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Abstract. There is a recent trend in cryptography to construct protocols based on
the hardness of computing isogenies between supersingular elliptic curves. Two
prominent examples are Jao-De Feo’s key exchange protocol and the resulting
encryption scheme by De Feo-Jao-Plût. One particularity of the isogeny problems
underlying these protocols is that some additional information is given as input,
namely the image of some torsion points with order coprime to the isogeny. This
additional information was used in several active attacks against the protocols but
the current best passive attacks make no use of it at all.
In this paper, we provide new algorithms that exploit the additional information
provided in isogeny protocols to speed up the resolution of the underlying prob-
lems. Our techniques lead to heuristic polynomial-time key recovery on two non-
standard variants of De Feo-Jao-Plût’s protocols in plausible attack models. This
shows that at least some isogeny problems are easier to solve when additional
information is leaked.

1 Introduction

Following calls from major national security and standardization agencies, the next
cryptographic standards will have to be “post-quantum secure”, namely they will have
to rely on computational problems that will (at least to the best of our knowledge)
remain hard for quantum computers. Several directions are currently explored for post-
quantum cryptography, including lattice-based cryptography, code-based cryptography,
multivariate cryptography, hash-based cryptography and most recently cryptography
based on isogeny problems. The latter are appealing for their mathematical elegance
but also for the relatively small key sizes compared to other post-quantum candidates.

The interest in isogeny problems as potential cryptographic building blocks is rela-
tively new, and there has therefore not been much cryptanalytic work on them. The most
established isogeny problem is the endomorphism ring computation problem, which
was already considered by Kohel in his PhD thesis [12]. In the supersingular case this
problem is (heuristically at least) equivalent to the problem of computing an isogeny
between two randomly chosen curves [16], and it remains exponential time even for
quantum algorithms today.

The supersingular key exchange protocol of Jao-De Feo [11] and the encryption
scheme and signature schemes that are derived from it [7,9,25] rely on variants of these
problems, where special primes and relatively small degree isogenies are used. More
importantly for this paper, the attacker is also provided with the image by the isogeny
of a large torsion group, in addition to the origin and image curves. Although it was



observed that this additional information could a priori make the problems easier, all
security evaluations against passive attacks were based on a meet-in-the-middle strategy
that makes no use at all of it.

1.1 Contributions

In this paper, we study the impact of revealing the images of torsion points on the hard-
ness of isogeny problems. We provide new techniques to successively exploit this addi-
tional information and improve on the best previous attacks, namely meet-in-the-middle
attacks (see Section 2). Among other results, these techniques lead to polynomial-time
algorithms to compute isogenies between two curves E0 and E1 assuming

1. Some non scalar endomorphisms of E0 are known and/or are of small degree.
2. The images of N2 torsion points are revealed, where N2 is significantly larger than

the degree of the isogeny N1.

So far our techniques do not invalidate the parameters proposed in the original pro-
tocol (where N1 ≈ N2). However, we describe two natural variants, which we call un-
balanced variant and optimal degree variant, which can be attacked by our methods in
plausible attack scenarios. We believe these generalizations are of independent interest,
as they have some advantages over the original protocol when appropriate parameters
are chosen.

Our main contribution in this paper is our new attack techniques. We illustrate their
potential with the following results:

1. (Section 3.) A nearly square root speedup on the problem of computing an endo-
morphism of a supersingular elliptic curve of a certain degree, when provided with
some torsion point images through this endomorphism.

2. (Section 4.4.) A polynomial time key recovery attack on our optimal degree variant,
provided N2 > N4

1 and E0 is “special” (such special curves were suggested in
previous implementations [4, 7] for efficiency reasons).

3. (Section 4.5.) A polynomial time key recovery attack on both variants, provided
logN2 = O(log2N1) and E0 has a small degree non scalar endomorphism.

These attacks show that (at least some) isogeny problems are easier to solve when the
images of torsion points through the isogeny are revealed. Some of these attacks re-
quire further assumptions on N2; we refer to the next sections for details. We provide a
heuristic analysis for all these attacks. The heuristics used involve factorization patterns
and other properties of integers of particular forms appearing in our algorithms, which
we treat as random numbers of the same size. For the first two attacks these heuristics
are very plausible, and we believe that they can either be proved or made unnecessary
(though any of those options would require significant work). For the third attack they
are still a priori plausible, but they may be very hard to prove or remove. Indeed the
attack involves a recursive step, and a rigorous result would have to take into account
correlations between successive steps. For this reason we additionally provide some
experimental support for our third attack.
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We believe the three attacks we develop here are only some examples of what our new
techniques can achieve, and we leave further developments to further work.

1.2 Background Reading

We refer to the books of Silverman [19] and Vignéras [22] for background results on
elliptic curves and quaternion algebras. Recent cryptographic constructions based on
isogeny problems include [2,7,9,11,18,24]. Computational aspects related to isogenies
are covered in David Kohel’s PhD thesis [12] and more recently in [8, 9].

1.3 Complexity Model

Unless otherwise stated all complexity estimations in this paper use elementary bit-
wise operations as units. We use the standard “big O notation” to describe asymptotic
complexities of algorithms. Recall that for any two functions f, g : N → Z+ we have
f = O(g) if and only if there exists N ∈ N and c ∈ Z+ such that g(n) ≥ cf(n) for
any n ≥ N . We also use the “ big O tilde notation” to hide any polylogarithmic factors
in our complexity statements: namely for any two functions f, g : N → Z+ we have
f = Õ(g) when there exists d ∈ Z+ such that f = O(g logd g). The security levels of
the protocols studied in this paper are functions of one or several security parameters.
When we refer to “polynomial time” complexity we mean complexity O(f), where f
is a polynomial function of these security parameters.

1.4 Outline

In Section 2 we first describe the supersingular key exchange protocol of Jao-De Feo [11]
and our two variants of this protocol, then we recall the most relevant cryptanalysis re-
sults on it. In Section 3 we describe faster algorithms to compute an endomorphism
of a given supersingular elliptic curve, given the image of torsion points by this endo-
morphism. In Section 4 we turn to the problem of computing an isogeny between two
supersingular elliptic curves given the images of torsion points by this isogeny, and we
describe two attacks faster than the state-of-the-art meet-in-the-middle algorithm in this
context. Finally, we summarize the impact of our techniques and results in Section 5,
and we give perspectives for further work.

2 Supersingular Isogeny Key Exchange

2.1 Jao-De Feo’s Key Exchange

We recall the supersingular key exchange protocol of Jao-De Feo [11].

Setup. Let `1, `2 be two small primes. Given a security parameter λ, let e1, e2 be the
smallest integers such that `e11 , `

e2
2 ≥ 22λ (or 23λ for post-quantum security). Let f

be the smallest integer such that p = `e11 `
e2
2 f − 1 is prime. Let E0 be a supersingular

elliptic curve over Fp2 . Let P1, Q1 and P2, Q2 be respectively bases of the `e11 and `e22
torsions on E0.
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First round. Alice chooses a random cyclic subgroup of order `e11 , say G1 = 〈α1P1 +
β1Q1〉 with at least one of α1, β1 coprime to `1. She computes the corresponding
isogeny φ1 and image curve E1, as well as φ1(P2) and φ1(Q2). She sends E1, φ1(P2)
and φ1(Q2) to Bob. Bob proceeds similarly, permuting the roles of `1 and `2.

Second round. Upon receivingE2, φ2(P1) and φ2(Q1), Alice computesG′1 = 〈α1φ2(P1)+
β1φ2(Q1)〉, the corresponding isogeny φ′1, the image curve E12 = E/〈G1, G2〉 and its
j-invariant j12. Bob computes j21 = j12 similarly with the information sent by Alice.
The shared secret is the value j12 = j21, or the result of applying some key derivation
function to this value.

The protocol is summarized in the following commutative diagram:

E0

E1 = E0/G1

E2 = E0/G2

E12 = E0/〈G1, G2〉

φ1

φ2

This protocol can be broken if one can compute isogenies between two given curves.
However we stress that the curves appearing in this protocol are closer to each other
in the isogeny graphs than random curves would be: indeed for any fixed E0 there are
only (`i + 1)`ei−1i ≈ √p possible curves for E1, while there are roughly p/12 super-
singular j-invariants over Fp2 . This allows more efficient meet-in-the-middle attacks in
complexity Õ( 4

√
p) instead of Õ(

√
p) for a generic curve pair. More importantly for

this paper, some information on the isogenies is leaked by the protocol, as the image
of a full torsion coprime with the isogeny degree is revealed. Finally, special primes
are used to ensure that the `eii torsions are defined over Fp2 . For arbitrary p these tor-
sions subgroups would be defined over large field extensions, resulting in an inefficient
protocol.

Remark. Let N1 = `e11 . If the image of the N1 torsion by a degree N1 isogeny was
revealed it would be straightforward to recompute the isogeny, as this image would be
the kernel of the dual isogeny. More generally ifN1 is not coprime with the degree then
part of the isogeny can be recovered efficiently.

2.2 Unbalanced and Optimal Degree Variants

We now present two variants of the protocol, which we call unbalanced and optimal
degree variants.

Unbalanced variant. In their paper Jao and De Feo suggested parameters such that
`e11 ≈ `

e2
2 . We suggest to generalize the setup to allow for unbalanced parameters `e22 �

`e11 in some contexts. The size of `eii determines the security of the corresponding secret
key Gi with respect to all previous attacks (see next subsection), while the size of p
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would influence efficiency. Jao and De Feo therefore chose `e11 ≈ `e22 to provide the
same security level on both Alice and Bob’s ephemeral keys. However in some contexts
as in the public key encryption scheme [7] one secret key is static and it may therefore
make sense to protect it more strongly. This is achieved by our unbalanced variant.

In the unbalanced variant, the setup procedure takes two security parameters λ1 and
λ2 as input. For i = 1, 2 it computes the smallest integer ei such that `eii ,≥ 22λi (or 23λi
for post-quantum security), and then the smallest integer f such that p = `e11 `

e2
2 f − 1

is prime. The rest of the protocol is as in Jao and De Feo.

Optimal degree variant. We now generalize the parameters such that the isogeny de-
grees are large enough to ensure uniform distribution of Ei among all curves on the
isogeny graphs: we call the resultant protocol “optimal degree variant” for this reason.
In addition, this variant allows for arbitrary primes p rather than the very special primes
used by Jao and De Feo.

We recall that a numberN =
∏
peii isB-powersmooth if for all i we have peii < B.

In this paper we say that a number is powersmooth if it is B-powersmooth for some
bound B that is polynomial in the security parameter.

For an arbitrary prime p, we replace `e11 and `e22 in the protocol by any powersmooth
numbers N1 and N2 that are coprime to each other and of size about p2. Note that the
N1 and N2 torsions are a priori not defined over Fp2 ; however the powersmooth re-
quirement ensures that they can be efficiently represented in a Chinese remainder man-
ner (see [9]). On the other hand, the coprimality requirement ensures that the isogeny
diagram commutes as in the original protocol. Finally, the condition Ni ≈ p2 on the
isogeny degrees guarantees that E1 and E2 are close to uniformly distributed [9], while
for the original parameters and the unbalanced variant above we have N1N2 ≈ p.

In the optimal degree variant, the setup procedure takes a security parameter λ. It
chooses a random prime p with 2λ bits (or 3λ bits for post-quantum security). Then N1

and N2 are chosen coprime to each other, such that both of them are powersmooth and
have at least 2 log p bits. Then for each maximal prime power `ejj dividing either N1 or
N2 we fix a basis for the `ejj torsion. Note that this is defined over an extension field of
degree at most 2`ejj , which has a size polynomial in λ.

If N1 =
∏
p
ej
j then in the first round Alice chooses for each j one cyclic subgroup

G1j = 〈αjPj +βjQj〉 with at least one of αj , βj coprime to pj . This implicitly defines
a cyclic subgroup G1 of order N1 such that G1 = G1j mod E0[`

ej
j ]. She computes the

corresponding isogeny φ1 as a composition of isogenies of prime degrees, the image
curve E1 = E0/G1, and the image by φ1 of the `ejj torsion basis points, for each `ejj
dividing N2. Alice sends E1 and all torsion point images to Bob. Note that although
the torsion points and their images are defined over some field extensions, all isogenies
computed are defined over Fp2 . Moreover the degree of any extension field involved
is bounded by 2`

ej
j which is polynomial in the security parameter, so all elements can

be efficiently represented and the computation runs in polynomial time. Bob proceeds
similarly.

In the second round, Alice computes φ2(G1j) using the information sent by the
other party (as in the original protocol), then she computes E2/φ2(G1) as above, and
finally the j-invariant of this curve. Bob proceeds similarly.
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A first implementation of this variant is given in [3]. Because it allows both for
arbitrary primes and for “large enough” degree isogenies, the optimal degree variant
can a priori be more secure than the original protocol. On the other hand, working over
field extensions, even of moderate degrees, has a significant efficiency cost in practice.
We leave a precise complexity estimation and a thorough comparison of this variant
with the original protocol to further work.

Remark. Of course, one could also allow intermediate parameters where gcd(N1N2, (p+
1)2) is a medium size factor of (p + 1)2 to ensure that the primes are not too special
and at the same limit the size of the extension fields needed.

2.3 State-of-the Art on Cryptanalysis

We refer to [9] for a thorough discussion of existing cryptanalysis results, and only
describe the most relevant work for this paper. With the exception of active attacks in [8,
10, 21], previous cryptanalysis results have ignored the additional information revealed
in De Feo-Jao-Plût’s protocols. They therefore considered the following problem:

Problem 1 Let N be a positive integer, let p be a prime and let E1, E2 be two super-
singular elliptic curves defined over Fp2 , such that there exists an isogeny φ of degree
N such that E2 = E1/ kerφ. Compute φ.

Remark. The most natural representation of φ is some canonical representation as two
elements of the function field E1(x, y). In cryptographic contexts the degree of φ is of
exponential size so this representation is not efficient. However in these contexts the
degree is often a smooth number so that the isogeny can be efficiently returned as a
composition of rational maps.

When N is large enough any pair of elliptic curves are connected by an isogeny of
degree N , and this problem is heuristically equivalent to the endomorphism ring com-
putation problem [16]. In De Feo-Jao-Plût’s protocols, however, N = O(

√
p) is too

small to ensure this, and as N is moreover smooth one can do a meet-in-the-middle
attack with complexity Õ( 4

√
p) (respectively Õ( 6

√
p) with a quantum computer) even if

the endomorphism ring computation problem remains of complexity Õ(
√
p) (respec-

tively Õ( 3
√
p) with a quantum computer). We stress that the optimal degree variant we

introduced above does not suffer from this problem, as the isogeny degrees are chosen
large enough to ensure a uniform distribution of E2.

The following lemma generalizes the meet-in-the-middle strategy when the smooth-
ness bound on N is not polynomial in log p.

Lemma 1. Assume N = N1 · N2 where both N1 and N2 are B-smooth. Then the
meet-in-the-middle strategy has a time and memory complexity Õ(Bmax(N1, N2)),
neglecting log factors.

PROOF: The factorization of N can be obtained in subexponential time, which is neg-
ligible with respect to max(N1, N2). Isogenies of prime degree can be computed in
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quasilinear time in the degree. The meet-in-the-middle strategy computes O(N1) iso-
genies of degree N1 and O(N2) isogenies of degree N2, each of them as a composition
of isogenies of degrees at most B. �

The active attack presented in [8] runs O(log p) executions of the key exchange
protocol with the same party. Assuming this party uses a static secret key G1, the at-
tacker provides them with incorrect values for φ2(P1), φ2(Q1), observes variations in
the resulting shared key j(E12), and progressively deduces the key G1. The loop-abort
fault attack developed in [10] is similar to this attack. A fault attack is also used in [21]
to replace φ2(P1) and φ2(Q1) by points whose order is not coprime with the isogeny
degree. Our goal in this paper is to show how to exploit the “torsion image” informa-
tion revealed in De Feo-Jao-Plût’s protocols but using only passive attacks, namely for
normal executions of the protocols.

3 Computing an Endomorphism from Additional Information

From a computational number theory point of view, computing endomorphisms of a
curve is a somewhat more natural task than computing isogenies between two curves.
At the same time, there are strong relations between the two problems (see [9, 16]).
In this section we define an “endomorphism computation” counterpart to De Feo-Jao-
Plût’s isogeny problem, and we show how leaking the image of torsion points helps in
solving this problem.

3.1 Endomorphism Computation Problem with Additional Information

We consider the following problem:

Problem 2 Let p be a prime and let E be a supersingular elliptic curve defined over
Fp2 . Let φ be a non scalar endomorphism of E with smooth degree N1. Let N2 be a
smooth integer with gcd(N1, N2) = 1, and let P,Q be a basis of E[N2]. Let R be
a subring of End(E) that is either easy to compute, or given. Given E, P , Q, φ(P ),
φ(Q), deg φ, R, compute φ.

Remark. This problem is similar to the problem appearing in De Feo-Jao-Plût protocols,
with the additional requirement E1 = E2.

Remark. When no endomorphism subring is explicitly given one can take for R the
subring of scalar multiplications, which we will denote R = Z.

Remark. If we do not use the additional information the best algorithm for this problem
will be a meet-in-the-middle approach: compute all isogenies of degree approximately√
N1 from E and search for a collision. As N1 is smooth the cost for each isogeny is

polynomial, resulting in an algorithm with roughly Õ(
√
N1) complexity.
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Algorithm 1 Computing an Endomorphism from Additional Information
Require: As in Problem 2, plus parameter B.
Ensure: A description of φ as a composition of low degree maps.
1: Find N ′1 ∈ N and θ1, θ2 ∈ R such that deg(θ1φ+ θ2) = N ′1N2 and gcd(deg θ1, N1) = 1,

and such that N ′1 is B-smooth and as small as possible.
2: Compute kerψN2 using the additional information, where θ1φ + θ2 = ψN′1

ψN2 and
ψN′1

, ψN2 are respectively of degrees N ′1 and N2.
3: Compute ψN′1

using a meet-in-the-middle approach.
4: Compute kerφ = ker(θ−1

1 (ψN′1
ψN2 − θ2)) by evaluating all maps on the N1 torsion.

5: Compute φ from kerφ.

3.2 General Strategy

Our general strategy is summarized in Algorithm 1.
From what is given in the problem we can compute the image of φ on any point in

E[N2]. Let θ1, θ2 ∈ R be known endomorphisms of E, to which we associate another
endomorphism

ψ := θ1φ+ θ2.

Of course we do not know φ so far, but since we know θ1, θ2, and the action of φ on
E[N2] we can nevertheless evaluate ψ on any point of E[N2].

Let us now assume that the maps θ1, θ2 are chosen such that degψ = N ′1N2 for
some N ′1 ∈ Z. An algorithm to achieve that together with an additional smoothness
condition on N ′1 will be described in the next subsection for the case R = Z. The
endomorphism ψ can then be written as a composition of two isogenies

ψ = ψN ′1ψN2

with ψN ′1 and ψN2
respectively of degrees N ′1 and N2.

By computing ψ on a basis of E[N2] and solving some discrete logarithm problems
inE[N2] we deduce the kernel of ψN2

and then deduce ψN2
itself. This is efficient since

N2 is smooth by assumption.
At this point, the map ψN ′1 is an isogeny of degree N ′1 between two known j-

invariants, namely the curve image of ψN2
and the original curve E. We recover this

isogeny using the meet-in-the-middle approach analyzed in Lemma 1. The efficiency
of this step depends on the factorization of N ′1.

At this point, we have computed the map ψ as a composition ψ = ψN ′1ψN2 . We de-
duce an expression for φ, namely θ−11 (ψN ′1ψN2

−θ2), and assuming gcd(deg θ1, N1) =
1 we evaluate this map on the N1 torsion to identify kerφ, from which we recompute a
more canonical description of φ. This is efficient as N1 is smooth.

Remark. We do not use the additional information to compute ψN ′1 . Note that part of
the N2 torsion is annihilated by ψN2

, so we only know ψN ′1 and its dual on one cyclic
subgroup of the respective N2 torsions.
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Remark. There is no gain in generality in considering maps of the form ψ := θ1φθ3+θ2
for θ1, θ2, θ3 ∈ R. Indeed we have θ1φθ3 + θ2 = φ̂θ̂1θ3 + θ2 + Tr(θ1φ)θ3. Taking
conjugates we obtain an element ψ̂ = θ̂3θ1φ + θ̂2 + Tr(θ1φ)θ̂3 ∈ Rφ + R with the
same norm. Similarly, there is no gain in generality in using powers of φ since φ2 =
−(Trφ)φ− deg φ.

3.3 Attack whenR = Z

We first consider the most generic case where the only known endomorphisms of E are
scalar multiplications. We define

ψ = ψa,b = aφ+ b

for a, b ∈ Z, which has degree

degψa,b = a2 deg φ+ b2 + abTrφ =

(
b+ a

Trφ

2

)2

+ a2

(
deg φ−

(
Trφ

2

)2
)
.

Our goal is to find a, b such that degψa,b = N ′1N2, where N ′1 is as small and as smooth
as possible.

Parameter Restriction. The attack we describe below requires two assumptions on the
parameters.

1. We require N2 > 2
√
N1.

2. We also require that −D is a square modulo N2, where D = deg φ−
(

Tr(φ)
2

)2
.

Note that in the Jao-De Feo key exchange protocol we have N2 ≈ N1 so the first
assumption does not look too strong. By Hensel’s lifting lemma the second condition is
equivalent to −D being a square modulo every odd prime factor of N2 and congruent
to 1 modulo 8 when 2 divides N2. If we consider the endomorphism φ as fixed, this
condition restricts N2 values as follows:

– If N2 = `e is a prime power (as for Jao-De Feo’s parameters and the unbalanced
variant), the second condition is satisfied if and only if −D is a quadratic residue
modulo `, and heuristically we expect this to occur for half of the primes `.

– In our optimal degree variant, N2 is a powersmooth number whose prime factors
will be as small as possible. We can heuristically expect that about one half of these
prime factors `i will be such that −D is a quadratic residue modulo `i. There will
therefore exist a factor N ′2 of N2 such that N ′2 ≈

√
N2 and −D is a quadratic

residue modulo N ′2. Moreover if N2 ≈ N1 or bigger, we can use N ′2 in the attack
instead of N2, and still satisfy the first condition.

This suggests that the conditions above are relatively mild, in the sense that they are
satisfied for a large set of parameters with the expected forms. In the remaining of this
section we assume that both conditions above are satisfied.

9



Algorithm. Remember that from the additional information given in the problem we
can compute the image of φ on any point in E[N2]. Note that since N1 and N2 are
coprime, φ is a one-to-one map on E[N2]. From the relation φφ̂ = [deg φ] we can also
compute the image of any point in E[N2] by the dual map φ̂. We can therefore also
evaluate Tr(φ) on E[N2]. By solving a discrete logarithm problem in E[N2] we deduce
Tr(φ) mod N2. By the Cauchy-Schwarz inequality we also have Tr(φ) ≤ 2

√
deg φ

so under our first parameter restriction that N2 > 2
√
N1 we actually recover Tr(φ)

exactly.
Let D = deg φ− 1

4 (Tr(φ))
2 and let τ such that τ2 = −D mod N2. Such a τ exists

under our second parameter restriction, and can be efficiently computed using Tonelli-
Shanks algorithm and Hensel’s lifting lemma. Points (x, y) in the lattice generated by
the two vectors (N2, 0) and (τ, 1) correspond to solutions of the equation x2 +Dy2 =
0 mod N2. We compute a reduced basis for the lattice, with respect to a weighted inner
product norm where the second component is weighted by

√
D. This can be done in

polynomial time. Finally we let a := y0, b = x0 − Tr(φ)
2 y0 and N ′1 =

x2
0+Dy

2
0

N2
, where

(x0, y0) is a well-chosen short vector in the lattice.
To choose (x0, y0) we proceed as follows. Using the short basis computed above

we generate short vectors and compute the corresponding N ′1 values, until we obtain
N ′1 such that the meet-in-the-middle strategy is efficient enough (see Lemma 1).

Complexity analysis. We first analyze the expected norms of minimal lattice vectors.

Lemma 2. Under plausible heuristic assumptions, the shortest vectors in the lattice
have norm N ′1N2 where N ′1 ≈

√
N1.

PROOF: Heuristically, a proportion about 1/N2 pairs (x, y) will satisfy the congruence
x2 +Dy2 = 0 mod N2 so we expect xy ≈ N2. We can also expect that minimal vec-
tors (x, y) in the lattice have their coefficients balanced such that x2 ≈ Dy2 ≈ N ′1N2.
(If N2

2 < D then the smallest element will of course be (N2, 0), however by our pa-
rameter restriction we haveD ≈ N1 < N2

2 .) Combining all these approximations gives
(N ′1N2)

2 ≈ x2Dy2 = D(xy)2 ≈ DN2
2 , hence N ′1 ≈

√
D ≈

√
N1. �

By construction any lattice vector will have a norm divisible byN2. In our algorithm
we generate random short vectors until the cofactor N ′1 is smooth enough. To estimate
the number of random trials needed, we (heuristically) approximate the smoothness
probability of N ′1 by the smoothness probability of a random number of the same size.

For any positive integers X,Y , let π(X,Y ) be the proportion of integers smaller
thanX that are Y -smooth. For any positive integerX and any 0 ≤ α ≤ 1, let LX(α) =

exp(logX)α(log logX)1−α be the subexponential function. We recall the following well-
known fact [17]:

Lemma 3. For any 0 ≤ α ≤ 1 and any large enough X , we have π(X,LX(α)) ≈
(LX(1− α))−1.

We deduce the following result:

Proposition 1. Subject to the above parameter restrictions and under plausible heuris-
tic assumptions, Problem 2 can be solved in time O(N

1/4+ε
1 ) for any ε > 0.
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PROOF: The algorithm and heuristic assumptions required have been described earlier
in this section. The cost of the algorithm depends mostly on the smoothness bound
required on lattice vectors, which decides both the cost of finding a suitable vector and
the meet-in-the-middle cost needed to compute ψN ′1 .

Using a smoothness bound LN1
(α) for any 0 < α < 1, the cost of finding a suitable

vector in the lattice is bounded by (LN1
(1 − α))−1 << O(N

1/4+ε
1 ), and the meet-in-

the-middle computation has a cost Õ(N
1/4
1 LN1(α)) = O(N

1/4+ε
1 ) by Lemma 1. �

By exploiting the images of torsion points, our algorithm provides a near-square
root speedup for Problem 2 over the previous state-of-the-art algorithm.

Improvement when gcd(D,N2) 6= 1. For any r| gcd(D,N2) there exist a, b ∈ Z with
(aφ+ b)/r ∈ End(E) and r - gcd(a, b). Moreover we can normalize pairs of this form
such that a = 1. We can identify the corresponding correct b by trying every possibility
until φ + b annihilates the r torsion. This has a cost O(r). Alternatively we can solve
some discrete logarithm problems to find b in at most O(

√
r) operations. In any case

since N2 is smooth we can process small factors one at the time, and efficiently deduce
φ′ ∈ 1

rZ[1, φ]∩End(E), with a new D value D′ = D/ gcd(D,N2). Moreover we can
evaluate φ′ on the N2/ gcd(D,N2) torsion. Following the analysis above, we expect
that this will reduce the complexity by a factor

√
gcd(D,N2).

3.4 Variants and Extensions

We could consider variants of Problem 2 where information is given on several endo-
morphisms of a single curve, and develop similar attacks.

A particular case of interest is the case of subfield curves, namely curves defined
over Fp, when we can use R = Z+ πpZ where πp : (x, y)→ (xp, yp).

Remark. When E is defined over Fp one can compute the full endomorphism ring in
expected time Õ(p1/4) using the techniques of Delfs and Galbraith [6].

Under the (reasonable) parameter restriction that N2 > 2
√
N1 we can compute Trφ

as above, and substitute φ by φ′ = φ − Trφ
2 in the problem so that Trφ′ = 0. Let

∆ := deg φ′ = N1 − 1
4 (Trφ)

2. We can consider an endomorphism of the form

ψ = (aφ′ + b)πp + cφ′ + d,

with degree

degψ = (a2∆+ b2)p+ (c2∆+ d2) + Tr ((aφ′ + b)πp(−cφ′ + d))

= (a2∆+ b2)p+ (c2∆+ d2) + (ad− bc) Tr(φ′πp).

IfN2 > 2
√
N1pwe can evaluate Tr(πpφ′). We are then left with finding a, b, c, d,N ′1 ∈

Z such that degψ = N ′1N2 and moreover N ′1 is both small and smooth such that the
meet-in-the-middle strategy (Lemma 1) is efficient.

Note that for the minimal solution we expect a2pN1 ≈ b2N1 ≈ c2p ≈ d2 ≈ N ′1N2

and abcd ≈ N2, hence d4 ≈ N2N1p and N ′1 ≈ N
1/2
1 p1/2N

−1/2
2 . This means that if

N2 ≈ N1p we can expect a solution with N ′1 = O(1).
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Remark. The discussion in this section provides a reduction from an isogeny prob-
lem to a Diophantine equation problem, arguably a step forward in the cryptanalysis.
We leave the construction of an efficient (classical or quantum) algorithm to solve this
Diophantine equation to further work.

Remark. Efficient solutions for quaternary quadratic form equations exist over the ra-
tionals [5, 20]; however we are not aware of any efficient algorithm that would return
integer solutions.

4 Attacks on (Variants of) the Key Exchange Protocol

We now turn to isogeny problems with additional information, as in De Feo-Jao-Plût’s
protocols.

4.1 Problem Statement

In this section we consider the following problem.

Problem 3 Let p be a prime. Let N1, N2 ∈ Z be coprime. Let E0 be a supersingular
elliptic curve over Fp2 . Let φ1 : E0 → E1 be an isogeny of degree N1. Let R0, R1 be
subrings of End(E0), End(E1) respectively. Given N1, E1, R0, R1 and the image of
φ1 on the whole N2 torsion, compute φ1.

Remark. The most generic case for this problem is R0 = R1 = Z, namely only the
scalar multiplications are known (and do not need to be explicitly given). If E0 is de-
fined over Fp we can take R0 = Z[πp] where πp is the Frobenius. In some previous im-
plementation works [4, 7] it was suggested for efficiency reasons to use special curves
in the key exchange protocol, such as a curve with j-invariant j = 1728. In this case
we have R0 = End(E0), and moreover R0 contains some non scalar elements of small
degrees.

4.2 Attack Model and General Strategy

We provide algorithms that use the additional information provided by the image of
torsion points to solve Problem 3 with dramatic speedups compared to the basic meet-
in-the-middle strategy.

All our attacks assume that the subring of endomorphisms R0 contains more than
the scalar multiplications. They are particularly efficient when special curves E0 are
used, such as in [4, 7].

Another current limitation of our attacks is that they require N2 significantly larger
than N1. This condition could plausibly be met in practice (should this paper not have
warned against them!) in the following scenarios:

– In the unbalanced variant of the original protocol. We recall that this variant could
a priori have been used when one party uses a static key and the other party uses an
ephemeral key, as is the case for example in the public key encryption scheme.
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– In the optimal degree variant of the protocol, a server might have used a static key
and published the images of a very large torsion group E0[N2], for example to
allow connections with a wide range of clients using different sets of parameters.

Our basic strategy is as follows. For any known endomorphism θ ∈ End(E0) we
can consider the endomorphism φ = φ1θφ̂1 ∈ End(E1). Moreover if θ is non scalar
then φ is also non scalar. Using our knowledge of how φ1 acts on the N2 torsion we can
also evaluate φ on the N2 torsion, and hence apply the techniques from the previous
section. Once we have an expression for φ we can use it to evaluate φ1θφ̂1 on the N1

torsion. SinceN1 is smooth an easy discrete logarithm computation gives generators for
ker(φ1θφ̂1) ∩ E1[N1]. The latest group contains ker φ̂1 as a cyclic subgroup of order
N1. When it is cyclic we directly recover ker φ̂1 and deduce φ1; in Section 4.3 below
we show how to do it in the general case.

Remark. Our resolution strategy requires that R0 contains more than the scalar multi-
plications, as otherwise φ is just a scalar multiplication.

In Sections 4.4 and 4.5 below we give two examples of attacks that can be developed
using our techniques.

– The first attack assumes that E0 is defined over Fp, and moreover that E0 has a
small degree endomorphism ι such that Tr(ι) = Tr(ιπp) = 0. This is the case for
example if j(E0) = 1728. Currently the attack applies only to our optimal degree
variant. For well-chosen values of N2 larger than N4

1 the attack recovers the secret
key G1 in polynomial time.

– The second attack only requires that E0 has a small degree endomorphism, but
on the other hand it needs logN2 = O(log2N1) to recover the secret key G1

in polynomial time. This attack deviates from the basic strategy explained above
and it instead uses some recursive step. We provide a heuristic analysis and some
experimental support for this attack for both the unbalanced and the optimal degree
variants.

Both attacks are heuristic, as their analysis makes unproven assumptions on factor-
ization properties of certain numbers. We leave a better analysis, further variants and
improvements to further work.

4.3 Recovering φ1 from ker(φ1θφ̂1)

In the strategy outlined above we need to recover φ1 from ker(φ1θφ̂1). Here we give a
method to do this and we show that the method is efficient. For simplicity we assume
without loss of generality that deg θ is coprime with N1.

Let G := ker(φ1θφ̂1) ∩ E1[N1]. Clearly ker φ̂1 is a cyclic subgroup of order N1

in G. When G is cyclic this immediately gives ker φ̂1. When G is not cyclic, let M |N1

be the largest integer such that E1[M ] ⊂ G. The isogeny φ1 : E0 → E1 can be
decomposed as an isogeny φM of degree M from E0 to a curve EM , and a second
isogeny of degree N1/M from EM to E1. We denote by φN1/M the dual of this second
isogeny, namely φN1/M : E1 → EM and φ1 = φ̂N1/MφM . This is represented in the
picture below:
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E0 .EM E1

φM φN1/M

φ1

Clearly, recovering φM and φN1/M , or equivalently their kernels, is sufficient to recover
φ1. The second isogeny φN1/M is the easiest one to recover:

Lemma 4. We have kerφN1/M =M
(
ker(φ1θφ̂1) ∩ E1[N1]

)
.

PROOF: Clearly kerφN1/M =M ker φ̂1. The later is a cyclic subgroup ofM
(
ker(φ1θφ̂1) ∩ E1[N1]

)
of order N1/M . By our definition of M , the group M

(
ker(φ1θφ̂1) ∩ E1[N1]

)
is

cyclic, hence equal to M ker φ̂1 as well. �

We now focus on φM , and we first identify a property that its kernel must satisfy:

Lemma 5. We have θ(kerφM ) = kerφM .

PROOF: Equivalently, we want to prove θ−1(kerφM ) = kerφM . We have kerφM =

kerφ1 ∩E0[M ] = φ̂1(E1[M ]) and similarly θ−1(kerφM ) = θ−1(kerφ1) ∩E0[M ] =

ker(φ1θ)∩E0[M ], so we can rephrase the lemma as φ̂1(E1[M ]) = ker(φ1θ)∩E0[M ].
Since φ̂1(E1[N1]) is cyclic, so is φ̂1(E1[M ]). Therefore E1[M ] ⊂ ker(φ1θφ̂1) ∩

E1[M ] if and only if φ̂1(E1[M ]) ⊂ kerφ1θ.
By the definition of M we have E1[M ] ⊂ ker(φ1θφ̂1) ∩ E1[M ] so φ̂1(E1[M ]) ⊂

kerφ1θ. Moreover M is the largest such integer and φ̂1(E1[M ]) is cyclic, so the equal-
ity holds. �

As we know the endomorphism θ, we can evaluate its action on the M torsion and
identify potential candidates for kerφM .

Lemma 6. Let k be the number of distinct prime factors of M . Then there are at most
2k cyclic subgroups H of order M in E0[M ] such that θ(H) = H .

PROOF: Let {P,Q} be a basis for E0[M ], and let α, β be integers such that kerφM =
〈αP + βQ〉. We have gcd(α, β,M) = 1.

The action of θ on E0[M ] can be described by a matrix m =
(
a b
c d

)
∈ GL(2,ZM )

such that θ(P ) = aP + bQ and θ(Q) = cP + dQ. Moreover we have det(m) =
ad− bc = deg θ modM and Tr(m) = a+ d = Tr(θ) modM .

The condition θ(kerφM ) = kerφM from Lemma 5 now becomes

〈αP + βQ〉 = 〈(aα+ cβ)P + (bα+ dβ)Q〉

or equivalently
(aα+ cβ)β = (bα+ dβ)α modM,

or
cβ2 + (a− d)αβ − bα2 = 0 modM.
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The latest has solutions if and only the discriminant

(a− d)2 − 4bc = (Tr(θ))2 − 4 deg θ modM

is a quadratic residue, and this is the case by assumption. Clearly there are at most two
solutions modulo any prime `|M , and by Hensel’s lifting lemma a solution modulo a
prime `|M determines a unique solution modulo any power of ` dividing M . �

We remark that when N1 is smooth, our proof implicitly provides an efficient algo-
rithm to identify all the candidate kernels. When N1 is a prime power then k is at most
one, and we we are done. Our last lemma shows that for powersmooth numbers, the
expected value of k is small enough to allow a polynomial time exhaustive search of all
candidate kernels.

Lemma 7. Let N1 be a powersmooth number. Assume φ1 be chosen uniformly at ran-
dom among all isogenies of degreeN1 fromE0. Then the expected value of k is bounded
by 2 log logN1.

PROOF: Clearly the number of distinct prime factors of N1 is smaller than log2N1. In
the proof of the previous lemma we showed that for every prime ` dividingM |N1, there
are at most two candidate cyclic subgroupsH` such that θ(H`) = H`. We can therefore
bound the expected value of k by

E[k] ≤
∑

`|N1,` prime
`≤logN1

2

`+ 1
<

∑
`≤logN1

2

`
≈ 2

∫ logN1

1

1

`
≈ 2 log logN1.

�

4.4 Attack when E0 is special

In this section we focus on the optimal degree variant of the protocol. We assume E0 is
defined over Fp, so that End(E0) contains the Frobenius endomorphism πp : (x, y)→
(xp, yp). Moreover we assume End(E0) contains some non scalar element ι with small
norm q such that Tr(ι) = Tr(ιπp) = 0. (Maximal orders with minimal such ι were
called special in [13].) Then clearly the attacker knows πp and they can efficiently
compute ι by testing all isogenies of small degree. We consider an endomorphism of
E1 defined by

φ = φ1(aιπp + bπp + cι)φ̂1 + d,

with degree

deg φ = N2
1 pqa

2 +N2
1 pb

2 +N2
1 qc

2 + d2.
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Remark. There is no gain of generality in allowing scalar components in R0: indeed
φ1Zφ̂1 = N1Z ⊂ R1.

Similarly as before, our goal is now to find tuples of integers (a, b, c, d) such that
deg φ = N ′1N2 and N ′1 is small. We first discuss some elementary properties of the
solutions.

Lemma 8. Let (a, b, c, d) defining φ as above, with deg φ = N ′1N2 for some N ′1. Then

– N ′1N2 is a square modulo N2
1 ;

– except for “exceptional” parameters, N ′1N2 is not much smaller than N4
1 ;

– except for “exceptional” parameters, N1 is not much smaller than p.

PROOF: We have d2 = N ′1N2 mod N2
1 . For any N ′1 this defines d modulo N2

1 up to
sign, hence except for exceptional parameters d2 will not be much smaller than N4

1 . We
then have

pqa2 + pb2 + qc2 =
N ′1N2 − d2

N2
1

≈ N2
1 ,

and the value of c is defined modulo p up to sign (assuming such a value exists). Except
for exceptional parameters c2 will not be much smaller than p2, hence N1 will not be
much smaller than p. �

Parameter restriction. Recall that in this section we focus on the optimal degree variant,
hence N1 and N2 are powersmooth numbers. From now on, we assume that N1 > p,
that N2 ≈ N4

1 and that N2 is a square modulo N2
1 . This ensures that all the conditions

identified in Lemma 8 are satisfied provided N ′1 is a square modulo N2
1 .

Note that we can always ensure that a powersmooth number N2 is also a square
modulo N2

1 by dividing and/or multiplying it by a well-chosen small prime. In the first
case we will have to work with a slightly smaller N2 value in our attack, and in the
second case we will have to perform some small guess on the images of the full N2

torsion.

Algorithm. We now describe an algorithm that computes a tuple (a, b, c, d) that can
be used in our attack. We first attempt to find a solution with N ′1 = 1, and when this
fails we successively increase N ′1 to the next square. For a given N ′1, the value of d is
determined modulo N2

1 up to the sign. We try possible values of d until we find one
such that q · N

′
1N2−d2
N2

1
is a square modulo p. At this point we try random values for c

satisfying the congruence condition, until the equation

a2q + b2 =
N ′1N2 − d2 − pc2

pN2
1

has a solution, which we compute with Cornacchia’s algorithm. This algorithm is de-
tailed below in Algorithm 2.
The complexity of this algorithm is analyzed in the following lemma.
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Algorithm 2 Finding attack parameters when E0 is special
Require: N1, N2, q as above.
Ensure: Parameters (a, b, c, d) and N ′1 for an attack.
1: i← 1.
2: N ′1 ← i2.
3: Let d such that 0 ≤ d ≤ N2

1 and d2 = N ′1N2 mod N2
1 .

4: m← N′1N2−d2

N2
1

.
5: if mq is not a square modulo p then
6: if d < N ′1N2 −N2

1 then
7: d← d+N2

1 .
8: go to Step 4.
9: else

10: i← i+ 1.
11: go to Step 2.
12: Let ĉ such that 0 ≤ ĉ < p and qĉ2 = m mod p.
13: Let r be a random integer in [0,m/p].
14: c← ĉ+ rp.
15: n← N′1N2−d2−c2N2

1 q

N2
1p

.
16: if n has an easy factorization (for example if n is prime) then
17: Solve equation a2q + b2 = n with Cornacchia’s algorithm
18: if there is no solution then
19: go to Step 13.
20: return (a, b, c, d,N ′1).

Lemma 9. Let all parameters be restricted as above. Under plausible heuristic as-
sumptions Algorithm 2 terminates in polynomial time.

PROOF: Computing quadratic residues (Step 5), modular square roots (Steps 3 and 12)
and Cornacchia’s algorithm (Step 17) all run in polynomial time.

Heuristically, the quadratic residuosity condition in Step 5 will be satisfied for every
other value of d, so the algorithm will reach Step 12 with a very small value of N ′1.
Consequently in Step 4 we expect m =

N ′1N2−d2
N2

1
≈ N2

1 and in Step 13 we expect

m/p ≈ N2
1 /p > p. In Step 15 we expect n =

N ′1N2−d2−c2N2
1 q

N2
1 p

≈ N ′1N2

N2
1 p
≈ N ′1N

2
1

p >

N ′1p ≈ p.
As long as logN1 = O(log p), the expected number of random trials on c until n

is prime is therefore log n ≈ O(log p). Moreover by Dirichlet’s density theorem the
density of primes represented by the norm form a2q + b2 is 1/2H(q) >

√
q/2 where

H(q) <
√
q is the class number of Q[

√
−q]. Finally under the Generalized Riemann

Hypothesis we have q = O((log p)2) [1]. This shows that a polynomial number (in the
security parameter λ) of values r must be tested in Step 13 until a suitable one is found.
Since the expected size of m/p is bigger than p, the algorithm is expected to terminate
in polynomial time with a solution. �

We deduce the following:
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Proposition 2. LetN1 andN2 be powersmooth numbers as in our optimal degree vari-
ant of Jao-De Feo’s protocol. Assume moreover that N1 > p, that N2 ≈ N4

1 and that
N2 is a square modulo N2

1 . Then under plausible heuristic assumptions Problem 3 can
be solved in polynomial time when the initial curve E0 has j invariant j = 1728, or
more generally when the curve is “special” in the sense of [13].

Remark. In the original and unbalanced variants of the protocol we have N1N2 < p so
N ′1 > N2

1 p/N2 > N1, unless a = b = 0. In the next section we provide an attack that
works in this setting.

4.5 Attack whenR0 = Z + θZ (with deg θ small) andR1 = Z

An algorithm to recover φ using only the scalar multiplications of E1 and the image of
φ on the N2 torsion was described in Section 3.3. However this in combination with
our basic strategy above does not a priori provide any speedup on the straighforward
meet-in-the-middle approach. Indeed we have deg φ = N2

1 deg θ ≈ N2
1 in the most

favorable case (when deg θ = 1) so by the analysis of Section 3.3 we expect to have at
best N ′1 ≈

√
D ≈

√
deg φ ≈ N1. We therefore modify the basic strategy.

Modified Strategy. We adapt the techniques of Section 3.3 to reduce Problem 3 to
another instance of itself with smaller parameters N ′1 < N1/2 and N ′2 some factor of
N2. After repeating this reduction step O(logN1) times we end up with an instance of
Problem 3 where N1 is sufficiently small that it can be solved in polynomial time with
a meet-in-the-middle approach.

Parameter Restriction. We will require that End(E0) has some non scalar element θ
of small degree (which does not need to be explicitly given, as it can then be com-
puted efficiently by trying all isogenies of this degree). This is for example the case
in Costello et al.’s implementation [4] where j = 1728. In our reduction we will also
require N2/N

′
2 > 2N1∆θ where ∆θ = deg θ− 1

4 Tr
2 θ. This implies that we will need

to start with parameters such that logN2 is at leastO(log2N1). Note that in the original
De Feo-Jao-Plût protocols we had N1 ≈ N2.

Reduction Step. We fix some θ ∈ End(E0) with small norm q, and let Dθ := deg θ −
1
4 Tr

2 θ. Then we choose some factor Ñ2 ofN2 such that Ñ2 > KN1q for someK > 1,
and −Dθ is a square modulo Ñ2. We proceed as in Section 3.3 to compute a, b and
N ′1 such that deg(aφ1θφ̂1 + b) = N ′1Ñ2 and N ′1 is as small as possible. Namely, we
choose τ such that τ2 = −Dθ mod Ñ2, then we compute a short vector in a two-
dimensional lattice generated by two vectors (Ñ2, 0) and (τ, 1) with a weighted norm
||(x, y)|| = (x2 +Dθy

2)1/2, and we deduce a, b and N ′1. If N ′1 > N1/2 we start again
with a new square root of −Dθ modulo Ñ2, or with a new Ñ2 value.

IfN ′1 < N1/2 we define φN ′1 , φÑ2
two (still unknown) isogenies of degreesN ′1 and

Ñ2 such that aφ1θφ̂1 + b = φN ′1φÑ2
. We evaluate aφ1θφ̂1 + b on the Ñ2 torsion to

identify the Ñ2 part of the kernel of aφ1θφ̂1 + b, then the corresponding isogeny. We
evaluate this isogeny on the N ′2 = N2/Ñ2 torsion, and deduce the action of φN ′1 on the
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N ′2 torsion. We then apply the reduction step recursively to compute some representa-
tion of φN ′1 . Finally, we evaluate (φN ′1φÑ2

− b)/a on the N1 torsion to identify ker φ̂1,
and from there we compute a more canonical expression for φ.

Complexity analysis. Our reduction procedure implicitly relies on the following infor-
mal assumption:

Assumption 1 LetK > 1 be a “small” constant, and suppose thatDθ is “small”. The
probability that a “random” powersmooth value Ñ2 > KN1q leads to N ′1 < N1/2 is
“large”.

Note that following the analysis of Lemma 2 we expect to find N ′1 of size at most
N1

√
Dθ. Assumption 1 tells that with some probability on the choice of Ñ2, we can

find a value N ′1 smaller than this bound by at least a (small) factor 2
√
Dθ. This as-

sumption seems very plausible. Using lattice terminology, the expectation onN ′1 comes
from the well-known Gaussian heuristic, and Assumption 1 tells that the proportion of
lattices with small deviations from this heuristic is significant. In continued fraction
terminology, Assumption 1 considers the proportion of values Ñ2 such that some ra-
tional fraction approximation of τ/N1 is a little bit better than what is guaranteed by
the bounds, and tells that this proportion is significant. Finally, Assumption 1 receives
further support from our experiments described below.

We deduce the following result:

Proposition 3. LetN1 andN2 be coprime smooth numbers, with logN2 = O(log2N1).
Then under plausible heuristic assumptions Problem 3 can be solved in polynomial time
when the initial curve E0 has a small degree endomorphism.

PROOF: All subroutines in our reduction procedure require at most polynomial time,
and under Assumption 1 these steps will only be executed a polynomial number of
times. �

Remark. Suppose p = 3 mod 4 and suppose j0 = 1728 as in Costello et al.’s imple-
mentation [4]. In this case there exists a non scalar endomorphism ι ∈ End(E0) with
norm 1 and trace 0. Any θ ∈ End(E0) must either have a large norm or be of the form
θ = aι+ b for two small a, b ∈ Z. In the last case we then have ∆θ = a2, so −∆θ is a
square modulo some prime r if and only if −1 is a square modulo r. This implies that
no prime factor r ofN2 with r = 3 mod 4 can be used in our attack. On the other hand,
any prime factors with r = 1 mod 4 can be used in the attack.

Experiments for the optimal degree variant. We wrote a small Magma program [23]
to compute the successive pairs of parameters (a, b) to use in our attack, and test the
heuristic assumptions involved in our analysis (the code is available in the eprint ver-
sion of this paper [15]). In our experiments we generate random p values, choose N1

powersmooth and then search for a coprime Ñ2 > 2qN1 leading to N ′1 < N1/2q. We
repeat this recursively until N ′1 is small enough (smaller than some polylog bound in
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p). We used K = 2 in these experiments. For 80-bit security parameters our program
gives the parameters of an attack in a few seconds. The full attack requires isogenies of
degree at most about 36000.

Experiments for the unbalanced variant. We also ran attack experiments for the unbal-
anced protocol variant. In all experiments we took `1 = 2 and `2 = 5. We considered
values of e1 between 20 and 100, and we searched for the minimal value of e2 such
that the attack could reduce N1 to a value smaller than 100. Table 1 provides some suc-
cessful attack parameters. In addition to e1 and e2 it shows the value

⌈
e2 log2 5
e21

⌋
(which

seems close to a constant 1/2, as expected), the value K used for these parameters, and
the number of reduction steps used. Our Magma code is provided in the eprint version
of this paper [15].

Table 1. Some successful attack parameters against the unbalanced variant (`1 = 2 and `2 = 5)

e1 e2
⌈

e2 log2 5

e21

⌋
K # steps

20 102 0.59 50 11
30 194 0.50 50 17
40 330 0.48 50 22
50 405 0.38 10 30
60 610 0.39 10 38
70 1047 0.50 2 61
80 1473 0.53 2 72
90 1775 0.51 2 80

100 2180 0.51 2 90

Remark. The parameter K must be larger than 1 in our attack as N ′1 > N2
1 q/Ñ2 for

any a 6= 0. We experimentally observed thatK = 2 was sufficient in the optimal degree
variant to makeN1 decrease by a factor 2 at each reduction step. The unbalanced variant
leaves less flexibility in the parameter choice, so we did not impose a factor 2 decrease
onN1 (and in fact we even allowed it to increase in some reduction steps). We observed
that lower values of K were then sufficient. We have also observed experimentally that
the value of K has some moderate impact on the overall performances of the attack
(required size for N2, number of reduction steps). We leave a thorough investigation of
optimal parameter choices for our attack to further work.

Remark. When N2 is too small to execute O(logN1) reduction steps, then we may re-
place the missing last reduction steps by a final meet-in-the-middle strategy. Depending
on the final size of N ′1 and on its largest prime factor this may still provide some expo-
nential speedup over the basic meet-in-the-middle strategy. We note, however, that for
the original parameters proposed by Jao and De Feo, at most one recursive step can be
performed. In this case it might be possible to find some (exceptional) set of parameters
that would improve the best attack by a few bits, but for most parameters we do not
expect any savings.
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Possible Extensions. One can vary R0 and R1 depending on the attack model, or con-
sider variants of Problem 3 involving several isogenies, and derive similar attacks. We
leave details to the reader and further work.

5 Impact and Perspectives

The techniques developed in this paper solve some isogeny problems using the images
of certain torsion points by the isogenies. Such images are revealed in De Feo-Jao su-
persingular key exchange protocol as well as the public key encryption and signature
scheme that derive from it (see [7, 25] and the first signature scheme of [9]). Until now
all existing attacks against these protocols made no use at all of this auxiliary informa-
tion.

At the moment our techniques do not apply to the parameters originally proposed in
these protocols. However they apply on some natural variants of them, and they issue a
warning that the auxiliary information might weaken isogeny problems. One could also
fear that further developments of our techniques and particular attack models will be
able to threaten the original protocol itself.

In anticipation of potential future improvements of our attacks, we recommend to
avoid the use of special E0 in the protocols, as any (partial) knowledge of the endo-
morphism ring of E0 may a priori be useful to the attacker with our techniques. We
stress, however, that the only known algorithm to avoid special curves for E0 consists
in generating a special curve and then performing a random walk from there to obtain
a truly random curve; depending on the context this procedure might still allow some
form of backdoor attack. An algorithm that could generate a random supersingular j-
invariant without performing a random walk from a curve with known endomorphism
ring would be a handy tool for designing cryptosystems based on supersingular isogeny
problems. Of course, the algorithm may come with additional insight on the underlying
Mathematics, which might also help further cryptanalysis. We would like to encourage
research in this direction.

We note that the hash function proposed by Charles-Goren-Lauter [2] can also be
attacked when starting from a curve with known endomorphism ring. There is also a
corresponding “backdoor collision attack”; however the attack is less powerful than
above as it can be detected and any use of the backdoor will leak it. We refer to [16] for
details of this attack.

The second signature scheme of [9] relies on the endomorphism ring computation
problem for random curves, with no extra information leaked, and is not affected by our
techniques. In contrast to the isogeny problem variants considered in this paper, we are
not aware of any cryptanalysis result that affects the endomorphism ring computation
problem, and we believe that cryptosystems based on this problem offer the strongest
security guarantees in the area of isogeny-based cryptography. Of course, cryptanalysis
research in this direction is also fairly scarce despite some early work by Kohel [12],
and more cryptanalysis will be needed to gain confidence on their security.
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