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Abstract. Group Homomorphic Encryption (GHE), formally defined
by Armknecht, Katzenbeisser and Peter, is a public-key encryption prim-
itive where the decryption algorithm is a group homomorphism. Hence
it supports homomorphic evaluation of a single algebraic operation such
as modular addition or modular multiplication. Most classical homomor-
phic encryption schemes such as as Goldwasser-Micali and Paillier are
instances of GHE. In this work, we extend GHE to the attribute-based
setting. We introduce and formally define the notion of Attribute-Based
GHE (ABGHE) and explore its properties. We then examine the al-
gebraic structure on attributes induced by the group operation in an
ABGHE. This algebraic stricture is a bounded semilattice. We con-
sider some possible semilattices and how they can be realized by an
ABGHE supporting inner product predicates. We then examine exist-
ing schemes from the literature and show that they meet our defini-
tion of ABGHE for either an additive or multiplicative homomorphism.
Some of these schemes are in fact Identity-Based Group Homomorphic
Encryption (IBGHE) schemes i.e. instances of ABGHE whose class of
access policies are point functions. We then present a possibility result
for IBGHE from indistinguishability obfuscation for any group (S, ·) for
which a (public-key) GHE scheme exists.

1 Introduction

The primary subclasses of homomorphic encryption are group homomorphic
encryption (GHE) and fully homomorphic encryption (FHE). In a nutshell, a
public key encryption scheme is said to be group homomorphic if its decryption
algorithm is a group homomorphism [1]. Although GHE only permits evaluation
of a single algebraic operation, it is a very powerful primitive for the following
reasons:

1. It is used as a building block in protocols for Private Information Retrieval
[2], Electronic Voting [3–7], Oblivious Polynomial Evaluation [8], Private
Outsourced Computation [9] and the Millionaire’s Problem [10].

2. FHE is currently impractical for many applications, and even if it were to
become more practical, it may add unnecessary overhead, especially in ap-
plications that only require a single algebraic operation.



GHE is the “classical” flavor of homomorphic encryption. It allows unbounded
applications of the group operation. Goldwasser and Micali [11] constructed the
first GHE scheme. The Goldwasser-Micali (GM) cryptosystem supports addition
modulo 2 i.e. the XOR operation. Other additively-homomorphic GHE schemes
from the literature include Benaloh [3], Naccache-Stern [12], Okamoto-Uchiyama
[13], Paillier [14] and Damg̊ard-Jurik [7]. Other instances of GHE include [15–17].

In this paper we consider GHE in the attribute-based setting. Let us first
review what Attribute Based Encryption (ABE) is. Goyal et al. [18] formulated
two complimentary flavors of ABE: Key-Policy ABE (KP-ABE) and Ciphertext-
Policy ABE (CP-ABE). In KP-ABE, a user Alice encrypts her message with a
descriptive tag or attribute∗ while a Trusted Authority (TA) issues secret keys for
access policies that permit users to decrypt ciphertexts with certain attributes.
In CP-ABE, on the other hand, an encryptor specifies an access policy when
encrypting her message, and the TA issues secret keys to parties that correspond
to attributes. So the situation is the reverse of KP-ABE.

Let us consider KP-ABE in slightly more detail. When encrypting a message
m, Alice chooses a descriptive attribute a from some set A. The TA issues secret
keys for access policies to users depending on their credentials. To be more
precise, a policy f : A → {0, 1} can be viewed as a predicate whose domain is
A. Hence, if a user Bob is given a secret key for a policy f , he can decrypt
messages with attributes that satisfy f . More precisely, let ca be a ciphertext
that encrypts the message m with some attribute a ∈ A. Then Bob can recover
the message m if and only if f(a) = 1.

Note that both forms of ABE are a generalization of Identity-Based Encryp-
tion (IBE) [19] in which the attributes are user identities (such as an email ad-
dress) and there is a one-to-one correspondence between policies and attributes;
that is, for each attribute a there is a unique policy fa with fa(x) = 1 if and
only if x = a.

Why consider attribute-based GHE? One of the motivations for studying
attribute-based GHE stems from the fact that it can be employed in several
applications. Furthermore several applications of public-key GHE can be adapted
to provide more flexible cryptographic access control by employing attribute-
based GHE. We now take a look at some possible applications:

Private Information Retrieval Private Information Retrieval (PIR) [20] ad-
dresses the following problem. Suppose there is a database D with n items
x1, . . . , xn. Suppose a user wishes to query D to obtain item xi in such a way
that i ∈ [n] remains private from D. A trivial solution is for D to send back
the whole database, but this requires linear communication (in n). Hence, PIR
is the problem of privately querying an item from a database with sublinear
communication. PIR has been realized from GHE [2].

Now consider the case where the sender and receiver are different parties.
Furthermore, the intended receiver may not be a known independent party with

∗Some authors refer to what we call an attribute as a “set of attributes”. The latter
notion is modelled by viewing an attribute as a set (of “subattributes”).



a public key, but rather one or more parties in an attribute-based infrastructure
whose policies fulfill an attribute chosen by the sender that describes the data.
These requirements can be satisfied by using the PIR protocol from [2] (which
uses GHE) with an attribute-based GHE scheme instead of a public-key GHE
scheme.

Data Aggregation in Wireless Sensor Networks There have been nu-
merous approaches in recent years to apply IBE to Wireless Sensor Networks
(WSNs). Notable contributions in this regard include [21–24]. One prevalent
paradigm of a WSN involves a source node that collects sensor measurements in
some environment, and forwards these measurements along an established route
to a base station. Security becomes an issue in a hostile environment where ma-
licious nodes may intercept the transmitted data. Since the autonomous sensor
nodes are heavily resource-constrained, it is imperative to conserve energy where
possible to prolong the lifetime and effectiveness of the network.

IBE is a natural choice for this application because nodes deployed in the
field neither have to store sensitive secret keys (for symmetric encryption) nor
expensively fetch, store and validate public keys for particular base stations
(traditional PKI). Instead, since all nodes are identified with a unique network
address, it is possible to establish well-defined identity strings. In addition, all
nodes can be pre-loaded with the public parameters of the IBE scheme prior to
deployment. Accordingly, in order for a node to transmit to a particular base
station B with address aB , it can derive the public key for B from aB and the
public parameters.

The most costly activity for nodes in a WSN is radio usage. Thus, it is
essential to minimize the number of transmissions necessary to accomplish the
network’s goals. As such, a widely-used optimization strategy is aggregation of
data along the path from the source to the sink (the base station). There may
be a multitude of sources transmitting independent data along a particular path
towards a sink. An intermediate node on the path acting as a relay, or router,
may coalesce a collection of data it receives from multiple sources by performing
some applicable aggregation function. An example would be to take the sum
of the incoming measurements, and forward this sum to the base station. But
how can this be accomplished if the data emerging from the sources is encrypted
with the identity (i.e. network address in this case) of the ultimate destination,
namely that of a base station? A solution to this problem is identity-based GHE
with an additive homomorphism.

While identity-based GHE is advantageous to WSNs, even greater flexibility
is afforded in terms of more fine-grained access control if attribute-based GHE
is employed. Consider the following scenario. A WSN is deployed in an area in
which sensors measure moisture and temperature. The area is divided up into
N regions, labeled R1, . . . , RN . Each of these regions contains one or more base
stations. Suppose it is sufficient for the base stations to determine the aggregate
moisture and/or aggregate temperature measured in their region. Furthermore,
we assume sensor nodes have the capability (such as via GPS) to determine



which region they are in. To cut down on communication, aggregator nodes
are employed to aggregate reported measurements that are sent by the sensor
nodes as they are transmitted en-route to a base station. To minimize data
exposure in the presence of adversarial nodes, an attribute-based GHE scheme
is deployed within the WSN. The attribute-based GHE scheme supports an
additive homomorphism to satisfy the needs of aggregation as described. Every
node, prior to its deployment, is pre-loaded with the public parameters of the
scheme. The WSN administrator operates the TA offline, unconnected to the
WSN.

A plaintext in the system is an integer from the setM , {0, . . . ,M}; sensor
readings are assumed to take on values in the range 0, . . . ,M for some M . An at-
tribute in the system is of the form (type, region) where type ∈ {MOISTURE,TEMPERATURE}
and region ∈ {R1, . . . , RN}. Let A be the set of attributes. Let F be a class of
access policies modeled as predicates (i.e. Boolean-valued functions), where ev-
ery policy f : A → {0, 1} ∈ F maps an attribute to {0, 1} (denoting false and
true respectively).

Adhering to the principle of least privilege, a base station B in region R1,
whose purpose is to monitor moisture content in that region, is issued a secret
key for the following policy, denoted f :

f(a := (type, region)) , (type = MOISTURE) ∧ (region = R1).

Another base station B′ whose purpose is to monitor both moisture and tem-
perature in the regions R1 and R2 is issued a secret key for the following policy,
denoted f ′:

f ′(a := (type, region)) , (type = MOISTURE ∨ type = TEMPERATURE)

∧ (region = R1 ∨ region = R2).

Suppose an aggregator node near B′ receives encrypted readings from two dif-
ferent sensor nodes. The first reading originated in R1 and has the attribute
a1 := (type := MOISTURE, region := R1) while the second reading originated
in R2 and has the attribute a2 := (type := MOISTURE, region := R2). With an
attribute-based GHE scheme the aggregator can add the two encrypted readings
homomorphically irrespective of the fact that they have different attributes. Sup-
pose it subsequently forwards the encrypted result to B′. Intuitively, B′ should
be able to recover the plaintext because its policy f ′ authorizes both attributes;
that is, we have f ′(a1) = f ′(a2) = 1. In contrast, if the base station B gets hold
of the ciphertext, it should not be able to recover the plaintext because its policy
f is satisfied by only one of the attributes, namely a1.

Participatory Sensing In participatory sensing, users with personal mobile
devices, such as phones that are equipped with sensors, share data acquired
from these sensors with a network. We refer to these entities as mobile nodes.
Other entities, called queriers, subscribe to receive certain types of data. De
Cristofaro and Soriente [25–27] presented a model called PEPSI for participatory



sensing with privacy-enhanced capabilities using provably-secure cryptographic
primitives. Günther et al. [28] improved the security of PEPSI by making it
resistant to collusion between mobile nodes and queriers. An interesting feature
that Günther et al. incorporate in their model, called PEPSIco, is support for
data aggregation, which they argue is useful to reduce the amount of information
to be sent to queriers, cutting down on communication cost. Günther et al. give a
realization of PEPSIco with data aggregation based on additively homomorphic
IBE. This is an application where identity-based GHE would be a perfect fit. A
possible avenue for future work would be to consider what other functionality
could be achieved if attribute-based GHE were employed.

1.1 Contributions

Our first contribution is a formal definition of Attribute-Based Group Homor-
mophic Encryption (ABGHE) along with an analysis of its properties. We then
examine the algebraic structure on attributes induced by the group operation in
an ABGHE. This algebraic stricture is a bounded semilattice. We consider some
possible semilattices and how they can be realized by an ABGHE supporting
inner product predicates. We then examine existing schemes from the literature
and show that they meet our definition of ABGHE for either an additive or
multiplicative homomorphism. Some of these schemes are in fact Identity-Based
Group Homomorphic Encryption (IBGHE) schemes i.e. instances of ABGHE
whose class of access policies are point functions. We then present a possibility
result for IBGHE from indistinguishability obfuscation for any group (S, ·) for
which a (public-key) GHE scheme exists.

2 Preliminaries

2.1 Notation

A quantity is said to be negligible with respect to some parameter λ, written
negl(λ), if it is asymptotically bounded from above by the reciprocal of all poly-
nomials in λ.

For a probability distribution D, we denote by x
$←− D that x is sampled

according to D. If S is a set, y
$←− S denotes that y is sampled from x according

to the uniform distribution on S.
The support of a predicate f : A→ {0, 1} for some domain A is denoted by

supp(f), and is defined by the set {a ∈ A : f(a) = 1}.
The set of contiguous integers {1, . . . , k} for some k > 1 is denoted by [k].

2.2 Attribute Based Encryption

Definition 1. A (Key-Policy) Attribute-Based Encryption (ABE) scheme is a
tuple of PPT algorithms (G,K,E,D) defined with respect to a message space
M, an attribute space A, class of access policies F and a ciphertext space Ĉ as
follows:



• G(1λ):
On input (in unary) a security parameter λ, generate public parameters PP
and a master secret key MSK. Output (PP,MSK).

• K(MSK, f):
On input master secret key MSK and an access policy (predicate) f : A →
{0, 1} ∈ F: derive and output a secret key skf for predicate f .

• E(PP, a,m):
On input public parameters PP, an attribute a ∈ A, and a message m ∈M,
output a ciphertext c ∈ C ⊆ Ĉ that encrypts m under identity a.

• D(skf , c):

On input a secret key skf for predicate f ∈ F and a ciphertext c ∈ Ĉ, output
m′ if c is a valid encryption under some attribute a and f(a) = 1; output a
failure symbol ⊥ otherwise.

Identity-Based Encryption (IBE) is a special case of ABE where the attributes
correspond to identities (such as an email address) and there is a one-to-one
correspondence between attributes and policies i.e. for each attribute a ∈ A,
there is a unique policy f ∈ F with f(x) = 1 iff x = a.

2.3 Public-Key GHE

An important subclass of partial homomorphic encryption is the class of public-
key encryption schemes that admit a group homomorphism between their ci-
phertext space and plaintext space. This class corresponds to what is considered
“classical” HE [1], where a single group operation is supported, most usually
addition. Gjøsteen [15] examined the abstract structure of these cryptosystems
in terms of groups, and characterized their security as relying on the hardness of
a subgroup membership problem. Armknecht, Katzenbeisser and Peter [1] rigor-
ously formalized the notion, and called it group homomorphic encryption (GHE).
We recap with the formal definition of GHE by Armknecht, Katzenbeisser and
Peter [1].

Definition 2 (GHE, Definition 1 in [1]). A public-key encryption scheme
E = (G,E,D) is called group homomorphic, if for every (pk, sk) ← G(1λ), the
plaintext spaceM and the ciphertext space Ĉ (written in multiplicative notation)
are non-trivial groups such that

• the set of all encryptions C := {c ∈ Ĉ | c← Epk(m),m ∈M} is a non-trivial

subgroup of Ĉ
• the restricted decryption D∗sk := Dsk|C is a group epimorphism (surjective

homomorphism) i.e.

D∗sk is surjective and ∀c, c′ ∈ C : Dsk(c · c′) = Dsk(c) ·Dsk(c
′)

• sk contains an efficient decision function δ : Ĉ → {0, 1} such that

δ(c) = 1 ⇐⇒ c ∈ C



• the decryption on Ĉ \ C returns the symbol ⊥.

We are interested in schemes whose plaintext space forms a group and which
allow that operation to be homomorphically applied an unbounded number of
times. There exist schemes however that do not satisfy all the requirements of
GHE, namely their ciphertext space does not form a group but instead forms a
quasigroup (a group without associativity). We can define what we call Quasi-
group Homomorphic Encryption (QHE) analogously to Definition 2 by replacing
the term ’group’ with ’quasigroup’ in the definition. An example of such a scheme
is the public-key† variant of Cocks’ IBE [29], which was shown to be inherently
XOR-homomorphic by Joye [30].

3 Attribute-Based GHE

3.1 Formal Definition

In this section, we present a formal definition of attribute-based GHE (ABGHE),
extending Definition 2.

Definition 3 (Attribute Based Group Homomorphic Encryption (ABGHE)).
Let E = (G,K,E,D) be an ABE scheme with message space M, attribute space

A, ciphertext space Ĉ and class of predicates F. The scheme E is group homo-
morphic if for every (PP,MSK)← G(1λ), every f ∈ F : supp(f) 6= ∅, and every
skf ← K(MSK, f), the message space (M, ·) is a non-trivial group, and there is

a binary operation ∗ : Ĉ2 → Ĉ such that the following properties are satisfied for
the restricted ciphertext space Ĉf = {c ∈ Ĉ : Dskf (c) 6= ⊥}:

GH.1: The set of all encryptions Cf = {c | c← E(PP, a,m), a ∈ supp(f),m ∈
M} ⊆ Ĉf is a non-trivial group with respect to the operation ∗.

GH.2: The restricted decryption D∗skf := Dskf |Cf is surjective

and ∀c, c′ ∈ Cf Dskf (c ∗ c′) = Dskf (c) ·Dskf (c′).

Let us consider Definition 3 in more detail. Let f ∈ F be any policy that
is satisfied by at least one attribute i.e. supp(f) 6= ∅. Furthermore, Dskf is the
decryption function indexed by some secret key skf for f . We restrict ourselves

to the set of ciphertexts Ĉf ∈ Ĉ that decrypt to a plaintext under Dskf . In
other words, this is the set of ciphertexts that do not yield the failure symbol ⊥
on decryption with Dskf . Now the set of honest encryptions with any attribute

satisfying f (let this be Cf ) should be a subset of Ĉf . This is captured by GH.1
in Definition 3. However, GH.1 makes an even stronger demand. It requires that
Cf be a non-trivial group with respect to the operation ∗. The homomorphism
is described by GH.2. In our case, it means that for any honestly generated
ciphertexts c, c′ ∈ Cf , we have Dskf (c ∗ c′) = Dskf (c) ·Dskf (c′).

†Every IBE can be viewed as a public-key scheme



Is Ĉf = Cf? This is not always the case. This is exemplified by the identity-

based XOR-homomorphic construction from [31] where elements of Ĉf \ Cf are
computationally indistinguishable from Cf without the master secret key. This
illustrates that an efficient decision function cannot decide between elements of
Ĉf \ Cf and Cf in all cases. Let skf be any secret key for a policy f . Suppose

there is a decision function δf : Ĉ → {0, 1} embedded in skf that can determine

whether an element of Ĉ is an honest encryption that is decryptable by f i.e.
δf (c) = 1 ⇐⇒ c ∈ Cf . In this case, the decryption function Dskf simply outputs
⊥ on input c if and only if δf (c) = 0; it outputs the recovered plaintext otherwise.

As a result, we then indeed have that Ĉf = Cf . Armknecht et al. introduced the
decision function in their definition of GHE for the public-key setting in order to
assist their characterization of IND-CCA1 security. However, an efficient decision
function does not always exist in the ABE setting. The reason for this is that
the decryptor is only given partial secret key information sufficient for her policy
f , but other information may remain computationally hidden from her without
the master secret key. Therefore, a decryptor may not be able to efficiently tell
whether a ciphertext c is in Cf .

It is always the case that a scheme can be adapted so that (Ĉf , ∗) forms
a group (or is computationally indistinguishable from one without the master
secret key) provided (Cf , ∗) is a group. This can be seen by considering the fol-
lowing two cases. In the first case there is an efficient decision function embedded
in a description of skf that can distinguish elements not in Cf and thus output ⊥
on decryption of these elements. Therefore we have Ĉf = Cf . In the second case,

no such decision function exists and the sets Ĉf \ Cf and Cf are computationally

indistinguishable, which means that (Ĉf , ∗) is computationally indistinguishable
from a group without the master secret key (as otherwise an efficient decision
function would exist).

3.2 Properties

We will now establish some properties about ABGHE schemes. To help us in
this task, we first define a particular ABGHE scheme which we make reference
to throughout the section. Let E = (G,K,E,D) be a ABGHE scheme satisfying
Definition 3 with message space (M, ·), attribute space A, access policies F,

ciphertext space Ĉ and binary operation ∗ : Ĉ × Ĉ → Ĉ. Fix any (PP,MSK) ←
G(1λ). Note that the identity element of (M, ·) is written as 1 ∈M. We assume
that F is free of any degenerate policies; that is, policies f with f(a) = 0 ∀a ∈ A.

Partition of Access Policies A fundamental property of an ABGHE scheme
is that its class of access policies F can be partitioned into equivalence classes
via a natural relation ∼. The relation is defined for any f, g ∈ F as

f ∼ g iff supp(f) ∩ supp(g) 6= ∅.

Now∼ is clearly reflexive and symmetric, but it is not necessarily transitive in the
case of an arbitrary ABE scheme. However if the scheme is group homomorphic,



i.e. it satisfies Definition 3, then ∼ is also transitive, and hence an equivalence
relation. We now show this formally.

Lemma 1 (transitivity of ∼). Let f1, f2, g ∈ F such that supp(f1)∩supp(g) 6=
∅ and supp(f2) ∩ supp(g) 6= ∅. Then supp(f1) ∩ supp(f2) 6= ∅.

Proof. By GH.1 in Definition 3 we have that Cf1 ⊂ Ĉ, Cf2 ⊂ Ĉ and Cg ⊂ Ĉ are
non-trivial groups under the operation ∗. Let e be the identity element of Cg. For
any x ∈ Cf1 ∩ Cg we have x ∗ e = x. Therefore e ∈ Cf1 . Analogously, we have e ∈
Cf2 . It follows from GH.2 in Definition 3 that Dskf1

(e) = Dskf2
(e) = 1 ∈ M for

any skf1 ← K(MSK, f1) and skf2 ← K(MSK, f2). It follows that e is associated
with an attribute that satisfies both f1 and f2. ut

Each equivalence class in F/ ∼ consists of policies linked together because
their support sets share a common attribute. The equivalence classes in F/ ∼
correspond to disjoint sets of attributes. For example, in the case of IBE, we
have |F/ ∼ | = |A|. In contrast, for a more complex class of access policies, we
may have |F/ ∼ | = 1. This is particularly true when there is an access policy
that is satisfied by all attributes. The following corollary follows immediately
from Lemma 1.

Corollary 1. If the tautology predicate > (i.e. >(a) = 1 ∀a ∈ A) is in F, then
there exists an attribute a ∈ A such that f(a) = 1 ∀f ∈ F.

The corollary tells us that if there is a policy that is satisfied by every attribute,
then there is at least one attribute a that satisfies every policy.

Multiplying a ciphertext c by a ciphertext created with attribute a preserves
the access restrictions of the ciphertext c. In other words, suppose d is an en-
cryption under attribute a and one obtains e = c ∗ d, then any policy f that
can decrypt c can also decrypt e. This follows immediately from GH.2. Thus
encryptions under attribute a can be seen as “neutral”. In schemes that are
attribute-hiding (i.e. where the attribute associated with a ciphertext is hidden)
this is advantageous as it possible to encrypt plaintexts under the netural at-
tribute a in order to perform evaluation with some ciphertext without affecting
the access permissions of the ciphertext.

Each equivalence class in F/ ∼ has its own identity element. For all policies
f1, f2 ∈ F with supp(f1) ⊂ supp(f2), then Cf1 is a subgroup of Cf2 .

Subgroup Membership Problem Armknecht et al. characterize the semantic
security of (public-key) GHE as a subgroup membership problem, which can
be generalized easily to the attribute-based setting. To describe this, we first
establish some notation. For any attribute a ∈ A and any plaintext µ ∈ M,

we define the set C(a)µ as the image of EPP(a, µ) i.e. the set of legally generated

encryptions of µ under attribute a. In addition, we define C(a) =
⋃
µ∈M C

(a)
µ .

Recall that we are using multiplicative notation for groups and that we denote
the identity element in (M, ·) by 1 ∈M.



Suppose the adversary’s target attribute is a∗ ∈ A. In the subgroup mem-
bership problem (SMP), he is given an element c∗ ∈ C(a∗) which is sampled in
one of two ways: (1). the element c∗ is uniformly sampled from C(a∗); or (2). the

element c∗ is uniformly sampled from C(a
∗)

1 . The goal is to distinguish both of
these distributions given oracle access to KMSK conditioned on the fact that the
adversary cannot query an f ∈ F with f(a∗) = 1. More precisely, we assume the
hardness of a family of subgroup membership problems {SMPa∗}a∗∈A. It can be
shown that solving a problem in this family is equivalent to attacking the seman-
tic security of the scheme. For more details, we refer the reader to [1] wherein
Armknecht et al. characterize the security of public-key GHE as a subgroup
membership problem; the characterization holds analogously for ABGHE.

4 Attribute Semilattices

The group operation on the ciphertext space induces a binary operation on
attributes. We have a binary operation � : A × A → A that is associative,
commutative, idempotent and has an associated identity element in A, Therefore
(A,�) is a bounded semilattice (commutative idempotent monoid). Suppose we
have ciphertext c associated with attribute a1 ∈ A and ciphertext c2 associated
with attribute a2 ∈ A. Then evaluating c1∗c2 gives a ciphertext that is associated
with the attribute a1 � a2.

In an ABGHE scheme, to ensure correctness and semantic security, an at-
tribute semilattice (A,�) with respect to a class of access policies F must satisfy
the following property.

• For every f ∈ F, f is a semilattice homomorphism between (A,�) and
({0, 1},∧); that is, for all a, b ∈ A

f(a� b) = f(a) ∧ f(b) (4.1)

We will now consider some examples of attribute semilattices for particular
useful applications. In these cases, the attribute semilattice is finite and each
element has a polynomial-size representation.

4.1 Sets

First we consider an application where the attributes are sets and policies decide
subset inclusion. Let U be a finite set that we will call the universe. We define
the attribute space A as A , {A : A ⊆ U, |A| = poly(1λ)} and we define the
class of access policies F thus

F , {A 7→

{
1 if S ⊆ A
0 otherwise

: S ∈ A}.

We define the � operation for any two attributes A,B ∈ A as

A�B = A ∩B.



It is easy to see that (A,�) is a bounded semilattice with U as the identity
element and furthermore that every function in F is a semilattice homomorphism
from (A,�) to ({0, 1},∧).

4.2 Vector Matching

In the next application, the attributes are binary vectors and the policies specify
a pattern that is to be matched. The pattern may include wildcards (“don’t
cares”), denoted by the “*” symbol. We define the attribute space as A ,
{0, 1, ∗}n, a set of vectors of length n. Note that we need to include the wildcard
element in the definition as we will need it below, but an encryptor generating
a fresh ciphertext would most likely opt not to use it, choosing instead a binary
vector.

We associate with an access policy a vector w ∈ {0, 1, ∗}n, and define a
predicate fw indexed by w as follows

fw(v) =
∧
i∈[n]

wi = vi ∨ wi = ∗.

The class of access policies is F , {fw : w ∈ {0, 1, ∗}n}.
Now we are ready to specify the semilattice operation �. Intuitively it works

by retaining matching components and encoding non-matching components with
the wildcard symbol. Formally, we first define a function g : {0, 1, ∗}×{0, 1, ∗} →
{0, 1, ∗} as follows

g(u, v) =

{
u if u = v

∗ otherwise
.

Then we define � as

u� v = (g(u1, v1), . . . , g(un, vn)).

Now (A,�) is a semilattice and every policy in F is a semilattice homo-
morphism to ({0, 1},∧) as required. However this semilattice does not have an
identity element. For completeness, we can add a logical identity element e to A
and further define � to treat it as such.

This semilattice is a special case of the first example by choosing appropriate
sets.

4.3 Integer Vector Comparison

Let B = poly(λ) be a positive integer. In this example, the attributes are vectors
in {0, . . . , B}n, of length n, and the policies decide whether all the components of
an associated vector are less than the corresponding components of an attribute
vector. We set A , {0, . . . , B}n.



We associate with an access policy a vector w ∈ {0, . . . , B}n, and define a
predicate fw indexed by w as follows

fw(v) =
∧
i∈[n]

wi < vi.

The class of access policies is F , {fw : w ∈ {0, . . . , B}n}.
The � operation is the component-wise minimum of two attribute vectors;

that is,
u� v = (min(u1, v1), . . . ,min(un, vn)).

Now (A,�) is a bounded semilattice and every policy in F is a semilattice ho-
momorphism to ({0, 1},∧) as required. The identity element is (B, . . . , B). This
semilattice is also a special case of the first example by choosing appropriate
sets.

Remark 1. Note that the above semilattices are meet-semilattices. Join-semilattices
can be obtained from duality i.e. replacing intersection with union, U with ∅,
subset with superset, min with max and so on.

5 Inner Product Predicates

We will now discuss a rich and expressive class of access policies known as inner
product predicates. Let m be some modulus and let n be a positive integer that
is polynomial in the security parameter. An attribute is an n-dimensional vector
over Zm and a predicate (i.e. access policy) also corresponds to an n-dimensional
vector over Zm. For w ∈ Znm, a predicate fw : Znm → {0, 1} is defined by

fw(v) =

{
1 iff 〈v,w〉 = 0

0 otherwise

Inner product predicates can realize the access policies discussed in the three
examples given in the previous section. Note that in the case of the first example,
the universe U is required to by of polynomial size. We will consider an encoding
for the first example, namely subset inclusion, and remind the reader that the
other examples can be viewed as special cases of this, although there is a more
direct encoding for vector matching (see [32]). The encoding we consider is based
on the idea that a subset S of U can be represented as a binary vector of
dimension n = |U |, the characteristic vector of S. An attribute A ⊆ U is encoded
as the “inverted” characteristic vector of A in which a zero indicates membership
of the set and a one indicates non-membership. As such, U is encoded as the
zero vector. On the other hand, a predicate corresponding to a subset S ⊆ U is
encoded as the characteristic vector of S i.e. a one indicates membership of the
set and a zero indicates non-membership. As such, a predicate corresponding to
the empty set is encoded as the zero vector. It is easy to see that if S ⊆ A, then
the inner product of their two encodings is zero, and if S 6⊆ A, then the inner
product of their two encodings is non-zero provided n < m. For correctness and
security, we require that m > n.



5.1 ABGHE for Inner Product Predicates

Katz, Sahai and Waters (KSW) [32] (Appendix C) present a scheme that satisfies
the properties of an ABGHE and supports inner product predicates. The security
of KSW relies on non-standard assumptions on bilinear groups, assumptions that
are justified by the authors of [32] in the generic group model.

In KSW, we take m to be the product of three “large” primes. Roughly
speaking, in a ciphertext, all components of its attribute vector v ∈ Znm are
blinded by the same uniformly random “blinding” element b ∈ Zm. The de-
cryption algorithm multiplies each component by the corresponding component
in the predicate vector, and the blinding element b is eliminated when the in-
ner product evaluates to zero with all but negligible probability, which allows
decryption to proceed.

Let c1 and c2 be ciphertexts with attribute vectors a1 ∈ Znm and a2 ∈ Znm
respectively. It can be easily shown that the pairwise product c′ = c1 ∗ c2 of
c1 and c2 produces a ciphertext that is associated with both a1 and a2 in
a somewhat “isolated” way. The effect this has is conjunctive. So a predicate
vector w has to satisfy 〈w,a1〉 = 0 and 〈w,a2〉 = 0 for decryption of c′ to
succeed (except with negligible probability). This “simulates” the semilattice
operation in the previous section (where the elements of the semilattice are
encoded as above), ensuring the property given in 4.1 is satisfied. Therefore
KSW can concretely realize the semilattices in the previous section.

Furthermore, the effect of the pairwise product on two ciphertexts on the
underlying plaintexts is multiplicative (in a group of order m). Therefore, KSW
is an ABGHE scheme with a multiplicative homomorphism. Another property
that KSW satisfies is attribute privacy - the attribute vector is hidden by the
ciphertext.

KSW also helps us illustrate the aforementioned properties of ABGHE. Con-
sider Corollary 1, which tells us that if a “tautology” predicate > (i.e. a predicate
that holds true for every attribute) is in the class of supported policies, then there
is an attribute a ∈ A that satisfies all policies. In the case of KSW, such a pred-
icate > is given by the zero vector. Accordingly, the attribute a is also given by
the zero vector.

On a technical note the ciphertexts in KSW are elements of the product group
Ĉ := GT ×G2n+1 where G and GT are groups of order m. The operation ∗ on Ĉ
corresponds to the operation of this product group. The plaintext group is (M :=
GT , ·). The identity element of the ciphertext space Ĉ is 1Ĉ := (1GT

, 1G, . . . , 1G) ∈
Ĉ where 1GT

is the identity element of GT and 1G is the identity element of G.
Note that the identity element 1Ĉ of Ĉ is an encryption of 1 ∈M under a, which
is the zero attribute vector in KSW.

6 Additive and Multiplicative Homomorphisms

The only additively homomorphic ABGHE schemes we are aware of are IBGHE
schemes. Clear, Hughes and Tewari [31] present an XOR-homomorphic variant



of the Cocks IBE scheme [29] which has a security reduction from the quadratic
residuosity problem. This construction is shown in [31] to satisfy the properties of
an ABGHE for the XOR operation. Joye [30] shows that the Cocks cryptosystem
itself is inherently XOR-homomorphic but the operation on the ciphertext space
is not associative and hence is an instance of Attribute-Based Quasigroup Ho-
momoprhic Encryption (ABQHE). Ciphertexts in the scheme from [31] require
4 elements of ZN where N is an RSA modulus whereas ciphertexts in Cocks’
cryptosystem require only 2 elements of ZN . The ciphertext space complexity
of CHT was improved recently in [33] to 2 elements of ZN (like Cocks). The
scheme however is not an ABGHE but an ABQHE.

It is a well-known that a scheme with a multiplicative homomorphism can
be transformed into one with an additive homomorphism, where the addition
takes place in the exponent, and a discrete logarithm problem must be solved to
recover the result. This gives rise to the following theorem, which holds true in
the public-key setting as well (a fortiori because public-key HE is a special case
of ABHE):

Theorem 1. Let E = (G,K,E,D) be a multiplicatively homomorphic ABGHE
where (M, ·) is cyclic. For any positive integer M = poly(λ) with M | |M|, there
is an additively homomorphic ABGHE scheme with plaintext group (ZM ,+).

Proof. We define a new scheme E ′ whose setup and key generation algorithms
are the same as E . Let g ∈M be a generator for (M, ·). The element h := g|M|/M

is a generator for a subgroup of M of order M . One can define the encryption
algorithm E′ as follows: on input a message µ ∈ {0, . . . ,M − 1} and attribute
a, compute c ← EPP(a, hµ) and output c. The image of E′PP(a, ·) with domain
ZM is a subgroup of EPP(a, ·) with domainM with respect to operation ∗. This
satisfies GH.1. The decryption algorithm is defined as D′skf (c) = logh(Dskf (c)).

Let c be an encryption of x ∈ ZM and c′ be an encryption of y ∈ ZM . These
elements can respectively be viewed as encryptions in the scheme E of hx ∈ M
and hy ∈M respectively. Because D satisfies GH.2, we have

D′skf (c∗c′) = loghDskf (c ∗ c′) = logh (D′skf (c) ·D′skf (c′)) = logh (hx · hy) = logh (hx+y) = x+y.

Therefore, the scheme also satisfies GH.2. ut

A related fact, and one that shows up more frequently, is when M does not
divide the group order |M| and is instead some polynomially sized bound. In
this case, we get a bounded (aka “quasi”) additively homomorphic scheme, but it
is not group homomorphic in the sense of Definition 3 since one cannot perform
an unbounded number of homomorphic operations.

Günther et al. [28] modified the Boneh-Franklin IBE [34] so that it is ad-
ditively homomorphic in a bounded sense (i.e. it is additively homomorphic
for ZM for some M that does not divide the order of the group (M, ·)). In
fact, we could interpret the construction of Günther et al. as first transforming
Boneh-Franklin into an ABGHE with a multiplicative homomorphism and then
applying the above transformation to yield a bounded additive homomorphism.



The same transformation can be applied to other pairings-based IBE schemes
including [35,36].

As note earlier, KSW is multiplicatively homomorphic and a bounded additive
homomorphism can be obtained via the above transformation. It does however
support a richer class of access policies than IBE.

It is an open problem to construct additively homomorphic ABGHE for a
rich class of access policies such as inner product predicates; that is, to find a
scheme that is group homomorphic for the plaintext group (Zm,+) for some
modulus m with simultaneous support for inner product predicates.

7 Possibility Result for IBGHE from Indistinguishability
Obfuscation

It is interesting to consider whether we can give a possibility result for ABGHE
by relying on indinstuishability obfuscation [37]. It was shown in [38] that attribute-
based FHE can be realized from indistinguishability obfuscation. The authors
use the technique of punctured programming [39], which involves using indis-
tinguishability obfuscation together with a puncturable pesudorandom function
(PRF) [40–42]. In essence, the public parameters contain an obfuscation of a
program that maps an attribute to a public key of an FHE scheme. Then the
FHE scheme is used for encryption and evaluation. If we replace the FHE scheme
with a (public-key) GHE scheme, we obtain an identity-based GHE scheme (i.e.
an instance of ABGHE). We state this formally in the following theorem:

Theorem 2. Assuming indistinguishability obfuscation and one-way functions,
if there exists an IND-CPA secure public-key GHE scheme for the group (S,�)
where S is a finite set, then there exists an IND-sID-CPA secure identity-based
GHE for the group (S,�).

Proof. The theorem follows immediately from Theorem 1 in [38] by replacing
the FHE scheme with a GHE scheme. ut

Unfortunately we cannot obtain an ABGHE scheme in this manner for a more
complex class of access policies than IBE. The reason for this is that the above
construction is inherently “single-attribute” i.e. it only supports evaluation on
ciphertexts with the same attribute (i.e. identity). Therefore, for a more complex
class of access policies, the construction does not meet the criteria of ABGHE.
This is because each attribute is mapped on to a unique public-key in the GHE
scheme but we cannot perform evaluation on ciphertexts that are encrypted with
different public keys (not while keeping the ciphertext the same size).
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