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Abstract

In this work, we consider the Intersection-Sum problem: two parties hold datasets contain-
ing user identifiers, and the second party additionally has an integer value associated with each
user identifier. The parties want to learn the number of users they have in common, and the sum
of the associated integer values, but “nothing more”. We present a novel protocol tackling this
problem using Diffie-Hellman style Private Set Intersection techniques together with Paillier
homomorphic encryption. We prove security of our protocol in the honest-but-curious model.
We also discuss applications for the protocol for attributing aggregate ad conversions. Finally,
we present a variant of the protocol, which allows aborting if the intersection is too small, in
which case neither party learns the intersection-sum.

1 Introduction
Protocols for private set intersection (PSI) allow two or more parties to compute an intersection
over their privately held input sets, without revealing anything more to the other party beyond the
elements in the intersection. Related protocols allow parties to learn only restricted functions of
the intersection, such as the cardinality of the intersection, or whether the size of the intersection
exceeds some threshold. Various approaches have been presented in previous work, in both the
honest-but-curious and malicious security models.

∗Work done while at Google Inc.
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In this work, we consider a particular variant of the PSI problem, which we call the Private
Intersection Sum problem. In this setting, there are two parties that have private input sets con-
sisting of identifiers, and one of the parties’ datasets additionally has an integer value associated
with each identifier. The parties want to learn cardinality of the intersection, as well as the sum of
the associated integer values for each identifier in the intersection, but nothing more. In particu-
lar, neither party should learn the actual identifiers in the intersection, nor should they learn any
additional information about the other party’s data (beyond its size).

Our work is motivated by the general class of business problems of attributing online-to-offline
ad conversions. An online-to-offline ad conversion occurs when a user sees an ad for some com-
pany on a website, and then later makes a purchase in that company’s store. The company would
like to know how much of its revenue it can attribute to online ads. However, the data needed to
compute these attribution statistics is split across two parties: the ad supplier, who knows which
users have seen which ads, and the company, which knows who made a purchase and what they
spent. The two parties are typically unwilling or unable to expose the underlying data, but both
parties would still like to compute an aggregate measurement: how many users both saw an ad
and made a corresponding purchase, and how much those users spent in total. This is exactly an
instance of the Private Intersection-Sum problem.

In this work, we present a protocol that allows two parties to privately compute the intersection-
sum functionality. We show security of the protocol in the honest-but-curious model. In this model,
we assume participants follow the steps of the protocol honestly by generating well-formed mes-
sages, but may attempt to extract as much information as possible afterwards from the protocol
transcript. A protocol is secure in this model if the transcript does not reveal any additional in-
formation beyond the functionality being computed; this is analogous to the concept of “perfect
forward secrecy” in TLS, which ensures that once a session ends the transcript reveals nothing
even given the parties’ secret keys.

1.1 Paper Organization
In Section 2, we provide some useful definitions for our protocol. In Section 3, we give a descrip-
tion of our Intersection-Sum protocol, with a detailed security analysis in the honest-but-curious
model in Section 3.1. We also present a “reverse” variant of our protocol in Section 4. In Section 5
we mention several related works.

2 Security Primitives and Cryptographic Assumptions
Definition 1 (Paillier Homomorphic Encryption). The Paillier encryption scheme [Pai99] is an
additively homomorphic encryption scheme, consisting of the following probabilistic polynomial-
time algorithms:

Pai.Gen Given a security parameter λ, Pai.Gen(λ) returns outputs a public-private key pair
(pk,sk), and specifies a message space M .
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Pai.Enc Given the public key pk and a plaintext message m ∈M , one can compute a ciphertext
Pai.Enc(pk,m), a Paillier encryption of m under pk. (We shorten this to just Pai(m) when
pk is clear from the context).

Pai.Dec Given the secret key sk and a ciphertext Pai.Enc(pk,m), one can run Pai.Dec to recover
the plaintext m.

Pai.Sum Given the public key pk and a set of ciphertexts {Pai.Enc(pk,mi)} encrypting messages
{mi}, one can homomorphically compute a ciphertext encrypting the sum of the underlying
messages1:

Pai.Enc(pk,∑
i

mi) = Pai.Sum({Pai.Enc(pk,mi)}i)

The scheme satisfies the standard notion of CPA security of encryption, meaning, informally,
that without knowledge of the private key sk, encryptions of different messages are computationally
indistinguishable.

In addition, we will make use of the property that Pai.Sum({Pai.Enc(pk,mi)}) and Pai.Enc(pk,∑i mi)
have identical distributions. This property is not described in the original scheme description
[Pai99], but can easily be added to Pai.Sum by always including an additional fresh encryption of
0 in the ciphertexts to be summed.

Definition 2 (Decisional Diffie-Hellman assumption (DDH)). [DH76] Let G(λ) be a group family
parameterized by security parameter λ. For every probabilistic adversary M that runs in time
polynomial in λ, we define the advantage of M to be:

|Pr[M(λ,g,ga,gb,gab) = 1]−Pr[M(λ,g,ga,gb,c) = 1]|− 1
2

Where the probability is over a random choice G from G(λ), ran generator g of G , random a,b,c∈
[1, |G |] and the randomness of M. We say that the Decisional Diffie Hellman assumption holds for
G if for every such M, there exists a negligible function ε such that the advantage of M is bounded
by ε(λ).

In other words, the distributions (g,ga,gb,gab) and (g,ga,gb,gc) are computationally indistin-
guishable. Through this paper we will write group operations using multiplicative notion.

3 Protocol Description
A detailed description of our Intersection Sum protocol is found in Figure 2. In the protocol
presented, there are two participating parties, of which only Party 1 learns the cardinality of the
intersection, and only Party 2 learns the intersection-sum.

1If the sum is large, it can wrap around in the message space M . In this work, we only consider messages and
sums that are too small to wrap around.
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Figure 1: Summary of the Intersection-Sum protocol

At a high-level, the two parties interact to hash and “double-encrypt” each entry in their
datasets, and compare the double-encrypted values. The “double-encryption” we perform is simi-
lar to the deterministic Pohlig-Hellman cipher [HP84].

The group G can be any group in which the DDH assumption is believed to hold. Sev-
eral candidate groups are widely used, such as subgroups of the multiplication group of a finite
field and elliptic and hyperelliptic curve groups. In practice, carefully chosen elliptic curves like
Curve25519 [Ber06] offer a good balance between security and performance.

We also note that our protocol has both parties make use of a Random Oracle RO, which must
be different for each protocol instance. We can instantiate this Random Oracle in practice using
a cryptographic hash function. Hash functions such as SHA-256 can be adapted to hash into a
specific group G using rejection sampling. In the case where G is Curve25519, hashing to the
curve is straightforward, as every 256 bit string can be interpreted as a curve point. To simulate
using a different Random Oracle for each protocol instance, parties can simply prepend an instance
identifier to their inputs to the hash function.

3.1 Security Analysis
As discussed earlier, we will prove security of our protocol in the honest-but-curious model, where
we assume participants follow the steps of the protocol honestly, but try to extract as much infor-
mation as possible afterwards from the protocol transcript. This model still requires some degree
of trust between the two parties not to deviate from the prescribed protocol.

We prove security in the honest-but-curious model. We show security by giving a simulator
that can indistinguishably simulate the view of each honest party in the protocol given only that
party’s input, the cardinality of the intersection, and the intersection-sum (but not the input of the
other party). Intuitively, this will show that each party learns nothing more by participating in the
protocol than the cardinality of the intersection and the intersection sum.

In such a protocol execution, the view of a party consists of its internal state (including its
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Private Intersection-Sum Protocol

• Setup:

– Both parties agree on a security parameter λ and a G ∈ G(λ), and a user identifier space U = U(λ).
Both parties have access to a Random Oracle RO : U→G that maps user identifiers to random elements
of G .

– Party 1 has as input a set U1 = {ui}i∈[m] of m user identifiers, where each ui ∈U.

– Party 2 has as input a set {(v j, t j)} j∈[n] of n user identifiers paired with transaction values, where each
v j ∈ U, and each t j ∈ Z+, such that ∑ t j fits comfortably into the Paillier message space for security
parameter λ. We define U2 = {v j} j∈[n].

– Each Party i chooses a random private exponent ki in the group G .

– Party 2 generates a fresh key-pair (pk,sk)← Pai.Gen(λ) for the Paillier encryption scheme and shares
the public key pk with Party 1.

• Round 1 (Party 1):

1. For each element ui in its set, Party 1 applies the Random Oracle and then single-encrypts them using its
key k1, thus computing RO(ui)k1 .

2. Party 1 sends {RO(ui)k1}i∈[m] to Party 2 in shuffled order.

• Round 2 (Party 2):

1. For each element RO(ui)k1 received from Party 1 in the previous step, Party 2 double-encrypts them
using its key k2, computing RO(ui)k1k2 .

2. Party 2 sends Z = {RO(ui)k1k2}i∈[m] to Party 1 in shuffled order.

3. For each item (v j, t j) in its input set, Party 2 applies the Random Oracle to the first element of the pair
and encrypts it using key k2. It encrypts the second element of the pair using the Paillier key pk. It thus
computes the pair. RO(v j)k2 and Pai (t j).

4. Party 2 sends the set {(RO(v j)k2 ,Pai(t j))} j∈[n] to Party 1 in shuffled order.

• Round 3 (Party 1):

1. For each item (RO(v j)k2 ,Pai(t j)) received from Party 2 in Round 2 Step 4, Party 1 double-encrypts the
first member of the pair using k1, thus computing (RO(v j)k1k2 ,Pai(t j)).

2. Party 1 computes the intersection set J:

J = { j : RO(v j)
k1k2 ∈ Z}

where Z is the set received from Party 1 in Round 1.

3. For all items in the intersection, Party 1 homomorphically adds the associated ciphertexts, and computes
a ciphertext encrypting the intersection-sum SJ :

Pai(pk,SJ) = Pai.Sum ({Pai(t j)} j∈J) = Pai

(
∑
j∈J

t j

)

4. Party 1 sends this ciphertext to Party 2.

• Output (Party 2): Party 2 decrypts the Paillier ciphertext received in Round 3 using the Paillier secret key sk
to recover the intersection-sum SJ .

Figure 2: Detailed description of the Private Intersection-Sum protocol.5



input and randomness) and all messages this party received from the other party (the messages
sent by this party do not need to be part of the view because they can be determined using the other
elements of its view).

Let REALi,λ({ui}i∈[m],{(v j, t j)} j∈[n]) be a random variable representing the view of Party i in
a real protocol execution, where the random variable ranges over the internal randomness of all
parties, and the randomness in the setup phase (including that of the Random Oracle).

Our first theorem shows that Party 1’s view in the protocol can be simulated given only that
Party 1’s input and the size of the intersection (but not the input of Party 1).

Theorem 1 (Honest But Curious Security, against Party 1). There exists a PPT simulator SIM1
such that for all security parameters λ and inputs {ui}i∈[m], {(v j, t j)} j∈[n],

REAL1,λ({ui}i∈[m],{(v j, t j)} j∈[n])

≈
SIM1(1λ,{ui}i∈[m],n, |J|)

Where n is the size of Party 2’s input, J = { j : v j ∈ {ui}i∈[m]} is the intersection set, and |J| is
its cardinality.

Proof. We describe the simulator algorithm SIM1 in Algorithm 1.

Algorithm 1: The simulator for Party 1
Input: (λ,{ui}i∈[m],n, |J|)
Output: SimView(P1)
SIM1(λ,{ui}i∈[m], |J|)
(1) Generate key k1 ∈ G , and Paillier key-pair (pk,sk).
(2) Honestly generate and send {RO(ui)k1}i∈[m] in shuffled order as Party 1’s

message in Round 1.
(3) Create a dummy set U∗1 = {gi}i∈[m], where each gi is randomly selected from

G . Send {gk1
i }i∈[m] in shuffled order as Party 2’s message in Step 2 of Round

2.
(4) Create a dummy set U∗2 = {h j} j∈[n] for Party 2 by setting h j = g j for j ∈

[1, |J|), and each h j for j ∈ [|J|,m) is randomly selected from G .
(5) Send {(h j,Pai(pk,0))} j∈[n] in shuffled order as Party 2’s message in Step 4

of Round 2, where each Pai(0) is freshly generated.
(6) Honestly generate Party 1’s message in Round 3 using Party 2’s dummy

messages from the previous step.
(7) Output Party 1’s view in the simulated execution above.

Notice that the main difference between SIM1 and a real protocol execution is in Round 2:
instead of sending {RO(ui)k1k2} and {(RO(v j)k2} as in a real execution, SIM1 instead uses random
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group elements {gi} and {h j} which have an intersection of the same size, and Paillier encryptions
of 0. We argue that

REAL1,λ({ui}i∈[m],{(v j, t j)} j∈[n]) ≈ SIM1(λ,{ui}i∈[m], |J|)

using a multi-step hybrid argument, where each neighboring pair of hybrid distributions is compu-
tationally indistinguishable.

Hyb0 The view of Party 1 in a real execution of the protocol.

Hyb1,0 The same as Hyb0, except, in Round 2, all Paillier ciphertexts sent by Party 2 are replaced
with fresh encryptions of 0.

Hyb1,i for i ∈ [m−|J|]: The same as Hyb1,i−1, except with RO(ui∗)k1k2 replaced by gk1
i∗ in Party

2’s message in Step 2 of Round 2, where where ui∗ is the lexicographically smallest as-yet-
unreplaced element of {ui}i∈[m] \{v j} j∈[n], and gi∗ is a random element of G .

Hyb2,0 Identical to Hyb1,m−|J|.

Hyb2, j for j ∈ [n−|J|]: The same as Hyb2, j−1, except with RO(v j∗)k2 replaced by h j∗ in Party
2’s message in Step 4 of Round 2, where where v j∗ is the lexicographically smallest as-yet-
unreplaced element of {v j} j∈[n] \{gi}i∈[m], and h j∗ is a random element of G .

Hyb3,0 Identical to Hyb2,n−|J|.

Hyb3,k for k ∈ [|J|]: The same as Hyb3,k−1, except

• RO(uk∗)
k1k2 replaced by gk1

k∗ in Party 2’s message in Step 2 of Round 2 and

• RO(vk∗)
k2 replaced by gk∗ in Party 2’s message in Step 4 of Round 2

where uk∗ = vk∗ is the lexicographically smallest as-yet-unreplaced element of {v j} j∈[n] ∩
{gi}i∈[m], and gk∗ is a random element of G .

Hyb4 The view of Party 1 output by SIM1.

We now argue that each successive pair of hybrids in the sequence above is indistinguishable.
We first observe that Hyb0 and Hyb1,0 are indistinguishable by the CPA security of the Paillier

encryption scheme. We also observe that the pairs of hybrids (Hyb1,m−|J|, Hyb2,0), (Hyb2,n−|J|,
Hyb3,0) and (Hyb3,|J|, Hyb4) are identical.

It remains to show that hybrids of the form Hyb1,i−1,Hyb1,i, Hyb2, j−1,Hyb2, j and Hyb3,k−1,Hyb3,k
are indistinguishable. We will argue that Hyb1,i−1 and Hyb1,i are indistinguishable for all i ∈ [m−
|J|], based on the hardness. We note that hybrids of the form Hyb2, j−1,Hyb2, j and Hyb3,k−1,Hyb3,k
can be proven indistinguishable by a very similar argument.

Consider Algorithm 2 below, that takes as input a DDH tuple (g,ga,gb,gc) and hybrid index i,
and simulates Hyb1,i:
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Algorithm 2: Simulator for Hyb1,i

Input: (λ, i, (g,ga,gb,gc),{ui}i∈[m],{v j} j∈[n])
Output: SimView(P1) in Hyb1,i
SIMHyb1,i(λ, i∗, (g,ga,gb,gc),{ui}i∈[m],{v j} j∈[n])
(1) Reprogram the Random Oracle using the DDH tuple as follows:

RO(ui) = gri for ui 6= ui∗

= ga for ui = ui∗

RO(v j) = gs j ∀ j ∈ [n]

where each ri and s j is randomly chosen in the range [1, |G |), and ui∗ is the newest element
replaced with a random one in Hyb1,i.

(2) Generate key k1 ∈ G , and Paillier key-pair (pk,sk).
(3) Send {RO(ui)k1}i∈[m] in shuffled order as Party 1’s message in Round 1.
(4) Create a dummy set U∗1 = {gi}i∈[m] as follows:

gi = gc for ui = ui∗

= random element of G for ui /∈ {v j} j∈[n],ui < ui∗

= (gb)si for all other ui

Send {gk1
i }i∈[m] in shuffled order as Party 2’s message in Step 2 of Round 2.

(5) Send {((gb)s j ,Pai(0))} j∈[n] in shuffled order as Party 2’s message in Step 4 of Round 2,
where each Pai(0) is freshly generated.

(6) Honestly generate Party 1’s message in Round 3 using Party 2’s dummy messages from the
previous step.

(7) Output Party 1’s view in the simulated execution above.

We observe that the output distribution produced by Algorithm 2 on input i and a DDH tuple
(g,ga,gb,gc) for uniformly random a,b,c is identical to Hyb1,i. To see this, we first observe that
the Random Oracle has uniformly random outputs even after reprogramming, since all the repro-
grammed values are random powers of a generator. Next, interpreting the hidden exponent b as
Party 2’s key k2, all the simulated messages sent by Party 2 in Round 2 are of the correct form for
Hyb1,i: un-replaced messages in Round 2 Step 2 have the form RO(ui)k1k2 , and messages sent in
Round 2 Step 4 have the form (RO(v j)k2 ,Pai(0)).

We now replace the DDH tuple given as input to Algorithm 2 to have the form (g,ga,gb,gab).
The only effect is that, instead of gi∗ = gc, we have gi∗ = gab = RO(ui∗)b. From our earlier
interpretation of b as k2, this means gk1

i∗ =RO(ui)k1k2 . This change is exactly the difference between
Hyb1,i−1 and Hyb1,i. Thus, the output of Algorithm 2 on inputs i and (g,ga,gb,gab) is identical to
Hyb1,i−1.

From the preceding argument, we can infer that if any adversary can distinguish between
Hyb1,i−1 and Hyb1,i, then it can distinguish between (g,ga,gb,gab) and (g,ga,gb,gc). Therefore,
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by the assumed hardness of DDH, Hyb1,i−1 and Hyb1,i are indistinguishable.

Our second theorem shows that Party 2’s view in the protocol can be simulated given only that
Party 2’s input and the intersection-sum (but not the input of Party 1).

Theorem 2 (Honest But Curious Security, against Party 2). There exists a PPT simulator SIM such
that for all security parameters λ and inputs {ui}i∈[m], {(v j, t j)} j∈[n],

REAL2,λ({ui}i∈[m],{(v j, t j)} j∈[n])

≈
SIM2(1λ,{(v j, t j)} j∈[n],m,SJ)

Where m is the size of Party 1’s input, J = { j : v j ∈ ({ui}i∈[m]} is the intersection set, and
SJ = ∑ j∈J t j is the intersection-sum.

Proof. We define SIM2 to perform the Setup phase honestly, and honestly performs the operations
corresponding to Party 2. SIM2 simulates the messages sent by Party 1 as follows:

• In Round 1, instead of sending {RO(ui)k1}i∈[m] as Party 1’s message, SIM2 instead sends m
randomly selected elements of G .

• In Round 3, instead of performing the intersection and computing the intersection-sum, SIM2
instead sends a fresh Paillier ciphertext encrypting the value SJ it received as input.

We note that the only difference between the output of SIM2 and the view of Party 2 in a real
execution is in the Round 1 messages. However, the Round 1 messages output by SIM2 can be
shown to be indistinguishable from those in a real execution by using a simple hybrid argument:
Define m hybrids, where, in each successive hybrid, SIM2 replaces one additional “real” Round 1
message of the form RO(ui)k1 with a random element of G . Then, each pair of neighboring hybrids
can be shown to be indistinguishable based on the fact that k1 is secret and that DDH is hard in G .
The details are very similar to the proof of Theorem 1, and we leave them as an exercise.

3.2 Additional Security Precautions
Our security analysis shows that each party learns no more than the size of the intersection and
the intersection-sum. However, unless appropriate care is taken, these values may themselves leak
private information. For example, if the intersection size is very small, it may be possible to guess
the user identifiers in the intersection based on the intersection-sum. To guarantee enough mixing-
privacy between the users, parties should ensure that the intersection is sufficiently large. The
“reverse” protocol variant we present in Section 4 allows parties to enforce a minimum intersec-
tion size, by allowing them to abort before either party learns the intersection sum if the if the
intersection is too small.

In general, though, privacy may be violated as a consequence of certain input distributions.
For example, if there are “outlier” v j values that are unusually large, the sum will be large; a
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Figure 3: Summary of the Reverse Intersection-Sum protocol

priori knowledge of such values will allow a party to identify users. It is also possible that re-
peatedly executing the protocol in sequence will leak information due to correlated inputs in dif-
ferent sessions. Such problems are an artifact of the functionality itself 2 and would affect any
intersection-sum protocol. One strategy for resolving this issue would be to compose differential
privacy techniques [DR14] with the cryptographic protocol, by adding appropriately sampled noise
to the inputs.

4 Protocol Variants: The “Reverse” Protocol
The protocol we presented in Section 3 can be modified in a straightforward way to allow both
parties to learn the intersection-sum or intersection-size. It is also possible to ensure that one or the
other party performs the actual intersection operation, for example, to allow that party to abort if
the intersection is below some threshold, which might be imposed for policy reasons. We present
one such variant in Figure 4, which we refer to as the “reverse” protocol. In this protocol, Party 2
performs the intersection, and can abort the protocol if the intersection size is too small, without
either party learning the intersection-sum. In addition, both parties learn the intersection size, but
only Party 1 learns the intersection-sum. To implement this, we additionally need Party 1 to blind
the Paillier ciphertext with random values, as can be seen in Figure 4.

4.1 Security Analysis
The security proof for the reverse protocol is similar to the ordinary protocol, but with the roles
of the parties reversed, with Party 2 learning only the intersection size, and Party 1 learning both

2This leakage is implicit in the security proof. The simulator will receive the result of the function evaluated on
both parties’ inputs; this result itself is subject to the problems above. The security proof shows that a party will learn
only as much as the functionality reveals, which includes leakage due to the input distribution.
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Reverse Intersection-Sum Protocol

• Setup:

– Both parties agree on a security parameter λ and a G ∈ G(λ), and a user identifier space U = U(λ).
Both parties have access to a Random Oracle RO : U→G that maps user identifiers to random elements
of G .

– Party 1 has as input a set {ui}i∈[m] of m user identifiers, where each ui ∈U.

– Party 2 has as input a set {(v j, t j)} j∈[n] of n user identifiers paired with transaction values , where each
v j ∈U, and each t j ∈Z+, such that ∑ t j fits comfortably into the Paillier message space.

– Each Party i chooses a random private exponent ki in the group G .

– Party 2 generates a fresh key-pair (pk,sk)← Pai.Gen(λ) for the Paillier encryption scheme and shares
the public key pk with Party 1.

• Round 1 (Party 2):

1. For each element (v j, t j) in its set, Party 2 applies the Random Oracle and then single-encrypts v j using
its key k2, thus computing RO(v j)k2 .

2. Party 2 sends {(RO(v j)k2 ,Pai(t j))} j∈[n] to Party 1 in shuffled order.

• Round 2 (Party 1):

1. For each element (RO(v j)k2 ,Pai(t j)) received from Party 2 in the previous step, Party 1 double-encrypts
them using its key k1 and homomorphically computes a one-time pad encryption of t j under addition
modulo the Paillier modulus N, computing (RO(v j)k1k2 ,Pai(t j + r j)).

2. Party 1 sends {(RO(v j)k1k2 ,Pai(t j + r j)} j∈[n] to Party 2 in shuffled order. The (shuffled j→ r j) map is
saved for a future step.

3. For each item ui in its input set, Party 1 applies the Random Oracle to the first element of the pair and
encrypts it using key k1. It encrypts the second element of the pair using the Paillier key pk. It thus
computes the pair. RO(ui)k1 .

4. Party 1 sends the set {RO(ui)k1}i∈[m] to Party 2 in shuffled order.

• Round 3 (Party 2):

1. For each item RO(u j)k1 received from Party 1 in Round 2 Step 4, Party 1 double-encrypts the using k2,
thus computing RO(ui)k1k2 .

2. Party 2 computes the intersection set J:

J = { j : RO(v j)
k1k2 ∈ {RO(ui)

k1k2}i∈[m]}

3. For all items in the intersection, Party 2 adds the associated (one-time pad encrypted) ciphertexts, and
computes a ciphertext encrypting the intersection-sum SJ = ∑ j∈J t j + r j

4. Party 2 sends SJ together with the indexes J corresponding to the Paillier ciphertexts in the intersection,
to Party 1.

• Output (Party 1): Party 1 computes SJ−∑ j∈J r j to recover ∑ j∈J t j.

Figure 4: Detailed description of the “Reverse” Private Intersection-Sum protocol.
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the intersection size and the intersection sum. The simulator for Party 1 is almost identical to the
simulator for Party 2 in the original protocol, but must also provide indices J in Round 3 to allow
Party 1 to compute SJ−∑ j∈J r j. For Party 2, the simulator is very similar to the original Party 1
simulator SIM1 in Algorithm 1. We omit details of the proof.

5 Related Work
Private Set Intersection is a well-studied problem. The goal there is for both parties to learn the
items in the intersection, but nothing more. There are many existing approaches in the litera-
ture, including works based on DDH-type assumptions [HFH99, DCKT10, Lam16, SFF14], works
based on Oblivious Transfer [PSZ14, PSSZ15, DCW13, RR16], works based on Oblivious Polyno-
mial Evaluation [FNP04, DSMRY09] and works based on generic Secure Two-party Computation
techniques [HEK12, PSSZ15]. In our setting the universe of possible set members is large, so
techniques assuming bit-vector representations of the set are inapplicable.

Closer to our goal, there are several works that limit the parties to learning only the cardinal-
ity of the intersection [FNP04, KS05, VC05, DCGT12, NAA+09]. Previous works using garbled
circuits also allow cardinality, as well as more general functions of the intersection, however the
communication overhead of garbled circuit approaches would be too high for our application. In
Huang et al.’s work, the Sort-Compare-Shuffle approach, which is the most applicable to our set-
ting, requires O(n logn) communication [HEK12], and even with state-of-the-art garbling schemes
will require far more communication than our protocol. Similarly, the Phasing technique of Pinkas
et al. [PSSZ15] also requires quasi-linear communication.

Due to the “offline” nature of our use-case, which allows for higher latency, comparisons based
on overall running time are less valuable than the concrete resource costs required to run the pro-
tocol. For our application the most limited resource was network capacity, so we base our compar-
isons on the amount of communication required to compute the result.

6 Conclusion
We have developed an efficient family of protocols for computing linear functions over the inter-
section of two parties’ data sets. We have also proven security in the honest-but-curious model.
Our protocol can be coupled with a post-facto “audit” protocol to achieve a security notion similar
to the covert model.

In our protocol the functions that can be computed over the intersection are determined by
the particular homomorphic encryption scheme that is used. For our use-case Paillier encryption
was sufficient, but it would be straightforward to use BGN to support quadratic functions or even
an FHE scheme for more general functionalities, although such changes would impose heavier
resource requirements. It may also be useful to use generic approaches such as garbled circuits as
subprotocols to compute more general functions; we leave a detailed analysis for future work.
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