
Consensus from Signatures of Work

Juan A. Garay
Texas A&M University

garay@cse.tamu.edu

Aggelos Kiayias*

University of Edinburgh
& IOHK

akiayias@inf.ed.ac.uk

Giorgos Panagiotakos
University of Edinburgh
giorgos.pan@ed.ac.uk

April 13, 2020

Abstract

Assuming the existence of a public-key infrastructure (PKI), digital signatures are a fundamen-
tal building block in the design of secure consensus protocols with optimal resilience. More recently,
with the advent of blockchain protocols like Bitcoin, consensus has been considered in the “permis-
sionless” setting where no authentication or even point-to-point communication is available. Yet,
despite some positive preliminary results, all attempts to formalize a building block that is sufficient
for designing consensus protocols in this setting, rely on a very strong independence assumption
about adversarial accesses to the underlying computational resource.

In this work, we relax this assumption by putting forth a primitive, which we call signatures
of work (SoW). Distinctive features of our new notion are a lower bound on the number of steps
required to produce a signature; fast verification; moderate unforgeability—producing a sequence
of SoWs, for chosen messages, does not provide an advantage to an adversary in terms of running
time; and honest signing time independence—most relevant in concurrent multi-party applications,
as we show.

Armed with SoW, we then present a new permissionless consensus protocol which is secure
assuming an honest majority of computational power, thus in a sense providing a blockchain coun-
terpart to the classical Dolev-Strong consensus protocol. The protocol is built on top of a SoW-based
blockchain and standard properties of the underlying hash function, thus improving on the known
provably secure consensus protocols in this setting, which rely on the strong independence property
mentioned above in a fundamental way.

*Research partly supported by Horizon 2020 project PANORAMIX, No. 653497.

1

Contents

1 Introduction 3

2 Preliminaries 8

3 Signatures of Work 10

4 Applications 13
4.1 The Permissionless Model, Revisited . 13
4.2 Public Transaction Ledger from Signatures of Work 15

4.2.1 The Bitcoin backbone protocol. 15
4.2.2 Security properties of the blockchain. 17
4.2.3 Security proof. 18

4.3 Consensus from Signatures of Work . 28

5 SoW Constructions from Idealized Assumptions 31

2

1 Introduction

The consensus problem—reaching agreement distributedly in the presence of faults—has been exten-
sively studied in the literature starting with the seminal work of Shostak, Pease and Lamport [48, 42].
The problem formulation has a number of servers (parties) starting with an individual input which
should agree at the end to a joint output that has to match the input in the case where all non-faulty
servers happened to have the same input value. One of the critical measures of effectiveness for con-
sensus protocols is maximizing their resilience to Byzantine faults, typically denoted by t. It is known
that t < n/2 is necessary to achieve consensus, where n is the total number of parties, while protocols
have been designed that reach that level of resilience assuming synchrony and a way to authenticate
messages using digital signatures [22]1 (or “pseudosignatures” [49]). This result is known to be tight
since lack of synchrony would imply t < n/3 [24] (as well as randomization [27]), while lack of a
message authentication mechanism has a similar effect [18].

Recently, with the advent of blockchain protocols like Bitcoin, the problem has experienced renewed
interest from a much wider community of researchers and has seen its application expand to various
novel settings, such as the so-called “permissionless” setting, where participation in the protocol is
both unrestricted and unauthenticated. In fact, this setting was initially studied in [45, 46], where it
was shown that deterministic consensus algorithms are impossible for even a single failure but that
probabilistic consensus is still feasible by suitably adapting the protocols of [13, 26]. Nevertheless, the
resulting protocol required exponentially many rounds in n.

The first efficient solutions for the consensus problem in the permissionless setting were formally
shown to be possible utilizing an abstraction of the Bitcoin blockchain protocol in [31], against adver-
saries controlling less than half of the computational power which, in a uniform configuration (meaning
parties are endowed with the same computational power), corresponds to a number of Byzantine faults
t < n/2 in the original setting. At a high level, these protocols (as well as the Bitcoin blockchain pro-
tocol itself) rely on a concept known as proofs of work (PoW), which, intuitively, enables one party to
convince others that he has invested some computational effort for solving a given task. While being
formulated a while back [25] and used for a variety of purposes—e,g, spam mitigation [25], sybil at-
tacks [23], and denial of service protection [38, 5]—their role in the design of permissionless blockchain
protocols [44], is arguably their most impactful application.

In the context of permissionless blockchain protocols, the way a PoW-like primitive helps is by
slowing down message generation for all parties indiscriminately, thus generating opportunities for
honest parties to converge to a unique view under the assumption that the aggregate computational
power of honest parties sufficiently exceeds that of the adversary. Now, while this intuition matches the
more rigorous analyses of the Bitcoin protocol that have been carried out so far [31, 47, 32, 7], these
works have refrained from formally defining such enabling functionality as a stand-alone cryptographic
primitive, and relied instead on the random oracle (RO) model [11] or similar idealized assumptions
(cf. the Ftree functionality in [47]) to prove directly the properties of the blockchain protocol. The
same is true for other provably secure PoW-based distributed protocols [3, 39, 33].

The core of the hardness (or even impossibility [20]) of implementing the assumed idealized re-
sources is that they satisfy a strong independence property: Each bit output on a new query to the
resource is independently sampled, even if the adversary is the one who is accessing the resource. This
is indeed a very strong property, as it directly implies that the best way to compute a PoW for both
an honest party and the adversary is brute force. Moreover, the same property is explicitly used to
argue the security of the proposed consensus protocols in the PoW setting [31, 3], as we explain in

1Recall that the protocol in [22] tolerates an arbitrary number of Byzantine faults (n > t), but in the version of the
problem of a single sender (a.k.a. “Byzantine Generals,” or just broadcast); in the case of consensus, t < n/2 is necessary
regardless of the resources available to the parties in the protocol execution (see, e.g., [28, 29]).

3

detail later.
In this work we make progress in relaxing this assumption, by putting forth a formalization of a

PoW-like primitive, which we call signatures of work (SoW). An SoW can be implemented in the RO
model or by using Ftree, but the adversarial SoW computation process does not necessarily satisfy such
strong guarantees as the ones mentioned above. Indeed, in contrast to previous approaches, only an
upper bound on the rate at which the adversary generates SoWs needs to be assumed. We then present
a new permissionless consensus protocol based on SoWs that can be proven secure without relying
on such strong independence guarantees. The protocol utilizes a SoW-based blockchain and standard
properties of the underlying hash function, and is secure assuming an honest majority of computational
power. As a result, this protocol can be seen as an exemplar of how a permissionless signature-like
primitive enables honest majority consensus in the same way that classical digital signatures imply
honest-majority consensus protocols in the traditional setting.

Why signatures of work? We first provide some intuition behind the relevance of SoW as a useful
primitive for the design of permissionless distributed protocols. Recall the main property of a digital
signature in the design of classical consensus protocols: It enables parties to communicate to each
other their protocol view and inputs at a certain stage of the protocol execution in a way that is
transferable and non-repudiable. Indeed, Bob, upon receiving Alice’s signed message, can show it to
Charlie in a way that the latter is unequivocally convinced of the message’s origin. It follows that
Bob cannot modify Alice’s messages, playing man-in-the-middle between Alice and Charlie, and thus
Alice can be held accountable in case she provides conflicting views to the two parties. A SoW scheme
provides a similar capability: Using a SoW, a party like Alice can invest effort into a specific protocol
view and inputs, so that when Bob is presented with a SoW produced by Alice it will be infeasible for
Alice to provide a conflicting view and inputs to Charlie, unless she invests twice the effort. Moreover,
the above argument holds without establishing any set of identities among the parties, so for example
Bob does not need to know he talks to Alice per se but rather to an arbitrary party that invested some
effort with respect to a specific protocol view. Furthermore, exactly like digital signatures, SoWs can
be chained recursively, enabling the parties to build on each other’s protocol view.

While the above functionalities hint to the usefulness of SoWs in the distributed permissionless
setting, formalizing and applying them properly is no simple task. Firstly, in contrast with classical
signatures, there is no secret key involved in this primitive. This make sense, since in a permisionless
setting signing messages using some kind of secret information is meaningless, as parties do no have
any secret setup to begin with. Hence, if they are to sign any message, they should use some other kind
of resource that only they have access to, such as their computational power. Secondly, in classical
signatures, the exact time when the verification key becomes available to different parties is irrelevant;
The key is only useful for verification, up to polynomial-time differences. In the context of SoWs,
however, this time is of great importance. For example, allowing a party to learn the verification key,
say, two days earlier than other parties, means that this party will be able to compute two days worth
of signatures more than them. Hence, in contexts where counting the number of generated signatures
matters, as is the case in blockchain protocols, great care should be taken on guaranteeing that the
verification key is “fresh” enough for the relevant application.

Our results. Our contributions are are as follows:

1) Formalization of an SoW scheme. The syntax of an SoW scheme entails four algorithms: Pub-
lic parameter generation, key generation, signing and verification—PPub,KeyGen, Sign and Verify,
respectively. PPub is invoked on input 1λ, where λ is the security parameter, and outputs public
security parameters pp. KeyGen is invoked on input pp, and outputs a random verification key vk.
Sign is invoked on input (pp, vk,msg , h), where msg is the message to be signed, and h is the hardness
level of the signature generation. Expectedly, Verify is invoked on input (pp, vk,msg , h, σ), where σ is
(possibly) an output of Sign. We require a SoW scheme to be:

4

Correct: As in the case of classical signatures, we require that signatures produced by Sign should
be accepted by the Verify algorithm.

(t, α)-Successful: This property lower-bounds the probability that an honest signer will success-
fully produce a SoW in a certain number of steps t; α is a function of the hardness level h.

t-Verifiable: The verifier should be able to verify a SoW in t steps. (Typically, t is a lot smaller
than the time need to produce a signature.)

Moderately Unforgeable against Tampering and Chosen-Message Attacks ((β, ε)-MU-
TCMA): This property is akin to the property of existential unforgeability under chosen-message
attacks of digital signatures (EU-CMA). It captures the fact that producing a sequence of SoWs,
for chosen messages, does not provide an advantage to an adversary in terms of running time.
Specifically, the chances to produce more than β · t SoWs in t steps (for any t) are less than ε.2

Further, this should hold against an adversary able to tamper with the keys, and even in the
presence of a Sign oracle.

Run-time independent: This final property captures the setting where honest signers are po-
tentially invoked on adversarial inputs and ensures that their running time enjoys some degree of
independence. Specifically, the random variables defined as the running time of each Sign invo-
cation is a set of almost independent random variables (cf. [1]). We stress that the adversarial
signing algorithm may not satisfy this property.

As a “sanity check,” we show in the full version of the paper that a SoW scheme can be easily
designed and proven secure in the random oracle model (or by using Ftree), and hence in practice can
be instantiated by a cryptographic hash function such as SHA-256.

2) Consensus from SoW. Next, we design a consensus protocol for an honest majority of computational
power that can be reduced to the SoW primitive above. The core idea behind our new protocol is as
follows. First, the parties build a blockchain using SoWs in a way reminiscent of the Bitcoin blockchain.
Using SoWs we show how to emulate the Bitcoin backbone protocol [31] by having parties compute
a SoW in parallel, “on top” of the current view that incorporates the largest number of SoWs, i.e.,
the longest chain. However, in contrast with the consensus protocol of [31], to generate a block, the
parties include not only their input to the consensus protocol, but also the headers of “orphan” blocks
that exist in forks stemming off their main chain and which have not been included so far, where the
header of a block contains the hash of the previous block in the chain, the signature, the input to the
consensus protocol, and a hash of the block’s contents.

Using this mechanism, as shown in Figure 1, we prove that it is possible to reconstruct the whole
tree of block headers from the blockchain contents, and thus in this way preserve all block headers
produced by the honest parties. This ensures that the resulting ledger will reflect the number of parties
and hence a consensus protocol may now be easily reduced to this blockchain protocol.

Our new consensus protocol relying on the SoW primitive in the setting where no PKI is available,
exemplifies the contrast with consensus in the classical setting, relying on standard signatures and a
PKI setup [22] (cf. [29]). It is worth noting that the only known blockchain-based provably secure
and optimally resilient consensus protocol is given in [31], using a technique called “2-for-1 PoW”
where two PoW-based protocols can be run concurrently and create a blockchain where the number
of honest-party contributions is proportional to their actual number, but which relies on the strong
independence property of the RO model, discussed earlier, in a fundamental way. Indeed, in the RO
model, each witness for a PoW can be rearranged in a certain way so as to obtain a test for a witness
for another PoW in a way that is independent from the first solution. Our new protocol gets rid of

2Note that, unlike previous unforgeability definitions (e.g, [12]), this definition is parameterized by the rate β at
which the adversary can produce signatures, instead of the number of steps it needs to compute one. We feel that this
formulation is more appropriate for the moderate unforgeability game where the adversary tries to produce multiple
signatures. For further details, see Definition 7.

5

BGen

A[0] B[1]

C[1] D[1]

? ?

E[0]

G[0]

F[1]

he
ad
er

Figure 1: The data structure maintained by the consensus protocol. Block F has consensus input 1,
and includes the headers of blocks D and G, with input 1 and 0, respectively. Block D includes the
headers of invalid blocks. This is not a problem, since any chain that contains D will be invalid and
not selected by any party, while D’s consensus input is correctly counted as a valid block header.

this need. The only other (non-blockchain) PoW-based consensus protocol [3] also relies on the RO
model.

As intermediate steps in our analysis, we first introduce an appropriate adaptation of the model
of [31] that allows for a standard model analysis and which may be of independent interest. We then
recall the three basic properties of the blockchain data structure presented in [31]: (strong) common
prefix, chain quality and chain growth, and show how our SoW-based blockchain protocol satisfies
them assuming, beyond the security of SoW, standard collision resistance from the underlying hash
function that is used to “glue” the blocks together. This is achieved as follows: We first prove that
using the MU-TCMA property and assuming the adversarial hashing power is suitably bounded, it is
unlikely in any sufficiently long time window for the adversary to exceed the number of SoWs of the
honest parties. Then, using the (t, α)-Successful and (β, ε)-MU-TCMA properties in conjunction with
run-time independence, we establish that summations of running times of successive Sign invocations
have the variance needed to ensure that “uniquely successful rounds” (i.e., rounds where exactly one
of the honest parties produces a SoW) happen with high density in any sufficiently long time window.
Using these last two core results, and under suitable constraints for the basic SoW parameters α, β, ε, h
and number of parties n, we prove that the the security of the Bitcoin backbone protocol implements a
robust transaction ledger [31]. Further, and as a sanity check, in the full version of the paper, we argue
that the results we get from our black-box analysis (and the RO-based SoW construction mentioned
earlier), are similar to those from the random-oracle analysis of [31].

Our analysis is carried out in the synchronous setting. It is relatively straightforward to extend
our results to the ∆-synchronous setting of [47], by using the same techniques as in [30] (Section 7)].
We leave as an open question extending our results to the variable difficulty setting of [32].
3) Other applications. In addition to the blockchain and consensus applications of SoW, we note
that the security properties we put forth are suitable for the more traditional DDOS setting, with
considerable advantages over existing approaches (cf. [54]). The problem is as follows: A server
wants to protect itself from malicious actors in the network which send network packets to eat up
its resources. The canonical defense for this attack is for the server to run a PoW challenge-response
protocol with the sender, in order to make sending a message costly. The MU-TCMA property, we
have defined, directly implies exactly this property in the strongest sense: For any, adaptively selected,
set of messages sent, the adversary must consume computational resources proportional to the number
of messages, even if it can also see SoWs sent by other parties. Moreover, this process can be made
non-interactive by delegating the generation of the verification key to some public randomness service,
e.g., the NIST beacon, and only accept messages that include a SoW with respect to this key. Finally,
note that the same security guarantees can be easily extended to multiple servers who use the same

6

beacon, by requiring that the sent messages contain some unique identification string.

Prior and related work. We have already mentioned above relevant related work regarding classical
and blockchain-based consensus protocols. For a more exhaustive recent survey, refer to [29]. We also
note that the focus of the paper is the original consensus problem [48, 42], and not so-called “ledger
consensus” (sometimes referred to as “Nakamoto consensus”), which is an instance of the state machine
replication problem [51]; see also [29] for an overview of such protocols. The idea of referencing off-
chain blocks has been considered early on in the ledger consensus literature (see, e.g., [43, 53, 52, 14])
as a way to obtain fairness, better throughput and faster confirmation times. Our novelty is that we
leverage this technique along with the new SoW notion to build a provably secure consensus protocol,
which, unlike prior results, is not based on the “2-for-1 PoW” technique described earlier.

There have been a number of attempts to formalize a proof of work (PoW) primitive that it is also
sufficient to imply the security of a blockchain protocol. Nevertheless, such works were either informal
[6, 50, 37], or they did not produce a correctness proof for a blockchain or consensus protocol, focusing
instead on other applications [16, 2, 17, 8, 35]. We proceed to give a partial list of such considerations.

In [35], Garay et al. study the necessary hardness condition that the underlying computational
problem should satisfy in order for Bitcoin to implement a public ledger. In contrast to our work,
an enhanced version of that security notion is shown to be sufficient to implement a public ledger
against an adversary controlling only 1/3 (as opposed to 1/2) of the computational power. Further,
it is unclear whether such notion can be used to solve the original consensus problem.

Another effort to formalize an intermediate PoW-like building block for the Bitcoin protocol was
made in [47]. The proposed ideal functionality, Fptree, keeps track of a tree of messages, which both
the honest parties and the adversary can extend with probability p. The outcome of each such trial is
independent of the others, even if it is made by the adversary. Fptree satisfies the strong independence
property mentioned before, and hence it is not suitable for the goals of this paper. Moreover, we
note that any protocol instantiating this functionality must necessarily be interactive, as two parties
can use Fptree to communicate at least one bit. Finally, in [47], it was shown how to implement a
transaction ledger, but not how to achieve consensus; the techniques introduced in this paper can be
adapted to implement a consensus protocol using Ftree.

Another relevant work, is that of Back et al. [6] and of Poelstra [50], where the concept of “dynamic
membership multi-party signatures” (DMMS) is proposed to describe the underlying primitive used in
Bitcoin. The author of the latter work also argues the security of Bitcoin, based on a DMMS scheme.
While the properties described there bear some similarities to our work, the treatment is not formal.

Another related work, is that of Dwork and Naor [25], which considered PoWs under the term
“pricing functions,” as a means of protection against spam e-mail. The main properties discussed in
their work are amortization resistance, “moderate hardness” and the existence of trapdoors (“short-
cuts” in their terms). Interestingly, among the three constructions described there, one of them is a
partially “broken” signature scheme, i.e., while it is hard for an attacker to obtain the signing key, it
is moderately hard to forge signatures.

In a different direction, Juels and Jacobsson [37] and Back [4, 5] use PoWs to construct electronic
payment systems. In [37], the authors consider the following properties: Amortization resistance,
fast verification, and some special “useful work” property which states that generating a PoW for
some scheme may help in generating a PoW for another scheme. As acknowledged by the authors
themselves, the definitions they provide are only sketches. In [4, 5] another set of closely related
properties is considered, including amortization and “trapdoor-freeness.” Amortization refers to the
ability to combine PoWs of lesser difficulty in order to construct PoWs of greater difficulty. “Trapdoor-
freeness” dictates that the party which generates the initial parameters of the scheme should not be
able to also generate a trapdoor regarding these parameters. Again the approach is not rigorous.

Bitansky et al. [16] construct time-lock puzzles as well as PoW schemes from randomized encod-

7

ings. Since the focus of their work is time-lock puzzles, the properties of PoW schemes—amortization
resistance, moderate hardness and fast verification—are only briefly investigated, although they do in-
stantiate a PoW scheme based on randomized encodings and the existence of non-amortizing languages
in the worst case.

Another interesting approach is that of Ball et al. [8], who construct a PoW from worst case
assumptions. They base the security of their PoW system on the worst case hardness of classical com-
plexity theory problems, e.g., the Orthogonal Vectors problem. As many of the previously mentioned
works, they also adopt a proof-system view in their security definitions.

In [2], Alwen and Tackmann study moderately hard functions (MoHF), providing simulation based
definitions for what they call “non-interactive proofs of effort” (niPoE), which—as explicitly acknowl-
edged by the authors—cannot be used to analyze Bitcoin. The main impediment is that the adversary
can only invoke the same MoHF only once per protocol session, while for the Bitcoin protocol multiple
invocations of the same MoHF should be allowed.

Another related moderately hard (albeit in a sequential manner) primitive is the recently intro-
duced notion of Verifiable Delay Functions (VDF) [17]. However, while the authors explicitly mention
the encoding of messages using the primitive, the provided security definitions do not capture CMA
security, a property which is necessary in a concurrent multi-party setting.

Summary of differences with a previous version [34]. The most important difference of this
version of the paper from [34] is the introduction of the notion of SoW, replacing the Proof of Work
(PoW) notion. Moreover, many proofs have been rewritten in a clearer fashion, and the properties
required from the underlying computational primitive have been simplified. Finally, additional related
work regarding consensus protocols has been added.

Organization of the paper. The basic computational model, definitions and cryptographic building
blocks used by our constructions are presented in Section 2. Formal definition of the SoW primitive
and its security properties are presented in Section 3. Section 4 is dedicated to applications of SoW:
First, we introduce an appropriate model for our applications (Section 4.1). We then analyze the
Bitcoin backbone protocol based on (and reducing its security to) SoW (Section 4.2), followed by the
new blockchain-based consensus protocol (Section 4.3). Further, and as a “sanity check,” in Section 5
we show how to implement SoW in the RO model, or using Ftree.

2 Preliminaries

In this section we introduce basic notation and definitions that are used in the rest of the paper. For
k ∈ N+, [k] denotes the set {1, . . . , k}. For strings x, z, x||z is the concatenation of x and z, and
|x| denotes the length of x. We denote sequences by (ai)i∈I , where I is the index set. For a set X,
x← X denotes sampling a uniform element from X. For a distribution U over a set X, x← U denotes
sampling an element of X according to U . By Uλ we denote the uniform distribution over {0, 1}λ.
We denote the statistical distance between two random variables X,Z with range U by ∆[X,Y], i.e.,
∆[X,Z] = 1

2

∑
v∈U |Pr[X = v]−Pr[Z = v]|. For ε > 0, we say that X,Y are ε-close when ∆(X,Y) ≤ ε.

We let λ denote the security parameter. In this paper we will follow a more concrete (“exact”)
approach [12, 9, 36, 15] to security evaluation rather than an asymptotic one. We will use functions t, ε,
whose ranges are N,R, respectively, and have possibly many different arguments, to denote concrete
bounds on the running time (number of steps) and probability of adversarial success of an algorithm
in some fixed computational model, respectively. When we speak about running time this will include
the execution time plus the length of the code (cf. [15]; note also that we will be considering uniform
machines). We will always assume that t is a polynomial in the security parameter λ, although we
will sometimes omit this dependency for brevity.

8

Instead of using interactive Turing machines (ITMs) as the underlying model of distributed com-
putation, we will use (interactive) RAMs. The reason is that we need a model where subroutine
access and simulation do not incur a significant overhead. ITMs are not suitable for this purpose,
since one needs to account for the additional steps to go back-and-forth all the way to the place where
the subroutine is stored. A similar choice was made by Garay et al. [36]; refer to [36] for details
on using interactive RAMs in a UC-like framework, as well as to Section 4.1. Given a RAM M ,
we will denote by StepsM (1λ, x) the random variable that corresponds to the number of steps of M
given as input the security parameter 1λ and x. We will say that M is t-bounded if it holds that
Pr[StepsM (1λ, x) ≤ t(λ)] = 1.

Finally, we remark that in our analyses there will be asymptotic terms of the form negl(λ) and
concrete terms; throughout the paper, we will assume that λ is large enough to render the asymptotic
terms insignificant compared to the concrete terms.

Cryptographic hash functions. We will make use of the following notion of security for crypto-
graphic hash functions:

Definition 1. Let H = {{Hk : M(λ)→ Y (λ)}k∈K(λ)}λ∈N be a hash-function family, and A be a PPT
adversary. Then H is collision resistant if and only if for any λ ∈ N and corresponding {Hk}k∈K in
H,

Pr[k ← K; (m,m′)← A(1λ, k); (m 6= m′) ∧ (Hk(m) = Hk(m
′))] ≤ negl(λ).

Robust public transaction ledgers. The notion of a public transaction ledger was introduced
in [31] to describe the functionality implemented by the Bitcoin protocol. It is defined with respect to
a set of valid ledgers L and a set of valid transactions T , each one possessing an efficient membership
test. A ledger x ∈ L is a vector of sequences of transactions tx ∈ T . Ledgers correspond to chains in
the Bitcoin protocol. It is possible for the adversary to create two transactions that are conflicting;
valid ledgers must not contain conflicting transaction. Moreover, it is assumed that in the protocol
execution there also exists an oracle Txgen that generates valid transactions, and is unambiguous, i.e.,
the adversary cannot create transactions that come in ‘conflict’ with the transactions generated by the
oracle. A transaction is called neutral if there does not exist any transactions that comes in conflict
with it.

Definition 2. A protocol Π implements a robust public transaction ledger if it organizes the ledger as
a chain of blocks of transactions and satisfies the following two properties:

Persistence: Parameterized by k ∈ N (the “depth” parameter), if in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away from the
end of the ledger, then tx will always be reported in the same position in the ledger by any honest
player from this round on.

Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds, then all honest parties will report this transaction
at a block more than k blocks from the end of the ledger.

The consensus problem. Next, we give the definition of the well-known consensus problem (a.k.a.
Byzantine agreement) [48, 42]. There are n parties, t < n of which might be corrupted, taking an
initial input x ∈ V (without loss of generality, we can assume V = {0, 1}).

Definition 3. A protocol Π solves the consensus problem provided it satisfies the following properties:

Agreement. All honest parties will output the same value eventually.

Validity. If all the honest parties have the same input, then they all output this value.

9

3 Signatures of Work

The main goal of this paper is to implement consensus in the permissionless setting without relying
on the strong independence property of the underlying computational resource. Towards that goal,
in this section we introduce the signature of work (SoW) primitive. At a high level, a SoW enables
one party to convince others that she has invested some computational power during some specific
time interval and with respect to a “message.” Next, we formalize this notion and present its desired
security properties.

SoW syntax. Given a security parameter λ, let PP be the public parameter space, HP ⊆ N the
hardness parameter space, K the key space, M the message space, and S the signature space. With
foresight, the role of the key is to provide “freshness” for the signature computation, thus certifying
that the signature was computed in the given time interval.

Definition 4. A SoW scheme consists of four algorithms SoW = (PPub,KeyGen,Sign,Verify), where:

PPub(1λ) is a randomized algorithm that takes as input the security parameter λ, and returns a
set of public parameters pp ∈ PP .

KeyGen(pp) is a randomized algorithm that takes as input the public parameters pp, and returns
a key vk ∈ K. (See Remark 1 below on the role of keys in SoW schemes.)

Sign(pp, vk,msg , h) is a randomized algorithm that takes as input public parameters pp ∈ PP , a
key vk ∈ K, a message msg ∈ M and hardness parameter h ∈ HP , and returns a signature (of
work) σ ∈ S.

Verify(pp, vk,msg , h, σ) is a deterministic algorithm that takes as input public parameters pp ∈ PP ,
a key vk ∈ K, message msg ∈M , hardness parameter h ∈ HP and a signature σ ∈ S, and returns
true or false to indicate the validity of the signature.

Remark 1. SoW schemes only have a public verification key. The role of this key is to guarantee
that the computational work spent in order to create a signature of work is “fresh,” i.e., executed
during a specific time interval (say, from the time the key became known to the signer). In contrast,
classical digital signatures also have a secret key that serves as a trapdoor to compute signatures. In
the applications we consider, the existence of trapdoor information is not meaningful, and in fact may
hurt the security of the respective constructions.

Security properties. Next, we present a number of security properties that we will require SoW
schemes to satisfy. We start with the correctness property.

Definition 5. We say that a SoW scheme is correct if for every λ ∈ N, pp ∈ PP, vk ∈ K,h ∈ HP ,
and msg ∈M :

Pr
[
Verify(pp, vk,msg , h,Sign(pp, vk,msg , h)) = true

]
≥ 1− negl(λ).

Next, we require that the time to verify a signature be upper bounded.

Definition 6. We say that a SoW scheme is t-verifiable, if Verify takes time at most t (on all inputs).

Next, we capture the case of a malicious signer (resp., verifier) in the context of SoWs. In the
first case, the adversary’s objective is to compute a number of signatures a lot faster than an honest
signer would, while in the second case it is to make the honest signer take too much time to generate
a signature.

We deal with malicious signers first. We put forth an attack that we will use to express a class
of adversaries that attempt to forge signatures faster than expected. Intuitively, this constitutes an
attack against an honest verifier that may be trying to gauge a certain measure using the number

10

of signatures. The game defining the attack is shown in Figure 2; we call the corresponding security
property Moderate Unforgeability against Tampering and Chosen Message Attack (MU-TCMA). As in
the security definitions of standard signatures (e.g., EU-CMA), we allow the adversary to have access
to a signing oracle S. Every time the oracle is queried, we assume that it runs the Sign procedure with
uniformly sampled randomness. A subtle point in the modeling of security in the presence of such
oracle is that S should also “leak” the number of steps it took for a query to be processed. In an actual
execution while interacting with honest parties that are producing signatures, time is a side channel
that may influence the adversarial strategy; in order to preserve the dependency on this side channel
we will require from S to leak this information. We note that in the classical signatures literature,
timing attacks have also been a serious consideration [41].

In addition, we require that the key used by the adversary to construct signatures be fresh, i.e.,
we want to avoid situations where the adversary outputs signatures that he has precomputed a long
time ago. We model this by providing the fresh key after the adversary has finished running his
precomputation phase. Further, we allow the adversary to tamper with the key by manipulating it
via tampering functions belonging to a family of functions F .

Looking ahead, the tampering function in our applications will be related to a keyed hash function,
where the key of the hash is part of a common random string (CRS). Hence, we choose to model
functions in F to have two inputs: Σ (the CRS) and vk. Moreover, the output of the adversary
is deemed invalid if he tampers vk with functions f1, f2 in such a way that f1(Σ, vk) = f2(Σ, vk).
Otherwise, the adversary could launch a generic attack that is unrelated to the SoW scheme, and
produce signatures at twice the rate of an honest signer, as follows. The adversary first finds f1, f2

that have this property, and then computes signatures using the tampered key f1(Σ, vk). The trick
is that each of them will also correspond to a signature with key f2(Σ, vk). Hence, he effectively can
double the rate at which he produces signatures.

Formally, the adversary will have access to S(·, ·), an SoW oracle that on input (vk′,msg), where
vk′ ∈ K and msg ∈ M , returns the pair (σ, t) where σ is the output of Sign(pp, vk′,msg , h) and t is
the number of steps taken by the Sign algorithm on these parameters. Function Asked(vk′,msg , σ) is
true if σ was the response of S to some query (vk′,msg).

We are now ready to formulate the security property of Moderate Unforgeability against Tampering
and Chosen Message Attacks (MU-TCMA). It has two parameters, β and ε, and, informally, it states
that no adversary A exists in the experiment of Figure 2 that takes at most t steps after receiving
key vk and produces ` ≥ β · t signatures with probability better than ε. Note that in total we allow
A to take any polynomial number of steps, i.e., the adversary is allowed to execute a precomputation
stage that permits it to obtain an arbitrary number of signatures before learning vk. In the definition
below, we allow β to depend on the hardness level h, and ε on h, t and qS , the number of queries the
adversary makes to the signing oracle.

Definition 7. Let F = {Fλ}λ∈N, where Fλ is a family of functions f : {0, 1}λ × K → K.3 A
SoW scheme is (β, ε)-Moderately Unforgeable against Tampering and Chosen-Message Attacks (MU-
TCMA) with respect to tampering function class F , if for any polynomially large t1, t2, any adversary
A = (A1,A2), where A1 is t1-bounded and A2 is t2-bounded and makes at most qS queries to oracle
S, for any λ ∈ N, and any h ∈ HP , the probability of A winning in ExpMU-TCMA

A,F (1λ, h, bβ(h) · t2c)
(Figure 2) is less than ε(h, t2, qS).

Remark 2. As mentioned in Section 1, unlike previous unforgeability definitions (e.g, [12]), Definition 7
is parameterized by the rate at which the adversary can produce signatures, instead of the number of
steps it needs to compute one, which is more appropriate for the moderate unforgeability game where
the adversary tries to produce multiple signatures.

3K is the key space of the SoW scheme.

11

ExpMU-TCMA
A,F (1λ, h, `)

Σ← Uλ; pp← PPub(1λ); (Public parameters)

st← A1(1λ,Σ, pp); (Precomputation)

vk ← KeyGen(pp); (Verification key)

(fi,msgi, σi)i∈[`] ← A
S(·,·)
2 (1λ, vk, st); (SoW computation)

return
∧`
i=1

(
Verify(pp, fi(Σ, vk),msgi, σi) ∧ ¬Asked(fi(Σ, vk),msgi, σi)

∧ (fi ∈ Fλ) ∧ (∀j ∈ [`] : fi(Σ, vk) = fj(Σ, vk)⇒ i = j)

)

Figure 2: The Moderate Unforgeability against Tampering and Chosen-Message Attack (MU-TCMA)
experiment for a SoW scheme.

In the MU-TCMA definition we are going to consider tampering functions classes that at the very
least preserve the unpredictability of vk. Otherwise, the adversary can generically attack any SoW
scheme by predicting the tampered key and precomputing signatures. Formally, we will say that F is
computationally unpredictable if the adversary, given the CRS Σ, cannot guess a value y that he will
be able to “hit” when he gains access to vk through some f ∈ F .

Definition 8. Let F = {Fλ}λ∈N, where Fλ is a family of functions f : {0, 1}λ × K → K. We say
that F is computationally unpredictable with respect to a SoW scheme SoW, if for any PPT RAM
A = (A1,A2), and for any λ ∈ N, it holds that:

Pr
pp←PPub(1λ);
vk←KeyGen(pp);

Σ←Uλ

[
(st, y)← A1(1λ,Σ, pp); f ← A2(1λ, st, vk) :

f ∈ Fλ ∧ f(Σ, vk) = y

]
≤ negl(λ).

Next, we consider the case of attacking an honest signer. Attacking an honest signer amounts to
finding a certain set of keys over which the honest signer algorithm fails to produce SoWs sufficiently
fast and regularly. We say that a SoW scheme is (t, α)-successful when the probability that the signer
computes a signature in t steps is at least α.

Definition 9. We say that SoW scheme is (t, α)-successful if for any λ ∈ N and any h ∈ HP , it holds
that:

Pr
pp←PPub(1λ);
vk←KeyGen(pp);

msg←M

[
StepsSign(pp, vk,msg , h) ≤ t

]
≥ α(h).

Finally, in the same corrupt-verifier setting, we will require the signing time of honest signers to
have some (limited) independence, which will be important for the applications we have in mind. This
property, in combination with the efficiency and MU-TCMA properties, will prove crucial in ensuring
that when multiple signers work together, the distribution of the number of them who succeed in
producing a signature has some “good” variance and concentration properties.

Definition 10. We say that a SoW scheme has almost-independent runtime iff for any polynomial p(·),
any λ ∈ N, any h ∈ HP , there exists a set of mutually independent random variables {Yi}i∈[p(λ)] such

that for any pp ∈ PP ,((vki,mi))i∈[p(λ)] ∈ (K×M)p(λ) it holds that ∆[(StepsSign(pp, vki,mi, h))i, (Yi)i] ≤
negl(λ).

Independence assumptions. As mentioned earlier, MU-TCMA does not enforce any independence
assumption, and only bounds the probability that the rate at which the adversary computes SoWs is
high. In contrast, the independent-runtime property does so, but only for honest signers. We remark

12

that achieving such property is considerably easier for the honest case, as we can be sure that signers
will use independently sampled coins if instructed; a guarantee that we cannot have for the adversary.

Parameters’ range. Let SoW be a scheme that is (tsign, α)-Successful. SoW trivially satisfies the
MU-TCMA property for β(h) > 1, since the adversary does not have enough time to output the
signatures it has computed. On the other hand, assuming ε(h, t, qS) is a negligible function of t,
α(h) must be smaller than β(h) · tsign, otherwise the expected number of SoWs computed by the Sign
function would exceed that allowed by the MU-TCMA property. Hence, for optimal security, it should
hold that α(h) is close to β(h) · tsign.

Next, we turn to applications of our SoW primitive.

4 Applications

In this section we showcase applications of SoWs, the first one being implementing robust transaction
ledgers: Using our primitive and standard properties of the underlying hash function, we establish the
security of the Bitcoin backbone protocol [31]. The second application is realizing consensus in the
permisionless setting: We construct a new blockchain-based consensus protocol for an honest majority
provably secure under the same assumptions as above, thus providing a blockchain counterpart to the
classical result in the cryptographic setting with a trusted (PKI) setup [22].

In both applications we assume the existence of a SoW scheme with the security properties defined
bellow.

Assumption 1 (SoW Assumption). For parameters β, ε, t′H, α and tver we assume that SoW =
(PPub,KeyGen,Sign,Verify) is:

Correct;

(β, ε)-MU-TCMA with respect to any computationally unpredictable tampering function class (cf.
Definition 8);

(t′H, α)-successful;4

almost run-time independent; and

tver-verifiable,

where ε(h, t, qS) ∈ negl(β(h)·t). Moreover, we assume that the parameter spaces K,M,S of the scheme
are equal to {0, 1}log |K|, {0, 1}∗, {0, 1}log |S|, respectively.

For a SoW scheme to be used in the context of the Bitcoin protocol, choosing K,M,S as above is
important due to the underlying hash-chain structure of the blockchain: The hash of each block acts
as a key of the SoW scheme, thus the output of the hash function should match the key space of the
SoW.

We start with some pertinent details about the model that the two applications mentioned above
will be analyzed under.

4.1 The Permissionless Model, Revisited

All the security models proposed for the analysis of PoW-based blockchain protocols [31, 47] rely on
bounding the number of queries to an idealized functionality to model limited computational resources.
In contrast, we do not wish to restrict the way the adversary accesses the computational resource, and
thus we model limited computational resources in a more general manner, i.e., by limiting the exact
number of steps parties take. Next, we present a revised version of the model of [31] that captures our
considerations.

4Parameter t′H corresponds to a lower bound on the running time of honest parties that we introduce in detail later.

13

For the reasons explained in Section 2, we substitute IRAMs for ITMs. The execution of a protocol
Π is driven by an “environment” program Z that may spawn multiple instances running the protocol
Π . The programs in question can be thought of as “interactive RAMs” communicating through
registers in a well-defined manner, with instances and their spawning at the discretion of a control
program which is also an IRAM and is denoted by C. In particular, the control program C forces the
environment to perform a “round-robin” participant execution sequence for a fixed set of parties.

Specifically, the execution driven by Z is defined with respect to a protocol Π, an adversary A (also
an IRAM) and a set of parties P1, ..., Pn; these are hardcoded in the control program C. The protocol
Π is defined in a “hybrid” setting and has access to one “ideal functionality,” called the diffusion
channel (see below). It is used as subroutine by the programs involved in the execution (the IRAMs
of Π and A) and is accessible by all parties once they are spawned.

Initially, the environment Z is restricted by C to spawn the adversary A. Each time the adversary
is activated, it may communicate with C via messages of the form (Corrupt, Pi). The control program
C will register party Pi as corrupted, only provided that the environment has previously given an
input of the form (Corrupt, Pi) to A and that the number of corrupted parties is less or equal t, a
bound that is also hardcoded in C. The first party to be spawned running protocol Π is restricted by
C to be party P1. After a party Pi is activated, the environment is restricted to activate party Pi+1 ,
except when Pn is activated in which case the next party to be activated is always the adversary A.
Note that when a corrupted party Pi is activated the adversary A is activated instead.

Next, we describe how different parties communicate. Initially, the diffusion functionality sets the
variable round to be 1. It also maintains a Receive() string defined for each party Pi. A party is
allowed at any moment to fetch the messages sent to it at the previous round that are contained
in its personal Receive() string. Moreover, when the functionality receives an instruction to diffuse
a message m from party Pi it marks the party as complete for the current round and forwards the
message to the adversary; note that m is allowed to be empty. At any moment, the adversary A is
allowed to specify the contents of the Receive() string for each party Pi. The adversary has to specify
when it is complete for the current round. When all parties are complete for the current round, the
functionality inspects the contents of all Receive() strings and includes any messages that were diffused
by the parties in the current round but not contributed by the adversary to the Receive() tapes. The
variable round is then incremented.

Based on the above, we denote by {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ the random variable ensemble that

corresponds to the view of party P at the end of an execution where Z takes z as input. We will consider
stand-alone executions, hence z will always be of the form 1λ, for λ ∈ N. For simplicity, to denote this
random variable ensemble we will use viewP,t,n

Π,A,Z . By viewt,n
Π,A,Z we denote the concatenation of the

views of all parties. The probability space where these variables are defined depends on the coins of
all honest parties, A and Z.

Next, we consider the complications in the modeling due to the analysis of Bitcoin in the concrete
security setting. Both in [31] and [47] a modified version of the standard simulation-based paradigm
of [19] is followed, where there exist both a malicious environment and a malicious adversary. In
addition, the SoW scheme (called PoW in [31, 47]) is modeled in a non black-box way using a random
oracle (RO), and the computational power of the adversary is then bounded by limiting the number
of queries it can make to the RO per round. Since in this work the SoW scheme is modeled in a
black-box way, an alternative approach to bound the adversary’s power is needed.

A näıve first approach is to only bound the computational power of A. Unfortunately this will
not work for several reasons. Firstly, nothing stops the environment from aiding the adversary, i.e.,
computing signatures, and then communicating with it through their communication channel or some
other subliminal channel. Secondly, even if we bound the total number of steps of A, it is not clear
how to bound the steps it is taking per round in the model of [19], which we build on. Lastly, another
issue arising is that if the adversary is able to send, say, θ messages in each round, it can force each

14

honest party to take θ · tver extra steps per round. If we don’t bound θ, then the adversary will be
able to launch a DOS attack and spend all the resources the honest parties have5.

In order to capture these considerations we are going to define a predicate on executions and prove
our properties in disjunction with this predicate, i.e., either the property holds or the execution is not
good.

Definition 11. Let (tA, θ)-good be a predicate defined on executions in the hybrid setting described
above. Then E is (tA, θ)-good, where E is one such execution, if

the total number of steps taken by A and Z per round is no more than tA;6

the adversary sends at most θ messages per round.

Finally, we assume the existence of a common reference string (CRS), that becomes available to all
parties at the start of the execution. This is also implicitly assumed in previous models, where either
parties have access to a special “genesis” block at the beginning of the execution [47], or they do not
have access to the RO before the beginning of the execution [31].

Definition 12. Given a predicate Q and bounds tA, θ, t, n ∈ N, with t < n, we say that protocol
Π satisfies property Q for n parties assuming the number of corruptions is bounded by t, provided
that for all PPT Z,A, the probability that Q(viewt,n

Π,A,Z) is false and the execution is (tA, θ)-good is
negligible in λ.

4.2 Public Transaction Ledger from Signatures of Work

Next, we take a reduction approach to the underlying cryptographic primitive—SoW, as defined in
Section 3—to prove the security of the Bitcoin backbone protocol [31]. We start with a description of
the protocol based on SoW, and then continue with the security proof.

4.2.1 The Bitcoin backbone protocol.

The Bitcoin backbone protocol [31], parameterized by functions V(·),R(·), I(·), is an abstraction of
the Bitcoin protocol. First, we introduce some notation needed to understand the description of the
algorithms, and then cast the protocol making use of our SoW primitive.

We will use the terms block and chain to refer to tuples of the form 〈s, x, σ〉 and sequences of
such tuples, respectively. The rightmost (resp. leftmost) block of chain C is denoted by head(C)
(resp. tail(C)). Each block contains a seed, data, and a signature denoted by s, x, σ, respectively.
As mentioned, all parties have access to a CRS at the beginning of the execution that contains: the
public parameter pp of the SoW scheme, a verification key vk generated by KeyGen(pp), and the key
k of the hash functions H,G used later. We will refer to 〈0λ, pp||vk||k, 0λ〉 as the genesis block BGen.
A chain C = B1 . . . Bm is valid with respect to the CRS if and only if (i) B1 is the genesis block, (ii)
for any two consecutive blocks 〈si, xi, σi〉, 〈si+1, xi+1, σi+1〉 it holds that Hk(si, Gk(xi), σi) = si+1, (iii)
each block, besides BGen, contains a valid SoW, i.e., Verify(pp, si, xi, σi) = true, and (iv) the content
validation predicate V(〈x1, . . . , xm〉) outputs true. We call Hk(si, Gk(xi), σi) the hash of block Bi and
denote it by Hk(Bi). Moreover, we define H(C) to be equal to the hash of the head of chain C.

At each round, each party chooses the longest valid chain amongst the ones it has received and
tries to extend it by computing (mining) another valid block. If it succeeds, it diffuses the new block
to the network. In more detail, each party will run the Sign procedure, with the message parameter
being determined by the input contribution function I(·), and the key parameter being the hash of the

5This problem is extensively discussed in [3], Section 3.4.
6The adversary cannot use the running time of honest parties that it has corrupted; it is activated instead of them

during their turn. Also, note that it is possible to compute this number by counting the number of configurations that
A or Z are activated per round.

15

last block. We assume that the hardness parameter h is fixed for all executions. Finally, if the party
is queried by the environment, it outputs R(C) where C is the chain selected by the party; the chain
reading function R(·) interprets C differently depending on the higher-level application running on top
of the backbone protocol. Each honest party runs for at most tH steps per round. We summarize the
modifications with respect to the original [31] protocol: In Algorithm 1 (signature of work function)
the Sign function of the underlying SoW scheme is invoked for a limited number of steps so that the
total number of steps of the invoking party does not exceed the tH bound per round; in Algorithm 2
(chain validation predicate) the Verify predicate is replaced with a call to the Verify algorithm of the
SoW scheme; and in Algorithm 3 (backbone protocol) we assume that the honest parties start the
execution with a “genesis” block. We leave Algorithm 4 intact.

Algorithm 1 The signature of work function, parameterized by pp, h and hash functions H(·), G(·).
The input is (x, C).

1: function sow(x, C)
2: s← H(head(C))
3: σ ← Sign(pp, s, x, h) . Run the prover of the SoW scheme.
4: B ← ε
5: if σ 6= ⊥ then
6: B ← 〈s, x, σ〉
7: end if
8: C ← CB . Extend chain
9: return C

10: end function

Algorithm 2 The chain validation predicate, parameterized by pp, h,BGen, the hash functions
G(·), H(·), and the input validation predicate V (·). The input is C.

1: function validate(C)
2: b← V(xC) ∧ (tail(C) = BGen) . xC describes the contents of chain C.
3: if b = True then . The chain is non-empty and meaningful w.r.t. V (·)
4: s′ ← H(head(C))
5: while (C 6= BGen) ∧ (b = True) do
6: 〈s, x, σ〉 ← head(C)
7: if Verify(pp, s, x, h, σ) ∧ (H(head(C)) = s′) then
8: s′ ← s . Retain hash value
9: C ← Cd1 . Remove the head from C

10: else
11: b← False
12: end if
13: end while
14: end if
15: return (b)
16: end function

In order to turn the backbone protocol into a protocol realizing a public transaction ledger suitable
definitions were given for functions V(·),R(·), I(·) in [31]. We change these definitions slightly as shown
in Table 1, to ensure two things: Firstly, that the data contained in the hash chain is encoded with

16

Algorithm 3 The Bitcoin backbone protocol, parameterized by the input contribution function I(·)
and the chain reading function R(·).

1: C ← BGen . Initialize C to the genesis block.
2: st← ε
3: round← 0
4: while True do
5: C̃ ← maxvalid(C, any chain C′ found in Receive())
6: 〈st, x〉 ← I(st, C̃, round, Input(),Receive()) . Determine the x-value.
7: Cnew ← sow(x, C̃)
8: if C 6= Cnew then
9: C ← Cnew

10: Broadcast(C)
11: end if
12: round← round+ 1
13: if Input() contains Read then
14: write R(xC) to Output()
15: end if
16: end while

Algorithm 4 The function that finds the “best” chain, parameterized by function max(·). The input
is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp← ε
3: for i = 1 to k do
4: if validate(Ci) then
5: temp← max(C, temp)
6: end if
7: end for
8: return temp
9: end function

a suffix-free code; this is important to ensure that no collisions occur [10] as we show later. And,
secondly, to ensure that any block created by an honest party contains sufficient entropy, thus the
adversary will not be able to use blocks that it has precomputed to extend this block. We call the
resulting protocol ΠSoW

PL .

4.2.2 Security properties of the blockchain.

A number of desired basic properties for the blockchain were introduced in [31, 40, 47]. At a high level,
the first property, called common prefix, has to do with the existence, as well as persistence in time,
of a common prefix of blocks among the chains of honest players. Here we will consider a stronger
variant of the property, presented in [47], which allows for the black-box proof of application-level
properties (such as the persistence of transactions entered in a public transaction ledger built on top
of the Bitcoin backbone).

We will use C � C′ to denote that some chain C is a prefix of some other chain C′, and Cdk to
denote the chain resulting from removing the last k blocks of C. We will call a block honest, if it was

17

Content validation pre-
dicate V(·)

V(·) is true if its input 〈x1, . . . , xm〉 is a valid ledger, i.e., it is in L,
and each xi starts with a neutral transaction of the form r||i, where
r is a string of length log |K| and i is the “height” of the respective
block.

Chain reading function R(·) R(·) returns the contents of the chain if they constitute a valid ledger,
otherwise it is undefined.

Input contribution function
I(·)

I(·) returns the largest subsequence of transactions in the input and
receive registers that constitute a valid ledger, with respect to the
contents of the chain |C| the party already has, preceded by a neutral
transaction of the form KeyGen(pp)|||C|.

Table 1: The instantiation of functions I(·),V(·),R(·) for protocol ΠSoW
PL .

diffused for the first time in the execution by some honest party, and adversarial otherwise.

Definition 13 ((Strong) Common Prefix). The strong common prefix property Qcp with parameter
k ∈ N states that the chains C1, C2 reported by two, not necessarily distinct honest parties P1, P2, at

rounds r1, r2 in viewt,n
Π,A,Z , with r1 ≤ r2, satisfy Cdk1 � C2.

The next property relates to the proportion of honest blocks in any portion of some honest player’s
chain.

Definition 14 (Chain Quality). The chain quality property Qcq with parameters µ ∈ R and k ∈ N
states that for any honest party P with chain C in viewt,n

Π,A,Z it holds that for any k consecutive blocks
of C the ratio of adversarial blocks is at most µ.

Further, in the derivations in [31] an important lemma was established relating to the rate at
which the chains of honest players were increasing as the Bitcoin backbone protocol was run. This
was explicitly considered in [40] as a property under the name chain growth.

Definition 15 (Chain Growth). The chain growth property Qcg with parameters τ ∈ R (the “chain
speed” coefficient) and s, r0 ∈ N states that for any round r > r0, where honest party P has chain C1

at round r and chain C2 at round r + s in viewt,n
Π,A,Z , it holds that |C2| − |C1| ≥ τ · s.

4.2.3 Security proof.

We now prove that ΠSoW
PL implements a robust public transaction ledger (Definition 2), assuming the

underlying SoW scheme satisfies Assumption 1 for appropriate parameters, related to the running
time of honest parties and the adversary. First, we formalize this relation.

Let tbb (bb for backbone) be an upper bound on the number of steps needed to run the code of
an honest party in one round, besides the Sign and Verify calls. By carefully analyzing the backbone
protocol one can extract an upper bound on this value.7 To aid our presentation, we will use t′A and
t′H to denote: (i) the time needed by a RAM machine to simulate one round in the execution of the
Bitcoin protocol, without taking into account calls made to the Sign routine by the honest parties,
and (ii) the minimum number of steps that an honest party takes running the Sign routine per round,
respectively.

t′A = tA + n · tbb + θtver and t′H = tH − tbb − θtver
7Note that tbb depends on the running time of three external functions: V(·), I(·) and R(·). For example, in Bitcoin

these functions include the verification of digital signatures, which would require doing modular exponentiations. In any
case tbb is at least linear in λ.

18

It holds that at least n − t (non-corrupted) parties will run the Sign routine for at least t′H steps at
every round.

In previous works [31, 33, 47], the security assumptions regarding the computational power of the
parties participating in the protocol were twofold: (1) The total running time of honest parties per
round should exceed that of the adversary, and (2) the rate at which parties produce blocks at each
round should be bounded. More realistically, in our approach the running time of the adversary and
the running time of honest parties do not have the same quality, as the adversary may use a superior
signing algorithm. To take this into account, we additionally need to assume that the efficiency of the
adversarial signing algorithm, i.e., β, is close to that of the honest parties. Finally, note that if SoW
is close to optimal, i.e., α(h) ≈ βt′H, and the block generation rate is a lot less than 1, our assumption
holds as long as the honest parties control the majority of the computational power.

We now state the computational power assumption formally. The second and the third conditions
are similar to the ones already found in previous works, while the first one is the new condition we
introduce regarding the underlying computational primitive.

Assumption 2 (Computational Power Assumption). There exist δSoW, δSteps, δ ∈ (0, 1), such that for
sufficiently large λ ∈ N, there exists an h ∈ HP , such that:

α(h) ≥ (1− δSoW)βt′H > negl(λ) (signatures generation rate gap)

(n− t)t′H(1− δSteps) ≥ t′A (steps gap)
δSteps−δSoW

2 ≥ δ > β(h)(t′A + ntH) (bounded block generation rate)

From now on, we will assume that the hardness parameter used in our protocols, is one satisfying
the above conditions.

Remark 3. The better the adversarial signing algorithm may be compared to the honest one, the closer
δSoW is to 0, while the closer the number of adversarial steps t′A are to that of the honest parties, the
closer δSteps is to 0. Assumption 2 implies, in a quantitative manner, that the better the adversarial
signing algorithm, the smaller the computational power of the adversary we can tolerate.

We introduce some additional notation. For each round j, we define the Boolean random variables
Xj and Yj as follows. Let Xj = 1 if and only if j was a successful round, i.e., at least one honest
party computed a SoW at round j, and let Yj = 1 if and only if j was a uniquely successful round,
i.e., exactly one honest party computed a SoW at round j. With respect to a set of rounds S, let
X(S) =

∑
j∈S Xj and define Y (S) similarly. Moreover, with respect to some block B computed by

an honest party P at some round r, let ZB(S) denote the number of distinct blocks broadcast by the
adversary during S that have B as their ancestor. Define XB(S) similarly.

Next, we focus on the hash functions used by Bitcoin, and the necessary security assumptions to
avoid cycles in the blockchains. First, note that in the actual implementation of Bitcoin an unkeyed
hash function is used, namely, a double invocation of SHA-256. In previous analyses of the protocol
this was modeled as a random oracle. We choose to model it in a strictly weaker way, as a keyed hash
function family:

H = {Hk : {0, 1}log |K|+λ+log |S| → {0, 1}log |K|}k∈K′ .

that is collision resistant (Definition 1); the CRS we have already assumed will contain the key of our
hash function. Moreover, as depicted in Figure 3, the protocol makes use of another hash function G
to compress the input x of each block, which may be of arbitrary size. In our analysis we will require G
to be collision resistant. It is well known (see, e.g., [21, 10]) that given a fixed-length collision-resistant
hash function family, we can construct an arbitrary-length collision-resistant hash function family. To
aid readability, we will sometimes omit the keys of both functions (as we already do in the description
of the protocol). Furthermore, observe that the hash structure of any blockchain (depicted in Figure 3)

19

is similar to the Merkle-Damgaard transform [21]:

MDk(IV, (xi)i∈[m]) : z = IV ; for i = 1 to m do z = Hk(z, xi); return z,

where the fixed-length hash function family used is always assumed to be H. To show that the
adversary cannot find distinct chains with the same hash, we are going to take advantage of the
following property of the MD transform.

Fact 1. For any non-empty valid chain C = B1, . . . , Bk, where Bi = 〈si, xi, σi〉, it holds that for any
j ∈ [k]: Hk(head(C)) = MDk(Hk(Bj), ((Gk(xi), σi))i∈{j+1,...,k}).

s1

x1 σ1

G

H

s2

x2 σ2

G

H

s3

x3 σ3

G

H s4

Figure 3: The hash structure of the blocks in the Bitcoin protocol.
Lemma 16. The probability that any PPT RAM A can find two distinct valid chains C1, C2 such that
H(C1) = H(C2) is negligible in λ.

Proof. Let C1 = BGen, B1, . . . , B[|C1|], C2 = BGen, B
′
1, . . . , B

′
[|C2|], m1 = ((G(xi), σi))i∈[|C1|] and m2 =

((G(x′i), σ
′
i))i∈[|C2|]. For the sake of contradiction, assume that the lemma does not hold and there

exists an adversary A that can find valid chains C1, C2 such that H(C1) = H(C2), with non-negligible
probability. By Fact 1, this implies that MD(H(BGen),m1) = MD(H(BGen),m2).

We will construct an adversary A′ that breaks the collision resistance of H also with non-negligible
probability. We take two cases. In the first case, |C1| 6= |C2|. Then, since the height of the
chain is included in a fixed position in x|C1|, x

′
|C2| (cf. Table 1), it follows that x|C1| 6= x′|C2| and

with overwhelming probability G(x|C1|) 6= G(x′|C2|), which in turn implies that B|C1| 6= B′|C2|. Since

H(head(C1)) = H(head(C2)), it follows that a collision in H has been found. In the second case, where
|C1| = |C2|, following the classical inductive argument for the MD transform, it can be shown that there
exists ` less or equal to |C1|, such that MD(H(Gen), ((G(xi), σi))i∈[`]) = MD(H(Gen), ((G(x′i), σ

′
i))i∈[`])

and (G(x`), σ`) 6= (G(x′`), σ
′
`). The lemma follows.

The following two properties8, introduced in [31], regarding the way blocks are connected are
implied by Lemma 16.

Definition 17. An insertion occurs when, given a chain C with two consecutive blocks B and B0, a
block B∗ created after B0 is such that B,B∗, B0 form three consecutive blocks of a valid chain. A
copy occurs if the same block exists in two different positions.

Corollary 18. Let {Hk(·)}k∈K and {Gk(·)}k∈K be collision-resistant hash functions. Then, no inser-
tions and no copies occur with probability 1− negl(λ).

Next, we prove that the adversary cannot mine blocks that extend an honest block created recently
at a very high rate with probability better than that of breaking the MU-TCMA property. For a
summary of our notation we refer to Table 2.

8A third property, called “prediction,” also introduced in [31], is not needed in our proof as it is captured by the fact
that SoW is MU-TCMA secure even in the presence of adversarial precomputation.

20

λ : security parameter
n : number of parties
tH : number of steps per round per honest party
tA : total number of adversarial steps per round
θ : upper bound on the number of messages sent by the adversary per round
β : upper bound on SoW computation rate per step
γ : lower bound on the rate of uniquely successful rounds
f : lower bound on the rate of successful rounds
δ : advantage from the Computational Power Assumption (Assumption 2)
k : number of blocks for the common-prefix property
` : number of blocks for the chain-quality property

Table 2: The parameters in our analysis.

Lemma 19. For any set of consecutive rounds S and for any party P , the probability that P mined
some honest block B at some round i ∈ S and ZB(S) ≥ βt′A|S|, is at most ε(h, t′A · |S|, n · |S|).

Proof. W.l.o.g., assume that i is the first round of S = {i′|i ≤ i′ < i+s}, and let E be the event where
in viewt,n

Π,A,Z the adversary has mined at least βt′As blocks until round i+s that descend some honest
block B mined by party P at round i. For the sake of contradiction, assume that the lemma does not
hold, and thus the probability that E holds is greater than ε(h, t′A · s, n · s). Using A, we will construct
an adversary A′ that wins the MU-TCMA game with probability greater than that. A′ is going to run
internally A and Z, while at the same time perfectly simulating the view of honest parties using the
signing oracle that he has in his disposal on the MU-TCMA game. This way, the view of A,Z will be
indistinguishable both in the real and the simulated runs, and thus the probability that E happens
will be the same in both cases.

We are going to describe the two stages of A′ separately, i.e. before and after obtaining vk. First,
A′1 creates the genesis block and sets the fixed length hash key and the SoW public parameters to be
Σ and pp, respectively. Then, he perfectly simulates honest parties up to round i− 1 and at the same
time runs A and Z in a black-box way. Finally, it outputs the contents of the registers of A and Z as
variable st. He can do this since he has polynomial time on λ on his disposal. Note, that up until this
point in the eyes of A and Z the simulated execution is indistinguishable compared to the real one.

For the second stage, A′2, is first going to use st to reset A and Z to the same state that they were.
We assume that this can be done efficiently, e.g., by having A and Z read from the registers where
st is stored whenever they perform some operation on their registers. Moreover, it is again going to
simulate honest parties behavior, from round i until round i + s, but in a different way. Instead of
running the Sign algorithm for each non-corrupted honest party at every round, it makes a query to
the signing oracle S with the respective parameters. Then, it checks if the honest party succeeded in
making a signature in this round by comparing the number of steps needed to make this signature to
the number of steps available to the party at this round. Hence, A′2 has to do n queries to the signing
oracle per round. The adversary can also send up to θ messages per round to honest parties which
they have to verify, thus inducing an additional θ · tver overhead in the simulation. Note that A′2 has
to run the verification procedure only once per message.

Continuing with the description of A′2, as shown in Figure 4, it takes as input a key vk generated
from KeyGen(pp). We should somehow relate vk to the blocks the internal adversary is going to
produce. In our reduction, this is achieved by: (i) relating the block B that party P generates at
round i with vk through the input contribution function I(·), and (ii) by the fact that the seed of all
blocks that have B as an ancestor is related to H(B). In more detail, at round i, A′2 will use vk in
the neutral transaction included in I(·) for P ; denote by vk||x0 the output of I for P at this round. If

21

P is successful at this round and mines a block B = 〈s0, vk||x0, σ0〉 (this can be simulated using S),
then any block B′ = 〈s, x, σ〉 descending B will be related to it as follows:

s = MD(HΣ(B), ((GΣ(xi), σi))i)

= MD(HΣ(s,GΣ(vk||x0), σ0), ((GΣ(xi), σi))i)

def
= f(s,{xi,σi}i)(Σ, vk)

for some ((xi, σi))i due to Fact 1. Observe, that the seed of B′ is a function of Σ and vk, as required by
the MU-TCMA game. In fact the tampering function class we will consider is going to be exactly the
set of all these functions f . More formally, let C be the set of sequences ((xi, σi))i that correspond to
a valid chain in the way described before. Then, the tampering function class we will be considering
is defined as follows:

F = {fs,a}s∈{0,1}λ,a∈C
We show next, that F is computationally unpredictable as required by our assumption regarding the
signature scheme.

Claim 1. F is computationally unpredictable.

Proof. For the sake of contradiction, assume that there exists a PPT adversary A = (A1,A2) that
breaks the computational unpredictability property of F . This implies that

Pr
pp←PPub(1λ);
vk←KeyGen(pp);

Σ←Uλ;

(st, y)← A1(Σ, pp);

f ← A2(st, vk) :

f ∈ F ∧ f(Σ, vk) = y


is non-negligible. We are going to describe an adversary A′ that uses A to break the collision resistance
property of H. Given Σ, A′ first runs A1(Σ, pp) and obtains a prediction y and state st. Next, A′
randomly samples vk1, vk2 using KeyGen and runs A2 twice on inputs st, vk1 and st, vk2 respectively.
By an application of the splitting lemma we can show that with non-negligible probability A2 will
output (not necessarily different) functions f1, f2 such that y = f1(Σ, vk1) = f2(Σ, vk2). As noted
earlier, this corresponds to the hash of two chains, that due to the entropy of vk1, vk2 and the collision
resistance of G start with different honestly mined blocks. Using similar techniques as in Lemma 16,
we can show that A′ can find a collision in H using f1, f2, vk1, vk2 with non-negligible probability in
λ, which is a contradiction. a

Since A and Z cannot distinguish between the bitcoin execution and the one we described above, E
will occur with probability at least ε(h, t′As, ns), i.e. A will compute at least βt′As blocks starting from
round i and up to round i+ s that descend B. Note, that these blocks are also valid signatures, whose
keys are of the form f(Σ, vk), for (possibly different) f ’s. Moreover, the event that the adversary
outputs different fi, fj such that fi(Σ, vk) = fj(Σ, vk), corresponds to finding chains C1, C2 such that
H(C1) = H(C2). By Lemma 16, this happens with negligible probability. Hence, A′ will win the MU-
TCMA game with respect to tampering function class F with probability greater than ε(h, t′As, ns),
while being s · (tA + θ · tver + tbb · n) = s · t′A-bounded and having made at most ns queries to the
signing oracle, which is a contradiction to our initial assumption. A sketch of the reduction is given
at Figure 4.

Note that we can do exactly the same reduction without using the oracle to simulate the signing
procedure of the honest parties. Then, the total running time of the second stage of A′ is on the worst

22

A′
2

S

(1λ,Σ, pp)

((Bi))i∈[k]

vk

A′
1

A

Z

P1, ..,Pn

((fi(Σ, vk), xi, σi))i∈[k]

st

k,msg

σ, t

A

Z

P1, .., Pi, ..,Pn

vk||x0

Figure 4: The figure depicts a schematic of the reduction from the Bitcoin backbone to the MU-TCMA
game of Lemma 19.

case s · (tA + ntH)-bounded and hence the probability he can win is ε(h, s · (tA + ntH), 0). Hence, we
can derive the following bound on the total number of blocks produced by both honest and malicious
parties during a certain number of rounds.

Corollary 20. For any set of consecutive rounds S and for any party P , the probability that P mined
some honest block B at some round i ∈ S and ZB(S) + XB(S) ≥ β(tA + ntH) · |S| is less than
ε(h, |S| · (tA + ntH), 0).

Next, we prove lower bounds on the rate of successful and uniquely successful rounds. Our proof
crucially depends on the runtime independence property of the SoW scheme. More specifically, the
property implies that for some set of rounds the sum of the Bernoulli random variables of the event
that a round is uniquely successful, concentrate around the mean. Which in turn, implies that we can
lower-bound the rate of uniquely successful rounds with good probability.

Lemma 21. Let γ = (n− t) · α(h) · (1− βtH)n−1, f = (1− (1− α(h))n−t).For any set of consecutive
rounds S, with |S| ≥ λ

γδ2
, the following two events occur with negligible probability in λ:

The number of uniquely successful rounds in S is less or equal to (1− δ
4)γ · |S|;

the number of successful rounds in S is less or equal to (1− δ
4)f · |S|.

Proof. For some fixed execution we will denote by the array TS×n = (ti,j) ∈ N|S|×n the number of
steps each honest party takes running the Sign routine, for each round in the set S. It holds that at
most t elements of each column are zero, i.e. corrupted, and the rest are lower bounded by t′H and
upper bounded by tH. W.l.o.g let S = {1, . . . , s}.

Since this lemma talks about the steps taken by the Sign function, we are going to use the almost
independent runtimes property of the SoW scheme, and do all the analysis on the independent random
variable defined by this property. For the rest of this proof, unless explicitly stated, assume that the
StepsSign(pp, vk,m, h) random variable refers to its idealized independent version. We first buildup
some notation to help in our analysis. For pp ∈ PP , arrays (vki,j) ∈ Ks×n, (msg i,j) ∈ M s×n and for
h ∈ N let:

� random variable Pi,j = 1 if StepsSign(pp, vki,j ,msgi,j , h) ≤ ti,j , and 0 otherwise;

� random variable Yi = 1 if
∑n

j=1 Pi,j = 1 and 0 otherwise.

� random variable Xi = 1 if
∑n

j=1 Pi,j ≥ 1, and 0 otherwise.

� random variable Y =
∑

i∈[s] Yi, X =
∑

i∈[s]Xi.

23

It easily follows from the Successful property that Pr[Pi,j = 1] ≥ α(h). Moreover, it holds that
Pr[Pi,j = 1] ≤ βtH. Otherwise, the honest solving algorithm would produce signatures with a rate
bigger than β, which contradicts the MU-TCMA property. Next, we show that the random variables
we have defined are mutually independent.

Claim 2. The random variable families (Pi,j)i∈[s],j∈[n], (Yi)i∈[s], (Xi)i∈[s] are mutually independent.

Proof. First, notice that the runtime independence of the scheme implies independence of (Pi,j).
We will show this for two random variables and the extension to m variables will be obvious. Let
P1, P2 ∈ (Pi,j)i,j and x1, x2 ∈ {0, 1}, then

Pr[P1 =x1 ∧ P2 = x2] = Pr[StepsSign(pp, vk1,m1, h) ∈ S1 ∧ StepsSign(pp, vk2,m2, h) ∈ S2]

=
∑

(s1,s2)∈S1×S2

Pr[StepsSign(pp, vk1,m1, h) = s1 ∧ StepsSign(pp, vk2,m2, h) = s2]

=
∑

(s1,s2)∈S1×S2

Pr[StepsSign(pp, vk1,m1, h) = s1] · Pr[StepsSign(pp, vk2,m2, h) = s2]

=
∑
s1∈S1

Pr[StepsSign(pp, vk1,m1, h) = s1] ·
∑
s2∈S2

Pr[StepsSign(pp, vk2,m2, h) = s2]

= Pr[StepsSign(pp, vk1,m1, h) ∈ S1] · Pr[StepsSign(pp, vk2,m2, h) ∈ S2]

= Pr[P1 = x1] · Pr[P2 = x2]

where S1, S2 are either [0, t] or (t,∞) depending on x1, x2, and pp, vk1,m1, vk2,m2 are the parameters
of the random processes. We use the independence property on the third line.

Next, we prove the second point of the claim. Again, w.l.o.g we only show it for 2 random variables,
Y1, Y2 and the extension to m is obvious. Let y1, y2 ∈ {0, 1}, then

Pr[Y1 = y1 ∧ Y2 = y2] = Pr[
∑
j∈[n]

P1,j ∈ S1 ∧
∑
j∈[n]

P2,j ∈ S2]

=
∑

(s1,s2)∈S1×S2

Pr[
∑
j∈[n]

P1,j = s1 ∧
∑
j∈[n]

P2,j = s2]

=
∑

(s1,s2)∈S1×S2

Pr[
∑
j∈[n]

P1,j = s1] · Pr[
∑
j∈[n]

P2,j = s2]

=
∑
s1∈S1

Pr[
∑
j∈[n]

P1,j = s1] ·
∑
s2∈S2

Pr[
∑
j∈[n]

P2,j = s2]

= Pr[Y1 = y1] · Pr[Y2 = y2]

where S1, S2 are {1} or {0, 2, 3, . . .} depending on y1, y2. The same follows for (Xi)i∈[s]. a

Next, we lower bound the expected value of random variables (Yi)i and (Xi)i.

Claim 3. It holds that for any i ∈ S : E[Yi] ≥ γ

24

Proof of Claim.

E[Yi] = Pr[Yi = 1] = Pr[
∑
j∈[n]

Pi,j = 1]

=
∑
j∈[n]

Pr[Pi,j = 1] ·
∏

m∈[n]\{j}

Pr[Pi,m = 0]

≥
∑
j∈[n]

α(h, ti,j)
∏

m∈[n]\{j}

(1− Pr[Pi,m = 1])

≥(n− t) · α(h) · (1− βtH)n−1 = γ

The inequalities follow from the efficiency and MU-TCMA properties. Note, that in order for E[Yi]
to be big, α must be as big as possible, and βtH must be as small as possible. a

Claim 4. It holds that for any i ∈ S : E[Xi] ≥ f

Proof.

E[Xi] = Pr[Xi = 1] = Pr[
∑
j∈[n]

Pi,j ≥ 1]

=1− Pr[
∑
j∈[n]

Pi,j = 0]

=1−
∏
m∈[n]

Pr[Pi,m = 0]

≥1− (1− α(h))n−t = f

The inequality follows from the Successful property. a

By the linearity of expectation we have that E[Y (S)] ≥ γ|S| and E[X(S)] ≥ f |S|. Since all
variables in (Yi)i and (Xi)i are mutually independent and δ ∈ (0, 1), by an application of the Chernoff
Bound it holds that:

Pr[Y (S) ≤ (1− δ

4
)γ|S|] ≤ Pr[Y (S) ≤ (1− δ

4
)E[Y (S)]] ≤ e−Ω(δ2γ|S|)

Similarly, we can show that Pr[X(S) ≤ (1− δ
4)f |S|] ≤ e−Ω(δ2f |S|).

These results, with only negligible difference in probability, follow for the random variables in
the real execution due to the almost runtime independence property, and the fact that Y and X are
functions of the joint distribution referred by this property.

Next, we show that γ, the rate at which uniquely successful rounds occur, is lower bounded by
βt′A, which corresponds to the rate at which the adversary is producing blocks.

Lemma 22. γ ≥ (1 + δ)βt′A

Proof. It holds that:

γ =(n− t) · α(h) · (1− βtH)n−1 ≥ (n− t) · α(h) · (1− βtHn)

≥(n− t) · (1− δSoW) · βt′H · (1− δ) ≥
(1− δSoW)(1− δ)

(1− δSteps)
· βt′A· ≥ (1 + δ)βt′A

where we have first used Bernouli’s inequality, and then the three conditions from Assumption 2 (the

Computational Power Assumption). The last inequality follows from the fact that
δSteps−δSoW

2 ≥ δ.

25

We are now ready to define the set of typical executions for this setting. This strategy was also
followed in [31]. However, here we will need to adapt the definition due to the difficulties associated
with performing a reduction to the security of the SoW scheme.

Definition 23. [Typical execution] An execution is typical if and only if for any set S of consecutive
rounds with |S| ≥ 2λ

γδ2
, the following hold:

1. Y (S) > (1− δ
4)γ|S| and X(S) > (1− δ

4)f |S|;
2. for any block B mined by an honest party at the some round in S, ZB(S) < γ

1+δ · |S| and
ZB(S) +XB(S) < β(tA + ntH) · |S| ; and

3. no insertions and no copies occurred.

Theorem 24. An execution is typical with overwhelming probability in λ.

Proof. In order for an execution to not be typical, one of the three points of Definition 23 must not hold
with non-negligible probability for some big enough set of rounds. Point 3 is implied by Corollary 18.
For a specific set of rounds S, where |S| ≥ 2λ

γδ2
, point 1 is implied by Lemma 21 with overwhelming

probability in λ. Regarding point 2, by an application of Lemma 19 for t′A = γ
(1+δ)β , it follows that

ZB(S) < γ
1+δ · |S| with probability negl(β · t′A · |S|). Note, that this is w.l.o.g., due to Lemma 22, and

that βt′A · |S| ≥ β γ
(1+δ)β ·

2λ
γδ2

= Ω(λ). Moreover, using the fact that βtH ≥ α argued in Lemma 21

and due to the definition of γ, it holds that β(tA+ ntH) · 2λ
γδ2
≥ 2λ

δ = Ω(λ), which in turn implies that
Corollary 20 is sufficient to imply point 2 with overwhelming probability in λ. Hence, we can bound
the probability that an execution is not typical by applying the union bound on the negation of these
events over all sets of consecutive rounds of sufficiently large size, where the probability of each event
occurring is negligible in λ.

Next, taking advantage of the Computational Power Assumption (Assumption 2, we show that the
rate at which the adversary computes blocks in a typical execution, is bounded by the rate at which
uniquely successful rounds occur. With foresight, we note that this relation is going to be at the core
of our security proof.

Lemma 25. For any set S of at least 2λ
γδ2

rounds in a typical execution and for any block B mined by

an honest party during S, it holds that ZB(S) < (1− δ
4)Y (S).

Proof. It holds that:

ZB(S) <
1

1 + δ
γ|S| ≤ (1− δ

4
)Y (S)

where, the first inequality follows from the assumption that the execution is typical.

We can now use the machinery built in [31] to prove the common prefix, chain quality and chain
growth properties, and eventually Persistence and Liveness, with only minor changes. Using these
properties we prove that the modified Bitcoin backbone protocol implements a robust transaction
ledger.

Higher level properties. The notion of a typical execution is at the core of the proof of security of
Bitcoin in [31]. Here, we describe the minor changes one has to do after proving the typical execution
theorem with respect to the analysis of [31], in order to prove the security of the protocol in our model.
We only give brief proof sketches of lemmas or theorems from [31] that are exactly the same for our
own setting.

26

Lemma 26. (Chain-Growth Lemma). Suppose that at round r an honest party has a chain of length
`. Then, by round s ≥ r, every honest party has adopted a chain of length at least `+

∑s−1
i=r Xi.

Proof. The main idea of the proof of this lemma is that, after each successful round at least one honest
party will have received a chain that is at least one block longer than the chain it had, and all parties
pick only chains that are longer than the ones they had.

Theorem 27. (Chain-Growth). In a typical execution the chain-growth property holds with parameters
τ = (1− δ

4)f and s ≥ 2λ
γδ2

.

Proof. Let S be any set of at least s consecutive rounds. Then, since the execution is typical: X(S) ≥
(1− δ

4)f · |S| ≥ τ · |S|. By Lemma 26, each honest player’s chain will have grown by that amount of
blocks at the end of this round interval. Hence, the chain growth property follows.

Lemma 28. Let B be some honest block or the genesis block in a typical execution. Any sequence of
k ≥ 2λ

γδ consecutive blocks in some chain C, where the first block in the sequence directly descends B,
have been computed in at least k/δ rounds, starting from the round that B was computed.

Proof. First, note that due to the Computational Power Assumption it holds that β(tA + ntH) < δ.
For some k ≥ 2λ

γδ , assume there is a set of rounds S′, such that |S′| < k/δ, and more than k blocks that

descend block B have been computed. This implies that there is a set of rounds S, where |S| ≥ 2λ
γδ2

,

such that X(S)+ZB(S) ≥ k ≥ |S|δ > |S|β(tA+ntH). This contradicts the typicality of the execution,
hence the lemma follows.

Lemma 29. (Common-prefix Lemma). Assume a typical execution and consider two chains C1 and
C2 such that len(C2) ≥ len(C1). If C1 is adopted by an honest party at round r, and C2 is either adopted

by an honest party or diffused at round r, then Cdk1 ≤ C2 and Cdk2 ≤ C1, for k ≥ 2λ
γδ .

Proof. In Lemma 19, instead of bounding the number of blocks mined by the adversary in a set of
rounds, we bound the number of blocks mined by the adversary with the additional condition that
these blocks extend some specific honest block. If we also use the previous lemma, the proof is exactly
the same as in [31]. Note, that all adversarial blocks in the matching between uniquely successful
rounds and adversarial blocks are descendants of the last honest block in the common prefix of C1 and
C2.

Theorem 30. (Common-prefix). In a typical execution the common-prefix property holds with pa-
rameter k ≥ 2λ

γδ .

Proof. The main idea of the proof is that if there exists a deep enough fork between two chains, then
the previously proved lemma cannot hold. Hence, the theorem follows.

Theorem 31. (Chain-Quality). In a typical execution the chain-quality property holds with parameter
µ < 1− δ/4 and ` ≥ 2λ

γδ .

Proof. The main idea of the proof is the following: a large enough number of consecutive blocks will
have been mined in a set rounds that satisfies the properties of Definition 23. Hence, the number of
blocks that belong to the adversary will be upper bounded, and all other blocks will have been mined
by honest parties.

Finally, the Persistence and Liveness properties follow from the three basic properties, albeit with
different parameters than in [31].

27

Lemma 32. (Persistence). It holds that ΠPL with k = 2λ
γδ satisfies Persistence with overwhelming

probability in λ.

Proof. The main idea is that if persistence is violated, then the common-prefix property will also be
violated. Hence, if the execution is typical the lemma follows.

Lemma 33. (Liveness). It holds that ΠPL with u = 2k
(1− δ

4
)f

rounds and k = 2λ
γδ satisfies Liveness with

overwhelming probability in λ.

Proof. The main idea here is that after u rounds at least 2k successful rounds will have occurred.
Thus, by the chain growth lemma the chain of each honest party will have grown by 2k blocks, and by
the chain quality property at least one of these blocks that is deep enough in the chain, is honest.

Theorem 34. Assuming the existence of a collision-resistant hash function and a SoW scheme that
complies with Assumption 1 and 2, protocol ΠSoW

PL implements a robust public transaction ledger with
parameters u = 2k

(1− δ
4

)f
and k = 2λ

γδ except with negligible probability in λ.

As a “sanity check,” we show in in the full version of the paper that the Bitcoin SoW scheme we
outline there, is secure both in the random oracle and the Ftree model [47] according to our definitions;
moreover, according to the security parameters we obtain for the scheme, the security guarantees we
get from our black-box analysis of the Bitcoin backbone are similar to those proved in [31, 47].

4.3 Consensus from Signatures of Work

In this section we show how to achieve consensus (a.k.a. Byzantine agreement [48, 42]) under exactly
the same assumptions used for proving the security of the Bitcoin backbone protocol in Section 4.2.

As mentioned earlier, in [31] consensus is achieved under the Honest Majority Assumption by
using a proof-of-work construction in a non-black-box way, through a mining technique called “2-for-1
PoWs.” In more detail, the technique shows how miners can compute proofs of work for two different
PoW schemes at the cost of one, while at the same time ensuring that their resources cannot be used
in favor of one of the two schemes. However, the security proof for the resulting protocol crucially
relies on the fact that each of the bits of the strings output by the random oracle are independently
sampled, and thus goes again our stated goal of designing a SoW scheme that does not make such a
strong independence assumption.

Here we get rid of this requirement, by showing how blockchain-based consensus can be achieved
by only using the security properties we have defined, directly, and without the extra non-black-box
machinery used in [31]. This yields the first consensus protocol for honest majority reducible to a SoW
primitive in the permissionless setting. The protocol is based on the Bitcoin backbone protocol, and
formally specified by providing adequate definitions for the V,R, I functions presented in Section 4.2.

First, we define some additional notation and terminology that will be used in the remainder of
the section. We will use the terms “input” and “vote” interchangeably, referring to the parties’ input
to the consensus problem. We will use header(〈s, x||vote, σ〉) to denote the “compressed” version of
block 〈s, x||vote, σ〉9, equal to 〈s,G(x)||vote, σ〉. Note that, as defined, the header of any block is of a
fixed size. We also extend the definition of our hash function H as applied to headers of blocks. The
hash of the header of some block B will be equal to the hash of B, i.e., H((header(B)) = H(B) =
H(s,G(x)||vote, σ) (note that the header of B provides all the information needed to calculate the
hash of B).

9We augment the block content x with a vote bit. This does not change the results of the analysis of the previous
section.

28

We now present a high-level description of the protocol. The basic idea is that during block mining,
parties are going to include in their blocks not only their own votes, but also headers of other blocks
that they have seen and that are not part of their chain. Then, after a predetermined number of
rounds, the parties will count the votes “referenced” in a prefix of their chain, including the votes
found in the headers of the blocks referenced. In this way, they can take advantage of the robust
transaction ledger built in Section 4.2. The Persistence property implies that the honest parties will
all agree on which votes should be counted, while the Liveness property guarantees that the majority
of the counted votes come from honest parties.

The reader may wonder about the reason behind honest parties including in their blocks also
headers of other blocks that they have seen but that are not part of their chain. It’s because, as shown
in [31], the adversary is able to add more blocks in the main chain than his ratio of mining power
(e.g., using a selfish-mining attack). This does not hold if the honest parties are able to also count
off-chain blocks as our protocol does.

Algorithm 5 The content validation predicate. The input is the contents of the blocks of some chain.

1: function V(〈x1, . . . , xm〉)
2: D ← new AVL() . Create a new (empty) AVL tree.
3: D.add(H(BGen)) . Add the hash of the genesis block on the tree.
4: for i = 1, ...,m do
5: queue← references(xi) . Add all block references in a queue.
6: 〈r||height〉 ← queue.top()
7: if height 6= i then
8: return False . Check for the correct block “height”.
9: end if

10: while queue 6= ∅ do
11: 〈s,G(x)||vote, w〉 ← queue.top()
12: if ((D.exists(s)) ∧ Verify(s,G(x)||vote, h, w)) then
13: D.add(H(〈s,G(x)||vote, w〉)) . Add new entry on the tree.
14: queue.pop()
15: else
16: return False . If not, the chain is invalid.
17: end if
18: end while
19: end for
20: return True
21: end function

A main technical challenge is to be able to add the block references without making the honest
parties’ chains grow too large, and at the same time to ensure that the number of honest votes exceeds
the adversarial ones. To overcome this challenge, we modify the Sign algorithm so that it is run on
the header of the block, i.e., Sign(pp, s,G(x)||vote, h) and Verify(pp, s,G(x)||vote, h, σ), respectively.
This way we are able to verify the validity of a block as a SoW and determine the block’s vote by only
knowing its header. These are exactly the properties we need for the consensus application.

Moreover, we should be able to tell whether the referenced blocks are “fresh”; that is, the adversary
should not be able to reference blocks that it has precomputed and are not related to the genesis block.
We achieve this by requiring blockchain contents to have a special structure in order to be considered
valid by the content validation predicate V(·) (Algorithm 5). A chain will be valid when the referenced
blocks on every prefix of the chain form a tree that has the genesis block at its root. In order to check

29

this efficiently, we require that the block headers listed in each block are ordered, so that each entry
extends some block header found in previous entries of the same or parent blocks.

In more detail, to efficiently check for membership in the hash tree, in line 2 of Algorithm 5 we use
an AVL tree. (Any other data structure supporting efficient updates and search would also work.) In
line 5 the referenced blocks are extracted and pushed into a queue. We note that during this process
it is checked that: (i) the contents of the block have a correct format, i.e., a vote field and list of
block headers, (ii) each header in the list is a valid SoW and extends a chain starting from the genesis
block, and (iii) that the first reference includes a string r and the height of the block as required in
the security analysis of Section 4.2.3 and described in Table 1.

Content validation pre-
dicate V(·)

As defined in Algorithm 5.

Chain reading function R(·) R(·) outputs the majority of the votes found in the block headers of
the first M blocks of the selected chain.

Input contribution function
I(·)

The input function I(·) maintains state of which blocks have been
received, and outputs an input value x that contains (i) the headers
of all valid blocks that extend the genesis and are not mentioned in the
chain C that the party is currently extending, (ii) a neutral transaction
of the form KeyGen(pp)|||C|, and (iii) the party’s input (i.e., 0 or 1).

Table 3: The instantiation of functions I(·),V(·),R(·) for protocol ΠSoW
BA .

The algorithm runs for L rounds, after which it outputs the majority of the votes found in a prefix
of the selected chain, of a predetermined length M . We call the resulting protocol ΠSoW

BA (“BA” for
Byzantine agreement). A description of the consensus protocol (specifically, the V,R, I functions) is
presented in Table 3, and also recall the example in Figure 1. Note that all parties terminate the
protocol simultaneously.

Theorem 35. Assuming the existence of a collision-resistant hash function and a SoW scheme that
complies with Assumptions 1 and 2. Protocol ΠSoW

BA solves consensus in O(λ
γ3δ

) rounds with over-
whelming probability in λ.

Proof. We are going to show that protocol ΠSoW
BA , parameterized with k = 2λ

γδ , M = k + 8k
γ number of

blocks, and L = M+k
(1− δ

4
)γ

number of rounds solves consensus with overwhelming probability in λ. Our

analysis uses many of the intermediate lemmas established for the proof of Theorem 34.
We start, by proving that the Agreement property holds. First, note that our definition of V(·)

guarantees that if an honest party accepts a chain as valid, all other parties are also going to accept
it as valid, since the validation predicate only depends on the chain that is being validated. Assume
that an execution is δ-typical. Since L ≥ 2λ

γδ , after L rounds: (i) due to chain growth the chains of
all honest parties will have length at least M + k blocks, and (ii) due to the common prefix property
they will all agree on the first M blocks of their chains. Hence, all honest parties will decide on their
output values based on the “votes” mentioned in the same blocks, and thus they will all agree on the
same value.

Regarding Validity, we are going to show that the majority of the counted “votes,” i.e., from
blocks and block headers found in blocks B1, . . . , BM of the common prefix, have been mined by
honest parties. Due to the chain quality property at least one block from BM−k, . . . , BM is honest.
Assume that the last honest block in this chain has been diffused in the network at round r. Since
M − k ≥ 8k

γ ≥ k, by an application of Lemma 28 starting from the genesis block, it holds that r ≥ 8k
γδ .

Hence, at round r+ 2k
(1− δ

4
)γ

, by the chain growth property all parties will have chains of length at least

M +k, and by the common-prefix property all blocks up to the M -th position will be fixed for the rest

30

of the execution. Hence, the last adversarial block in B1, . . . , BM must have been computed before
round r + 2k

(1− δ
4

)γ
.

Let r′ = r + 2k
(1− δ

4
)γ

. It remains to show that for S1 = {1, . . . , r} and S2 = {1, . . . , r′} it holds that

Z(S2) < X(S1):

Z(S2) <
1

1 + δ
γr′ ≤ (1− δ

4
)(1− δ

4
)γr′ ≤ (1− δ

4
)γr ≤ X(S1).

The first and the last inequalities hold due to the fact that the execution is typical. The fourth
inequality follows by the size of r. The theorem follows since the majority of the referenced blocks in
the chain agreed upon, have been mined by honest parties.

Concluding, notice that the total size of any chain is bounded by the total number of blocks mined,
since each block’s header is mentioned at most once in a single chain. Hence, in s rounds of a typical
execution a chain has size at most O(s · λ) bits.

5 SoW Constructions from Idealized Assumptions

In this section, and as a sanity check, we outline a SoW scheme that is secure both in the random
oracle and the Ftree model [47]. Moreover, according to the security parameters we obtain for the
scheme, the security guarantees we get from our black-box analysis of the Bitcoin backbone are similar
to those proved in [31, 47].

SoW in the RO model. Our first step is to show that the SoW scheme used in the Bitcoin protocol
(call it BSOW) is secure in the random oracle model according to our definitions. In a nutshell,
Bitcoin’s Sign algorithm tries to find a block header with a small hash. The main components of
the header are as follows: (i) the hash of the header of the previous block, (ii) the hash of the root
of the Merkle tree of the transactions that are going to be added to Bitcoin’s ledger, including the
randomly created coinbase transaction, and (iii) a counter. The algorithm works by first fetching
available transactions from the network, then computing a random public key that will be used for the
coinbase transaction, and then iteratively incrementing the counter and calculating the hash of the
header of the block until a small value is found. Casting this in our terms, the key is the hash of the
previous block, which by itself depends on Bitcoin’s genesis block, while the transactions received by
the network as well as the coinbase transaction constitute the message. It is important to note that
it is not possible to consider the key to be the coinbase transaction, as there is no guarantee it has
any entropy when produced by an adversarial signer. To abstract the randomization of the signing
procedure, which in the actual implementation is captured by the coinbase transaction, we hash msg
together with a randomly generated string. This should be part of the signature in our SoW syntax
since it is produced by the signing process and is necessary for verification. Similarly, the counter is
also part of the signature produced by the signing process. BSOW, a simplified version of the scheme
described above with the transaction semantics omitted for simplicity, is presented in Figure 6.

Remark 4. In the Bitcoin implementation, the hash of the root of the Merkle tree of the transactions is
not “salted.” This means that if we consider the adversary to be non-uniform, she could get collisions
for free in her advice string and use them to compute two SoWs at the cost of one. This would
be problematic for our MU-TCMA security game. Thus, in order to strengthen the security of the
scheme, we choose to also include the key in the hash of the message.

We will assume that H is an idealized hash function, i.e., our analysis is in the random oracle, and
Gk is sampled from a collision resistant hash function family.

Theorem 36. If G is a collision resistant hash function family, and H is modeled as a Random
Oracle, then for any σ ∈ (0, 1), Algorithm 6 is

31

Algorithm 6 Bitcoin’s SoW implementation based on the ROM. H is modeled as a RO, while Gk
is sampled from a collision resistant hash function family G.

1: function PPub(1λ)
2: k ← K(λ) . Sample the key of hash function G.
3: return (1λ, k)
4: end function
5:

6: function KeyGen(pp)
7: vk ← Uλ
8: return vk
9: end function

10:

11: function Sign(pp = (1λ, k), vk,msg , h)
12: while true do
13: σ1 ← Uλ
14: dig ← Gk(vk, σ1,msg)
15: for σ2 = 0λ|2 to 1λ|2 do
16: if (H(vk, dig, σ2) < 2λ − h) then
17: return (σ1, σ2)
18: end if
19: end for
20: end while
21: end function
22:

23: function Verify(pp = (1λ, k), vk,msg, h, σ = (σ1, σ2))
24: return (H(vk,Gk(vk, σ1,msg), σ2) < 2λ − h)
25: end function

correct;

O(λ)-verifiable;

(tsign, 1−
(
h
2λ

)tsign
)-successful, for h ∈ [2λ − 1];

run-time independent;

((1 + σ)(1 − h
2λ

), e−
β(h)tσ2

6 + negl(λ))-MU-TCMA secure w.r.t. any computationally unpredictable

function family F , for h ∈ [2λ − 1].

Proof. Let ph = 1− h
2λ

be the probability that a query to the random oracle returns a value less than

2λ−h, and let qH be the number of queries the adversary makes to the RO. We consider each property
in turn.

Correct. By the collision resistance of G, it follows that |{G(vk, σ1,msg)|σ1 ∈ {0, 1}λ}| is greater than
λ with overwhelming probability in λ. Hence, the probability that the Sign algorithm cannot find any
signature for the given parameters is upper bounded by the probability that λ · 2λ different queries to
the RO return a value greater or equal than 2λ − h. This is upper bounded by:

(
h

2λ
)λ2λ ≤ (1− 1

2λ
)λ2λ ≤ e−λ

The correctness property follows.

32

MU-TCMA. Let ` = β(h)t. W.l.o.g., assume ` ≥ 1, since if ` < 1 there exists a trivial adversary that
wins with probability 1. First, we show that for any adversary A there exists an adversary A′ that
succeeds in winning ExpMU-TCMA

A′,F (Figure 2) with almost the same time complexity and probability
that A wins, without using the signing oracle S. A′ is going to run A internally, and all calls made by
A to S are going to be simulated, i.e., assuming A queries S with values (k,msg), A′ will respond with
some number t′ sampled from the time distribution of S (t′ can be efficiently sampled from a geometric
distribution, since queries are i.i.d Bernoulli trials) and some random signature σ = (σ1, σ2), where
σ2 < t′. A′ is also going to store this query in some efficient data structure that allows for search
in logarithmic time. Any calls made by the adversary afterwards to the RO that are related to
(k,msg) will be answered accordingly; if A2 queries the RO with some string k||G(k, σ1,msg)||σ′2,
where σ′2 = σ2, then A′ will respond with the same value he responded on the initial query to S,
otherwise if σ′2 < σ2, he responds by 2λ− h+ (y mod h), where y is the output of the real RO in this
query. Note, that since σ1 is chosen at random and RO is unpredictable, the probability that A has
queried the RO with a string of this format before querying S is negligible. Hence, the view of A in
both experiments is computationally indistinguishable, and he will output ` valid SoWs with respect
to the simulated view with the same probability that he wins in the real experiment.

We next have to show that A′ can use the output of A to win in the real experiment. The only
case this will not happen, is if the output of A contains a SoW related to the queries asked to (the
simulated) oracle S, and thus it does not correspond to a winning output for A′, i.e., A′ has set
the value of this SoW to be small enough, while this does not necessarily hold for the actual RO.
This implies, that there exists a SoW on the output of A of the form 〈f,msg , (σ1, σ2)〉 and a query
〈(k,msg ′), (σ′1, σ

′
2)〉 on S, such that f(Σ, vk)||G(f(Σ, vk), σ1,msg)||σ2 = k||G(k, σ′1,msg ′)||σ′2. In order

for this to be a winning output for A, it must not correspond to the asked query, and thus it should
hold that either msg 6= msg ′ or σ1 6= σ′1. This implies that the adversary has found a collision in
G, which only happens with negligible probability in λ. Hence, A′ will win ExpMU-TCMA

A′,F with the
same probability (minus some negligible term in λ) as A. Moreover, the overhead incurred to A′’s
running time will be only logarithmic on qS i.e. A′ can simulate the t steps taken by A2 in time
t′ = t · (1 + log(qS)); he has to maintain a heap of the queries made to S and search it each time the
RO is queried. Note, that A′ queries the real RO at most t times.

Let A` be the event where A′ asks t queries the RO after receiving vk, and receives at least `
responses that have value less than 2λ − h. Let random variable X be equal to the number of these
responses that are less than 2λ − h. Since the queries are i.i.d. Bernoulli random variables with
probability of success ph, we can use the Chernoff bound to bound the probability of A`. For any
σ ∈ (0, 1), since ` = βt ≥ (1 + σ)pht, it follows that:

Pr[A`] = Pr[X ≥ `] ≤Pr[X ≥ (1 + σ)pht]

= Pr[X ≥ (1 + σ)E[X]] ≤ e−
E[X]σ2

3 ≤ e−
(1+σ)phtσ

2

6 .

Let B be the event where A′2 outputs f,m, σ such that f ∈ F and there exists a query made to the
random oracle by A′1 of the form f(Σ, vk)||x||σ, for some x ∈ {0, 1}∗. We will show that B happens
with only negligible probability in λ. For the sake of contradiction, assume that B happens with
non-negligible probability. Then, we can use A′ to break the computational unpredictability of F . Let
A′′ = (A′′1,A′′2) be the attacker in the computational unpredictability game. A′′1 on input (1λ,Σ, pp)
will first run A′1(1λ,Σ, pp). It will output st′ = st||y, where st is the output of A1, and y the prefix of a
random query that A′1 made to the RO with length equal to the size of a verification key. Then, A′′2 on
input (st′, vk) will run A′2(1λ, vk, st), until it halts and possibly outputs a number of SoWs. Since A′
is a PPT algorithm, the number of queries made to the RO is at most polynomial in number. Hence,
with non-negligible probability B will occur and y will be the prefix of the RO query that matches the

33

key of the SoW output by A′. This violates the computational unpredictability property, and hence
B only occurs with negligible probability.

Let C be the event where the adversary wins and outputs two distinct SoWs that correspond to the
same query to the RO. This implies that the adversary can find a collision on G. In time L = t′+ tpre
polynomial in λ, the probability that A′ finds a collision is

(
L
2

)
2−λ+1 = e−Ω(λ) = negl(λ).

Finally, note that if A`, B,C do not occur, it is implied that A′ will lose in the MU-TCMA
experiment. Thus:

Pr[ExpMU-TCMA
A,F (1λ, h, `) = 1] = Pr[ExpMU-TCMA

A′,F (1λ, h, `) = 1]

≤ Pr[A` ∨B ∨ C]

≤ Pr[A`] + Pr[B] + Pr[C]

≤ Pr[A`] + negl(λ)

≤ e−
(1+σ)phtσ

2

6 + negl(λ)

where we have used the union bound for the third inequality.

Verifiability. Assuming H and G take constant time, verification takes time cverλ, for some small
constant cver which can be easily computed by careful inspection of the verification protocol.

Successful. Let E be the event that in an execution of the Sign function no collisions occur. By the
collision resistance property of H and G, it holds that Pr[¬E] ≤ negl(λ). For any t ∈ N, pp ∈ PP ,
vk ∈ K, msg ∈M and h ∈ N it follows that:

Pr
[
StepsSign(pp, vk,msg , h) < t

]
≥ 1− (1− ph)t − negl(λ)

Independence. Let {Yi}i∈I be the same as {Xi}i∈I = {StepsSign(pp, vki,mi, hi)}i∈I with the only
difference that the random oracle is replaced with a random function, i.e., every time Sign is called
and the oracle H is queried it generates a random output. Obviously the random variables in {Yi}i∈I
are mutually independent, since their output only depends on their own local coins.

Regarding the second property, let E be the event that all σ1 sampled are different among all the
invocations of Sign, and that no collisions occurs in G. Note, for polynomially big I, this event happens
with overwhelming probability in λ. Moreover, conditioned E, it holds that Pr[{Xi}i∈I = z|E] is equal
to Pr[{Yi}i∈I = z|E], for any z, since the random oracle behaves exactly as the random function we
have replaced it with. Therefore, if p(·) is a polynomial that upper bounds the number of steps of
Sign, it holds that for any z ∈ [p(λ)]|I|

Pr[{Xi}i∈I = z]− Pr[{Yi}i∈I = z] =

= Pr[{Xi}i∈I = z|E] Pr[E] + Pr[{Xi}i∈I = z|¬E] Pr[¬E]

− Pr[{Yi}i∈I = z|E] Pr[E]− Pr[{Yi}i∈I = z|¬E] Pr[¬E]

=(Pr[{Xi}i∈I = z|¬E]− Pr[{Yi}i∈I = z|¬E]) Pr[¬E]

Hence, it follows that the two distributions are negl(λ)-close:

2∆[{Xi}i∈I ,{Yi}i∈I] =
∑
z

|Pr[{Xi}i∈I = z]− Pr[{Yi}i∈I = z]|

≤
∑
z

|(Pr[{Xi}i∈I = z|¬E]− Pr[{Yi}i∈I = z|¬E]) Pr[¬E]|

≤Pr[¬E]
∑
z

|(Pr[{Xi}i∈I = z|¬E]− Pr[{Yi}i∈I = z|¬E])|

≤negl(λ)(
∑
z

Pr[{Xi}i∈I = z|¬E] +
∑
z

Pr[{Yi}i∈I = z|¬E]) ≤ negl(λ)

34

The last inequality follows from the fact that each of the sums should be less or equal to 1, as the
events described are disjoint and their union covers the entire sample space.

SoW in the Ftree model. Next, we argue that we can use the Fptree functionality from [47] to realize
a secure SoW scheme.

We start by reciting the Fptree description. Fptree is parametrized by some hardness parameter p and
keeps track of records on a tree. Initially, the tree contains⊥. On invocation of extend((m1, . . . ,m`−1),m),
Fptree checks if (m1, . . . ,m`−1) is a valid path on the tree, and if yes with probability p extends this
path by m and returns 1. Otherwise, returns 0. On invocation of ver(m1, . . . ,m`), Fptree returns 1 if
m1, . . . ,m` is a valid path, and 0 otherwise. For simplicity, here we assume that extend and ver take
one computational step each.

The SoW protocol is constructed in a similar way as in the ROM; we only have to replace the

“H(. . .) < 2λ − h” checks in Sign and Verify, with invocations to extend and ver on F (2λ−h)/2λ

tree ,
respectively (see Algorithm 7). We will consider a slightly stronger version of Ftree, where the hardness
parameter p is a parameter of the function calls. That is because SoW schemes allow for different
hardness levels, while the original Ftree functionality has a fixed hardness level. We note, that the
results of [47] can be easily proved for the strengthened functionality.

Algorithm 7 Bitcoin’s SoW implementation based on functionality Ftree. H is modeled as a RO,
while Gk is sampled from a collision resistant hash function family G. We omit functions PPub,KeyGen
which are exactly the same as in Algorithm 6, while differences in Sign, Verify are depicted in red.

1: function Sign(pp = (1λ, k), vk,msg , h)
2: while true do
3: σ1 ← Uλ
4: dig ← Gk(vk, σ1,msg)
5: for σ2 = 0λ|2 to 1λ|2 do

6: if (F (2λ−h)/2λ

tree .extend(⊥, vk||dig||σ2) = 1) then
7: return (σ1, σ2)
8: end if
9: end for

10: end while
11: end function
12:

13: function Verify(pp = (1λ, k), vk,msg, h, σ = (σ1, σ2))

14: return F (2λ−h)/2λ

tree .ver(⊥, vk||G(vk, σ1,msg)||σ2)
15: end function

The proof that Algorithm 7 implements a secure SoW scheme follows the same arguments as the
proof of Theorem 36. We omit the details for the full version of the paper.

Theorem 37. If G is a collision resistant hash function family, and we are in the Ftree-hybrid world,
then for any σ ∈ (0, 1), Algorithm 7 is

correct;

O(λ)-verifiable;

(tsign, 1−
(
h
2λ

)tsign
)-successful, for h ∈ [2λ − 1];

run-time independent;

35

((1 + σ)(1 − h
2λ

), e−
β(h)tσ2

6 + negl(λ))-MU-TCMA secure w.r.t. any computationally unpredictable

function family F , for h ∈ [2λ − 1].

Comparison with the results of [31]. Since parameter ε of the MU-TCMA property of BSOW

is negligible in β(h) · t and the scheme is runtime independent, we can use Theorem 36 and obtain
meaningful bounds for the γ, f quantities introduced in the previous subsection. These quantities are
important since γ determines how powerful the adversary our system can handle can be, and f is
related to how fast blocks are produced. Replacing with the parameters proved for BPOW, for σ � 1,
γ and f are equal to:

γ = (n− t) · (1−
(
h

2λ

)t′H
) ·
(
h

2λ

)(n−1)tH

, f = 1−
(
h

2λ

)t′H(n−t)

Both of these quantities appear in [31] and are well approximated by our results. Hence, ΠBSoW
PL imple-

ments a robust transaction ledger with overwhelming probability in λ and with bounds comparable
to those in [31], and achieves consensus when the honest parties have the honest majority of the
computational power.

References

[1] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple construction of almost k-wise independent random
variables. Random Struct. Algorithms, 3(3):289–304, 1992.

[2] J. Alwen and B. Tackmann. Moderately hard functions: Definition, instantiations, and applications. In
Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA, November
12-15, 2017, Proceedings, Part I, pages 493–526, 2017.

[3] M. Andrychowicz and S. Dziembowski. Pow-based distributed cryptography with no trusted setup. In
R. Gennaro and M. Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture
Notes in Computer Science, pages 379–399. Springer, 2015.

[4] A. Back. Hashcash-amortizable publicly auditable cost functions. Early draft of paper, 2000.

[5] A. Back. Hashcash–a denial of service counter-measure, 2002.

[6] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra, J. Timón, and
P. Wuille. Enabling blockchain innovations with pegged sidechains. URL: http://www. opensciencereview.
com/papers/123/enablingblockchain-innovations-with-pegged-sidechains, 2014.

[7] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger: A composable
treatment. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages 324–356, 2017.

[8] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Proofs of work from worst-case assumptions. In Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part I, pages 789–819, 2018.

[9] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 394–403, 1997.

[10] M. Bellare, J. Jaeger, and J. Len. Better than advertised: Improved collision-resistance guarantees for
md-based hash functions. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, pages 891–906, New York, NY, USA, 2017. ACM.

[11] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In CCS ’93, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax,
Virginia, USA, November 3-5, 1993, pages 62–73, 1993.

36

[12] M. Bellare and P. Rogaway. The exact security of digital signatures - how to sign with RSA and rabin. In
Advances in Cryptology - EUROCRYPT ’96, International Conference on the Theory and Application of
Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, pages 399–416, 1996.

[13] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended
abstract). In R. L. Probert, N. A. Lynch, and N. Santoro, editors, Proceedings of the Second Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Montreal, Quebec, Canada, August
17-19, 1983, pages 27–30. ACM, 1983.

[14] I. Bentov, P. Hub’avcek, T. Moran, and A. Nadler. Tortoise and hares consensus: the meshcash framework
for incentive-compatible, scalable cryptocurrencies. IACR Cryptology ePrint Archive, 2017:300, 2017.

[15] D. J. Bernstein and T. Lange. Non-uniform cracks in the concrete: The power of free precomputation. In
Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and Application
of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II, pages
321–340, 2013.

[16] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters. Time-lock puzzles
from randomized encodings. In M. Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 345–356. ACM, 2016.

[17] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part I, pages 757–788, 2018.

[18] M. Borderding. Levels of authentication in distributed agreement. In Ö. Babaoglu and K. Marzullo,
editors, Distributed Algorithms, 10th International Workshop, WDAG ’96, Bologna, Italy, October 9-11,
1996, Proceedings, volume 1151 of Lecture Notes in Computer Science, pages 40–55. Springer, 1996.

[19] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–202,
2000.

[20] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J. ACM, 51(4):557–594,
July 2004.

[21] I. Damg̊ard. A design principle for hash functions. In Advances in Cryptology - CRYPTO ’89, 9th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
pages 416–427, 1989.

[22] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM J. Comput.,
12(4):656–666, 1983.

[23] J. R. Douceur. The sybil attack. In P. Druschel, M. F. Kaashoek, and A. I. T. Rowstron, editors, Peer-
to-Peer Systems, First International Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002,
Revised Papers, volume 2429 of Lecture Notes in Computer Science, pages 251–260. Springer, 2002.

[24] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence of partial synchrony. J. ACM,
35(2):288–323, 1988.

[25] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Proceedings of the 12th Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO ’92, pages 139–147, London,
UK, UK, 1993. Springer-Verlag.

[26] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzantine agreement. SIAM
J. Comput., 26(4):873–933, 1997.

[27] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty process.
J. ACM, 32(2):374–382, 1985.

[28] M. Fitzi. Generalized communication and security models in Byzantine agreement. PhD thesis, ETH Zurich,
Zürich, Switzerland, 2003.

[29] J. A. Garay and A. Kiayias. SoK: A consensus taxonomy in the blockchain era. IACR Cryptology ePrint
Archive, 2018:754, 2018.

37

[30] J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol: Analysis and Applications.
IACR Cryptology ePrint Archive, 2014:765, 2014.

[31] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications. In
Advances in Cryptology - EUROCRYPT 2015, pages 281–310, 2015.

[32] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol with chains of variable difficulty.
In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages 291–323, 2017.

[33] J. A. Garay, A. Kiayias, N. Leonardos, and G. Panagiotakos. Bootstrapping the blockchain, with applica-
tions to consensus and fast PKI setup. In Public-Key Cryptography - PKC 2018 - 21st IACR International
Conference on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29,
2018, Proceedings, Part II, pages 465–495, 2018.

[34] J. A. Garay, A. Kiayias, and G. Panagiotakos. Consensus from signatures of work. Cryptology ePrint
Archive, Report 2017/775, 2017. https://eprint.iacr.org/2017/775.

[35] J. A. Garay, A. Kiayias, and G. Panagiotakos. Iterated search problems and blockchain security under
falsifiable assumptions. Cryptology ePrint Archive, Report 2019/315, 2019. https://eprint.iacr.org/

2019/315.

[36] J. A. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and composability of cryp-
tographic protocols. Journal of cryptology, 24(4):615–658, 2011.

[37] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In Proceedings of the IFIP
TC6/TC11 Joint Working Conference on Secure Information Networks: Communications and Multimedia
Security, CMS ’99, pages 258–272, Deventer, The Netherlands, The Netherlands, 1999. Kluwer, B.V.

[38] A. Juels and J. G. Brainard. Client puzzles: A cryptographic countermeasure against connection depletion
attacks. In Proceedings of the Network and Distributed System Security Symposium, NDSS 1999, San
Diego, California, USA. The Internet Society, 1999.

[39] J. Katz, A. Miller, and E. Shi. Pseudonymous secure computation from time-lock puzzles. IACR Cryptology
ePrint Archive, 2014:857, 2014.

[40] A. Kiayias and G. Panagiotakos. Speed-security tradeoffs in blockchain protocols. Technical report, IACR:
Cryptology ePrint Archive, 2015.

[41] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In
Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, pages 104–113, 1996.

[42] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, 1982.

[43] Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain protocols. In Financial Cryptography
and Data Security, 2015, 2015.

[44] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf, 2008.

[45] M. Okun. Agreement among unacquainted byzantine generals. In P. Fraigniaud, editor, DISC, volume
3724 of Lecture Notes in Computer Science, pages 499–500. Springer, 2005.

[46] M. Okun. Distributed computing among unacquainted processors in the presence of byzantine distributed
computing among unacquainted processors in the presence of byzantine failures. Ph.D. Thesis Hebrew
University of Jerusalem, 2005.

[47] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. In
J. Coron and J. B. Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in Computer Science, pages 643–673,
2017.

38

https://eprint.iacr.org/2017/775
https://eprint.iacr.org/2019/315
https://eprint.iacr.org/2019/315

[48] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, 1980.

[49] B. Pfitzmann and M. Waidner. Unconditional byzantine agreement for any number of faulty processors. In
STACS 92, 9th Annual Symposium on Theoretical Aspects of Computer Science, Cachan, France, February
13-15, 1992, Proceedings, pages 339–350, 1992.

[50] A. Poelstra. On stake and consensus (2015). URL https://download. wpsoftware. net/bitcoin/pos. pdf.

[51] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, Dec. 1990.

[52] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. SPECTRE: A fast and scalable cryptocurrency protocol.
IACR Cryptology ePrint Archive, 2016:1159, 2016.

[53] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin. In Financial Cryptography
and Data Security - 19th International Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015,
Revised Selected Papers, pages 507–527, 2015.

[54] D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd, and J. M. G. Nieto. Stronger difficulty notions for
client puzzles and denial-of-service-resistant protocols. In Topics in Cryptology - CT-RSA 2011 - The
Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011.
Proceedings, pages 284–301, 2011.

39

	Introduction
	Preliminaries
	Signatures of Work
	Applications
	The Permissionless Model, Revisited
	Public Transaction Ledger from Signatures of Work
	The Bitcoin backbone protocol.
	Security properties of the blockchain.
	Security proof.

	Consensus from Signatures of Work

	SoW Constructions from Idealized Assumptions

