
Revisiting Difficulty Control for Blockchain
Systems

Dmitry Meshkov1,2, Alexander Chepurnoy1,2, Marc Jansen3

1 IOHK Research
{dmitry.meshkov,alex.chepurnoy}@iohk.io

2 Ergo Platform
3 University of Applied Sciences Ruhr West

marc.jansen@hs-ruhrwest.de

Abstract. The Bitcoin whitepaper [1] states that security of the sys-
tem is guaranteed as long as honest miners control more than half of
the current total computational power. The whitepaper assumes a static
difficulty, thus it is equally hard to solve a cryptographic proof-of-work
puzzle for any given moment of the system history. However, the real
Bitcoin network is using an adaptive difficulty adjustment mechanism.
In this paper we introduce and analyze a new kind of attack on a mining
difficulty retargeting function used in Bitcoin. A malicious miner is in-
creasing his mining profits from the attack, named coin-hopping attack,
and, as a side effect, an average delay between blocks is increasing.
We propose an alternative difficulty adjustment algorithm in order to
reduce an incentive to perform coin-hopping, and also to improve sta-
bility of inter-block delays. Finally, we evaluate the presented approach
and show that the novel algorithm performs better than the original
algorithm of Bitcoin.

1 Introduction

Blockchain systems have attracted significant amount of interest after the Bitcoin
whitepaper [1] was published in 2008. Bitcoin security relies on a distributed
protocol which maintains a distributed ledger. In the protocol miners are trying
to find a partial hash collision in order to generate a valid block by iterating
over nonce field values.

Alternative systems may rely on other types of computational puzzles rather
than finding a partial hash collision, e.g., [2,3]. Nevertheless, all of them assume
some algorithm that changes the difficulty of the puzzle dynamically. An algo-
rithm for difficulty readjustment is required in order to make an open blockchain
system working stable in the face of participants joining and leaving the system
(resulting in constantly changing available computational power for solving the
puzzles), and also to stabilize mean latency between blocks.

The difficulty readjustment algorithm in Bitcoin assumes that the total com-
putational power involved in the mining process does not significantly change
from epoch to epoch. In contrast, real networks show that a significant variance

in computational power happens over long periods. For example, we show in this
paper that due to continuous non-linear growth of computational power in the
Bitcoin network a mean delay between blocks differs from an expected value by
7%. Noteworthy, exponential growth of computational power, often observed in
practice, is the absolutely worst case (regarding the mean block delay divergence)
for the Bitcoin’s difficulty readjustment algorithm [4].

In this paper we also consider a new type of miner behavior with regards
to difficulty readjustment which provides unfair advantage to the miner, and
also makes inter-block delays worse. We call the discovered strategy the coin-
hopping attack following the “pool-hopping” term raised in [5]. In this attack, an
adversarial miner is switching from mining one coin to another in the beginning
of an epoch, then he is switching back in the beginning of next epoch when
difficulty becomes lower. We show how adversarial mining profit is increasing
for Bitcoin’s difficulty readjustment function, and how inter-block delay suffers
from the coin-hopping attack.

As a solution for the significant variance in computational power and also
in order to reduce incentive of the described coin-hopping strategy, we propose
an alternative difficulty readjustment procedure. We show that the proposed
solution is better suited for exponential growth of the total mining power. It
also reduces profit and negative side-effects of the coin-hopping attack.

1.1 Related Work

In this section we provide an overview of known formal and informal studies with
regard to the dynamic nature of the difficulty parameters in Bitcoin. Following
the well known paper of Garay et al. [6], generalizing the Bitcoin backbone
protocol in a static difficulty setting, a newer paper from the same authors [7] is
providing a positive answer on whether basic security properties of the Bitcoin
backbone protocol (common prefix, chain quality and chain growth) hold in case
of dynamic difficulty, in a cryptographic setting with an arbitrary adversary.
Nevertheless, studying concrete attacks against the real protocol is still needed.

The Timejacking attack [8] allows an attacker to first shift the network time
at a victims node (which is calculating network time by averaging timestamps it
gets regularly from neighbors) and then force the victim node to reject a block
with a specially crafted timestamp (other nodes are accepting). The time wrap-
ping attack [9] is exploiting the fact that Bitcoin is using difference in timestamps
between last and first block in an epoch, instead of the last block in an epoch
and last block in a previous epoch. By using specially crafted timestamps for
the last block of each epoch, an attacker can produce more blocks for a time
window with more work contributed to his chain. The difficulty raising attack,
introduced in [10], allows an attacker to discard n-depth block, for any n, and
for any computational power of the attacker, with probability 1 if he is willing
to wait long enough.

The paper [4] is introducing an alternative difficulty readjustment function
designed to work better than Bitcoin’s not just for almost constant mining power
but also when the power is growing exponentially with time.

1.2 Structure of the Paper

The paper is organized as follows: in Section 2 we provide a detailed view of
Bitcoin’s readjustment function. In Section 3 we introduce the coin-hopping
attack, followed by the definition of an improved difficulty readjustment function,
described in section 4. Section 5 provides experimental results for new algorithm
evaluation.

2 Bitcoin Mining

The concept of Bitcoin mining was introduced in Section 4 of the Bitcoin whitepa-
per [1], and then discussed in detail in the papers [4],[7]. Bitcoin miner generates
a block by iterating over a nonce value and calculating the hash of a block with
the nonce value included. For a block B to be valid, a value of a hash function
has to be less than the current target T , hash(B) < T , where hash is an ideal
cryptographic hash function. Hardness to find a block could be expressed also
via difficulty D as D = 1

T . If output of the hash function is µ bits long then
the probability to generate a block by doing q requests to the hash function
is T ·q

2µ = q
D·2µ . We define miner’s hashrate R as R = qs

2µ , where qs is number
of queries done by miner s per time unit. The probability to generate a block
within a time unit is then R

D . In our analysis we assume that number of blocks
mined over long period of time is proportional to hashrate of a miner. However,
there are known strategies to mine a disproportionally high number of blocks,
such as [11], and the strategies are in correspondence with a general result in [6],
which is introducing chain quality property. The property sets an upper bound
on number of blocks an adversary can generate over a sufficiently long period,
however, this number can be higher than the relative hashrate of the adversary;
the result got under an assumption of static difficulty. Adversarial manipula-
tions with difficulty can be combined with selfish mining and other strategies to
achieve disproportionally high number of blocks, making previous results worse,
but this is out of scope of this paper: here, we study manipulations with difficulty
in isolation.

Every M blocks (M = 2016 for Bitcoin) the difficulty is recalculated as

Di+1 = Di ·
M · |∆|
Sm

(1)

where |∆| is the expected time interval between blocks and Sm is the actual time
spent to generate M blocks. For the Bitcoin network, the observed time interval
of ≈9 minutes 20 seconds is less than the planned value of |∆| = 10 minutes
due to continuous growth of the computational power of the network. Difficulty
recalculation interval M = 2016 has been chosen to recalculate difficulty every
2 weeks on average. The epoch length is big enough to see the computational
power of the network being changing over it: mean delay is close to the planned
10 minutes right after target recalculation, whereas at the end of an epoch it is
less than 9 minutes in average.

The next section describes an attack against the recalculation algorithm.

3 Coin-hopping Attack

We consider the following attack involving an adversarial miner A:

– There are at least 2 possible coins (C1,C2) A can contribute to. Without
a loss of generality, we assume that each of them provides about the same
profitability of the mining activity.

– A is mining coin C2 before the beginning of an epoch A. At the beginning
of A he is switching to mine coin C1.

– Without the contribution of miner A the total mining power of the C2 net-
work for the epoch decreases.

– For an epoch B right after epoch A, the difficulty of C2 is to be readjusted
to a lower value. So A starts mining C2 again with a lower difficulty.

We call this strategy a coin-hopping attack.
To calculate the profit the adversarial miner gains from this attack, we

use Bitcoins’ difficulty recalculation function and assume a constant network
hashrate (with respect to the rest of the network, without the adversarial miner).
We denote the hashrate of miners not participating in the coin-hopping attack
as R0 in both C1 and C2, and we denote the hashrate of the adversarial miner as
Ra = R0 ·p, 0 < p < 1. Before epoch A the adversary is mining coin C2, thus the
difficulty of the C2 network is D0 = (R0+Ra)·|∆| (see Section 3.1 in [4]). During
the epoch A the difficulty of the C2 network is still D0, and A switches to mine
coin C1 at a difficulty D1 = R0 · |∆| calculated from honest miners hashrate R0

only. During the epoch B the adversary starts mining of C2, now at difficulty
D1, while honest miners on chain C1 continue to mine it with higher difficulty
D0. After that A continues to switch between chains C1 and C2 always mining
on the chain with lower difficulty D1, spending R0 · |∆| computational power
per block, whereas honest miners spend (R0 +Ra)|∆| computational power per
block.

Every epoch honest miners with hashrate R0 will generate M ·R0

R0+Ra
, blocks,

whereas A will generate M ·Ra
R0

blocks. IfW is block reward, the additional profit
of the adversary is calculated as the difference of what he mines based on the
lower difficulty in contrast to the difficulty he would mine at without hopping
between the coins:

W ·M · Ra

R0
−W ·M · Ra

R0 +Ra
=W ·M · R2

a

R0 · (Ra +R0)
=

=W ·M · R2
0 · p2

R0 · (R0 · p+R0)
=W ·M · p2

1 + p

(2)

Remarkably, under such an attack the mean time between blocks in both
chains C1 and C2 will be

Ta =
T

2
(
R0 +Ra

R0
+

R0

R0 +Ra
) = T (1 +

p2

2(1 + p)
) (3)

which is bigger than the planned time T .

4 Improved Difficulty Adjustment

The difficulty adjustment algorithm employed by Bitcoin works as designed: if
the hash rate of the network is constant, it yields to the desired block rate.
However it does not achieve the desired block rate in other situation, and is
vulnerable to the attack described in 3. In this section we propose an alternative
difficulty adjustment algorithm.

First, we state properties of an ideal difficulty update algorithm:

1. It should be resistant to known types of attacks based on difficulty manipu-
lation.

2. It should lead to an almost constant desired block rate for random fluctua-
tions in the network hashrate.

We propose a difficulty adjustment algorithm based on the well-known linear
least squares method[12], we name it linear algorithm. In the simplest case of
pair linear regression y = kx+ b, coefficients may be calculated as follows:{

k = xy−x̄ȳ

x2−x2

b = y − kx
(4)

Difficulty of the i − th epoch Di can be caclulated from the observed diffi-
culties of previous N epochs Di−1, ..., Di−N as follows:

k =
2
∑i−1
n=i−N (Dn·n)−(2i−N−1)·

∑i−1
n=i−N Dn

N((i−N)2+(i−1)2+(2i−N−1)2/2)

b =
∑i−1

n=i−N Dn/N − k(2i−N − 1)/2

Di = k · i+ b

(5)

Note that for accurate difficulty prediction we use N last observed difficulties,
rather than just one, as implemented in Bitcoin, but it is still possible to use
this algorithm right after the second epoch of the history.

The next section provides an evaluation of the linear algorithm.

5 Evaluation

In this section we present simulation results that show that the linear algorithm
proposed in Section 4 outperforms Bitcoin’s difficulty update algorithm in three
experiments. The first experiment is about exponential difficulty growth, which
is the worst case for the original algorithm, as the previous study [4] shows.
The second one is comparing two algorithm on real difficulty data from Bitcoin
history. In the third experiment we do comparison of algorithms for a case of
the coin-hopping attack. For all the experiments, N = 4 (we use data from last
4 epochs to calculate a difficulty value for a new epoch).

5.1 Exponential Difficulty Growth

First, we observe exponential difficulty growth, which occurs in practice in the
Bitcoin network. Exponential difficulty growth is the absolutely worst case pos-
sible for Bitcoin [4]. In the experiment we consider a situation where network
hashrate is increasing by 10% each epoch (more complicated research of expo-
nential difficulty growth can be found in [4]). Figure 1 presents how Bitcoin and
linear algorithms perform over epochs.

Fig. 1. Real difficulty values (red), values calculated by Bitcoin (black) and linear
(blue) algorithms

Note that the difficulty calculated from Bitcoin algorithm is always signif-
icantly lower than the real one. This leads to average delay between blocks of
about 9 min 5 sec, which is ≈10% lower than the planned 10 min value. Dif-
ficulties calculated by the linear algorithm are also always lower than the real
ones, but closer to them. Mean delay between blocks when linear algorithm is
used is about 9 min 45 sec, which is closer to the planned value. The algorithm
currently used in the Bitcoin network has an average error of about 9.1%, while
our algorithm has an error of about 1.9%.

While a difficulty readjustment algorithm proposed in [4] leads to better
results for exponential difficulty growth with a constant rate, we note that our
algorithm is simpler and can be implemented with integer arithmetic only.

5.2 Real Bitcoin Data

We compare the real Bitcoin network data with difficulty values calculated by
the algorithm used in Bitcoin, and we do the same with values calculated by the
linear algorithm.

Results show that in average Bitcoin algorithm has an error of about 12.3%
while our approach has an error of about 8.4%. Thus our approach performs
about 33% better than the approach currently used in the Bitcoin network.

5.3 Coin-hopping Attack

We consider the coin-hopping attack as described in the Section 3, with an
attacker possessing 20% of total computational power of network. The attacker
repeatedly turns on and then turns off his mining to manipulate difficulty and
produce more blocks. Figure 2 represents difficulty over epochs for this scenario.

Fig. 2. Real difficulties (red), difficulties calculated from Bitcoin (black) and lin-
ear (blue) algorithms in the coin-hopping attack

Note that the difficulty calculated with the Bitcoin algorithm is always in
antiphase with the real one. The Bitcoin difficulty update algorithm leads to 10
min 10 sec mean delay between blocks, which is in good correlation with the
Equation 3. The linear algorithm also leads to bigger than planned mean delay
between blocks of 10 min 5 sec, which is about two times lower difference in
comparison with the algorithm of Bitcoin. Obviously, the profit of the attacker
then is also 2 times lower.

Thus the linear difficulty control algorithm, proposed in Section 4 is better
than the one used in Bitcoin for the coin-hopping attack scenario, both in terms
of block rate and attacker’s profit.

References

1. S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System (2008). arXiv:

43543534534v343453, doi:10.1007/s10838-008-9062-0.
URL http://s.kwma.kr/pdf/Bitcoin/bitcoin.pdf

2. A. Miller, A. Juels, E. Shi, B. Parno, J. Katz, Permacoin: Repurposing bitcoin
work for data preservation, in: Security and Privacy (SP), 2014 IEEE Symposium
on, IEEE, 2014, pp. 475–490.

3. A. Biryukov, D. Khovratovich, Equihash: Asymmetric proof-of-work based on the
generalized birthday problem, Ledger 2.

4. D. Kraft, Difficulty control for blockchain-based consensus systems, Peer-to-Peer
Networking and Applications (2015) 1–17.

5. M. Rosenfeld, Analysis of bitcoin pooled mining reward systems, arXiv preprint
arXiv:1112.4980.

6. J. Garay, A. Kiayias, N. Leonardos, The bitcoin backbone protocol: Analysis and
applications, in: Advances in Cryptology-EUROCRYPT 2015, Springer, 2015, pp.
281–310.

7. J. A. Garay, A. Kiayias, N. Leonardos, The bitcoin backbone protocol with chains
of variable difficulty.

8. The timejacking attack.
URL http://culubas.blogspot.com

9. ArtForz, The time wrapping attack.
URL https://bitcointalk.org/index.php?topic=43692.msg521772#msg521772

10. L. Bahack, Theoretical bitcoin attacks with less than half of the computational
power, arXiv preprint arXiv:1312.7013.

11. I. Eyal, E. G. Sirer, Majority is not enough: Bitcoin mining is vulnerable, in:
Financial Cryptography and Data Security, Springer, 2014, pp. 436–454.

12. C. L. Lawson, R. J. Hanson, Solving least squares problems, Vol. 161, SIAM, 1974.

http://s.kwma.kr/pdf/Bitcoin/bitcoin.pdf
http://arxiv.org/abs/43543534534v343453
http://arxiv.org/abs/43543534534v343453
http://dx.doi.org/10.1007/s10838-008-9062-0
http://s.kwma.kr/pdf/Bitcoin/bitcoin.pdf
http://culubas.blogspot.com
http://culubas.blogspot.com
https://bitcointalk.org/index.php?topic=43692.msg521772#msg521772
https://bitcointalk.org/index.php?topic=43692.msg521772#msg521772

	Revisiting Difficulty Control for Blockchain Systems

