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Abstract. Zero Knowledge Contingent Payment (ZKCP) protocols allow fair exchange of sold goods
and payments over the Bitcoin network. In this paper we point out two main shortcomings of current
proposals for ZKCP, and propose ways to address them.

First we show an attack that allows a buyer to learn partial information about the digital good being
sold, without paying for it. This break in the zero-knowledge condition of ZKCP is due to the fact that
in the protocols we attack, the buyer is allowed to choose common parameters that normally should be
selected by a trusted third party. We implemented and tested this attack: we present code that learns,
without paying, the value of a Sudoku cell in the “Pay-to-Sudoku” ZKCP implementation [18]. We also
present ways to fix this attack that do not require a trusted third party.

Second, we show that ZKCP are not suited for the purchase of digital services rather than goods.
Current constructions of ZKCP do not allow a seller to receive payments after proving that a certain
service has been rendered, but only for the sale of a specific digital good. We define the notion of
Zero-Knowledge Contingent Service Payment (ZKCSP) protocols and construct two new protocols, for
either public or private verification. We implemented our ZKCSP protocols for Proofs of Retrievability,
where a client pays the server for providing a proof that the client’s data is correctly stored by the
server.We also implement a secure ZKCP protocol for ”Pay-to-Sudoku” via our ZKCSP protocol, which
does not require a trusted third party.

A side product of our implementation effort is a new optimized circuit for SHA256 with less than a
quarter than the number of AND gates of the best previously publicly available one. Our new SHA256

circuit may be of independent use for circuit-based MPC and FHE protocols that require SHA256

circuits.

1 Introduction

The problem of fair exchange in which two parties want to swap digital goods such that neither
can cheat the other has been studied for decades, and indeed it has been shown that fairness
is unachievable without the aid of a trusted third party [23]. However, using Bitcoin or other
blockchain-based cryptocurrencies, it has been demonstrated that fair-exchange can be achieved in
a completely trustless manner. The previous results were not incorrect; a third party is definitely
necessary, but the key innovation that Bitcoin brings to fair exchange is that the blockchain can
fill the role of the trusted party, and essentially eliminate trust.

Consider Alice, an avid fan of brainteasers that has a Sudoku puzzle that she is stumped on.
After trying for days to solve the puzzle, Alice gives up and posts the puzzle on an online message
board proclaiming, “I will pay whoever provides me the solution to this puzzle”. Bob sees this
message, solves the puzzle, and wants to sell Alice the solution. But there’s a problem: Alice wants



Bob to first provide the solution so that she can verify it’s correct before she pays him, whereas
Bob insists that he will not send Alice the solution until he has been paid. This is the classical
problem of fair exchange: neither party wants to impart with its good before being sure that it will
receive the other good in exchange.

To solve this problem, Alice and Bob could use a blockchain. Bitcoin and other blockchain-based
cryptocurrencies allow one to post transactions that pay others and specify the conditions that
need to be met in order for the money to be claimed. Alice can post a payment transaction to the
blockchain that encodes the sudoku puzzle as well as the rules, and specifies that whoever provides
the correct solution can claim the funds. In essence, the blockchain here is serving the traditional
role of a trusted third party: Alice “deposits” funds in the blockchain, and the blockchain will only
release those funds to Bob once he provides the correct solution.

While in theory this would work, there’s one problem: Bitcoin’s scripting language is limited,
and does not allow one to directly specify arbitrary programs or conditions that are necessary
to spend money. Zero Knowledge Contingent Payment (ZKCP) protocols [18,13,37] to allow fair
exchange over the Bitcoin blockchain. The protocol makes use of a feature of the Bitcoin scripting
language that allows one to create a payment transaction that specifies a value y and allows anyone
who can provide a preimage k such that SHA256(k) = y to claim the bitcoins 5.

In the ZKCP protocol, Bob knows a solution s and encrypts the solution to the puzzle using a
key k such that Enck(s) = c. Bob also computes y such that SHA256(k) = y. He then sends Alice c
and y together with a zero-knowledge proof that c is an encryption of s under the key k and that
SHA256(k) = y. Once Alice has verified the proof, she creates a transaction to the blockchain that
pays Bob n bitcoins, and specifies that Bob can only claim the funds if he provides a value k′ such
that SHA256(k′) = y. Bob then published k and claims the funds. Alice, having learned k can now
decrypt c, and hence she learns s.

When ZKCP was first introduced in 2011 it was only theoretical as there was no known effi-
cient general purpose zero-knowledge protocol that could be used for the necessary proofs. Since
then, however, advances have been made in this area, and there are now general-purpose Suc-
cinct Non-Interactive Arguments of Knowledge (ZK-SNARK) protocols that allow for the practical
implementation of the necessary proofs. The protocol was refined to use SNARKs, and a sample-
implementation for the Sudoku problem was also made available [18].

1.1 Breaking ZKCP

All NIZK proofs require a trusted party to generate the common reference string (CRS) for the
production and the verification of the proof. The introduction of a third party, however, even to
generate the parameters, is undesirable – recall that the entire point of ZKCP is to solve the fair
exchange protocol in a completely trustless manner!

To eliminate the need for a trusted third party, proofs in ZKCP are made to convince one
person – the buyer. It was natural therefore, for the buyer to serve as the trusted third party.
Since the buyer trusts herself, she will be convinced of the correctness of the proofs. Using this
observation, the ZKCP protocol specifies that the buyer should generate the CRS, and indeed the
Sudoku implementation follows these guidelines.

But in ZKCP, there are two potential adversaries: the seller and the buyer. A malicious seller
would try to cheat by producing a false proof that convinces the buyer to send her money even

5 We are simplifying the protocol here. See Section 2.5 for full details.
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though she will not receive the solution. Indeed, the current protocol protects against this attack.
Since the buyer generates the CRS, the seller (prover) is unable to produce an incorrect proof that
will be accepted by the buyer (verifier).

But the buyer can also be malicious. Indeed, if the buyer is able to break the zero-knowledge
property of the proof, she may learn part of the solution from the seller even without paying!
Intuitively, the buyer can modify the CRS such that the proof that the seller provides actually
leaks some bits of the solution.

In the original SNARKs paper, it was assumed that the CRS was generated honestly, and in-
deed the proof of the zero-knowledge property made use of this fact [29]. When this assumption
is violated, a malicious party can craft a CRS that allows it to break the zero-knowledge property
and learn information about the witness. We note that if the Prover checks that the CRS is ”well
formed”, the SNARK in [29] remains Witness Indistinguishable (WI) – however this is not sufficient
since in this case the witness is the Sudoku solution which is unique (and therefore even if the pro-
tocol is WI, information can be learned about the witness). We also note that with some additional
more expensive checks, the SNARK in [29] remains ZK [7,28,1]. In ZKCP however neither of these
checks are performed, and therefore, a malicious buyer can generate a malicious CRS that allows
it to learn information from the seller’s proof without paying. We show an attack on the ”pay to
Sudoku” protocol that proceeds along these lines, and we also provide code [21,22] that implements
the attack and shows how one can break the zero-knowledge property and learn information in the
sample sudoku code [18].

1.2 Fixing ZKCP

While issues arise when the verifier generates the CRS, the ZKCP high-level idea remains elegant
and appealing. Therefore in Section 3.3 we discuss several ways to construct ZKCPs which do not
require the help of a trusted party.

One way is to require that the CRS is constructed via a two-party secure computation protocol
jointly by buyer and seller, a solution which allows them to “recycle” the CRS over several ZKCP
executions. A similar approach was adopted by the designers of Zcash [42].

Another way is to use the notion of Subversion-NIZK [7], where ZK is preserved even when
the verifier chooses the CRS. As we pointed out above, this requires the Prover to perform some
”well formedness” checks on the CRS, which however can be somewhat expensive (as opposed to
the minimal checks described in [29] to guarantee witness-indistinguishability).

At the end the simplest solution was to rely on a different type of protcol for Zero-Knowledge
Contingent Service Payments (ZKCSP) which we describe below.

1.3 Zero-Knowledge Contingent Service Payments (ZKCSP): paying for digital
services

We extend the idea of ZKCP to a new class of problems: paying for digital services.

Consider Alice, a user of a subscription online file storage service, FileBox. FileBox offers a
service that for a small fee, it will provide a succinct proof-of-retrievability (PoR) [43] to its users
demonstrating that all of that user’s files are being stored. Alice would like to pay for this service,
and thus we have a far exchange problem: Alice wants to pay once she receives proof that the files
are being stored, whereas FileBox will only send the proof once it has been paid.
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Notice that unlike the Sudoku example, Alice does not want any digital good (i.e. she doesn’t
want them to send her all the files). Instead, she just wants Filebox to demonstrate that they are
indeed still storing the files.

The ZKCP protocol will fail in this case. If we try to apply this protocol and view the PoR as
a ”good” that Alice wants to receive, then the first step of a ZKCP protocol is to have FileBox
create a proof that it has a PoR and send the encrypted PoR to Alice.

But a proof of a PoR is itself a PoR, and thus once Alice receives this zero-knowledge proof,
she can abort the protocol as she already received the proof that she desired without paying.

As a second motivation, consider an online Bitcoin exchange that will provide proofs of solvency
as a service for a fee. Often exchanges do not want to leak their inner details, and thus they may
use Provisions [24], a privacy-preserving proof of solvency that shows that they are solvent without
leaking their private accounting details. Bob stores his coins with this exchange and wishes to pay
for the proof, and thus a fair exchange situation arrives.

Again, if we try to apply a ZKCP protocol, it will fail. If the exchange gives a zero knowledge
proof of a proof of solvency, that itself is a proof of solvency, and Bob has received what he wants
and does not need to pay.

To address this issue, we introduce Zero-Knowledge Contingent Service Payments (ZKCSP).
To illustrate, let’s focus on the PoR example. Let v be the verification algorithm for the PoR. What
Alice wants then is for FileBox to demonstrate that it knows m such that v(m) = 1.

Intuitively, our ZKCSP protocol works as follows: The prover outputs a string y and gives a
zero-knowledge proof that attests to the following:

If v(m) = 1, then I know the preimage of y under SHA256. But, if v(m) = 0, then the
probability that I know a SHA256 preimage of y is negligible.

We only provide the intuition here, but in Section 4 we show how we can efficiently construct proofs
of this form. There we also prove that it is sufficient for the underlying SNARK to be Witness-
Indistinguishable, and therefore the security of the protocol can be achieved even if the Verifier
chooses the CRS, provided that the Prover performs the minimal checks required to guarantee
witness indistinguishability.

Other Applications of ZKCSP. Bug Bounty is another interesting application for ZKCSP. A
software company GoodCode Inc. releases a beta version of its new product and offers a reward
for people who find bugs in the code. Normally a ZKCP would suffice: the seller proves in ZK
that she found a bug, and the payment trigger the release of the code of the bug. But there may
be situation where just the knowledge of the existence of a bug can be valuable to GoodCode
(for example, knowing that there is a bug, they will delay release of the code, and avoid potential
costly damages). In this case a ZKCSP must be used to make sure that GoodCode pays for such
knowledge, and not just for the code of the bug.

In general any auditing or compliance application where the buyer is paying for this type of
services will require a ZKCSP rather than a ZKCP.

ZKCP via ZKCSP. Since ZKCP is a special case of ZKCSP we can use our ZKCSP protocol to
obtain a secure ZKCP scheme that does not require the prover to perform the expensive checks for
”subversion-ZK” but only the minimal checks to guarantee WI.
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1.4 Our Contributions

We make the following contributions:

Attacks and fixes on ZKCP: We show that the ZKCP protocol when instantiated as it is now,
is insecure, and develop several concrete attacks that allow a malicious buyer to learn information
about the witness without paying the seller. We implement our attack by writing code for a malicious
buyer that interacts with the unmodified implementation of the seller [18], and learns information
about the Sudoku solution. We discuss how to avoid these attacks and various possible solutions.

Zero-Knowledge Contingent Service Payments: We introduce this new notion, and provide
protocols for ZKCSP in both the public and private verifier setting. Again using our PoR example,
the public verifier setting is when one wants to perform the service for the general public. The
private verifier setting is when one wants to provide the service only for a specific individual.

Implementation: We implemented and tested the ZKCP attack. We also implemented and tested
our two new ZKCSP protocol, for the case of PoR, showing that they are feasible. Moreover we
implemented a secure Pay-to-Sudoku ZKCP via our ZKCSP protocol. Our code is available here
[21,22].

Improved SHA256 circuit: In the process of our implementation of the ZKCSP protocols, we
built a library for semi-automated boolean circuit generation. The SHA256 circuit that we produce
has 22,272 AND gates, whereas the best publicly available circuit had 90,825 AND gates [45]. We
released our SHA256 circuit together with our code as it may be of independent use for circuit-based
MPC and FHE protocols that require SHA256 circuits.

1.5 Other related work

In [6], Banasik et al. provide a ZKCP solution which avoids the use of NIZK by replacing the zero
knowledge proof with an interactive protocol performed online. Moreover they avoid using hash-
locked transactions since they claim that they are not standard and widely accepted in the Bitcoin
network6.

The protocol presented in [6] is vulnerable to the so-called mauling problem, where an adversary
which knows the hash identifier T of a transaction is able to come up with a hash identifier T ′ that
is semantically equivalent to T (i.e. spends the same transaction, has the same value, and the
same inputs and outputs). As the authors of [6] point out, there are many Bitcoin software clients
that cannot handle transactions appearing in the ledger with an hash identifier which is different
from the original one (namely, the one with which they were posted) [4]. This effectively makes
the transaction unredeemable, causing problems when creating Bitcoin contracts [3,4]. While the
authors acknowledge the mauling problem, their scheme only addresses mauling due to malleability
in ECDSA signatures, but does not address mauling due to changing the script.

An Ethereum-based contingent payment protocol is described by Tramer et al. in [46].

2 Preliminaries

2.1 Bitcoin and Ethereum

Bitcoin is a decentralized digital currency proposed in 2008 [38]. We present only the necessary
background for this paper here, but refer the reader to [17] and [39] for a detailed treatment.

6 To the best of our knowledge, this is not really a serious issue.
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Bitcoins are typically associated with addresses, and an address is just a hash of a public key.
To transfer bitcoins from one address to another, one crafts a transaction which lists one or more
input addresses from which the funds will be taken and one or more output addresses to which the
funds will be sent.

In order for a transaction to be valid, the transaction must be signed with the private keys
corresponding to the input addresses, the sum of the outputs must be less than or equal to the sum
of the inputs, and the inputs must not have previously been spent [38,12].

Signed transactions are broadcast to the Bitcoin peer-to-peer network. Miners check the validity
of transactions and group them into blocks. Miners participate in a distributed consensus protocol
that chains these blocks into an append-only global ledger called the block chain.

What we’ve described so far is a typical Bitcoin transaction, known as a Pay-to-PubkeyHash
transaction. However, for each output, the transaction includes a script written in a stack-based
programming language that specifies the conditions which must be met in order to spend this
output in the future. For each input address, the transaction contains a reference to a previous
transaction which listed this address as an output and specified the conditions required for it to be
spent.

For a Pay-to-PubkeyHash transaction, the output script simply specifies an address and that in
order to spend this output, one must sign with the associated private key. But Bitcoin scripts can
be more complex as well. The Bitcoin scripting language has a limited set of op codes or built-in
functions that can be used to create scripts.

Using the The OP SHA256 op code, the Bitcoin scripting language supports hash-locked trans-
actions that specify a value y and require that in order to spend this output, one must provide an
x such that SHA256(x) = y.

A feature that was not initially included in the scripting language but introduced in 2012 is Pay-
to-ScriptHash (P2SH) addresses. To redeem an output sent to a P2SH address, one must specify a
script that hashes to this address, and then meet the conditions specified in the script[14].

Bitcoin scripts now also support OP CHECKLOCKTIMEVERIFY and OP CHECKSEQUENCEVERIFY op codes.
The op codes allow one to specify execution paths in the spending scripts that can only be vali-
dated after some relative or absolute time. For example, one can send money to Alice’s address and
specify that after 24 hours if Alice has not redeemed the output, then Bob can claim it by signing
with his private key[14].
Although miners will accept the validity of all transactions that Bitcoin supports when included
in blocks that others mine, most miners will only include a smaller subset of those transactions in
the blocks that they construct. These are referred to “standard” transactions, and historically, this
mean that it was quite difficult to get nonstandard transactions onto the blockchain. In Bitcoin
today, however, this is no longer an issue since almost all scripts are now considered standard when
they are part of a P2SH transaction [2]. While Bitcoin’s scripting language contains another useful
op code, it is not a Turing-complete language and is limited in practice. Ethereum is another cryp-
tocurrency with a much more expressive scripting language that allows one to express arbitrary
programs as conditions for spending money. As transactions can specify arbitrary scripts, there is
no guarantee that they will ever halt. Each Ethereum transaction therefore contains gas, or money
that is sent to the miner to run the transaction. Every computational step has a fixed gas cost, and
the miner will only run the computation until it runs out of gas.

There is a global gas limit that specifies a maximum amount of gas that can be spent in a
single block, and consequently in a single transaction. Although in theory Ethereum scripts can
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support arbitrary programs, the current gas limits are quite restrictive and do not allow for complex
computations.

2.2 Cryptographic Definitions

In the rest of the paper we will use the term efficient algorithm to denote probabilistic algorithms
with a polynomial running time. Also we denote with neg(n) a negligible function defined over the
integers, meaning that for every polynomial P (·) we have that there exists an integer nP such that
for all n > nP , neg(n) ≤ 1

P (n) .

Claw free function pairs We start by recalling the definition of claw free function pairs.
Informally these are pairs of efficiently computable functions H1, H2 such that it is hard to find
x1, x2 with H1(x1) = H2(x2).

Definition 1. Let CFG(·) be an efficient algorithm that on input of a security parameter 1n outputs
two functions H1,n and H2,n with domain and image {0, 1}n. We say that CFG(·) is a claw free
function generator, and H1,n, H2,n are a claw-free pair if

– H1,n and H2,n can be efficiently computed
– for any efficient algorithm A we have that for

(H1,n, H2,n)← CFG(1n)

Pr[A(H1,n, H2,n) = (x1, x2) s.t.

H1,n(x1) = H2,n(x2)] ≤ neg(n)

Computational Indistinguishability Recall that two distributions are said to be computa-
tionally indistinguishable if no efficient algorithm can distinguish if elements are sampled according
to one or the other distribution.

Definition 2. Let D1,n,D2,n be two (family of) distributions defined over {0, 1}n . We say that
D1,n,D2,n are computationally indistinguishable if for any efficient algorithm A we have that

|Pr[x← D1,n ; A(x) = 1]− Pr[x← D2,n ; A(x) = 1]|
≤ neg(n)

2.3 Fair Exchange

In this section we recall the definition of fair exchange following previous work in [5,35]. We have
two parties Alice and Bob who want to exchange generic digital items. We know, due to a classic
result of Cleve [23], that in the presence of malicious parties a fair exchange is impossible: one
party will always have an advantage over the other. The traditional way to solve this problem is to
rely on an Arbiter, a trusted third party (TTP), which is assumed to be honest and will help Alice
and Bob exchange the items fairly. An optimistic fair exchange protocol involves the Arbiter only
if one of the two parties does not behave honestly and complications arise. Two honest parties can
exchange goods without involving the Arbiter.

The full definition in [5,35] involves also two other parties (assumed to also be honest): a Tracker
and a Bank. The former is used to make sure that the goods exchanged by the parties are the correct
ones, while the latter takes care of eventual payments and money exchanges. The verification of
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the digital goods is executed by the Tracker in a trusted off-line phase where parties are provided
with “verification keys” for the digital goods. For brevity’s sake we are not going to describe this
part and refer the reader to [5,35]. Instead we just assume that Alice’s and Bob’s inputs include
these verification keys, together with some public parameters.

Definition 3. A fair exchange protocol is a three-party communication protocol: Alice running
algorithm A, Bob running an algorithm B, and the Arbiter running a trusted algorithm T. All
parties run on input some public parameters PP, Alice runs on input fA, VA, Bob runs on input
fB, VB, and the Arbiter runs on a input skT .

We denote with [a, b]← [A(fA, VA), B(fB, VB), T (skT )] the event that at the end of the execution
of the protocol Alice outputs a and Bob outputs b, where a, b can be ⊥ meaning that the parties
reject the execution (e.g. their output is not valid according to their verification key – we assume
that the files fA, fB 6= ⊥).

Completeness: A fair exchange protocol is complete if the execution of the protocol by honest
parties results in Alice getting Bob’s files and viceversa:

Pr[ [fB, fA]← [A(fA, VA), B(fB, VB), T (skT )]] = 1

We say that a fair exchange is optimistic if the algorithm T is not invoked by the correct algorithms
A and B.

Fairness: Intuitively, fairness states that, at the end of the protocol, either Alice and Bob get valid
content (that is, content which passes the verification algorithm they were given by the Tracker),
or neither Alice nor Bob get anything which passes the verification procedure. The above informal
notion of fairness however does not capture the notion of partial information. It could be that a
possibly malicious B̂ learns something about a valid fA while A outputs ⊥. We strengthen the
definition of fairness to capture the fact that if an honest party outputs ⊥ then the other party
learns no information. This is captured by a standard simulation definition. We say that a protocol
is fair if for all efficient algorithms B̂ there exists an efficient simulator SimB̂ with oracle access to
T such that the two distributions

[⊥, SimT
B̂

(fB, VB, VA)]

and
[⊥, b]← [A(fA, VA), B̂(fB, VB), T (skT )]

are computationally indistinguishable. A dual condition must hold for any possibly malicious effi-
cient Â.

2.4 Smart Contracts: Fair Exchange over Blockchains

Assume that the exchange is a typical marketplace transaction, where A is a seller, fA is a digital
good, B is a buyer, and fB is money. If the money is implemented via a blockchain-based digital
currency such as Bitcoin, then one can leverage the assumption that the blockchain is a trusted
“entity” and use it as the arbiter in a fair exchange protocol. Since the blockchain is involved in
the transaction anyway, to transfer the money from the buyer to the seller, we can dispense with
the optimistic feature, and just use a protocol which always uses the arbiter.

These types of fair exchange over a blockchain have been called smart contracts and can be
abstracted to work in the following way. The buyer B posts a transaction on the blockchain that
basically says
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Transfer fB coins to the party who presents a string f that satisfies the verification algorithm
VB

Then A can post a transaction that says

Here is fA that satisfies VB. Transfer those fB coins to my address.

This type of transactions can be implemented over blockchains with sufficiently rich scripting lan-
guages: recall that a script is the program that needs to be executed in order to spend an output
on the blockchain. The scripting language in Ethereum [20,50] is sufficiently rich, and one can in
theory run any program as part of a transaction, which allows the execution of arbitrary contracts.
In practice, the gas cost and global gas limit the complexity of Ethereum scripts.

In the simplified transactions above, everybody will learn the object f being purchased by B.
But this problem can be avoided by changing the verification procedure accordingly. B could request
that the object f being purchased be encrypted under his public key, and published together with
a non-interactive zero-knowledge proof that f satisfies the verification algorithm VB. Note that
the latter is an NP statement so (at least in theory) it can be proven in zero-knowledge. One
interesting issue (which we discuss in Section 3) is how to actually implement this NIZK proof, and
in particular the selection of the common reference string that is needed by such proofs.

This type of smart contracts that allow parties to buy and sell knowledge in a trustless manner
have been named Zero-Knowledge Contingent Payments (ZKCP), and as we will show below ZKCP
protocols have been proposed over blockchain systems with more limited scripting language like
Bitcoin [13].

2.5 Zero-Knowledge Contingent Payments: Fair Exchange over Bitcoin

The problem with the smart contract described above is that it is not possible to implement it
directly in a Bitcoin transaction since the scripting language does not allow arbitrary verification
procedures. Recall from Section 2.1 that a hash-locked transaction allows a party to redeem a
transaction output if he/she produces the preimage (under SHA256) of a specific hashed value
included in the original transaction.

Using hash-locked transactions the following construction was originally presented by Maxwell
in 2011, and is now well known in the Bitcoin community [13,37]: Alice (seller) and Bob (buyer)
engage in an offline phase, where Alice encrypts the string fA with a key k (using any symmetric
encryption scheme E, i.e. AES) and publishes f̂ = Ek(fA) and s = SHA256(k) together with a ZK
proof that E−1

SHA256−1(s)
(f̂) satisfies the verification procedure VB. Again this is an NP statement

and therefore can be proven in ZK. Since this interaction between Alice and Bob will not be posted
on the blockchain, the proof could be performed interactively or non-interactively.

If the proof is correct, Bob then broadcasts the following transaction to be included in the
blockchain:

Transfer fB Bitcoins to the party who presents a SHA256 preimage of s and signs the trans-
action with pkAlice. If this output is still unspent after n blocks, then the bitcoins can be
claimed by pkBob.

At this point Alice can claim the coins by signing the transaction that publishes k, which in turn
will allow Bob to recover the digital good fA.
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Note that the transaction that Bob posts requires that the seller provides both the preimage
k as well as a signature. The reason that we also require a signature is to prevent a front-running
attack in which Alice broadcasts k to the network to claim the funds, but before Alice’s transaction
is included in a block, some other party (perhaps the miner) sees k and uses it to claim the funds for
themselves. To prevent this attack, the transaction requires Alice’s signature as well, which nobody
else can produce.

Also notice the second condition in the transaction that specifies that after a certain amount
of time elapses, Bob can himself claim the output of this transaction. This is a refund clause that
allows Bob to reclaim his output in case Alice decides not to post k. Without this clause, in the
event that Alice decides not to complete the protocol and publish k, Bob’s funds would be locked
up and he would neither have his money nor the string fA.

2.6 Example: Pay for Sudoku Solutions

When Maxwell first proposed ZKCP in 2011 it was only theoretical as there was no known efficient
general purpose zero-knowledge protocol that could be used. But advances since then in zero knowl-
edge protocols [29,25,10] have made this protocol feasible and indeed there is currently a publicly
available implementation of ZKCP for purchasing Sudoku solutions. Using the template above, the
string fA is the solution of an n× n input Sudoku table (which also specifies the verification algo-
rithm VB). The main challenge of course is the implementation of the ZK proof that the decryption
of f̂ under the preimage of s is indeed a valid Sudoku solution for the input Sudoku table. They
implemented this non-interactively, using the ZK Succint Non-Interactive Arguments of Knowledge
(ZK-SNARK) based on Quadratic Arithmetic Programs [29,40], using the libsnark library [8,11].

As with all NIZK proofs, QSP-based ZK-SNARGs require a common reference string (CRS) for
the production and the verification of the proof7. Such CRS should be selected by a trusted party
in advance, which is obviously non-ideal for ZKCP. The entire premise of ZKCP is to perform fair-
exchange over the blockchain in a trustless manner, and introducing a trusted third party would
largely defeat the purpose.

To get around this, it was noticed that unlike proofs which are produced to be verified by the
public, the ZK-proof in ZKCP only need to convince a single person – the buyer. In ZKCP it was
therefore proposed that the buyer (i.e. the verifier) generate the CRS, to ensure that the seller
could not cheat.

However, having the buyer generate the CRS is problematic as it only protects against a sound-
ness adversary but not a zero-knowledge adversary. With regards to the proof’s soundness property,
the seller is the adversary as the seller would benefit from producing an incorrect proof. However,
with regards to the proof’s zero-knowledge property, the buyer is the adversary as the buyer would
benefit from learning some information about fA without paying for it. If one generates the CRS
maliciously, and (as we show below) the CRS is not checked for “correctness”, they can break both
soundness and zero-knowledge.

Because the ZKCP protocol does not check the correctness of the CRS it only ensures that the
seller can not cheat, but it allows the buyer to cheat and extract information about the witness
fA without paying for it. In the next section we use this fact to show a concrete attack on the
ZKCP protocol that leaks information about the value of a Sudoku cell before the buyer pays for
the solution.

7 In the SNARKs literature, the CRS is sometimes referred to as the proving key and the verifying key.
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3 Attacks on ZKCP with untrusted CRS

In this section we show how allowing the Verifier to choose the CRS in the QAP-based SNARK
leads to a loss of the Zero-Knowledge property. While it is a well known fact in the cryptographic
literature that a trusted CRS is needed for zero-knowledge, the point of this section is to demonstrate
this insecurity by developing concrete attacks that allow one to learn information in the “Pay-to-
Sudoku” implementation, where the Verifier does indeed set the CRS. Through our attack, the
Verifier is able to verify if a particular guess for a Sudoku cell is correct or not. This obviously break
the fairness of the protocol (as defined in Section 2.3) since the buyer learns partial information
about the seller’s input.

First we recall how Quadratic Arithmetic Span programs work, since they are the proof backbone
of the libsnark library used in the implementation. Then we show our attacks, and describe our
implementation of the malicious verifier.

3.1 ZK-SNARKs from Quadratic Arithmetic Programs

We recall here the notion of Quadratic Arithmetic Programs (QAPs) [29,40], using the notation of
Ben-Sasson et al. [11].

Definition 4 ([29]). A QAP Q over a field F is defined by three sets of polynomials A :=
{Ai(x)}mi=0, B := {Bi(x)}mi=0, C := {Ci(x)}mi=0 and a target polynomial Z(x). If we take a func-
tion f : Fn → Fn′, then we say that Q computes f if, given a valid assignment (c1, . . . , cn+n′)
of inputs and outputs of f , there exist coefficients (cn+n′+1, . . . , cm) such that Z(x) divides the
following polynomial

p(x) :=
(
A0(x) +

m∑
k=1

ck ·Ak(x)
)
·
(
B0(x) +

m∑
k=1

ck ·Bk(x)
)
+

−
(
C0(x) +

m∑
k=1

ck · Ck(x)
)

In other words there must exists a polynomial H(x) such that p(x) = H(x) · Z(x). We refer to
m and the degree of Z(x) as the size and the degree of Q respectively.

To build a QAP for a function f , we use an arithmetic circuit C representing f ; we then pick
a distinct root rg for any of its multiplicative gates. Then, we build the target polynomial as

Z(z) :=
∏
g

(z− rg), and we label each input of the circuit and each output of a multiplicative gate

with an index i ∈ [m] (grouping together all the additive gates). We define the polynomials A,B,C
in a way that they respectively encode the left, right and output wire of each gate: for example,
Bi(rg) = 1 if the i-th wire of the circuit is a right input wire of the gate g, and Bi(rg) = 0 (and
similarly with A and C with left input and output wires respectively). So, for any gate g and its
root rg, the condition above can be seen as:

( m∑
k=1

ck ·Ak(rg)
)
·
( m∑
k=1

ck ·Bk(rg)
)

=

=
( ∑
k∈IL

ck ·Ak(rg)
)
·
( ∑
k∈IR

ck ·Bk(rg)
)

= cgCk(rg) = cg
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which basically says that the output of a multiplication gate is the multiplication between the
values on the left and the right inputs wire of the gate itself. Following the notation of [11], it is
now possible to use QAPs to build zk-SNARKs, as in [29,40]:

Public Parameters: pp := (r, e,P1,P2,G1,G2,GT ) where G1 := 〈P1〉,G2 := 〈P2〉,GT are
groups of prime order r and e : G1 ×G2 → GT is a pairing.

Key Generation The key generation procedure is composed by several steps, it takes in input
a circuit C : Fnr × Fhr → F`r and outputs a proving key pk and a verification key vk.

1. Compute (A,B,C,Z) with respect to the circuit C and extend A := {Ai(x)}mi=0, B :=
{Bi(x)}mi=0, C := {Ci(x)}mi=0 via Am+1 = Bm+2 = Cm+3 = Z, Am+2 = Am+3 = Bm+1 =
Bm+3 = Cm+1 = Cm+2 = 0.

2. Sample τ, ϕA, ϕB, αA, αB, αC , β, γ
$← Fr

3. For i = 0, . . . ,m+ 3, let

pkA,i := Ai(τ)ϕAP1, pk′A,i := Ai(τ)αAϕAP1
pkB,i := Bi(τ)ϕBP2, pk′B,i := Bi(τ)αBϕBP1
pkC,i := Ci(τ)ϕCP1, pk′C,i := Ci(τ)αCϕAϕBP1
pkK,i := β(Ai(τ)ϕA +Bi(τ)ϕB + Ci(τ)αCϕAϕB)P1

and for i = 0, . . . , d let pkH,i := τ iP1. Set

pk := (C, pkA, pk′A, pkB, pk′B, pkC , pk′C , pkK , pkH).
4. Let

vkA := αAP2, vkB := αBP1, vkC := αCP2
vkγ := γP2, vk1γβ := γβP1, vk2γβ := γβP2
vkZ := Z(τ)ϕAϕBP2
{vkIC,i}ni=0 := {Ai(τ)ϕAP1}ni=0.

Set
vk := (vkA, vkB, vkC , vkγ , vk

1
γβ, vk

2
γβ, vkZ , vkIC).

5. Output (pk, vk)

Prover: On input a proving key pk, an input x ∈ Fnr , a witness a ∈ Fhr , it outputs a proof π
which is computed as follows:

1. Compute (A,B,C,Z) with respect to the circuit C.
2. Compute the QAP witness s ∈ Fm with respect to C, x, a.

3. Sample δ1, δ2, δ3
$← Fr.

4. Compute the polynomial

H(z) := A(z)B(z)−C(z)
Z(z)

where
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A(z) := A0(z) +
∑m

i=1 siAi(z) + δ1Z(z),
B(z) := B0(z) +

∑m
i=1 siBi(z) + δ2Z(z),

C(z) := C0(z) +
∑m

i=1 siCi(z) + δ3Z(z).

and represent H(z) as (h0, . . . , hd) ∈ Fd+1
r

5. Set

p̃kA := (0n, pkA,n+1, . . . , pkA,m+3)

p̃k
′
A := (0n, pk′A,n+1, . . . , pkA,m+3).

6. Let c := (1, s, δ1, δ2, δ3) ∈ F4+m
r , compute

πA := 〈c, p̃kA〉, π′A := 〈c, p̃k′A〉,
πB := 〈c, pkB〉, π′B := 〈c, pk′B〉,
πC := 〈c, pkC〉, π′C := 〈c, pk′C〉,
πK := 〈c, pkK〉, πH := 〈h, pkK〉.

7. Output π := (πA, π
′
A, πB, π

′
B, πC , π

′
C , πK , πH).

Verifier: On input a verification key vk, an input x ∈ Fnr and a proof π, the verifier proceeds
as follows:

1. Compute vkx := vkIC,0 +
∑m

i=1 xivkIC,i ∈ G1.
2. Verify validity of knowledge commitments for A,B,C by checking:

e(πA, vkA) = e(π′A,P2), e(vkB, πB) = e(π′B,P2), e(πC , vkC) = e(π′C ,P2).

3. Verify that the same coefficients were used by checking:

e(πK , vkγ) = e(vkx + πA + πC , vk
2
γβ) · e(vk1γβ, πB).

4. Check QAP divisibility

e(vkx + πA, πB) = e(πH , vkZ) · e(πC ,P2).

5. Output 1 (accept) if and only if all the above checks are satisfied.

3.2 Learning Information by modifying the CRS

If a possibly malicious Verifier is allowed to set the CRS (as in the “Pay to Sudoku” (PtS) code
[18]), then there are a variety of attacks that can be attempted to learn information about the
Sudoku solution during the offline phase of the ZKCP (and therefore before the payment phase is
completed).

Changing the Circuit This is the easiest attack to consider. Recall that the CRS of a QAP-
based SNARK consists of an encoding of a QAP encoding of the function f that verifies the NP
witness held by the prover. A malicious verifier could just replace the CRS with the QAP encoding
of a modified function f̃ whose output directly leaks the needed information. In other words, the sets
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of polynomials A,B,C and C, and the polynomial Z would be modified to Ã, B̃, C̃, Z̃. Nevertheless
this trivial attack does not work in a libsnark implementation of QAP-based SNARKs. The reason
is that the QAP-encoding of a function f is a deterministic process, and in libsnark both prover
and verifier compute the polynomials A,B,C,Z on their own directly from a description of the
function f , and this leads to a straightforward detection of any change.

Learning one wire is sufficient We now point out that in the PtS implementation, for every
Sudoku cell, there are n wires w1, . . . , wn in the circuit C used in the SNARK, such that wj = 1 if
the cell is set to j in the solution, while all the other wires related to that cell are set to 0. Therefore
learning the value of the wire wj will allow us to learn if that particular cell is set to j or not. Recall
from the previous section that the value of the wires of C are the coefficients ci used to compute
the linear combinations so it is sufficient to learn cj . Note also that cj can only assume a binary
value. We now focus on attacks that allow us to compute a single coefficient cj .

Choosing τ as one of the roots of Z In the correct CRS generation, τ is chosen at random
in the field Fr. It turns out that if one selects τ as one of the roots of Z(x), then τ is also the root
of all the polynomials A,B,C except for one of them, say Bj(x), for which Bj(τ) 6= 0. In this case
the component πB of the proof produced by the prover reveals the value γj = cjφBP2 which allows
to recover cj since it can only assume a binary value. This attack is not detected in libsnark on
the prover side (it would be easily detected by checking the public key pk and see if it contains the
identity in either G1 or G2, but this check is not performed in libsnark). However the attack does
not work in the “Pay-to-Sudoku” ZKCP for a very interesting reason. The prover code actually
produces the “wire value leaking” proof πB without an error, but then before sending it out to
the Verifier, the PtS code has the Prover run a verification of its own proof π. This verification
fails because the polynomial H(x) is computed by dividing via the polynomial Z(x) and so when
evaluated at τ the QAP divisibility check fail. Moreover, because of an optimization step of the
verification procedure that does not expect to compute a pairing operation where the input in G2

is the identity, the proof fails even before getting to the QAP divisibility check (this will happen in
the verification equation since Z(τ) = 0 implies that vkZ = 0P2 = 0 ∈ G2 and this value is placed
in the G2 pairing input of one of the verification equations).

Setting all the pk equal to the identity, except for one wire This is the attack that
works. The attack is described in detail below, but here we give an informal explanation. Here τ
is selected at random, but it is not used to evaluate the polynomials. Similar to the attack above,
the malicious verifier will set all the pkA, pk

′
A, pkC , pk

′
C ∈ G1 equal to 0 instead of setting them as

the evaluation “in the exponent” of the polynomials A,C evaluated at τ . Similarly pkB,i = 0 ∈ G2

and pk′B,i = 0 ∈ G1 for all i 6= j and pkB,j = ϕBP2, pk′B,j = αBϕBP1 for known αB, ϕB. By
setting the pk, pk′ values this way, the proof π will reveal the value γj as above, and therefore the
value cj . Since the prover checks its own proof before releasing it, we need to make sure that the
proof verifies. We do that by setting pkH,i = 0 ∈ G1 which will force the value πH produced by the
prover to be πH = 0 ∈ G1. Moreover since all the identities are now only in the group G1, the error
caused by the optimization in the libsnark implementation will not appear and indeed the proof is
produced by the Prover (seller) and sent out to the Verifier (buyer), who will recover the value cj .

More in details:
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Public Parameters: Both the buyer and the prover get the public parameters and pp :=
(r, e,P1,P2,G1,G2,GT , C) which include the description of the circuit C.
Key Generation: The buyer takes the circuit C : Fnr ×Fhr → F`r and outputs a proving key pk
and a verification key vk as follows:

1. Honestly computes (A,B,C,Z) with respect to the circuit C, where A := {Ai(x)}mi=0, B :=
{Bi(x)}mi=0, C := {Ci(x)}mi=0.
Now he extends A,B,C via
Am+1 = Am+2 = Am+3 = 0,
Bm+1 = Bm+2 = Bm+3 = 0,
Cm+1 = Cm+2 = Cm+3 = 0.

2. Sample τ, ϕA, ϕB, αA, αB, αC , β, γ
$← Fr.

3. For i = 0, . . . ,m+ 3, let
pkA,i := 0 ∈ G1, pk′A,i := 0 ∈ G1,
pkB,i := 0 ∈ G2 for all i 6= j and pkB,j := ϕBP2,

pk′B,i := 0 ∈ G1 for all i 6= j and

pk′B,j = αBϕBP1,

pkC,i := 0 ∈ G1, pk′C,i := 0 ∈ G1,

pkK,i := 0 ∈ G1 for all i 6= j, pkK,j := βϕBP1.

For i = 0, . . . , d let pkH,i := 0 ∈ G1, and set

pk := (pkA, pk
′
A, pkB, pk

′
B, pkC , pk

′
C , pkK , pkH).

4. Let vkA := αAP2, vkB := αBP1, vkC := αCP2
vkγ := γP2, vk1γβ := γβP1, vk2γβ := γβP2
vkZ := Z(τ)ϕAϕBP2, {vkIC,i}ni=0 := {0 ∈ G1}ni=0 and set

vk := (vkA, vkB, vkC , vkγ , vk
1
γβ, vk

2
γβ, vkZ , vkIC).

5. Output (pk, vk)

It is not hard to see that all the verification equations are satisfied, and that the proof leaks
the value cj . If used against the PtS code for contingent payments for Sudoku solutions, this attack
allows to find out the value for a Sudoku cell with probability 1/9. We provide an implementation
for the attack above; see Section 5.1 for more details.

3.3 Countermeasures

In this section we show some possible countermeasures to our attack above.

Checking the CRS. As already discussed in the original paper on QSP/QAP [29] the prover can
check that the CRS is “correctly formed” and in this case the protocol is witness indistinguishable
(WI) [27]. In the QAP-based SNARK described in the previous section, it is sufficient that the
prover/seller checks that

– The polynomials A,B,C,Z are well formed with respect to the circuit C.
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– The elements pkAm+1 , pk′Am+1
, pk′Bm+2

, pkCm+3 , pk′Cm+3
are not equal to 0 ∈ G1 and the element

pkBm+2 is not equal to 0 ∈ G2

– All the elements pkH,i are not 0 ∈ G1.

– The element vkZ is such that vkZ 6= 0 ∈ G2.

since this will guarantee that the proof is a uniformly distributed random value no matter what
witness is used (see [29] ). This could be a good option for some applications of ZKCP, but un-
fortunately not for the PtS application since a Sudoku puzzle typically has only one solution and
witness indistinguishability guarantees only that proofs “look the same” no matter what witness is
used in the case that there are two or more such witnesses. It does not guarantee that no knowledge
is leaked about a unique witness.

Subversion Resistant ZK. In a recent paper Bellare et al. introduce the notion of Subversion
Zero Knowledge [7], i.e. the ability to prove ZK even when the CRS is maliciously selected by the
verifier. Note that given some well known impossibility results [31,30], the notion of ZK obtained
in this case is somewhat weak (ZK does not hold with respect to arbitrary auxiliary inputs the
verifier might have). One could then run a ZKCP with a subversion resistant ZK protocol.

The proposed solution in [7] is not a SNARK (the proof is not succinct), but it is not hard to
see that their techniques extend to the original QSP/QAP protocol in [29]. Indeed subversion-ZK
can be obtained as long as the above “WI checks” are performed and the value τ can be extracted
by the simulator from the Verifier when it produces the CRS. Following the approach in [7] one
could use a “knowledge of exponent” type of assumption to extract τ after checking that each pkH,i
is correct, i.e pkH,i = τ iP1. In the original QSP/QAP protocol in [29], where G1 = G2, this can
be checked using the bilinear map by checking that e(P1, pkH,i) = e(pkH,1, pkH,i−1) for all i. The
above intuition is actually formalized in [28] (a different subversion-ZK SNARK is presented in [1]).

Note that this check requires the computation of Θ(m) bilinear maps, a much more expensive
task than the simple checks required for WI. Moreover it is not clear if those techniques extend to
Pinocchio [40], the optimized version of the QSP/QAP protocol used by Libsnark [8], since in that
case G1 6= G2 and the above check cannot be performed. Our experimental results suggests
that running the subversion-resistant checks of [28] for the pay-to-sudoku example
would take more than an hour on our benchmark machine (see Section 5.2 for full details).

So to summarize, one could obtain (a weak non-aux input notion of) zero-knowledge by using
subversion resistant ZK, but it would require major changes in the current implementation of ZKCP
protocols, and increase the computation required of the Prover.

Distributed Generation of the CRS. Another possible solution is to have buyer and seller
run a two-party secure computation protocol to compute the CRS together. Note that due to the
algebraic structure of the CRS, this could be done via a much more efficient ad-hoc protocol, rather
than say a generic solution such as Yao’s protocol. A similar approach was followed by the designers
of Zcash [19,9] to remove a trusted generation of the CRS in their the QAP-based SNARKs8.

Using Contingent Payments for Services. At the end the best solution in our opinion is to
use the protocol for ZK Contingent Service Payments that we describe in the next Section.

8 We also point out that the CRS in their case is an “extended” version of the Pinocchio CRS, where both τ iP1 and
τ iP2 appear in the CRS. This allows anybody to verify the correctness of the CRS via bilinear maps. Moreover,
even if this CRS was computed by a single malicious party, rather than distributively, subversion ZK is guaranteed
since the value τ can be extracted via a “knowledge of exponent” type of assumption.

16



4 Contingent Service Payments

In this section we discuss Contingent Payments for services such as auditing. Consider for example
the case where Alice (the seller) is a data storage company, and Bob (the buyer) is a customer. Bob
will store his files with Alice, and will pay her for this service. Assume that the contract between
Bob and Alice is that periodically Alice will prove to Bob that his files are all correctly stored, and
upon that proof Bob will pay the contracted rent.

There are several cryptographic protocols that allow a data storage provider to efficiently prove
the integrity of the stored files to a customer. These are known under the name of Proofs of
Retrievability (PoR) [32] and they all work by requiring that the prover shows the possession of a
certain number of blocks previously authenticated by the client9.

This can be achieved easily using a smart contract over a blockchain with a sufficiently rich
scripting language. The client simply posts a transaction that pays whoever shows possession of
such authenticated blocks. When the server posts those blocks, it will receive payment and the
client will be assured all its files are still correctly stored.

But it does not work using the generic blueprint for ZKCP over Bitcoin described earlier. Indeed
that blueprint requires the Server to prove possession of such blocks during the offline phase, but
at this point the client has the desired knowledge (the server knows those blocks, therefore it must
know the entire file) without having paid for it, and indeed the client does not have to post the
payment transaction on the Bitcoin blockchain. The reason is that the ZKCP blueprint is designed
for the sale of digital goods, but not digital services. In the ZKCP protocol described earlier the
prover proves possession of a certain string, without revealing it, and the payment is contingent on
the disclosure of the string. But in this case it’s the proof of possession itself that is the valuable
“service” desired by the buyer.

In the following we show how to design a ZKCP for digital services such as auditing and the
other applications discussed in the Introduction.

4.1 Defining ZKCP for Services (ZKCSP)

We are looking for a protocol where a server A proves to a client B that he (the server) knows s
such f(s) = 1 for an efficiently computable verification function f : {0, 1}∗ → {0, 1} and needs to
be paid for this information. Informally the properties that we would like to have are

– If a possibly malicious Â is paid then Â must “known” a value s such that f(s) = 1;

– If a possibly malicious B̂ does not pay then B̂ has learned no information

– additionally, a possibly malicious B̂ who pays, learns only that A knows s such that f(s) = 1
and nothing else.

The latter condition can be relaxed in some settings, but by enforcing it we really limit the knowl-
edge disclosure from A to B to a minimum.

We use a trusted party T which models a blockchain. T maintains a ledger of all the “coin
balances” of each party. Moreover T accepts messages from A and B of only two types, and will
execute the instructions honestly:

9 Trivially the client can ask the prover to send back all the data originally stored and authenticated by the client,
but this is not efficient. PoR protocols allow the server to prove that all the data is there by showing only a small
number of blocks authenticated by the client (see appendix).
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Contingent Payments from B which are of the form

Transfer m of my coins to a party who publishes x such that when you run this program
P on x you get P (x) = 1

In this case T checks that B has more than m coins and if so accepts the message and publishes
it on the blockchain, otherwise it rejects it.

Redemption Payments from A which are of the form

Transfer m coins to my account since I am publishing x such that when you run P on x
you get P (x) = 1

In this case T checks that there is a previously accepted Contingent Payment message that
refers to this program P , and that P (x) = 1. If so it will posts the message to the blockchain
and will deduct m coins from the balance of the party B who posted the message, and adds has
those m coins to the balance of A.

A Zero-Knowledge Contingent Service Payment (ZKCSP) protocol is a three party protocol
defined by the interactive machines A,B, T where A runs on a private input s, and all parties run
on public input a function f . We define the view of B, V iewB̂(s, f) as his coin tosses together with
all the messages exchanged during the protocol:

V iewB̂(s, f) :=

[CoinsB̂||Messages[A(s, f), B̂(f), T (f)]||
Out(A(s, f), B̂(f), T (f)]

We say that (A,B, T ) is a secure ZKCSP protocol if the following conditions are satisfied (all
parties run on a security parameter 1n)

Extraction For any possibly malicious efficient Â, if at the end of the protocol Â’s balance increases
with non-negligible probability, then there exists an efficient extractor ExtÂ, which outputs a
string ŝ such that f(ŝ) = 1;

Zero-Knowledge For any possibly malicious efficient B̂, there exists an efficient simulator SimB̂
which on input f outputs a distribution which is computationally indistinguishable from V iewB̂(s, f);

4.2 A ZKCSP Protocol

Given that s is basically the witness of an NP statement, it is possible to construct NIZK proofs of
knowledge for it ([41] and the more recent literature on SNARKs [29,40,11]). If V is the program
that verifies this NIZK proof (using a trusted CRS) then it is easy to implement a ZKCSP over
any blockchain with sufficiently rich scripting languages such as Ethereum. The client B will post
the transaction

Transfer m of my coins to a party who publishes a proof π such that V (π) = 1

Once A publishes π she will get paid and B has confidence that A really knows s (with the
simulation and extraction procedures being guaranteed by the simulation and extraction procedure
of the NIZK used in the protocol). The question then is how to implement this over more limited
scripting languages, including Bitcoin. What follows is a protocol where the program P associated
with “payment transactions” can only be of the form “find a SHA256 preimage of a specified value”,
i.e. hash-locked transactions.
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Let H be a function H{0, 1}∗ → {0, 1}256 (i.e. like SHA256). Consider the following function

Ff,H : {0, 1}∗ × {0, 1}∗ → {0, 1}256

defined as follows

Ff,H(s, r) =

{
SHA256(r) if f(s) = 1

H(r) otherwise.
(1)

We are going to use F to design our new ZKCSP protocol as follows. Informally, the server/seller
will choose a random r and send to the client/buyer the value y = Ff,H(s, r) and proves using a
WI protocol that he knows inputs (s, r) such that y = Ff,H(s, r). Note that if f(s) = 1 then
y = SHA256(r), otherwise y = H(r). Moreover, if the output of H “looks like” the output of SHA256,
the client/buyer cannot tell at this point if the server actually knows a “good” s (i.e. f(s) = 1)
or not. To detect if this is the case or not should be contingent to a payment by the buyer who
therefore publishes the following transaction:

Transfer m Bitcoins to the party who presents a SHA256 preimage of y

If f(s) = 1 then the server/seller knows such a preimage (which is r), and can publish it to redeem
the payment. Moreover, if we assume that finding a SHA256 preimage of H(r) is hard, then the
seller cannot redeem payment when f(s) 6= 1.

More formally, let A denote the seller, B denote the buyer and T denote the blockchain:

Protocol 1

1. A on input s, chooses r at random in {0, 1}256 and computes y = Ff,H(s, r)
2. A sends y to B and the two parties engage in a WI proof that the seller knows r, s such

that y = Ff,H(s, r). If the proof fails, the buyer rejects and stops.
3. B posts a transaction to the Bitcoin blockchain to pay m Bitcoins to the party who presents
x such that SHA256(x) = y

4. A presents z to T . If SHA256(z) = y then T posts it and the seller redeems the Bitcoins,
otherwise the Bitcoins are returned to the buyer.

We can prove the following10:

Theorem 1. Assume that

– SHA256 and H are a claw-free pair

– the distributions SHA256(r) and H(r) for r chosen at random in {0, 1}256 are computationally
indistinguishable

then Protocol 1 is a secure ZKCSP protocol.

10 The assumptions underlying Theorem 1 are expressed in asymptotic terms but for sake of simplicity we are using
concrete security parameters and functions used by Bitcoin (e.g. SHA256, with 256 bits output etc). It is easy to
reframe the protocol description and the theorem using a security parameter
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Proof. (Sketch).
Extraction: Let Â be an efficient, possibly malicious seller. In step 2, Â runs a ZK proof of

knowledge of the values s, r which can therefore be extracted if the proof is successful. Assume for
sake of contradiction that f(s) 6= 1 and Â gets paid. By the correctness of the NIZK we know that
since f(s) 6= 1, then y = H(r). In Step 4 Â gets paid only if she produces z such that y = SHA256(z).
Therefore we have found a claw (r, z) for SHA256 and H, since SHA256(z) = H(r) = y.

Zero-Knowledge is a consequence of the witness indistinguishability of the proof in step 2,
and the computational indistinguishability of the output distributions of SHA256 and H. A bit more
formally, For step 1, SimB̂ will choose r, s at random and compute y = Ff,H(s, r). Note that the
message in step 1 is computationally indistinguishable from the message sent by the real A due
to the computational indistinguishability of the output distributions of SHA256 and H. For step 2,
SimB̂ will just run a ”real” proof that y = Ff,H(s, r): note that due to witness indistinguishability,
this proof is indistinguishable from a proof of a ”correct” proof when the witness is such that
f(s) = 1.

Letting B choose the CRS. Note that we only require the proof to be WI. If we were to use
a QSP-based SNARK, such as Libsnark, then (as already pointed out in [29]) the verifier B can
be allowed to select the CRS, provided the prover A performs some minimal correctness checks
(described in detail in Section 3.3).

4.3 An alternative ZKCP construction

The idea behind our ZKCSP can be used to build an alternative ZKCP protocol. Recall (using the
notation in Section 2.5) that in this case, Alice (the seller) wants to sell to Bob (the buyer) a string
fA that satisfies some verification procedure VB.

The basic idea remains the same: Alice encrypts the string fA with a key k (using any symmetric
encryption scheme E, i.e. AES) and publishes f̂ = Ek(fA) and y = SHA256(k). She then proves
(using a WI proof) that

y = GVB ,f̂ ,H(k) =

{
SHA256(k) if VB(Dk(f̂)) = 1

H(k) otherwise.
(2)

Note that in this case WI is sufficient since at the end of the protocol, Bob does not know if Alice
encrypted a valid string or garbage, and this guarantees that he learns no information about fA. At
the same time, he is guaranteed that if Alice presents a SHA256 preimage of y, then the encrypted
string must be valid and he will be able to recover it. Again relying simply on WI, removes the
need for a trusted party to generate the CRS, since Bob can be allowed to generate it, provided
that Alice performs the minimal checks to guarantee WI (described in Section 3.3) and without
having to resort to the heavy tests required by subversion-ZK.

4.4 A Protocol with private verification

In the protocol above we assumed a scenario in which anybody can verify that s is “correct” (i.e.
f(s) = 1). There are however situations in which the buyer is the only one who can verify the
correctness of s. In other words the buyer is only interested in s such that f(k, s) = 1 where k is
a secret “key” held by the buyer. In this case we modify the protocol to have the parties jointly
compute the following function
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F ′f,H(k, s, r) =

{
SHA256(r) if f(k, s) = 1

H(r) otherwise.
(3)

Because both buyer and seller want to keep k and s secret respectively, they will have to use a secure
two-party computation protocol, such as Yao’s garbled circuit [51] to compute F ′. It is important
to use a two-party computation protocol which is secure against malicious players. The protocol is
described below

Protocol 2

1. A on input s, chooses r at random in {0, 1}256
2. Using a 2-party computation protocol, secure against malicious players, A and B jointly

compute y = F ′f,H(k, s, r) where k is B’s private input.
3. B posts a transaction to the Bitcoin blockchain to pay m Bitcoins to the party who presents
x such that SHA256(x) = y

4. A presents z to T . If SHA256(z) = y then T posts it and the seller redeems the Bitcoins,
otherwise the Bitcoins are returned to the buyer.

Theorem 2. Assume that

– SHA256 and H are a claw-free pair

– the distributions SHA256(r) and H(r) for r chosen at random in {0, 1}256 are computationally
indistinguishable

then Protocol 2 is a secure ZKCSP protocol.

Proof. (Sketch).

Extraction: Let Â be an efficient, possibly malicious seller. In step 2, Â runs two-party com-
putation protocol which is secure against a malicious adversary. Such protocols require the ability
to extract the input during the simulation [36], so we use the simulator of the two-party proto-
col to extract r, s. Now the proof continues as in the proof of Theorem 1. Assume for sake of
contradiction tha f(k, s) 6= 1 and Â gets paid. By the correctness of the two-party computation
protocol we know that since f(k, s) 6= 1, then y = H(r). In Step 4 Â gets paid only if she pro-
duces z such that y = SHA256(z). Therefore we have found a claw (r, z) for SHA256 and H, since
SHA256(z) = H(r) = y.

Zero-Knowledge is a consequence of the simulatability of the two-party protocol in step 2,
and the computational indistinguishability of the output distributions of SHA256 and H. A bit more
formally, For steps 1 and 2, SimB̂ will choose r at random and compute y = SHA256(r) and simulate
the two-party computation with y as output. Now if A has a correct s then step 4 will be executed
and the simulator will simulate it perfectly by releasing a SHA256 preimage of y. If A did not have
a correct s, then step 4 is a message between A and T but is not posted to the blockchain and
therefore does not belong to the view of B̂ and the simulator does not have to simulate it.
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5 Implementation

In this section we discuss our implementation work on: the attack against Maxwell’s ZKCP; a proof
of concept of our protocol for ZKCP for Services; a more efficient SHA256 circuit implementation
(used in Protocol 2). The code is available at [21,22]. All benchmarks in this section were evaluated
on a Debian 3.16.39-1 x86 64 GNU/Linux Virtual Machine (virtual CPU and RAM respectively
2.4 GhZ and 3.5 GB).

5.1 Pay-to-Sudoku

Attack. We modified the Pay-to-Sudoku’s code [18] in a way that allows a malicious buyer to
learn information about the value of a cell of the Sudoku solution without paying for it. To do
that we created a modified version of libsnark that implements the attack described in Section
3 (under “Setting all the pk equal to the identity except for one wire”). The malicious buyer can
generate a CRS running this code and find out the exact value of a cell with probability at least
1/9 from the proof received by the seller. Note that the seller in [18] does not find out the CRS was
generated maliciously and that we did not modify any code involving the Sudoku solution seller or
the prover in libsnark.

Alternative Pay-to-Sudoku. We also implemented our alternative ZKCP protocol using only
WI proofs (described in Section 4.3) for the case of Pay-to-Sudoku. In our protocol the prover runs a
bit slower than the insecure original protocol due to the fact that the proof is run over a larger circuit
(verification time is basically unchanged as to be expected in the case of QSP-based protocols). On
the other hand, the cost of the expensive subversion-ZK CRS checks to the original Pay-to-Sudoku
protocol dominates the overhead of the larger circuit in our protocol (which does not require such
expensive checks). In particular, our results suggest that the proving process would require
more than an hour in total (instead of a few seconds without the ZK-subversion checks). This
time has been obtained by computing tP · nP , where tP is the experimental estimate for the the
average time per pairing check (i.e. 4.50 ms) and nP is the number of pairing checks for subversion-
ZK in [28]. A lower bound on nP is 7m where m is the number of constraints. The quantity m
is sligthly greater than 115K for Pay-to-Sudoku. In these benchmarks we used curve ALT BN128,
the same originally used in Pay-to-Sudoku. Table 1 summarizes the performance comparison.

ZKCSP
for Sudoku
with WI
checks

Pay-to-
Sudoku
with
Subversion-
ZK

Key Generation 54 s 22s

Proof 10900 ms > 1 hour
(5500 ms
without
checks)

Verification 25 ms 24 ms
Table 1. Estimated Running Time for Contingent Payment for Sudoku with checked CRS
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5.2 Proofs of Retrievability (PoR) over Bitcoin

As a proof of concept, we provide an implementation for a ZKCSP for Auditing of Proofs of
Retrievability (PoR). Our implementation is based on the PoR scheme in [44] (See Appendix for
details of the the scheme). In the context of PoR, a party delegates storage of her data to a server. A
PoR scheme consists of an (efficient) protocol by which the delegator can verify at any time whether
the server is still keeping her data intact. Our protocol allows the client to pay the server if such
verification procedure succeeds. The PoR scheme in [44] can be instantiated both as privately and
publicly verifiable (see appendix for details). For this application, the curve we used in libsnark

was MNT6. Although less efficient than BN128 or ALT BN128, this curve was one of the few ones
which offered verification gadgets for pairings.

Private Verification. In this case the PoR scheme in [44] reduces to the verification of a
(linearly homomorphic) MAC jointly by the server and the client. Here the PoR is successful if the
server proves to the client that it knows s = (m, t) such that t = MACk(m) where k is the secret
authentication key of the client.

We used Protocol 2 described in Section 4.4 where f(k, s) = 1 if and only if s = (m, t) and
t = MACk(m). We implemented a two-party protocol for the computation of the associated function
F ′ using the SCAPI library [26] following [48]. We used λ = 128 bits of computational security
and ρ = 80 bits of statistical security. We chose a Carter-Wegman [49] style MAC, specifically the
one in [34]. The circuit has 150441 gates and 151017 wires. The number of input wires for the two
parties, seller and buyer, are respectively 416 and 160. The output of the circuit is 256 bits. See
Table 2 for evaluation of running time and bandwidth.

Bandwidth (KB) Time (ms)

Garbler 38879 155

Evaluator 51 159
Table 2. Stats for Fair Auditing of Privately Verifiable PoR with Secure Two Party Computation.

Public Verification. In this case the PoR scheme in [44] reduces to the verification of a (linearly
homomorphic) signature scheme, specifically the BLS scheme from [15]. More specifically the PoR
is succesfull if the server proves to the client that it knows s = (m,σ) such that V er(PK,m, σ) = 1
where V er is the verification algorithm of the BLS signature scheme, and PK is the public key of
the client.

In this case we used Protocol 1 described in Section 4.2 where f(s) = 1 if and only if s = (m,σ)
and V er(PK,m, σ) = 1. We implemented ZK-SNARK to enable the server to prove that she
knows (s, r) such that y = Ff,H(s, r). This proof was implemented in C++ using libsnark [11].
The function F was described in libsnark as set of constraints called Rank-One Constraint System
(R1CS). Implementing the above F we obtained a R1CS system with 39409 constraints. In this
setting we used λ = 80 bits of computational security. See Table 3 for evaluation of running time
and bandwidth.

For

Generation of the CRS The timing results in the tables above refer to a Key Generation
performed by a trusted party.
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Bandwidth Time (ms)

Key Generation pk : 41959 KB
sk : 13 KB

14041

Proof 374 bytes 3287

Verification — 37
Table 3. Stats for Fair Auditing of Publicly Verifiable PoR with SNARKs.

5.3 A More Efficient SHA256 Circuit Implementation

SCAPI and other cryptographic libraries require the user to supply the circuit for the function that
want to compute. Building a circuit file in this format is complex, and there is a library of such
circuit files made available by researchers at Bristol University [45].

As part of the implementation in the proof of concept above, we constructed a new optimized
reusable boolean circuit for SHA256. Our circuit may be of independent use for circuit-based MPC
and FHE protocols that require SHA256 computations.

To the best of our knowledge, the only other re-usable circuit implementation openly available
for SHA256 was developed the Bristol circuit. See Table 4 for a comparison of the circuit parameters
between the Bristol circuit and ours. Our circuit compares favorably both with respect to the total
number of gates and to the number of AND gates. The latter parameter is particularly important if
one intends to use SHA256 in Secure Multi-Party Computation. In fact, in modern MPC protocols
the number of AND gates dominates the total evaluation cost thanks to a technique called Free-
XOR [33] which evaluates XOR gates “for free”. In the process of building our SHA256 circuit we
developed a library for semi-automated generation of optimized boolean circuits which we believe
may be of independent interest. We stress that our contribution here is not the optimizations
themselves as they were mostly straightforward from the SHA2 specification, but or contributions
is the the optimized implementation of SHA2 in a boolean circuit format that can be reused by
other cryptographic libraries and protocols.

Bristol Circuit Our Circuit

Total gates 236112 116245

AND gates 90825 22272

XOR gates 42029 91780

INV gates 103258 2194
Table 4. Number of gates in SHA256 circuit implementations.
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A APPENDIX: The Shacham/Waters POR Scheme

A Proof of Retrievability (PoR) scheme involves a client C, who outsources some data, and a server
S who is supposed to store them, in a way that he can prove to a verifier that he is actually stor-
ing the client’s data. In [43], Shacham and Waters presented two compact proof of retrievability
schemes, one with private and another with public verifiability. The first one is based on PRFs and
secure in the standard model, the second one based on BLS signatures [16], secure in the Random
Oracle Model. The framework is the same for both: an erasured coded file is divided into n blocks
m1, . . . ,mn ∈ Zp, where p is a large prime. Intuitively, the fact that the file is erasured coded
ensures that it is possible to decode even in presence of adversarial (or random) erasure (see [47]
for further details about erasure codes).

Privately Verifiable POR Scheme: In order to authenticate each block mi, the client C

chooses a secret key which is composed by a random α
$← Zp and a PRF key k for a function f .

Then, for each i ∈ [n] she computes σi := fk(i) + αmi ∈ Zp.
The pairs {(mi, σi)}i∈[n] are then stored into the server and the proof of retrievability between

the server and the verifier works as follows:

1. The verifier chooses a challenge set I ⊂ [n], | I |= ` and some coefficients ν1, . . . ν` ∈ Zp. The
set Q := {(i, νi)}i∈[`] is then sent to the server.

2. The server sends back a pair (σ, µ), where

σ ←
∑

(i,νi)∈Q

νi · σi and µ←
∑

(i,νi)∈Q

νi ·mi.

3. The verifies checks whether the following holds

σ = α · µ+
∑

(i,νi)∈Q

νi · fk(i)

.

Note the here the secret key is necessary in order to run the verification.

Public Verifiable POR Scheme: Let e : G × G → G be a bilinear map and let Zp be the
support of G . The client sets a secret key to be x← Zp and the public key to be (v := gx, u), where
g, u are two generators of G. Then, for each i ∈ [n] she computes σi :=

[
H(i)umi

]x
. As before,

the pairs {(mi, σi)}i∈[n] are then stored into the server and the proof of retrievability between the
server and the verifier works as follows:

1. The verifier chooses a challenge set I ⊂ [n], | I |= ` and some coefficients ν1, . . . ν` ∈ Zp. The
set Q := {(i, νi)}i∈[`] is then sent to the server.

2. The server sends back a pair (σ, µ), where

σ ←
∏

(i,νi)∈Q

σνii and µ←
∑

(i,νi)∈Q

νi ·mi.
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3. The verifies checks whether the following holds:

e(σ, g) = e(
∏

(i,νi)∈Q

H(i)νi · uµ, v)

.

Note that the secret key x is necessary in order to create the authenticators {σi}. On the other
hand the public element v is sufficient to perform the verification.
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