such messages
to distinguish between ciphertexts (see Fig. 2).

Definition 6 (Terminate Message). Let Chnl be a keyed two-party control-
lable channel protocol, and let T ⊂ M, the message space of Chnl. Then, for
m ∈ T , m is called a terminate message and, for all m ∈ T , we add the
following to the correctness requirements of Chnl:

– if (c, πPs .cxni
′

W )← ChannelSnd(m, [`], πPs .cxniW) and πPs .cxniW.status = active,
then πPs .cxni

′

W .status← terminated, and
– if (m,πPs .cxni

′

R )← ChannelRcv(p, πPs .cxniR) and πPs .cxniR.status = active,
then πPs .cxni

′

R .status← terminated.

We define secure stLHAE channels in Def. 7. Note that we do not present
a single, generic secure channel definition since security for channel protocols
must be considered with respect to the Π-scheme goals (stLHAE, authenti-
cation, signatures, etc.). We envisage protocols possibly implementing several
Π-schemes. For example, an encryption scheme Π1 and authentication scheme
Π2. Connections would be initiated using (Π1, KDF1), (Π2,KDF2), or no se-
curity scheme ([], []), denoted Chnl[(Π1,KDF1), (Π2,KDF2), ([], [])]. In terms
of real-world communication, a session could have, and close, connections run-
ning HTTPS, while maintaining other connections that send and receive infor-
mation unprotected via HTTP (i.e. the ([], []) suite). It may then, via a TLS
key-renegotiation under the existing session key, initiate new connections for
channels that will be protected under an stLHAE Π-scheme. Such possibilities
extend the current security considerations and are left for future work.

Definition 7 (stLHAE Channel Security). Let Chnl[{(Π,KDF)}] be a keyed
two-party controllable channel protocol such that {Π} are stLHAE schemes, and
let A be a PPT adversarial algorithm. The stLHAE experiment for
Chnl[{(Π,KDF)}] is given by Expstlhae-chnl

Chnl[{(Π,KDF)}] in Fig. 2. We define

Advstlhae-chnl
Chnl[{(Π,KDF)}](A) = 2 Pr

[
Expstlhae-chnl

Chnl[{(Π,KDF)}],A(λ)
]
− 1 .

An channel protocol Chnl[{(Π,KDF)}] is a secure channel stLHAE protocol if
Advstlhae-chnl

Chnl[{(Π,KDF)}](A) is a negligible function in λ for all PPT adversaries A.
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Expstlhae-chnl
Chnl[{(Π,KDF)}],A(λ):

1: list← ⊥
2: b′(P∗,s∗,i∗)

← ASnPairInit(·),CxnInit(·),ChnlEnc(·),ChnlDec(·)()
3: return (b′(P∗,s∗,i∗) = b(P∗,s∗,i∗))

SnPairInit((P, s), (P ′, s)):
1: SK ← SessionKeyGen(1λ, P, P ′, s, s)
2: return ⊥

CxnInit(πPs , Π∗,KDF∗, i):
1: if (Π∗,KDF∗) /∈ {(Π,KDF)} then
2: return ⊥
3: if (πPs .cxniW ∈ list) ∨ (πPs .cxniR ∈ list) then
4: return ⊥
5: (πPs .cxniW, πPs .cxniR)← ConnectionInit(SK, πPs , Π∗,KDF∗, i)
6: list← list|πPs .cxniW|πPs .cxniR
7: u(P,s,i) ← 0, v(P,s,i) ← 0, phase(P,s,i) ← 0

8: b(P,s,i)
$← {0, 1}

9: return (πPs .cxniW, πPs .cxniR)
ChnlEnc((ad, (m0,m1)), `, πPs .cxniW):
1: u← u+ 1
2: if ((ad,m0) ∈ T ) ∧ ((ad,m1) /∈ T ) or

((ad,m1) ∈ T )∧((ad,m0) /∈ T ) then
3: return (⊥, πPs .cxniW.status)
4: (c(0), πPs .cxn

i
W.(0))

← ChannelSnd((ad,m0), [`], πPs .cxniW)
5: (c(1), πPs .cxn

i
W.(1))

← ChannelSnd((ad,m1), [`], πPs .cxniW)
6: if c(0) = ⊥ or c(1) = ⊥ then
7: return (⊥, πPs .cxniW.status)
8: (sent.adu, sent.cu) := (ad, c(b))
9: πPs .cxniW ← πPs .cxn

i
W.(b)

10: return (sent.cu, πPs .cxniW.status)

ChnlDec((ad, c), πPs .cxniR):
1: if b = 0 then
2: return (⊥, πPs .cxniR.status)
3: v ← v + 1
4: ((ad,m), πPs .cxniR)
← ChannelRcv((ad, c), πPs .cxniR)

5: if (∃πP
′

s .cxniW: πP
′

s .cxniW has a channel
to πPs .cxn

i
R ) ∧ (@j, j 6= i : πP

′

s .cxnjW
has a channel to πPs .cxniR) then

6: u← u(P ′,s,i)
7: else
8: u← 0
9: if (u < v) ∨ (c 6= sent.cv) ∨ (ad 6=
sent.adv) then

10: phase← 1
11: if phase = 1 then
12: return ((ad,m), πPs .cxniR.status)
13: return (⊥, πPs .cxniR.status)

Fig. 2. Oracles of the stLHAE Chnl[{(Π,KDF)}] security experiment, where Π is
specified in πPs .cxniW.suite (resp. πPs .cxniR.suite). For conciseness, the synchronization
variable u(P,s,i) is referenced as u in ChnlEnc (resp. for v(P,s,i)). Similarly b(P,s,i) is
referenced as b.

In the security game for Chnl[{(Π,KDF)}] in Fig. 2, the adversary may
select (Π,KDF) pairs used to initiate the channel connections. However, if
the pair is not valid – in the set {(Π,KDF)} – no connection will be ini-
tiated. ChnlSnd may be called on any connection as ChnlSnd adaptively uses
ChannelSnd constructed from the scheme Π from the connection’s internal vari-
able πPs .cxniW.suite (analogously ChnlRcv). For agility between suites, every con-
nection pair is initialized with the same session key SK.
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Remark 3. Since multipleΠ schemes may be implemented by Chnl[{(Π,KDF)}],
we envisage that it is possible to run various but simultaneous (or consecutive)
experiments on the different connections – all linked to the master session key.
Note the applications to real-world protocols: in 802.11 [19], TKIP uses a pair-
wise master key to derive 2 sets of MAC and 2 sets of encryption keys for EAPOL
and application data protection. Different, simultaneous experiments can also be
considered for the MAC and encryption goals. This is left for future work.

Definition 8 (Channel Construction from stLHAE). Let {Π}, where Π =
(Kgn,Enc,Dec), be stLHAE scheme(s) and let {KDF} be key derivation func-
tion(s). A keyed two-party controllable channel protocol Chnl[{(Π,KDF)}] is
constructed to achieve a pair of linked stLHAE channels, with message space
M = AD ×AED and packet space P = AD × C, as follows:

– SessionKeyGen(1λ, P, P ′, s, s):

• Selects a shared session key SK according to the distribution of key space,
• sets πPs .α← 1, πP

′

s .α← 1,
• sets respective partner identifiers πPs .(P ′, s) and πP

′

s .(P, s),
• sets πPs .SK ← SK and πP

′

s .SK ← SK.
Return SK.

– ConnectionInit(SK, πPs , Π,KDF, i):
If ConnectionInit(·, πPs , ·, ·, i) has previously been called, return ⊥.
• Compute πPs .cxniW.CK ← KDF(SK, (P, s), (P ′, s), i) and
• πPs .cxniR.CK ← KDF(SK, (P ′, s), (P, s), i).

If πPs .cxniW.CK or πPs .cxniR.CK are not in key space K of Π, return ⊥.
• Set status πPs .cxniW.status = active and πPs .cxniR.status = active,
• set suite πPs .cxniW.suite← (Π,KDF), and πPs .cxniR.suite← (Π,KDF),
• πPs .cxniW.substate← 0, and πPs .cxniR.substate← 0.

Return (πPs .cxniW, πPs .cxniR).
– ChannelSnd((ad,m), `, πPs .cxniW):

If πPs .cxniW.status 6= active, return (⊥, πPs .cxniW).
Otherwise,
• compute:

(c, πPs .cxniW.substate′)
$← Enc(πPs .cxniW.CK, `, ad,m, πPs .cxn

i
W.substate), where

Enc is specified by the scheme Π defined in πPs .cxniW.suite.
• If (ad,m) ∈ T , set πPs .cxniW.status← terminated.

Return (c, πPs .cxni
′

W ).
– ChannelRcv((ad, c), πPs .cxniR):

If πPs .cxniR.status 6= active, return (⊥, πPs .cxniW).
Otherwise,
• compute:

(m,πPs .cxniR.substate′)← Dec(πPs .cxniR.CK, ad, c, πPs .cxn
i
R.substate), where Dec

is specified by the scheme Π in πPs .cxniR.suite.
If m = ⊥, return (⊥, πPs .cxniW).
If (ad,m) ∈ T , set πPs .cxniR.status← terminated. Return ((ad,m), πPs .cxni

′
R ).
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Naturally, stLHAE security of a channel protocol construction ought to be
reducible to the security of the stLHAE scheme(s) {Π} underlying the construc-
tion. Yet there is an additional consideration. While each Π uses connection
keys derived via the KDF, all KDFs use the same shared master session key SK.
Consequently, we require agility for {KDF}. Agility for the entire set {KDF}
implies that the individual primitives can share SK securely [1].

Theorem 1. Let Chnl[{(Πj ,KDF)}] be a keyed two-party controllable chan-
nel protocol constructed from stLHAE scheme(s) {Πj} and key derivation func-
tion(s) {KDF}, such that {KDF} is a compatible, finite set which is agile with
respect to pseudo-randomness.

Let A be an adversarial algorithm against the Expstlhae-chnl
Chnl[{(Π,KDF)}],A(λ) exper-

iment in Fig. 2. Let p be the number of identities and n be the maximum number
of sessions at an identity. Then we can construct a {KDF}-restricted adversarial
algorithm B0 against the pseudo-randomness agility of {KDF} in Expagile−prf

{KDF.F} ,
and adversarial algorithms Bj against Expstlhae

Πj
from Fig. 6, such that

Advstlhae-chnl
Chnl[{(Π,KDF)}](A) ≤ p2 · n2 ·

(
Advagile−prf

{KDF.F} (B0) + max
j
{Advstlhae

Πj
(Bj)}

)
.

Proof. Consider a channel protocol Chnl[{(Πj ,KDF)}], where {Πj} is a set of
stLHAE scheme(s) and {KDF} is a finite, compatible set of KDF functions.

We will follow a series of game hops, where the adversarial advantage in
Game i is denoted Advi.

Game 0 This is the original experiment,

Adv0 = Advstlhae-chnl
Chnl[{(Π,KDF)}](A) .

Game 1 Initializing the simulation, the challenger selects its guess of identities P
and P ′ from the set of all identities {P1, . . . , Pp}, as well as send/receive target
sessions πPs and πP

′

s , respectively, via random indices s and s from {1, . . . , n}
where n is the maximum number of sessions at an identity. If A does not call
CxnInit on the guessed target session pair, or attempt to win with a bit guess
b′(P∗,s∗,i∗) for (P ∗, s∗) ∈ {(P, s), (P ′, s)}, then B aborts. Thus,

Adv0 = p2 · n2 ·Adv1 .

Game 2 In this game we replace the channel keys {CK} with randomly sampled
keys for all connections at the target sessions πPs and πP ′s . Distinguishing between
Games 1 and 2 implies that we can build an adversary B0 which succeeds against
the PRF agility of the set {KDF}. It follows that

Adv1 = Advagile−prf
{KDF.F} (B0) + Adv2 .
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Following from Game 2, we have that all KDF ∈ {KDF} can securely share
the same session key SK. Thus, all channel keys {CK} used in Chnl connections
output by CxnInit are indistinguishable from random.

Now we build adversaries against the stLHAE schemes {Πj}, in each connec-
tion initiated by CxnInit. We assign Bj as an adversary against the Πj-th scheme.
If more than one connection is initiated with a given scheme Πj , we build ad-
ditional adversaries Bj,1, Bj,2, etc. Thus, we construct an adversary against the
stateful authentication scheme for each connection at the target sessions.

All ChnlEnc and ChnlDec-queries for connections at the target sessions are
answered via the Enc and Dec oracles maintained by each B (see Figure ??). All
ChnlEnc and ChnlDec-queries at other connections (i.e. at non-target sessions)
can be correctly answered by the challenger via ChannelSnd and ChannelRcv
algorithms. Thus we can correctly simulate queries for all connections.

By the success of A, it must output a bit b′(P∗,s∗,i∗) such that (P ∗, s∗) ∈
{(P, s), (P ′, s)} and Expstlhae-chnl

Chnl[(Πj ,KDF)],A(λ) returns true. Since (P ∗, s∗, i∗) corre-
sponds to a specific connection at one of the target sessions, and all queries at
such connections are answered via oracles for various B adversaries, an adversary
Bj∗ also wins with the bit guess b′(P,s,i∗) in the experiment Expstlhae

Πj∗ ,Bj∗
(λ). Bj∗

may be one of several adversaries against Πj∗ if more than one connection is
initiated with Πj∗ . We bound the winning advantage by the maximum over all
possible advantages, with 1 ≤ j ≤ |{Π}|.

4 Secure Termination

Ultimately, the goal of secure termination is a guarantee to the receiver connec-
tion that no further messages are being sent. We define closure in the contexts
of both connections and channels before presenting the secure termination ad-
versarial advantage and experiment.

4.1 Closure Alerts and Channel Closure

Inherently, secure termination is the closure of connections, controlled by the
sending and receipt of signifying messages from a subset of the message space.

Definition 9 (Connection Closure). Let Chnl be a keyed two-party control-
lable channel protocol and πPs be a session of Chnl.

– The i-th write channel connection at πPs is said to be closed if
πPs .cxn

i
W.status = terminated.

– The i-th read channel connection at πPs is said to be closed if
πPs .cxn

i
R.status = terminated.

If all channels at a given session are closed, the session is said to be closed.

Definition 10 (Channel Closure). We say that a channel from πPs .cxn
i
W to

πP
′

s .cxniR closes using a message m∗ ∈M if
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– (c, πPs .cxni
′

W ) $← ChannelSnd(m∗, [`], πPs .cxniW), for some c ∈ C,
where πPs .cxniW.status = active, and πPs .cxni

′

W .status = terminated, and
– (m∗, πP ′s .cxni

′

R )← ChannelRcv(p, πP ′s .cxniR), for some p ∈ P,
where πP ′s .cxniR.status = active and πP ′s .cxni

′

R .status = terminated.

The sending, resp. receiving, of any terminate in the set of termination
messages T ⊂ M results in channel closure. Moreover, if the channel from πPs
to πP ′s closes using a terminate message, we say that πPs initiated the channel
closure.

Note that the sending, resp. receiving, of a terminate messagem ∈ T results
in connection closure; however, channel closure demands a causal relationship
between both end connections based on m.

Remark 4. While a session may consist of multiple channel connections at any
given time, it may also consist of no connections (this may occur when no channel
parameters have been negotiated, or all channels have been closed). The number
of channel connections may change during a session’s lifespan, namely by means
of session closure and resumption. Resumption is realized via ConnectionInit.

4.2 Secure Termination Experiment

Definition 11 (Secure Termination Experiment). Let Chnl be a keyed
two-party controllable channel protocol with message space M, and let A be an
adversary algorithm. Let terminate be an element of T ⊂M, where T is the set
of all termination messages. With the secure termination experiment for Chnl
given by Expsc.t

Chnl in Figure 3, define

Advsc.t
Chnl(A) = Pr

[
Expsc.t

Chnl,A(λ) = 1
]
.

The existence of a signifying terminate message (i.e. T 6= ∅) is insufficient
for claiming that a protocol always securely terminates connections. Only con-
nection closure with such a terminate message yields secure termination of the
connection. Intrinsically, secure termination is a property of the read side of a
channel, which is achieved upon receipt of terminate.

Remark 5. Secure termination is a per-connection goal, achieved on message re-
ceipt, and handles adversarial intervention in channel closure – what is commonly
referred to as a truncation attack. Truncation, malicious or otherwise, can hap-
pen via various means; for example, closure of the underlying TCP connection
as a means of closing a TLS channel. The adversary wins the secure termination
security game only if it is able to make an honest party accept that the connec-
tion has been correctly terminated when it has not been. Thus malicious closure
of the TCP connection is not a valid attack.

Remark 6. Some protocols have “terminate”-looking messages that may not be
authenticated at all or authenticated properly, and our model aids in understand-
ing and comparing the security of such protocols against truncation attacks. For
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Expsc.t
Chnl[{(Π,KDF)}],A(λ):

1: phase← 0, list← ⊥
2: ASnPairInit(·),ConnectionInit(·),SendT(·),ReceiveT(·)()
3: return phase

SnPairInit((P, s), (P ′, s)):
1: SK ← SessionKeyGen(1λ, P, P ′, s, s)
2: return ⊥

ConnectionInit(πPs , Π∗,KDF∗, i):
1: if (Π∗,KDF∗) /∈ {(Π,KDF)} then
2: return ⊥
3: if (πPs .cxniW ∈ list) ∨ (πPs .cxniR ∈ list) then
4: return ⊥
5: (πPs .cxniW, πPs .cxniR)← ConnectionInit(SK, πPs , Π∗,KDF∗, i)
6: list← list|πPs .cxniW|πPs .cxniR
7: return (πPs .cxniW, πPs .cxniR)

SendT(m, [`], πPs .cxniW):
1: (c, πPs .cxniW)
← ChannelSnd(m, [`], πPs .cxniW)

2: return (c, πPs .cxniW.status)

ReceiveT(p, πPs .cxniR):
1: (m,πPs .cxniR)
← ChannelRcv(p, πPs .cxniR)

2: if (m ∈ T ) ∧ (πPs .cxniR.status =
terminated) ∧

(
(∃πP

′

s .cxniW :
πP
′

s .cxniW has a channel to πPs .cxniR)
=⇒ (πP

′

s .cxniW.status 6=
terminated)

)
then

3: phase← 1
4: return phase from experiment
5: return πPs .cxn

i
R.status

Fig. 3. Secure termination experiment for a protocol Chnl[{(Π,KDF)}] =
(SessionGen,ConnectionInit,ChannelSnd,ChannelRcv) with message space M, T ⊂
M, and adversary A, where SendT and ReceiveT are constructed from (Π,KDF) as
defined by πPs .cxniW.suite and πPs .cxniR.suite.

example, the DeauthenticationRequest of 802.11 may meet termination mes-
sage requirements, but that is dependent on statefulness and whether or not the
requests are protected as Robust Management Frames (RMF). A session that
does not negotiate to send such requests as RMFs is susceptible to truncation at-
tacks. Similarly, the security implications of 802.11’s DisassociationRequest
should be questioned. Many protocols have specified messages which appear
to indicate termination; however, exactly what cryptographic guarantees are
provided on receipt has not been well understood, in the absence of a secure
termination model. Hence the success of truncation attacks.

Definition 12 (Secure Termination of a Protocol). Let Chnl be a two-
party controllable channel protocol, let πPs and πP ′s be any two sessions of Chnl,
and let πs have a channel to πs according to Def. 5.

We say that Chnl achieves secure termination on the channel from πs to πs
with terminate if

– the channel from πPs to πP ′s closes using a termination message terminate ∈
T , according to Def. 10, and

– Advsc.t
Chnl(A) is a negligible function in λ for all PPT adversaries A.
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Naturally, the fact that the read connection of the closure-initiator’s ses-
sion may not necessarily be required to close when the write connection sends
a terminate message gives rise to the concepts of fatal and graceful secure ter-
mination. When a session πPs initiates closure with terminate ∈ T such that
only the write connection closes, graceful closure can be achieved by waiting for
a corresponding terminate message to be sent to the read connection of πPs
before the read connection closes. Thus both sessions sharing the channels may
achieve secure termination. Comparatively, if πPs initiates closure with a fatal
terminate message, it cannot achieve secure termination – only the receiving
session may achieve it.

Definition 13 (Fatal and Graceful Secure Termination). Let πPs and πP ′s
be sessions of a two-party controllable channel protocol Chnl such that πPs has
an channel to πP ′s according to Def. 5. Let terminate ∈ T .

– If, upon running (c, πPs .cxni
′

W ) $← ChannelSnd(terminate, πPs .cxn
i
W), both

the write and read connections at πPs are closed according to Def. 9, then
terminate is said to be a fatal termination message.

– If, upon running (c, πPs .cxni
′

W ) $← ChannelSnd(terminate, πPs .cxn
i
W), only

the write connection at πs is closed according to Def. 9, then terminate is
said to be a graceful termination message.

4.3 Reduction to stLHAE Security

Secure termination depends upon the relay of messages with unaltered content
and therefore its security is reducible to that of the authentication guarantees
of the channel.

Theorem 2. Let Chnl[{(Π,KDF)}] be a keyed two-party controllable channel
protocol constructed from authentication scheme(s) {Π}, with a message space
M and T ⊂M, and let A be an adversarial algorithm in the Expsc.t

Chnl[{(Π,KDF)}]
experiment. Then we can construct an adversarial algorithm B against
Expstlhae-chnl

Chnl[{(Π,KDF)}] such that
Advsc.t

Chnl[{(Π,KDF)}](A) ≤ Advstlhae-chnl
Chnl[{(Π,KDF)}](B) .

Proof. Let Chnl[{(Π,KDF)}] be a keyed two-party controllable channel pro-
tocol according to Definition 5 and Definition 8, with message space M where
T ⊂ M, and let A be an adversary algorithm against the secure termination
security of Chnl[{(Π,KDF)}].

The challenger answers SnPairInit queries with its SnPairInit oracle, and
ConnectionInit queries using its CxnInit oracle. Similarly, the challenger answers
SendT with his ChnlEnc oracle, letting m = m0 = m1. The challenger answers
ReceiveT queries with his ChnlDec oracle.
A must eventually call ReceiveT(p, πP ′s .cxniR) on a packet p = (ad, c), for some

πP
′

s .cxniR such that (m,πP ′s .cxniR)← ChannelRcv(p, πP ′s .cxniR) where m ∈ T and
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phase ← 1 in Expsc.t
Chnl[{(Π,KDF)}],A(λ). However, by the success of A and the

correctness of the ChannelSnd algorithm, we have that (c 6= sent.cv) ∨ (ad 6=
sent.adv). Thus B successfully wins in the Expstlhae-chnl

Chnl[{(Π,KDF)}],B(λ) experiment.

5 Secure Channels and Termination in TLS 1.2

TLS is one of the most important security protocols in the world today and serves
as the backbone of internet security. Due to the lack of key indistinguishability
in TLS 1.2, many works analyzing it rely on the ACCE model [20]. We show that
the post-accept phase channel ACCE security model can be viewed as a highly
restricted case of channel protocol stateful length-hiding AE (stLHAE) security,
and provide positive secure termination results for TLS 1.2 under this restricted
case. Note that the use of the post-accept ACCE model, together with the co-
inciding channel restrictions, is not inherent; we demonstrate the correlation to
bypass a reanalysis of TLS and directly consider secure termination. Analyz-
ing TLS in our channel protocol model would allow for consideration of parallel
sessions and connections, as well as resumption, key derivation functions, etc.

5.1 Comparing Channel Protocols and ACCE
ACCE employs a pre-accept phase and a post-accept phase. While the former
handles all protocol interactions before a session key has been accepted, the latter
is correlated to channel security under the agreed-upon session key. Breaking
ACCE security is described in terms of either getting a session oracle to accept
maliciously, or correctly answering a stLHAE encryption challenge.

Since Chnl session keys need not be sampled uniformly at random, it is
possible to adapt the Chnl stLHAE construction (Def. 8) and allow for SK
to be derived by other means (e.g. as the output of a handshake in the ACCE
pre-accept phase). Thus we can link the Chnl stLHAE security experiment to
the ACCE post-accept phase experiment (see App. ??). The ACCE model uses
the session key directly for the stLHAE primitive, with key derivation consisting
of splitting the session key into two in order to obtain write/read keys. Since
only one session key exists and is used directly as the connection keys (e.g. on
cxnW, cxnR), only one connection pair is allowed per session. Another session key
would be required for further connections if key separation is to be achieved.
This assumption is inherent to the ACCE model TLS analyses to date, where
SK is assumed to be a concatenation of the write and read keys (e.g. [23]).

However, in the Chnl[{(Π,KDF)}] security game, connections are input into
ChnlSnd and ChnlRcv, allowing for the game to be run on various connections of
a given session, and an adversary is allowed to initialize connections of its choice
under various AEAD schemes, with connection keys derived from the master
session key. In comparison, the ACCE model uses the session key directly for the
AEAD primitive. Thus, the correlation between channel protocol security and
ACCE is highly constrained to cases where a single AEAD scheme is employed
and in the absence of a specified KDF (e.g. the singleton suite (Π, [])).
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Despite being a highly restricted case, we compare the security guarantees
of the channel phase of the ACCE experiment and Chnl[(Π, [])]. This is to
illustrate the applicability of the Chnl environment, although those protocols
currently analyzed in the ACCE model need to be reanalyzed in the Chnl model
to truly consider security under parallel connections, etc.

Theorem 3. Let Chnl[(Π, [])] be a keyed two-party controllable channel pro-
tocol constructed from a single stLHAE scheme Π, using the identity KDF [].
Let p be the number of principals, n be the maximum number of sessions at a
principal, and let A be an adversarial algorithm against the Expstlhae-chnl

Chnl[(Π,[])]() ex-
periment in Fig. 2. Then we can construct an adversarial algorithm B against
ExpACCEΠ () such that

Advstlhae-chnl
Chnl[(Π,[])](A) ≤ p2 · n2 ·AdvACCEΠ (B) .

Proof. Again we follow a series of game hops where the adversarial advantage in
Game i is denoted Advi. For all identities and sessions, session keys are sampled
according to the distribution of the key space K.

Game 0 This is the original experiment,

Adv0 = Advstlhae-chnl
Chnl[Π,[]](A) .

Game 1 Initializing the simulation, the challenger selects its guess of identities P
and P ′ from the set of all identities {P1, . . . , Pp}, as well as send/receive target
sessions πPs and πP

′

s , respectively, via random indices s and s from {1, . . . , n}
where n is the maximum number of sessions at an identity. If A does not call
CxnInit on the guessed target session pair, calls CxnInit more than once on either
session, or does not attempt to win with a bit guess b′(P∗,s∗,i∗) for (P ∗, s∗) ∈
{(P, s), (P ′, s)}, then B aborts. Thus,

Adv0 = p2 · n2 ·Adv1 .

The challenger maintains status variables, and answers ChnlEnc and ChnlDec
queries with B’s Encrypt and Decrypt oracles, respectively, run on connection
keys from the single initiated connection pair for the target session pair. All
ChnlEnc and ChnlDec-queries at other connections (i.e. at non-target sessions)
can be correctly answered by the challenger via ChannelSnd and ChannelRcv
algorithms.
A will eventually output a bit b′(P∗,s∗,i∗) for (P ∗, s∗) ∈ {(P, s), (P ′, s)}, and

B also outputs the same bit b′(P∗,s∗,i∗). Thus B wins in the post-accept exper-
iment ExpACCEΠ,B (λ) of the ACCE game whenever A wins the Expstlhae-chnl

Chnl[Π,[]],A(λ)
experiment.
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Closure Initiator Closure Responder
alert of level fatal

write connection read connection

write connectionread connection

Fig. 4. TLS fatal alert behavior, where initiator is the session initiating a channel
closure. Both the read and write cxn of the initiator close immediately upon sending.

Closure Initiator Closure Responder
close_notify

write connection read connection

write connectionread connection

close_notify
write connection read connection

write connectionread connection

Fig. 5. TLS close_notify behavior. The write cxn of the initiator closes upon sending
of close_notify. Upon receipt, the read cxn at the responder closes. Subsequently,
the responder sends a corresponding close_notify alert and closes its write cxn.

5.2 Secure Termination in TLS

According to specification, the Alert Protocol in TLS falls into three cate-
gories: fatal alerts, warning alerts, and close_notify alerts. Unlike fatal alerts,
which upon sending/receipt close both write and read connections at a session,
close_notify alerts do not necessarily close the initiator’s receive connection
immediately, but may wait until receipt of the reciprocal close_notify alert.
Fig. 4 and 5 illustrate fatal and close_notify alert behavior. According to the
TLS 1.2 standard, the determination of whether or not the initiator’s read con-
nection should be closed when a close_notify is sent is left to the usage profile
[11, p. 28]. However, upon receipt of a close_notify alert, the responder must
close its read connection and must send a corresponding close_notify alert on
its send connection, before closing it also. Receipt of the reciprocal alert results
in the closure of the original initiator’s read connection.

Ostensibly, TLS fatal alerts are fatal termination messages per Def. 13 and
the TLS 1.2 specification [11]. Comparatively, close_notify alerts are either
fatal or graceful termination messages, depending on the implementation. Per
specification, “It is not required for the initiator of the close to wait for the
responding close_notify alert before closing the read side of the connection.”

Remark 7. It is crucial to note that Alert Protocol messages are in fact, within
the message space of the TLS protocol according to Def. 5 and Def. 8, despite
the Alert Protocol running on top of the Record Layer Protocol. This is due to
the fact that TLS 1.2 encrypts and sequences these messages in the same manner
as application messages [11, section 7.2].

We conclude with the following theorem on secure termination in TLS, under
the restricted (ACCE-induced) channel environment of prior TLS analyses.
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Theorem 4. For TLS 1.2, TLS-RSA, TLS-CCA, TLS-DH, and TLS-DHE
achieve secure termination under any fatal alert or close_notify alert, where
each TLS session consists of a single connection pair with connection keys de-
rived from the session key via the identity KDF.

Theorem 4 follows by combining previous ACCE analyses of TLS 1.2 [29, 20,
23, 7], Theorem 3, and Theorem 2, and applying the observation above that fatal
and close_notify alerts satisfy the definition of terminate messages within
T ⊂M, whereM is the protocol message space.

From previous analyses of TLS 1.2 in the ACCE model, Thm. 4 inherits the
restriction that sessions consist of a single connection pair. However this is not
intrinsic to the design of TLS and it may be analyzed in the keyed two-party
controllable channel model for better consideration of the full protocol.
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A Definitions

A.1 KDF

Definition 14 (KDF).
A key derivation function, KDF(sk, id) → ck, is a pseudo-random function

SK×ID → CK, which takes as input original keying material sk and a derived
key identifier id, and outputs a key ck.

A.2 Authenticated Encryption with Associated Data (AEAD)

Definition 15 (Stateful Length-Hiding AEAD). A stateful length-hiding
AEAD scheme Π for a message space M, an associated data space AD, a key
space K, and a ciphertext space C, is a tuple of algorithms:

– Kgn() $→ k: A probabilistic key generation algorithm that outputs a key k.
– Enc(k, `, ad,m, stS) $→ (c, st′S): A probabilistic encryption algorithm that

takes as input a key k ∈ K, a length ` ∈ Z ∪ {⊥}, associated data ad ∈ AD,
a message m ∈ M, and an write state stS, and outputs a ciphertext c ∈ C
or an error symbol ⊥, and updated state st′S.

– Dec(k, ad, c, stR)→ (m, st′R): A deterministic decryption algorithm that takes
as input a key k ∈ K, associated data ad ∈ AD, a ciphertext c, and a read
state stR, and outputs a message m ∈ M or an error symbol ⊥, and an
updated state st′R.

If ` 6= ⊥, then we say that Π is length-hiding.

Correctness is defined in the obvious way, based on scheme correctness from
Def. 1.

Definition 16 (Stateful Length-Hiding AEAD Security). Let Π be a
stateful length-hiding AEAD scheme and let A be an PPT adversarial algo-
rithm. The stateful length-hiding AEAD experiment for Π with bit b is given by
Expstlhae

Π (A) in Fig. 6. We define

Advstlhae
Π (A) = 2 Pr

[
Expstlhae

Π (A)
]
− 1 .

Note that the state variables stS, stR in Fig. 6 are considered substate vari-
ables in terms of the channel environment (e.g. πPs .cxniW.substate, πPs .cxniR.substate).
This is due to the increased state considerations of the environment.
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Expstlhae
Π (A):

1: k $← Kgn()
2: b $← {0, 1}
3: stS ← ⊥, stR ← ⊥
4: u← 0, v ← 0
5: phase← 0
6: b′ $← AEncrypt(·),Decrypt(·)()
7: return (b′ = b)

Enc(`, ad, (m0,m1)):
1: u← u+ 1
2: (sent.c(0), st

(0)
S )← Enc(k, `, ad,m0, stS)

3: (sent.c(1), st
(1)
S )← Enc(k, `, ad,m1, stS)

4: if sent.c(0) = ⊥ or sent.c(1) = ⊥ then
5: return ⊥
6: (sent.adu, sent.cu, stS) := (ad, sent.c(b), st

(b)
S )

7: return sent.cu

Dec(ad, c):
1: if b = 0 then
2: return ⊥
3: v ← v + 1
4: (m, stR)
← Dec(k, ad, c, stR)

5: if (u < v) ∨ (c 6= sent.cv) ∨
(ad 6= sent.adv) then

6: phase← 1
7: if phase = 1 then
8: return m
9: return ⊥

Fig. 6. Stateful length-hiding AEAD experiment stlhae for stateful length-hiding
AEAD scheme Π = (Kgn,Enc,Dec) and adversary A.

A.3 Authenticated and Confidential Channel Establishment
(ACCE)

The following game, ExpACCEΠ (), is for the post-accept phase of the authenticated
and confidential channel establishment (ACCE) model. More detail about the
full ACCE experiment, including the post-accept phase, can be found in [20].

Encrypt(πPs , l, ad,m0,m1):
1: u← u+ 1
2: (c(0), st

(0)
S )

$← Enc(SK, l, ad,m0, stS)
3: (c(1), st

(1)
S )

$← Enc(SK, l, ad,m1, stS)
4: if c(0) = ⊥ or c(1) = ⊥ then
5: return ⊥
6: (sent.adu, sent.cu, stS)
← (ad, c(bP

s ), st
(bP

s )
S )

7: return sent.cu

Decrypt(πPs , ad, c):
1: if bPs = 0 then
2: return ⊥
3: v ← v + 1
4: (m, stR)← Dec(SK, ad, c, stR)
5: if (u < v)∨(c 6= sent.cv)∨(ad 6=
sent.adv) then

6: phase← 1
7: if phase = 1 then
8: return m
9: return ⊥

Fig. 7. ACCE game oracles, for principal P and session πPs , with session key SK.
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B Agility
Here we summarize pseudo-random function agility, based on the notions of Acar
et al. [1] which use more generalized scheme algorithms than we employ.

Let PRF.F = (Pg,Kg,PRF,Dom,Rng) be a scheme consisting of the follow-
ing PPT algorithms: a probabilistic parameter generator Pg, a probabilistic key
generator Kg, a deterministic evaluator PRF, a deterministic domain Dom, and
a deterministic range Rng.

Expagile−prf
PRF.F (A):

1: pars $← Pg(1k)
2: K $← Kg()
3: b $← {0, 1}
4: b′ ← APRF(·)()
5: return (b′ = b)

PRF(PRF.F, x):
1: if b = 1 then
2: y ← PRF(pars,K, x)
3: else
4: y

$← Rng(pars)
5: return y

Fig. 8. PRF agility game.
Here compatibility is defined for the set of PRF functions, but easily gener-

alizes to other scheme types.
Definition 17 (Compatible). A set {PRF.F} of PRF.F schemes is compati-
ble if all PRF ∈ {PRF.F} have the same parameter generator and the same key
generator.

Definition 18 (Set-Restricted). An adversary A is {PRF.F}-restricted if:
– the scheme arguments to its PRF queries, per Fig. 8, all come from {PRF.F},
– it does not repeat an oracle query on the same inputs, and
– for all queries PRF(PRF.F, x), x ∈ Dom(pars).

Definition 19 (Agility). Let Advagile−prf
{PRF.F} (A) = 2 Pr[Expagile−prf

PRF.F (A)] − 1,
where {PRF.F} is a finite, compatible set, and let A be any PPT, {PRF.F}-
restricted adversary. Then {PRF.F} is agile if Advagile−prf

{PRF.F} (A) is negligible.

Remark 8. While it has been shown by Acar et al. [1] that the set of all PRF
functions is not agile, it is still possible for smaller subsets of PRF functions to
achieve agility. For example, the set of KDF schemes available to a particular
channel protocol could achieve agility. Special cases mentioned by Acar et al.
include the singleton set, and any set of collision-resistant hash functions when
formalized as keyed families. In practice, we expect that the sets of available
KDF functions for real-world protocols may be small enough to achieve agility
(trivially, if only one KDF is negotiated), but leave it to future work in particular
protocol analyses.
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C Composition of Protocol Epochs

This work addresses secure termination for TLS 1.2 under Alert Protocol mes-
sages sent after a completed handshake – it is assumed that no Alert Protocol
message fragments are buffered for processing from an earlier protocol epoch
(i.e. the Handshake Protocol). The importance of this observation is as follows:
mentioned briefly above, in 2012 an attack on TLS via the Alert Protocol was dis-
covered by the miTLS reference implementation team [27] which exploited alert
message fragmentation due to the 2-byte message length. Basically, the attack
was performed by sending an unauthenticated alert message fragment during the
handshake which, due to its incompleteness, would be buffered for later process-
ing. Once the channel was established and application data sent authenticated,
the receipt of a subsequent alert message would result in the combination of the
previous fragment and the first byte of the current alert message being processed
as a single alert message. One possible consequence of this attack would be a
downgrade of the intended alert level from fatal to warning, undermining the
specified use of fatal alerts. The attack could also be used to upgrade the alert
level – the sending of a fatal alert fragment during the handshake could result
in the processing of a warning alert, sent later, at a fatal level. This would triv-
ially result in closure of the receiver’s channel with a terminate message while
the sender’s channel remains open; hence achieving a successful adversarial win
according the secure termination experiment of Figure 3.

By message format, TLS alert messages sent after the handshake completion
fall under the ciphertext protections defined for Record Layer messages [11], and
thereby satisfy the constraints of terminate messages. (i.e. messages that signal
closure to the channel connections). However, those sent during the handshake
do not (Theorem 3 addresses only channels satisfying stLHAE channel security).
Fundamentally, this raises an important issue: if m is a terminate message in
one protocol epoch, it may not be in others. The logical linking and buffering of
m across protocol epochs with different security guarantees is a dangerous game,
and lays the protocol open to attacks such as the one above. Similar issues could
potentially arise during session resumption if data from the first connection
is buffered into the second. Note that resumption can have different meanings
dependent on protocol use. For protocols which allow session resumption via
a key derived from the original master session key, we consider initiation of
additional/subsequent connections. Comparatively, for those protocols that reuse
the same key, we consider that the original connection was never actually closed.1

To counter the miTLS Alert attack vulnerability, the miTLS reference im-
plementation resets buffers at the sending/receipt of a ChangeCipherSpec mes-
sage, effectively allowing a fresh start to all messages in the epoch, including
terminate messages. However, the viability of the above attack is dependent

1 Compared to resumption, renegotiation refers to sessions where keys for subsequent
connections are derived from new keying material (possibly in addition to the original
session key or a previous connection key); we leave this as a possible extension for
future work.
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on the implementation, with OpenSSL, for example, being subject to the at-
tack while some other implementations are not [27]. Thus, proofs for protocol
secure termination must clearly define assumptions as we have done, to dissever
protocol implementations and delineate those that achieve secure termination.

According to miTLS, the viability of the above attack is dependent on the
implementation. OpenSSL, for example, is subject to the attack while miTLS
reference implementation, as well as some other implementations, are not [27].
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