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Abstract

We show that the simple and appealing unconditionally sound mix-net due to Abe (Asi-
acrypt’99) can be augmented to further guarantee anonymity against malicious verifiers.

As our main contribution, we demonstrate how anonymity can be attained, even if most sub-
protocols of a mix-net are merely witness indistinguishable (WI). We instantiate our framework
with two variants of Abe’s mix-net. In the first variant, ElGamal ciphertexts are replaced by
an alternative, yet comparably efficient, “lossy” encryption scheme. In the second variant, new
“dummy” vote ciphertexts are injected prior to the mixing process, and then removed.

Our techniques center on new methods to introduce additional witnesses to the sub-protocols
within the proof of security. This, in turn, enables us to leverage the WI guarantees against
malicious verifiers. In our first instantiation, these witnesses follow somewhat naturally from the
lossiness of the encryption scheme, whereas in our second instantiation they follow from lever-
aging combinatorial properties of the Beneš-network. These approaches may be of independent
interest.

Finally, we demonstrate cases in Abe’s original mix-net (without modification) where only
one witness exists, such that if the WI proof leaks information on the (single) witness in these
cases, then the system will not be anonymous against malicious verifiers.

1 Introduction

A mix-net, introduced by Chaum [Cha81], is a means to provide anonymity for a set of users. It has
become a central tool for electronic voting, in which each voter submits an encrypted vote and the
mix-net outputs the same set of votes in randomized order. Mix-nets have also found applications
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in other areas, including anonymous web browsing [GGMM97], payment systems [JM98], and as a
building block for secure multi-party computation [JJ00].

In some cases, for instance for electronic voting, the mix-net is required to be verifiable. That is,
the mixing process should be accompanied by a proof that does not violate anonymity (traditionally,
zero-knowledge), and at the same time convinces that the set of votes (alternatively, the vote tally)
was preserved following the mixing process (soundness). Much work has been devoted to optimizing
the running times of protocols, resulting in highly efficient solutions (e.g., [Nef01, GI08, Wik09,
TW10, BG12]). At the same time, the strive for efficiency has almost always required assuming
that verifying parties act honestly.

While there exist relatively simple methods for enforcing honest verifier behavior, very often
the verifier ends up being replaced with some concrete “challenge-generating” hash function that
is modeled as a random oracle. This transformation (known as the Fiat-Shamir transform [FS86])
only provides heuristic guarantees for anonymity, as any concrete instantiation of a hash function
is far from behaving randomly (and consequently is far from emulating the behavior of an honest
verifier). Moreover, there is indication that when applied to computationally sound protocols (which
include all known mix-nets with sublinear verification) it may result in loss of soundness [GK03].

The primary reason known efficient solutions require assuming honest verifiers is that they
achieve anonymity by requiring underlying protocols to be zero-knowledge (ZK). In some sense this
is an overkill, since it may be possible to guarantee anonymity of the overall system even if some of
its building blocks do not satisfy such a strong security notion. One prime example is given by Feige
and Shamir, who demonstrated how to construct 4-round ZK arguments for NP by invoking sub-
protocols that satisfy the notion of witness indistinguishability (WI) [FS90]. In contrast to ZK, WI
protocols are only required to hide which of the (possibly many) NP-witnesses is used in the protocol
execution. This weaker notion gives rise to very simple and consequently efficient constructions,
secure even against malicious verifiers and sound even against computationally unbounded provers.

1.1 This Work

The goal of this work is to explore the possibility of constructing a simple mix-net that is secure
against malicious verifiers and in addition is unconditionally sound. This would in particular mean
that when applying the Fiat-Shamir transform to the proofs in the mix-net, anonymity would
provably be guaranteed for any choice of a hash function. While soundness would still be heuristic,
unconditional soundness of the protocols makes them less susceptible to theoretical doubts cast on
the Fiat-Shamir transform in the case of certain computationally sound protocols [GK03].

Towards this end, we aim for a relaxed indistinguishability-based notion of anonymity, which is
weaker than zero-knowledge and yet guarantees the privacy of voters in the system. We demonstrate
how indistinguishability-based anonymity of an entire mix-net system can be attained, even if most
of the underlying sub-protocols are merely WI. At the core of our analysis are new techniques
for guaranteeing the existence of multiple witnesses in NP-verification relations upon which the
soundness of mix-nets is based.

We instantiate our ideas with a very simple and appealing Beneš-network based construction due
to Abe [Abe99, AH01]. While this construction does not match the sublinear verification efficiency
of later mix-nets in the literature (verification time is quasi-linear in the number of voters), it does
enjoy a number of desirable features, most notably high parallelizability. In addition, proving and
verifying consists of invoking standard and widely used proofs of knowledge, making the mix-net
easy to understand and implement.
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Abe’s mix-net was originally shown to be anonymous assuming honest verifiers, and specifically
based on the honest-verifier ZK property of the underlying proofs of knowledge. In the case of a
malicious verifier, these sub-protocols are known only to be witness indistinguishable; alas, this
guarantees nothing in cases where there is a single witness. Moreover, (as we show) in Abe’s mix-
net, cases in which only one witness exists cannot be ruled out, and if indeed leakage on the single
witness occurs in these situations we demonstrate that the system is not anonymous.

1.2 Our Results

We propose two different methods for modifying Abe’s original proposal that result in a verifi-
able mix-net anonymous against malicious verifiers and sound against computationally unbounded
provers. Both methods require only minor changes to Abe’s original protocol:

Lossy Abe mix-net: This encryption is identical to Abe’s original proposal, with the only
difference being that plain ElGamal encryption is replaced with an alternative, yet comparably
efficient, encryption scheme with the property that public-keys can be sampled using a “lossy”
mode (this mode is only invoked in the analysis). When sampled with lossy public-keys,
encrypted ciphertexts do not carry any information about the plaintext. (The same property
can also be satisfied by the Goldwasser-Micali QR-based, Paillier’s DCR-based and Regev’s
LWE-based, encryption schemes.)

Injected Abe mix-net: This method consists of running the original Abe mix-net with addi-
tional dummy ciphertexts that are injected to the system for the purpose of proving D-WI
without having to modify and/or assume anything about the encryption scheme in use (be-
yond it being re-randomizable). The analysis of this construction relies on combinatorial
properties of the Beneš-network, and may turn out to be relevant elsewhere.

These modifications correspond to two approaches for introducing additional witnesses to the
sub-protocols of the mix-net verification: In the first, the extra witnesses follow from the lossiness
of the encryption scheme, and in the second they follow by leveraging combinatorial properties of
the Beneš-network.

In both cases, we show that the entire transcript of the mix-net system satisfies the following
natural anonymity property (in the style of [NSK04]): for any choice of votes and any two permu-
tations on the votes, the corresponding views of an adversary are computationally indistinguishable.

We allow the adversary to control all but one of the mix-servers, an arbitrary subset of the
voters, subset of the decryption servers, and the verifier. If the adversary controls a subset of the
voters, then our definition quantifies over any two permutations that are consistent on the votes
that it controls. Note that this anonymity notion completely hides information about which honest
voter placed which vote from the collective set of honest votes (which is necessarily revealed by the
shuffled output).

Theorem. The Lossy and Injected Abe mix-nets are anonymous against malicious verifiers.

Our result assumes the availability of a non-malleable (more precisely, plaintext aware) en-
cryption scheme, under which the ciphertexts are encrypted, and an efficient secure (simulatable)
multi-party protocol for threshold decryption of the ciphertexts. The latter building blocks can be
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constructed in an efficient manner, even if participating parties are malicious, and moreover are
routinely assumed available in the cryptographic voting literature.

In a precise strong sense, the modifications introduced in the lossy and injected versions of Abe’s
mix-net are necessary for achieving anonymity in the case of a malicious verifier. As discussed in
Appendix B, whenever only a single witness exist, WI guarantees nothing, and in fact such cases
do occur in the setting of Abe’s mix-net. As an additional contribution we show an attack on the
anonymity of the mix-net, if leakage on the (single) witness indeed occurs.

1.3 Technical Overview

In what follows, we provide further background on verifiable mix-nets and Abe’s mix-net construc-
tion, and then describe the main technical ideas behind our results.

1.3.1 Verifiable mix-nets

Ideally, a mix-net is a protocol that completely breaks the link between a user and the vote she has
submitted. This remains true even if a subset of users share their votes with each other with the
purpose of “de-anonymizing” votes of users outside their coalition.

In principle, if one is only interested in the tally, then a simple way to protect anonymity of
individual voters would be to output the tally

∑
i vi. However, specifically designing a protocol

to meet this functionality limits its applicability in case one is interested in alternative tallying
mechanisms. Further, such tallying solutions relying on homomorphic encryption either limit the
message size or require the use of relatively complicated zero-knowledge procedures for proving the
submitted vote encryptions are well formatted.

Mix-net phases. The operating assumption underlying most known mix-net constructions is
that some vote-encryption mechanism is in place, resulting in a list c1, . . . , cn of ciphertexts where
ci = Encpk(vi; ri) is an encryption of vi with randomness ri, under a public key pk that corresponds
to a certain polling station. The output of the mix-net is a shuffled list of plaintexts vσ(1), . . . , vσ(n),
and we want a mix-net that hides σ even if malicious entities were involved in the mixing phase,
the input phase, and the verification phase.

The public key pk is jointly generated and certified in a distributed manner by a set of trustees,
so that no individual entity (or even any sufficiently small coalition of entities) is able to decrypt its
corresponding ciphertexts. The assumption is that a large subset of the trustees acts as prescribed
by the set-up protocol. We note that such an assumption is standard in the literature, and it does
not necessitate the generation of a common reference string, at least not in its most general form.

Given such a setup, most known verifiable mix-net constructions can be conceptually decom-
posed to the following three stages:

Submit Ciphertexts: Each of the n users publishes their own ciphertext ci on an authenti-
cated bulletin board. For simplicity it is convenient to assume that the encryption is “non-
malleable” (in fact, plaintext aware), which guarantees that voters cannot make their own
vote depend on others’.

Verifiably Mix: Ciphertexts c1, . . . , cn are:
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• re-randomized (i.e. Encpk(vi; ri) is mapped to Encpk(vi; si) for random and independent
si) and then

• randomly shuffled to obtain ciphertexts c′π(i) = Encpk(vi; si), where π is randomly sam-
pled from Sn.

In addition, the mixing party provides a proof that the set of plaintexts underlying the output
ciphertexts c′1, . . . , c

′
n equals the original set of submitted votes underlying c1, . . . , cn.

Decrypt: The ciphertexts c′1, . . . , c
′
n are collectively decrypted by means of a secure distributed

protocol.

In terms of complexity, the Submit Ciphertexts and Decrypt stages can be implemented in time
O(n). Moreover, by using lightweight protocols for threshold decryption, the Decrypt phase can be
implemented in a zero-knowledge fashion without paying much penalty in terms of efficiency. In
light of this, much of the literature (including the present work) focuses on optimizing the efficiency
of the Verifiably Mix stage.

A näıve implementation would require work proportional to O(n2) (by proving consistency of
individual input-output ciphertext pairs). Remarkably, it has been shown how to achieve perfect
ZK with verification time as little as o(n) (see [Nef01, GI08, Wik09, Gro10, TW10, BG12] to name
a few). As we mentioned above, in many cases this comes at the price of the assumption that the
prover is computationally bounded and that verification is performed as prescribed.

1.3.2 Abe’s mix-net

Abe presented [Abe99, AH01] a simple mix-net construction which performs the Verifiably Mix
stage on user ciphertexts via a sequence of pairwise ciphertext rerandomize-and-swap operations, as
dictated by a Beneš permutation network. A d-dimensional Beneš network is a “butterfly” switching
network on n = 2d inputs, consisting of (2d − 1) levels of n

2 switch gates (see Section 2.3). Given
any permutation π ∈ Sn, this permutation can be implemented via some (efficiently determined)
choice of the control bits for each of the switch gates, where 0 at a gate indicates its input are
output in order and 1 indicates its inputs are swapped.

In Abe’s mix-net construction, the mixing entity samples a random permutation π ← Sn, and
identifies a corresponding choice of Beneš control bits. Then, implementing and proving the validity
of the overall n-input mix reduces to the same task on each of the O(n log n) individual switch gates
in its Beneš representation. Namely, the overall proof is simply a collection of independent proofs
that an individual rerandomize-and-switch gate operation preserved the plaintext values underlying
its input ciphertexts. (We refer the reader to Section 2.4 for a complete description of Abe’s mix-net
construction.)

For many common encryption schemes, this simple statement structure yields lightweight proofs
of knowledge. For example, for ElGamal encryption (as considered by Abe), such a proof can
be attained with 3 rounds by combining the Chaum-Pedersen protocol [CP92], which proves the
equality of two discrete logarithms, with the protocol used in [CDS94], which proves two statements
connected by OR, overall costing about four times as much computation as a single Chaum-Pedersen
protocol execution.

However, lightweight protocols of this kind (inherently) provide only witness indistinguishability
guarantees and/or honest verifier zero knowledge. Because of this, the mix-net of Abe was only
proved to possess these properties as well.
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1.3.3 Techniques and Ideas

To prove anonymity of our constructions, we must prove for any vector of votes ~v = (v1, . . . , vn),
and any permutation π of the honest parties, that the view of a (possibly malicious) verifier in the
mix-net proof of correctness executed on votes (v1, . . . , vn) is indistinguishable from the analogous
view on initial votes (vπ(1), . . . , vπ(n)). That is, intuitively, the verifier cannot distinguish which of
the honest votes came from which honest party.

The semantic security of the encryption scheme directly allows us to “swap out” the starting
honest-party vote encryptions themselves. So the core task is showing that interaction with an hon-
est mix-server proving proper execution of random permutation σ on encryptions of (v1, . . . , vn) is
indistinguishable from an analogous proof executing σ◦π−1 on encryptions of (vπ(1), . . . , vπ(n)). The
main difficulty in doing so arises for adversaries who have partial control of the votes: specifically,
when the adversary controls a subset {vi}i∈A of votes for some arbitrary A ⊆ [n] of his choice.

Recall that Abe’s construction is composed of a collection of underlying proofs of knowledge,
where each individual sub-protocol is WI. Consider the proof for a single switch gate. To lever-
age the WI property, we must arrive to a state where the corresponding gate-validity statement
((c1, c2), (c′1, c

′
2)) has at least two witnesses. This aligns precisely with the case in which the two

input ciphertexts (c1, c2) of the gate have the same underlying plaintext. In such case, one could
have reached the output ciphertexts (c′1, c

′
2) either by simply rerandomizing directly, or by swapping

first and then rerandomizing (with different randomness); conversely, if the input plaintexts differ
then by the correctness of the encryption scheme there is a unique witness.

Now, suppose we are in the case of a gate where both input ciphertexts c1, c2 correspond to
encrypted votes of honest users. Then although the underlying votes of the two users may disagree,
by relying on the semantic security of the encryption scheme, we can argue that the adversary
cannot distinguish this state from the one in which the votes do agree. Once in this modified
version of the world, we can invoke the WI guarantee to argue that the proof hides the identity
of the swap bit. A similar approach can further take care of the situation where a single input
ciphertext to a gate is controlled by the adversary (by changing the honest ciphertext to agree with
the adversary’s fixed vote).

What poses an issue is when both input ciphertexts to a gate are under adversarial control. The
adversary can then force the gate to have a single witness, by choosing different plaintext votes.
(Note we cannot hope to invoke semantic security arguments as above, as the adversary generates
the ciphertexts himself). In such a case, for all that is known, the underlying protocol may very
well leak the control bit of this gate. Interestingly, we demonstrate that such leakage, while directly
regarding only corrupt-party ciphertexts, would be fatal to anonymity of honest parties in Abe’s
mix-net (see Appendix B).

We address this issue via two alternative proposed modifications to Abe’s protocol.

Using a lossy encryption scheme. In the first variant, we instantiate the encryption scheme
within Abe’s mix-net with a DDH-based lossy encryption scheme that admits a similar un-
derlying WI gate-consistency proof. A lossy encryption scheme has the property that standard
key generation is indistinguishable from a “lossy” version, such that encryption under a lossy
key pk completely loses all information about the message. In particular, for a lossy pk, for
any pair of ciphertexts c, c′ (not necessarily formed by encrypting the same message), there
exists a choice of re-randomization that takes c to c′. This means for a lossy key that for any
switch gate tuple (c1, c2, c

′
1, c
′
2), there necessarily exist two witnesses.
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The proof of anonymity then follows from four simple steps. First, the public key is replaced
by a lossy version. Then, once we are under a lossy pk, we can directly use the WI of
the underlying gate protocols to switch (gate by gate) from a Beneš representation of a
starting permutation π to the representation of any other permutation σ. Additionally, by
the guaranteed hiding, we can switch the plaintexts of honest users’ votes to an arbitrary
shuffle amongst themselves. Once we attain the desired permutation and plaintext settings,
we simply return back to a standard (non-lossy) pk.

Injecting and removing “dummy” votes. In the second variant, we consider an arbitrary
rerandomizable public-key encryption scheme (e.g., standard ElGamal), and instead mod-
ify the Abe mix protocol at a higher level. Interestingly, the design approach leverages the
combinatorial structure of the Beneš network, without modifying the underlying building
block proofs of knowledge (for which it is not known how to prove an analogous property).

The new mixing procedure begins by generating and injecting n “dummy” votes (i.e., encryp-
tions of a fixed non-vote message ⊥) into the list of n real encrypted votes. Abe’s mix phase
is performed (without modification) on the combined list of 2n ciphertexts (injecting the ⊥
ciphertexts into the even-indexed positions). Then, Abe’s Decrypt protocol is performed on
all 2n resulting ciphertexts, and the ⊥ plaintexts are identified and removed. Verification
consists of Abe’s standard verification, plus a process for verifying that ⊥ ciphertexts were
properly injected and removed in each mix step.

We remark that this modification of injecting non-adversarial ciphertexts into the even-
indexed positions does not directly preclude gates within the Beneš execution whose input
ciphertexts are both under adversarial control; indeed, this remains quite likely to occur in
many locations within later levels of the Beneš network. However, leveraging the combinato-
rial Beneš structure, we prove that the power we gain by ensuring the first-level gates do not
have this problem, is sufficient to hide all control bits used within the Beneš network.

Our proof takes an inductive approach, on the dimension d (i.e., number of users n = 2d)
of the Beneš network. Ultimately, we design a carefully ordered sequence of hybrids which
enables us to step from honest input votes ~uhonest and permutation π ∈ Sn to an arbitrary
other choice ~u′honest, σ. In essence, for each gate g in the Beneš network whose control bit we
would like to flip, we: (1) switch the control bits of relevant first-level gates to ensure at least
one non-adversarial ciphertext ci becomes directed to gate g; (2) rely on semantic security
to change the plaintext underlying ci to agree with its neighboring ciphertext cj into g; and
then (3) use the WI to flip the control bit of gate g, now that we have forced the existence
of 2 witnesses. This procedure is performed on gates in a particular order to ensure progress
is made in each step, while leaving sufficient flexibility to enable that the step (1) redirection
can be performed.

2 Preliminaries

2.1 Standard Cryptographic Definitions

We denote by [n] the set {1, . . . , n}, and by Sn the set of all permutations over [n]. A witness
relation for a language L ∈ NP is a binary relation RL such that L = {x | ∃w s.t. (x,w) ∈ RL}.
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Definition 1 (Interactive Proof System). A pair of interactive machines (P,V) is called an interac-
tive proof system for a language L if machine V is polynomial-time and the following two conditions
hold:

• Completeness: For every x ∈ L, there exists a string w such that for every z ∈ {0, 1}∗,

Pr[〈P(w),V(z)〉(x) = 1] ≥ 1− ε

• Soundness: For every x /∈ L, every interactive machine P∗, and every w, z ∈ {0, 1}∗,

Pr[〈P(w),V(z)〉(x) = 1] ≤ ε

Definition 2 (Σ-protocol, Special soundness). A Σ-protocol is a 3-message interactive proof system
with the following structure:

1. P sends a message a.

2. V sends a random t-bit string e.

3. P sends a reply z, and V decides to accept or reject based on x, a, e, z.

A Σ-protocol for relation R is said to satisfy special soundness if from any x and any pair of accepting
conversations (a, e, z), (a, e, z) on input x, where e 6= e′, one can efficiently compute a witness w
such that (x,w) ∈ R.

2.1.1 Public-Key Encryption

Definition 3 (Rerandomizable PKE). A Rerandomizable Public-Key Encryption (PKE) scheme
over a message space M is a tuple of PPT algorithms E = (KeyGen,Enc,Dec,ReRand), where
(KeyGen,Enc,Dec) is a standard semantically secure PKE scheme, and

• ReRandpk(c) takes as input the public key pk and a ciphertext c and outputs a new ciphertext
cout.

• For every valid pk, every message m ∈M , and every ciphertext c = Encpk(m; r) (for arbitrary
r), it holds that {c′ ← ReRandpk(c)} ≡ {c′ ← Encpk(m)}.

We assume there is an efficient procedure given a key pair (pk, sk) for identifying whether sk is
a valid secret key for pk, denoted (pk, sk) ∈ KeyGen(1λ).

Definition 4 (ElGamal Encryption). The ElGamal Encryption Scheme for a fixed (constant-size)
message space M = {0, . . . , `} is defined as follows:

• KeyGen(1λ): Generate the description of a cyclic group G of prime order q (with log2 q ≥ λ)
and generator g.

Sample a random secret key s ← [q − 1] and compute h = gs. Output pk = (G, q, g, h) and
sk = s.

• Encpk(m): Choose a random r ← [q − 1], and output the ciphertext c = (gr, hr · gm).
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• Decsk(c = (a, b)): Compute u := b · a−s, and output m ∈ {0, . . . , `} for which u = gm (recall
` ∈ O(1), so this step can be performed efficiently).

• ReRandpk(c = (a, b)): Choose a random r ← [q − 1], and output cout = (a · gr, b · hr).

Definition 5 (Lossy PKE [PVW07]). A lossy public-key encryption scheme is a tuple of PPT
algorithms (KeyGen,KeyGenloss,Enc,Dec) such that (KeyGen,Enc,Dec) is a semantically secure PKE
scheme, and where KeyGenloss takes as input as security parameter and outputs a public key pk
satisfying the following properties:

1. The distributions of public keys {pk : (pk, sk) ← KeyGen(1λ)}
c∼= {pk : pk ← KeyGenloss(1

λ)}
are computationally indistinguishable.

2. Encryption under a “lossy” public key is information theoretically hiding. That is, with
overwhelming probability in pk ← KeyGenloss(1

λ), it holds for every pair m0,m1 ∈ M that
Encpk(m0) ≡ Encpk(m1).

2.2 Mix-Net Definitions

Definition 6 (Mix-Net System). An n-user m-server Mix-Net System with respect to a re-
randomizable encryption scheme E = (KeyGen,Enc,Dec,ReRand) over message space M , has four
phases: Setup, SubmitCipher, VrfblyMix, Decrypt, with the following syntax.

• Setup(1λ) is a distributed protocol that outputs an encryption public key pk, and m shares
sk1, . . . skm of the secret key sk to the m servers.

• SubmitCipher(pk, ui; ri) is an algorithm run by each individual voter that takes as input a
public key pk, a vote ui ∈ {0, 1}, and randomness ri. The output is a ciphertext ci =
Encpk(vi; ri)

• VrfblyMix
(
pk,~c0; (rndj)j∈[m]

)
is a sequential algorithm with m iterations that outputs a list

of ciphertexts ~c′ = ~cm, where for each j ∈ [m], the jth iteration Mixj(pk,~c
j−1; rndj) is run by

the server Mj .

Mixj is an algorithm that takes as input a public key pk and a list of n ciphertexts ~cj−1 =

(cj−1
1 , . . . , cj−1

n ) under the public key pk. The server outputs a vector of ciphertexts ~cj (per-
muted and rerandomized in some fashion).

• Decrypt(~c′, (ski)i∈[m]) is a distributed protocol executed by the m servers, where each server
Mi has input a share ski of a secret key sk, and the mth server Mm additionally holds a list of
n ciphertexts ~c′. As a result of the protocol, each server receives an output list of plaintexts
~v such that ∀i ∈ [n], vi = Decsk(c

′
i).

The mix-net is correct if for every choice of votes (u1, . . . , un) ∈ {0, 1}n,

Pr

∃π ∈ Sn : ui = vπ(i)

∣∣∣∣∣∣∣∣
(pk, (sk1, . . . , skm))← Setup(1λ);
c0
i ← SubmitCipher(pk, ui) ∀i ∈ [n];
~c′ ← (pk,~c0);

~v ← Decrypt(~c′, (ski)i∈[m])

 = 1.
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Remark. Note that the servers who execute the permutations via VrfblyMix and those who decrypt
the final permuted votes via Decrypt need not be the same entities (nor have the same quantity);
however, for simplicity, we consider a fixed set of m servers and assume they perform both opera-
tions.

We will be interested in mix-net systems which are verifiable and anonymous.
The verifiability of a mix-net system refers to a means for proving that the resulting list of

plaintexts ~v truly is a permuted version of the input plaintexts.

Definition 7 (Verifiable Mix-Net System). An n-user m-server mix-net system is said to be veri-
fiable if there exists an interactive proof system (P,V) for correctness of the mix-net: i.e., for the
NP language

L = {(pk,~c0, ~v) | ∃w s.t. ((pk,~c0, ~v), w) ∈ RL}

where

RL =

((pk,~c0, ~v), w)

∣∣∣∣∣∣∣
W (w) = (π, sk) : π ∈ Sn,

(pk, sk) ∈ KeyGen(1λ);

∀i ∈ [n],Decsk(c
0
i ) = vπ(i)

 . (1)

and W is a deterministic polynomial time algorithm that takes as input a witness w and outputs
a permutation π and secret key sk.

This notion of verifiability is sometimes referred to in the literature as universal verifiability,
where verification does not require user-specific secrets.

In practice, the interactive proof system (P,V) typically decomposes into a collection of inde-
pendent sub-proofs, each executed by an individual mix-server Mj , using its own mixing randomness
as witness. This will be the case for all mix-net systems considered in the present work.

We discuss anonymity of a mix-net in Section 3.

2.3 Beneš Networks

Definition 8 (f -switch gate). An f -switch gate is parameterized by a (possibly randomized)
function f : X → Y . The gate takes two inputs x0, x1 ∈ X, a control bit b ∈ {0, 1} indicating
whether inputs are swapped in the output, and possibly randomness r0, r1 (for randomized f). The
gate produces two outputs y0, y1 ∈ Y , as specified by:

yb = f(x0; r0) y1−b = f(x1; r1).

When f is not explicitly specified, a “switch gate” refers to an f -switch gate where f is the identity
function.

Definition 9 (d-Dimensional Beneš Network). For d ∈ N, the d-dimensional Beneš Network is a
network of switch gates which connects N = 2d inputs (in1, . . . , inN ) to N outputs (out1, . . . , outN ).
The structure of the network is defined recursively.

• The 1-dimensional Beneš Network is a single switch gate, as per Definition 8.

• The d-dimensional Beneš Network consists of three stages (as depicted in Figure 1):
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Figure 1: A 3-dimensional Beneš network
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Figure 1: A 3-dimensional Beneš network

1. The ingress stage: The first level in the network consists of N
2 switch gates, where for

each i ∈ [N2 ], the inputs to the ith switch gate are the corresponding adjacent Beneš
network inputs (in2i−1, in2i).

2. The central stage: Consists of two (d− 1)-dimensional Beneš Network: Bup,Bdown. The
N
2 inputs to Bup are the odd outputs from the first layer; the N

2 inputs to Bdown are the
even outputs from the first layer.

3. The egress stage: The last level in the network consists of N
2 switch gates, where for

each i ∈ [N2 ] the inputs to the ith switch gate in this gate are the ith outputs from Bup

and Bdown. The outputs of the gates in the level comprise the final outputs of the Beneš
network (out1, . . . , outN ).

Altogether (inductively), the d-dimensional Beneš network consists of L = 2d−1 levels of N2 switch

gates. The action of the Beneš network is specified by a L×N
2 matrix of control bits B ∈ {0, 1}L×

N
2 ,

which specifies the action of each switch gate.

Note that for any choice of control bits B ∈ {0, 1}L×
N
2 , the Beneš network induces a permutation

on its N inputs: i.e., there exists π ∈ SN for which ∀i ∈ [N ], outπ(i) = ini. It was shown by
Waksman [Wak68] how to efficiently identify an appropriate matrix of control bits Bπ for a given
permutation π.1

Theorem 1 (Beneš Control Bit Sampling). [Wak68] There exists a deterministic polynomial-time
algorithm that, on input an integer d ∈ N and description of a permutation π ∈ SN on N = 2d

elements, outputs a control bit matrix B ∈ {0, 1}L×
N
2 (where L = 2d− 1, as in Definition 9) which

induce the permutation π.

We will refer to the output of the Waksman algorithm with a fixed randomness as the canonical
matrix of control bits for π, and sometimes use the abbreviated notation Bπ.

1The algorithm presented by Waksman [Wak68] is randomized but satisfies perfect correctness, so that an arbitrary
fixed choice of randomness can be used.

11



2.4 Abe’s Mix-net Construction

Construction 1 (Abe’s Mix-net system). Abe’s Mix-net system is a n = 2d-user m-server mix-net
system with respect to the ElGamal encryption scheme (KeyGen,Enc,Dec,ReRand) over message
space M , that uses a d-dimensional Beneš network with ReRand-switch gates (see definitions in
Section 2.3).

SetupAbe,SubmitCipherAbe, and DecryptAbe are the straightforward procedures for threshold El-
Gamal distributed key generation, encryption, and decryption. VrfblyMixAbe(pk,~c

0) is a sequential
algorithm with m iterations, where each iteration j ∈ [m] is an execution of MixAbe as given below.

MixAbe(pk,~cj−1): Let L = 2d− 1 (levels of d-dimension Beneš network). Perform the following:

1. Sample a random permutation πj ← Sn.

2. Run AbeMix(pk,~cj−1, πj), as specified here, to obtain (~cj , Bπj , R̂
j
0, R̂

j
1) where ~cj is a vector

of n ElGamal ciphertexts, Bπj is a matrix of Beneš control bits, and R̂j0, R̂
j
1 are matrices

of randomness used by the ReRand algorithm:

(a) Sample two matrices of uniform random values R̂j0, R̂
j
1 ← [q − 1]L×

n
2 , where each

R̂j0[`, i] and R̂j1[`, i] will be used to rerandomize the two input ciphertexts at the ith
switch gate of level ` in the Beneš network.

(b) Let Bπj ∈ {0, 1}L×
n
2 be the canonical induced matrix of control bits for which the

Beneš network implements the permutation πj on its input elements (see Theo-
rem 1).

(c) For every i ∈ [n], let ini = ci, and define r̂i = AccumRand(i, Bπj , R̂
j
0, R̂

j
1) to be the ac-

cumulated rerandomization applied to the ith input ciphertext as a result of execut-
ing the Beneš network. (That is, the values r̂i for which outπ(i) = ReRandpk(ini; r̂i)).

(d) Compute the vector of permuted, rerandomized ciphertexts: (cj1, . . . , c
j
n), where

cjπ(i) := ReRandpk(ci; r̂i).

(e) Output (~cj , Bπj , R̂
j
0, R̂

j
1).

3. Output the vector of permuted, rerandomized ciphertexts: ~cj = (cj1, . . . , c
j
n).

Construction 2 (Verification Proof System for Abe Mix-net). Abe’s mix-net is verifiable (as per
Definition 7), and the corresponding interactive proof system (PAbe,VAbe) can be expressed by the
following collection of 3 steps:

1. Submission of intermediate ciphertext vectors: For every j ∈ [m]: PAbe generates and
sends VAbe the list of ciphertexts ~cj ← Mixj(pk,~c

j−1).

2. Correctness Proof of VrfblyMix: For every j ∈ [m]: PAbe and VAbe interact in an execution
of an interactive proof system (PAbe

Mix ,VAbeMix ) for the relation

RMix =

{
((pk,~cj−1,~cj), wj)

∣∣∣∣∣WMix(wj) = (πj , ~̂r
j) :

∀i ∈ [n], cjπj(i) = ReRandpk(c
j−1
i ; r̂ji )

}
, (2)

where WMix is a deterministic polynomial time algorithm that takes as input a witness wj
and outputs a permutation πj and vector of randomness ~̂rj .

12



The interactive proof system (PAbe
Mix ,VAbeMix ) with the common input (pk,~cj−1,~cj) and witness

(πj , Bπj , R̂
j
0, R̂

j
1) executes as follows:

(a) PAbe
Mix executes the Beneš network on input ciphertext vector ~c, with control bits Bπ and

randomness R̂0, R̂1. PAbe sends to VAbe all intermediate ciphertexts (i.e., a vector ~c(`)

of rerandomized, partially shuffled ciphertexts for the output of each level ` ∈ [L] of the
Beneš network). Note that ~c(L) is the final vector (i.e., ~c(L) = ~c′).

(b) For every level ` ∈ [L] and gate i ∈ [n2 ] within the `th level of the Beneš network,
PAbe
Mix and VAbeMix execute (in parallel) an independent instance of the interactive proof

(PGate,VGate) (as described in Appendix A) for the following gate-consistency relation:

RGate =

{
((pk, x0, x1, y0, y1), (b, r̂0, r̂1))

∣∣∣∣ yb = ReRandpk(x0, r̂0)
y1−b = ReRandpk(x1, r̂1)

}
, (3)

with common input (pk, x0, x1, y0, y1) and witness (Bπ[`, i], R̂0[`, i], R̂1[`, i]), where x0, x1,
y0, y1 are the corresponding computed input and output ciphertexts to the gate, and
Bπ[`, i], R̂0[`, i], R̂1[`, i] are the corresponding swap control bit and rerandomization val-
ues used within the gate.2.

Note that each execution j ∈ [m] of PAbe can be performed independently by the correspond-
ing mix-server Mj .

3. Correctness Proof of Decrypt: P and V interact in an execution of an interactive proof
system (PAbe

Dec ,VAbeDec ) for the relation

RDec =

((pk,~cm, ~v), ~w)

∣∣∣∣∣∣∣
WReRand(w1, . . . , wm) = sk :

∀i ∈ [n] Decsk(c
m
i ) = vi

(pk, sk) ∈ KeyGen(1λ)

 . (4)

where WDec is a deterministic polynomial time algorithm that takes as input a list of witnesses
(wj)j∈[m] and outputs a secret key sk. In (PAbe

Dec ,VAbeDec ) the witness is ~w = (sk1, . . . , skm). We

assume this proof system (PAbe
Dec ,VAbeDec ) is zero knowledge. For the case of ElGamal, this can

be achieved, e.g. via [CGJ+99].

3 Indistinguishability-Based Anonymity of Mix-Nets

We provide in Section 2.2 a complete definition of the syntax, correctness, and verifiability properties
of a mix-net system (Setup,SubmitCipher,VrfblyMix,Decrypt, (P,V)) (as discussed informally in
Section 1.3.1). Here we discuss the property of anonymity, most relevant to this work.

A wide range of anonymity notions have been considered within the mix-net literature, ranging
from addressing specific anonymity attacks, to very strong notions of universally composable (UC)
simulation.

In particular, the mix-net of Abe was proved in [Abe99, AH01, AI06] to satisfy the following
anonymity notion: An efficient adversary who corrupts a subset of users, mix-servers, and decryp-
tion servers cannot gain noticeable advantage in predicting any single input-output pair (i, j) ∈ [n]2

2Recall Bπ, R̂0, R̂1 are L× [n
2

] matrices which align with the gate structure of the Beneš network
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for which honest user i’s encrypted plaintext is permuted to position j in the output. Note that this
definition protects the anonymity of each user, but is weaker than more general indistinguishability
and simulation definitions, in that it could potentially reveal correlations between users (e.g., that
users 2 and 3 voted in the same fashion).

We consider a stronger indistinguishability-based notion of anonymity, in the flavor of [NSK04].
Intuitively, our definition requires that for any permutation on the honest users’ votes, the resulting
views of the mix-net protocol and verification—including the view of a possibly corrupt verifier—are
indistinguishable.3 Note that this implies the anonymity definition of Abe [Abe99, AH01, AI06],
as a successful (i, j)-predicting adversary would serve as a successful distinguisher between views
for permutations σ, σ′ which disagree on user i.

We formalize this notion via a notion of distributional WI (D-WI), a strengthening of WI we
introduce that is related to strong-WI [Gol01], but parametrized by specific pairs of distributions.

Distributional Witness Indistinguishabilty. For ease of reading, we will make use of the
following shorthand notation for the distribution over the view of a (potentially malicious) verifier
V within an interactive proof (P,V) for a given distribution over statements (and witnesses).

Notation 1 (ViewV∗ [Dλ]). Let (P,V) be an interactive proof for a relation R. For a given ensemble
of distributions Dλ over statements, witnesses, and auxiliary input {(Xλ,Wλ, Zλ)}λ∈N for which
(Xλ,Wλ) ∈ R and |Xλ| ≥ λ, and PPT interactive machine V∗, we define the distribution

ViewV∗ [Dλ] := {〈P(Wλ),V∗(Zλ)〉 (Xλ) : (Xλ,Wλ, Zλ)← Dλ}λ∈N .

Definition 10 (D-WI). Let (P,V) be an interactive proof for a relation R, and let Dλ and D′λ
be two probability ensembles over statements, witnesses, and auxiliary inputs, as in Notation 1.
We say that (P,V) is distributional witness-indistinguishable (D-WI) with respect to Dλ, D′λ for

relation R if for every PPT interactive machine V∗, the following holds: ViewV∗ [Dλ]
c
≈ ViewV∗ [D

′
λ].

Mix-net Anonymity. For a given mix-net protocol MixNet, adversarial entity A, and vector
of honest user votes (ui)i∈UĀ , the distribution DMixNet,A

λ ((ui)i∈UĀ) as given in Definition 11 de-
notes the induced distribution over statements, witnesses, and auxiliary input of correctness of the
mix-net. Our notion of anonymity (Definition 12) requires the interactive proof system for cor-
rectness of the mix-net to be distributional witness indistinguishable (D-WI) with respect to any

pair DMixNet,A
λ ((ui)i∈UĀ) and DMixNet,A

λ ((uσ(i))i∈UĀ), for any permutation σ on the ordering of the
honest users.

Definition 11 (DMixNet,A
λ distribution). Let MixNet = (Setup,SubmitCipher, VrfblyMix,Decrypt) be

a verifiable n-user m-server mix-net system with respect to a re-randomizable encryption scheme
E over message space M (as given in Definition 6, Section 2.2).

Let A = (UA,SA,A) be given, where UA ⊆ [n], SA ⊂ [m] are corrupted subsets of users and
mix-servers, respectively, and A is an adversarial non-uniform PPT algorithm which has four modes
setup, submit votes,mix, and decrypt with the syntax as below. We define the distribution DMixNet,A

λ

as follows (we denote UĀ = [n] \ UA and SĀ = [m] \ SA):

3We remark, however, that [Abe99, AH01, AI06] directly consider non-malleability concerns, which we factor
out and address separately; see Remark on Non-Malleability below. Note that Abe and Imai considered notions of
anonymity against both static and adaptive adversaries [AI06]; however, anonymity of Abe’s mix-net construction
was proven only in the static setting [Abe99, AH01], and thus this is the notion we compare against.
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DMixNet,A
λ ((ui)i∈UĀ) :

Input For each honest user i ∈ UĀ, a vote ui ∈ {0, 1}.

– Let state := ∅

– Sample (pk, (sk1, . . . , skm), state)← SetupA(“setup”,1λ,state)(1λ),
i.e., simulate Setup protocol execution on honest party input 1λ and (oracle access to)
adversarial next-message function A(“setup”, 1λ, state), in each round with updated state.
Output the induced values pk, (sk1, . . . , skm), and updated state.

– For each i = 1, . . . , n: // Submit votes (n users)

if i ∈ UA
then Sample (c0

i , zi)← A(“submit votes”, pk, i, state)

Update state := {zi} ∪ state

else Sample c0
i ← SubmitCipher(pk, ui)

– For j = 1, . . . ,m do: // Mix phase (m mix servers)

if j ∈ SA
then Sample (~cj , wπj , z

π
j )← A(“mix”, pk, j,~cj−1, state)

Update state := {zπj } ∪ state

else Sample rndj ← $, and set ~cj = Mixj(pk,~c
j−1; rndj)

– Run (~v, (wsk
j )j∈SA , state)← DecryptA(“decrypt”,state)(~cm, (skj)j∈SĀ),

i.e., simulate Decrypt protocol execution on input (~cm, skj) for each honest mix-server
j, and oracle access to adversarial next-message function A(“decrypt”, state), in each
round with updated state. Output the induced plaintext vector ~v, adversarial witness
information (wsk

j )j∈SA for decryption, and updated state.

Output : (Xλ,Wλ, Zλ) where

– Xλ = (pk,~c0, ~v)

– Wλ = ((rndj)j∈SĀ , (w
π
j )j∈SA , (skj)j∈SĀ , (w

sk
j )j∈SA)

– Zλ = (state)

Definition 12 (Anonymous Mix-Net System). We say that a verifiable n-user m-server mix-net
system MixNet is anonymous if for every A (as in Definition 11), every choice of honest user votes
ui ∈ {0, 1} for i ∈ UĀ, and every permutation σ over the honest users UĀ (i.e. σ : UĀ ↪→ UĀ) the
interactive proof system (P,V) for correctness of MixNet is D-WI with respect to the following two

probability ensembles Dλ = DMixNet,A
λ ((ui)i∈UĀ) and D′λ = DMixNet,A

λ ((uσ(i))i∈UĀ) where DMixNet,A
λ

is as in Definition 11.
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Remark. A few remarks on the DMixNet,A
λ distribution:

• Sampling pk. We remark that the somewhat-complex structure of DMixNet,A
λ is necessary,

as opposed to fixing a public key and/or corrupt ciphertexts as parameters, since to achieve
indistinguishability in such setting one must necessarily rely on semantic security of the
encryption scheme, and thus on the public key being randomly sampled. In turn, we must
allow the adversary’s ciphertexts to be chosen (efficiently) as a function of pk.

• Correctness / Non-Malleability of SubmitCipher. However, in effort to isolate a simple

definition, within DMixNet,A
λ we assume the adversary chooses ciphertexts of corrupt users

given the public key pk but not the ciphertexts of honest parties. To convert to security in
the more general setting (that is, to address possible malleability attacks), one can apply
generic techniques of accompanying the ciphertext output from SubmitCipher with a form of
proof of knowledge of the underlying plaintext associated with the user index: i.e., making the
encryption scheme plaintext-aware [BR94]. For example, for the case of ElGamal encryption
(as used in this work), the SubmitCipher phase can be modified to have each user output a
Chaum-Pederson-signed ElGamal encryption of his input vote ui, which provides plaintext-
awareness [Fis05, ST13].

We refer the reader to e.g. [KMW12] for a thorough discussion of the subtleties arising when
addressing non-malleability directly within anonymity definitions.

4 Abe’s Mix-Net With Lossy Encryption

For our first mix-net construction, we consider an implementation of Abe with a modified lossy
ElGamal encryption scheme.

A full description of Abe’s original mix-net is given in Section 2.4. In Section 4.1 we present
the additional necessary building blocks, and in Section 4.2 we provide our construction.

4.1 Building Blocks for Lossy Abe

A lossy encryption scheme [PVW07] (KeyGen,KeyGenloss,Enc,Dec) is a PKE scheme which possesses
an alternative “lossy mode” key generation algorithm KeyGenloss, whose output pk is computation-
ally indistinguishable from an honestly generated pk, but for which the encryption of a message m
information theoretically hides m. (See Definition 5 in Section 2.1 for formal definition.)

We make use of the following lossy variant of ElGamal.

Definition 13 (Lossy ElGamal [BHY09]). The lossy ElGamal encryption scheme for message space
M = {0, 1} is given by:

• KeyGen(1λ): Generate the description of a cyclic group G of prime order q (with log2 q ≥ λ)
and generators g0, g1. Sample a random secret key s← [q− 1] and compute h0 = gs0, h1 = gs1.
Output pk = (G, q, g0, g1, h0, h1) and sk = s.

• KeyGenloss(1
λ): Generate the description of G and g0, g1 as above. Sample two random

elements s0, s1 ← [q − 1], compute h0 = gs00 , h1 = gs11 . Output pk = (G, q, g0, g1, h0, h1).

• Encpk(m): Sample r0, r1 ← [q − 1]. Output (gr00 g
r1
1 , h

r0
0 h

r1
1 · gm).
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• Decsk(c = (a, b)): Compute u := b · a−s, and output m ∈ {0, 1} for which u = gm.

• ReRandpk(c = (a, b)): Choose random r0, r1 ← [q−1], and output cout = (a ·gr00 g
r1
1 , b ·h

r0
0 h

r1
1 ).

Theorem 2 ([BHY09]). Based on the Decisional Diffie-Hellman assumption, the Lossy ElGamal
scheme (Definition 13) is a rerandomizable (Definition 3) lossy PKE scheme (Definition 5).

Note that ciphertexts are composed of two group elements, and conversely any pair of elements
of G can be interpreted as a “valid” ciphertext under a given public key pk.

Proving correctness of the new switch gate can be achieved with WI via a similar approach
as to standard ElGamal: Here, combining the protocol of Cramer et al. for proving OR [CDS94]
instead with Okamoto’s protocol [Oka93] for proving knowledge of Pedersen commitments (in the
place of the Chaum-Pederson protocol [CP92] for proving equality of discrete logarithms). Further
details of the resulting 3-round proof are given in Appendix A.2.

4.2 Lossy Abe Mix-Net

Construction 3 (Lossy Abe Mix-Net). We define the n = 2d-user lossy Abe mix-net system MixNetloss

to be identical to Abe’s mix-net (as in Construction 1), with two exceptions:

• All mix-net procedures Setup, SubmitCipher,VrfblyMix,Decrypt make use of the Lossy ElGamal
algorithms KeyGen,Enc, and ReRand (Definition 13), in the place of ElGamal.

• Each gate-consistency proof execution (PGate,VGate) (which was specific to ElGamal) within
Abe’s (PAbe

Mix ,VAbeMix ) is replaced by a corresponding gate-consistency proof execution (P loss
Gate,V lossGate)

for Lossy ElGamal, as specified in Appendix A.2 (this proof is formed as an OR (via Cramer
et al. [CDS94]) of ANDs of Okamoto [Oka93]).

Note that while we use Lossy ElGamal for concreteness, a similar approach could be taken
using amenable lossy encryption schemes based on, e.g., quadratic residosity, Paillier, or LWE (see
e.g., [BHY09, PW11, FGK+13]).

Theorem 3 (Lossy Abe is Anonymous). The Lossy Abe Mix-Net, as described in Construction 3,
is anonymous, as per Definition 12.

Proof. Let A = (UA,SA,A) be as in Definition 11, ui ∈ {0, 1} for i ∈ UĀ a choice of honest user
votes, and σ a permutation over the honest users UĀ. We show that for any PPT interactive

machine V∗: ViewV∗ [D
MixNet,A
λ ((ui)i∈UĀ)]

c
≈ ViewV∗ [D

MixNet,A
λ ((uσ(i))i∈UĀ)], where DMixNet,A

λ is as in
Definition 11), by a sequence of the hybrids which use also the following claim:

Claim 1 (Multiple Witnesses). With overwhelming probability over the choice of a lossy key
pkloss ← KeyGenloss(1

λ), the following holds. For any ciphertexts x0, x1, y0, y1 in the support
of Encpkloss(·), there exists (r̂0, r̂1), (r̃0, r̃1) for which yb = ReRandpkloss(xb; r̂b) for b ∈ {0, 1} and
yb = ReRandpkloss(x1−b; r̃1−b) for b ∈ {0, 1}.

Proof. Follows by the equivalence of distributions Encpkloss(m0) ≡ Encpkloss(m1) for all messages
m0,m1 ∈M under a lossy key.
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Recall the view of V∗ consists of: honest user votes (ui)i∈UĀ (chosen by A), the view during

the key setup phase viewSetup, the public key pk, secret shares (skj)j∈SA of sk, vote ciphertexts of

corrupt parties (c0
i )i∈UĀ , the view of V∗ within the mix phase

(
viewMixj

)
j∈[m]

, the view of V∗ during

the Decrypt joint decryption viewDec, and the shuffled plaintext votes ~v.
At a high level, the proof of Theorem 3 moves from

ViewV∗ [D
MixNet,A
λ ((ui)i∈UĀ)] to ViewV∗ [D

MixNet,A
λ ((uσ(i))i∈UĀ)]

via the following sequence of hybrids. (1) First, viewSetup and viewDec are replaced by simulated
views, relying on zero knowledge simulation of the setup and joint decryption protocols. (2) The
honest setup functionality is replaced by a modified one which samples a lossy system public key
and outputs random secret key shares skj to the corrupt servers. (3) Using semantic security, the
encryptions of honest user votes (ui)i∈UĀ are replaced by encryptions of the σ-permuted values
(uσ(i))i∈UĀ (but the mix and decryption phases are still with respect to (ui)i∈UĀ). (4) One uncor-
rupted mix-server modifies his permutation to “undo” the σ shuffle of honest votes. This step relies
on the special-soundness property of the mix phase (in order to extract the permutations used by
corrupt mix-servers), the WI of the gate-consistency proofs, and the existence of multiple witnesses
for any ReRand-switch gate with respect to a lossy public key. (5) The setup procedure is returned
to the honest (non-lossy) version. (6) Finally, the simulated viewSetup, viewDec are returned to the
honestly generated versions.

We defer the full proof to Appendix C.1.

5 Abe’s Mix-net With Injected Dummy Votes

We demonstrate that an alternative simple tweak to the Abe mix-net system with comparable
efficiency preserves verifiability, and further guarantees anonymity against a malicious verifier. At
a high level, our construction is identical to the Abe mix-net (without changing the encryption
scheme) on 2n votes, where n “dummy” ciphertexts of ⊥ are introduced and removed at the
beginning and end of each mix-server mix phase. To verify that this process was followed honestly,
the injected ciphertexts will be decrypted at the end along with the shuffled votes (in a carefully
chosen order).

Construction 4 (Injected Abe Mix-Net). The injected Abe n = 2d-user m-servers mix-net system
is identical to Abe’s mix-net (as in Construction 1), with two exceptions: 1) VrfblyMixinjectAbe (pk,~c0)
is a sequential algorithm with m iterations, where each iteration j ∈ [m] is an execution of MixInject

as given below (instead of MixAbe), and 2) the verification proof system (P inject
Abe ,V injectAbe ) has 4 steps

as described below (instead of (PAbe,VAbe)).

MixInject(pk,~cj−1): Let L = 2d− 1. Perform the following:

1. (Inject Fake Votes). Generate n encryptions of the message ⊥, and insert them into the
even positions of a new (N = 2n)-length vector ~Cj−1, with the real input ciphertexts in
the odd positions. That is, for every i ∈ [n],

Cj−1
2i−1 := cj−1

i , Cj−1
2i ← Encpk(⊥).
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2. (Choose Permutation). Sample a random permutation πj ← Sn on n elements, and let
πnewj ∈ SN be the permutation on N elements that acts as π on the odd positions and
as the identity on the evens. That is:

∀i ∈ [n] : πnew[2i− 1] = 2 · π[i]− 1, πnew[2i] = 2i.

3. (AbeMix on 2n Inputs): Execute AbeMix (Step 2 of MixAbe, Construction 1) with input
(pk, ~Cj−1, πnewj ). Let wj = (~Cj , Bπnew

j
, R̂j0, R̂

j
1) be the resulting output.

4. (Remove Fake Votes). Output the length-n vector ~cj corresponding to the odd locations
of ~Cj . That is, output

∀i ∈ [n] : cji := C ′2i−1.

(P inject
Abe ,V injectAbe ): The interactive proof system (P inject

Abe ,V injectAbe ) with common input (pk,~c0, ~v) and
witness (rndj , skj)j∈[m] is

1. Submission of intermediate ciphertext vectors: For every j ∈ [m]: P generates
and sends V the input and output lists of ciphertexts (~Cj−1, ~Cj) where ~Cj−1 is generated
as in step 1 above, and ~Cj is the list of ciphertexts output from AbeMix in step 3 above. V
verifies that the output ciphertexts in odd locations for each mix-server j−1 are identical
to the corresponding input ciphertexts to mix-server j: i.e., for every j ∈ [m−1], i ∈ [n]:
Cj2i−1 = Cj+1

2i−1. Additionally, V verifies that the first set of ciphertexts in odd locations
agree with the submitted vote ciphertexts: c0

i = C0
2i−1, for every i ∈ [n].

2. Correctness Proof of VrfblyMix: For every j ∈ [m], execute (PAbe
Mix ,VAbeMix ) with input

(pk, ~Cj−1, ~Cj) and witness (πnew, Bπnew
j
, R̂j0, R̂

j
1)

3. Correctness Proof of Injected Fake Votes: Let ~v⊥ = (⊥, . . . ,⊥) be an n-dimension

vector of the message ⊥, and cj−1,⊥ be the vector of n ciphertexts such that cj−1,⊥
i =

Cj−1
2i for every i ∈ [n]. Execute (PAbe

Dec ,VAbeDec ) with input (pk,~cj−1,⊥, ~v⊥), using witness
(skj)j ∈ [m]. If the prover is rejected in this step, the proof system terminates, and no
further steps take place.

4. Correctness Proof of Decrypt: Let ~cm be a list of n ciphertexts such that cmi = Cm2i−1.
Execute (PAbe

Dec ,VAbeDec ) with input (pk,~cm, ~v) and witness (skj)j ∈ [m]. If the prover is
rejected in this step, or if for any i ∈ [n] it holds that vi = ⊥, the proof system terminates,
and no further steps take place.

5. Correctness Proof of Removed Fake Votes: Let ~v⊥ = (⊥, . . . ,⊥) be an n-dimension

vector of the message ⊥, and cj,⊥ be the vector of n ciphertexts such that cj,⊥i = Cj2i for
every i ∈ [n]. Execute (PAbe

Dec ,VAbeDec ) with input (pk,~cj,⊥, ~v⊥), using witness (skj)j ∈ [m].
If the prover is rejected in this step, the proof system terminates, and no further steps
take place.

Overall (P inject
Abe ,V injectAbe ) proves that: (1) the submitted user ciphertexts are properly copied into

the odd positions of the first mix input vector, and for every mix server j the ciphertexts in the
odd locations of its input ciphertext vector are the same as those in the output of server j− 1;4 (2)

4Note that any pair of group elements can be interpreted as a “valid” ElGamal ciphertext under the public key
pk.
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every mix server permuted its input vector to its output vector; (3) the injected ciphertexts (in even
positions) of each mix server are encryptions of ⊥; (4) the final ciphertexts in the odd locations
indeed decrypt to ~v; and (5) the final ciphertexts in the even locations decrypt to ⊥. Altogether,
this ensures that the final vector ~v is indeed the permutation of the votes underlying ~c0. That is,
soundness holds.

Theorem 4 (Injected Abe Mix-Net is Anonymous). The Injected Abe Mix-Net, as described in
Construction 4, is anonymous (as per Definition 12).

The proof uses the following core lemma, focusing on the proof of a single mix-phase. It
states that for an honest mix-server who indeed injects ciphertexts of ⊥ in even positions, then
the view of a malicious verifier during the proof of correctness of the corresponding mix-phase is
indistinguishable for any pair of implemented permutations which fix the even-location positions
(but operate arbitrary π0, π ∈ Sn on the odd-location positions).

Lemma 5 (Replacing Permutation in Mix). For every (adversarial) non-uniform PPT A, and every
two permutations π0, π1 ∈ Sn, the interactive proof system (PAbe

Mix ,VAbeMix ) (for correctness of Abe mix-
ing) for the relation RMix (eq. (2)) in Abe Mix-net satisfies distributional witness-indistinguishability

(D-WI) with respect to the following two distribution ensembles Dλ = DMix,A
λ (π0) and D′λ =

DMix,A
λ (π1) where DMix,A

λ is as in Definition 14 described below.

Definition 14 (DMix,A
λ ). For any (adversarial) non-uniform PPT algorithm A, and security pa-

rameter λ ∈ N, we define the following distribution DMix,A
λ as follows:

DMix,A
λ (π):

Input Permutation π ∈ Sn

– Sample (pk, (sk1, . . . , skm))← Setup(1λ)

– For every i ∈ [n]: Obtain ci, zi ← A(pk, i)

– For every i ∈ [n]: Set C2i−1 := ci and C2i ← Encpk(Encpk(⊥)

– Let πnew be such that ∀i ∈ [n]:

πnew[2i− 1] = 2 · π[i]− 1, πnew[2i] = 2i.

– Execute AbeMix (step 2 in Abe’s Mix, on 2n votes):

( ~C ′, Bπnew , R̂0, R̂1)← AbeMix(pk, ~C, πnew)

Output (Xλ = (pk, ~C, ~C ′),Wλ = (Bπnew , R̂0, R̂1), Zλ = (z1, . . . , zn))

Proof. We change from the Beneš switch gate settings of πnew0 ∈ S2n to those of πnew1 one gate at a
time, in a particular order. This is achieved by a sequence of steps of the following two forms: (a)
For any honest ciphertext (i.e., encrypting ⊥), we can change the plaintext, by semantic security.
(b) For any gate whose input ciphertexts encrypt the same plaintext (i.e., 2 witnesses to the switch
gate), we can flip the switch bit from b to 1− b, by WI.
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The order of gates is as follows.
We first target the last (output) level of the Beneš network, changing from the corresponding

last-level bits of πnew0 to those of πnew1 . Since the mix-server is honest, in each even output position
2i in the last level is the (rerandomized) ⊥ ciphertext that originated in input position 2i. Using
step type (a) (i.e., semantic security), convert each ciphertext 2i to encrypt the same value as its
output-gate neighbor 2i− 1. This can be done by rerandomizing the neighbor ciphertext and using
this as the original injected “⊥” 2ith ciphertext. Note that changing the plaintext does not affect
the permutation, meaning the same pairs of ciphertexts will appear together in the last level gates.
Then, given the plaintext switch, we have that every gate in the final level has a pair of ciphertexts
of the same plaintext. Then using step type (b) (i.e., WI), we may change each gate to agree with
the Beneš settings for πnew1 .

Next we target the gates in the upper sub-Beneš (see Figure 1). Again we will use the power
of the honest mix-server controlled dummy “⊥” ciphertexts to change from the corresponding
permutation bits of πnew0 to those of πnew1 . First, we “direct” all the ⊥ ciphertexts up to enter this
sub-network by (temporarily) changing the switch settings of the first (input) level of the Beneš:
Using (a) change all ⊥ ciphertexts 2i to encrypt the same value as their input-gate neighbor 2i− 1,
using (b) change all first-level gates to switch value 1, so that all ciphertexts entering the upper
sub-Beneš are dummy, and then using (a) change them all back to encryptions of ⊥. At this point,
all gates in the upper sub-Beneš satisfy the conditions of step (b) (namely, all ciphertexts encrypt
the same plaintext ⊥), which means they can be changed one by one to agree with the Beneš
settings for πnew1 .

Finally, the gates in the lower sub-Beneš and in the first-level (input) gates are changed in an
analogous fashion. See Appendix C.2 for details.

Given Lemma 5, the proof of anonymity follows essentially the same structure as in the case
of the Lossy Abe Mix-net (where previously an analogous statement held by the multiple-witness
guarantee of the lossy public key combined with WI). We note that the order of the executions
of (PAbe

Dec ,VAbeDec ) (i.e., first the injected even-position ciphertexts, then the final shuffled user votes,
then the post-shuffle even-position ciphertexts) is important in order to ensure that we can prop-
erly simulate the execution of these executions (i.e., Hybrid 1 in the Lossy Abe proof) without
information on users’ votes.
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[JM98] Markus Jakobsson and David M’Räıhi. Mix-based electronic payments. In Selected
Areas in Cryptography ’98, SAC’98, Kingston, Ontario, Canada, August 17-18, 1998,
Proceedings, pages 157–173, 1998.

[KMW12] Shahram Khazaei, Tal Moran, and Douglas Wikström. A mix-net from any CCA2
secure cryptosystem. In Advances in Cryptology - ASIACRYPT 2012 - 18th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings, pages 607–625, 2012.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In CCS 2001,
Proceedings of the 8th ACM Conference on Computer and Communications Security,
Philadelphia, Pennsylvania, USA, November 6-8, 2001., pages 116–125, 2001.

[NSK04] Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. Verifiable shuffles: A formal
model and a paillier-based efficient construction with provable security. In Applied
Cryptography and Network Security, Second International Conference, ACNS 2004,
Proceedings, pages 61–75, 2004.

[Oka93] Tatsuaki Okamoto. On the relationship among cryptographic physical assumptions. In
Algorithms and Computation, 4th International Symposium, ISAAC ’93, Hong Kong,
December 15-17, 1993, Proceedings, pages 369–378, 1993.

23



[PVW07] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. IACR Cryptology ePrint Archive, 2007:348, 2007.

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
SIAM J. Comput., 40(6):1803–1844, 2011.

[ST13] Yannick Seurin and Joana Treger. A robust and plaintext-aware variant of signed
elgamal encryption. In Topics in Cryptology - CT-RSA 2013 - The Cryptographers’
Track at the RSA Conference 2013, Proceedings, pages 68–83, 2013.

[TW10] Björn Terelius and Douglas Wikström. Proofs of restricted shuffles. In Progress in
Cryptology - AFRICACRYPT 2010, Third International Conference on Cryptology in
Africa, Stellenbosch, South Africa, May 3-6, 2010. Proceedings, pages 100–113, 2010.

[Wak68] Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, 1968.

[Wik09] Douglas Wikström. A commitment-consistent proof of a shuffle. In Information Se-
curity and Privacy, 14th Australasian Conference, ACISP 2009, Brisbane, Australia,
July 1-3, 2009, Proceedings, pages 407–421, 2009.

A Sub-Protocols for ReRand-Switch Gates

We briefly describe the 3-round sigma protocols for proving consistency of individual ReRand-switch
gates, which serve as the core sub-protocols of Abe’s mix-net.

A.1 Using ElGamal

Recall that a ReRand-switch gate with input x0, x1 outputs y0 = ReRandpk(xb; rb) and y1 =
ReRandpk(x1−b; r1−b) where b ∈ {0, 1} is a gate control bit, and r0, r1 ← [q − 1] are uniform
randomness for ElGamal re-randomize algorithm.

Using the Chaum-Pedersen protocol [CP92] for equality of discrete logarithms, one can prove
that a pair (a, b) ∈ G2 is an ElGamal encryption of zero (i.e., ∃r : (a, b) = (gr, hr)). Proving
correctness of a ReRand-switch gate amounts to proving that Equation (5) holds for either b = 0 or
b = 1.

y0/xb = (grb , hrb) and y1/x1−b = (gr1−b , hr1−b) (5)

This can be achieved by proving an OR (via Cramer et al. [CDS94]) of ANDs (via straightforward
composition) of discrete log equalities. This yields a protocol with the following properties.

Theorem 6 ([CP92, CDS94]). The protocol described above is a witness indistinguishable, honest-
verifier zero-knowledge proof of ElGamal ReRand-switch gate correctness, satisfying special sound-
ness.

A.2 Using Lossy ElGamal

In our construction based on lossy ElGamal, correctness of each gate in the Beneš mix will be
proved using an OR (via Cramer et al. [CDS94]) of ANDs of the following proof for equality of
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Lossy ElGamal ciphertexts of Okamoto [Oka93]. (The proof described below actually proves that
a Lossy ElGamal ciphertext encrypts 0, which suffices for our goal, simply by taking the new ci-
phertext formed by component-wise division of the 2 ciphertexts in question).

Statement: pk = (g0, g1, h0, h1), (a, b) ∈ G2, where allegedly a = gr00 g
r1
1 and b = hr00 h

r1
1 .

Witness: r0, r1.

1. P samples random α0, α1 ← [q] and sends to V c = gα0
0 gα1

1 , d = hα0
0 hα1

1 .

2. V samples a random challenge e← [q] and sends to P.

3. P responds with u0 = α0 + e · r0 and u1 = α1 + e · r1. The verifier accepts iff gu0
0 gu0

1 = cae

and hu0
0 hu0

1 = dbe.

Theorem 7 ([Oka93, CDS94]). The protocol described above is a witness indistinguishable, honest-
verifier zero-knowledge proof of Lossy ElGamal ReRand-switch gate correctness, satisfying special
soundness.

B Abe’s Mix-Net Against Malicious Verifiers

The gate-consistency proof which serves as the core of Abe’s mix-net system is known to be honest-
verifier zero knowledge and witness indistinguishable. However, for the case of a malicious verifier,
and where the statement has a unique witness, no hiding properties are known (indeed, it is known
that it cannot be zero knowledge, at least with black-box simulation, as the protocol is only 3
rounds [GK96]). Given the state-of-the-art knowledge on this well-studied component, it is possible
that an execution of the gate-consistency proof on a pair of ciphertexts of the adversary’s choosing
(with distinct plaintexts) may reveal the bit of whether these ciphertexts were swapped or not
during an honest execution of VrfblyMix. A natural question is: Would this leakage inherently
break anonymity of the unmodified Abe mix-net?

We show that indeed it would. We demonstrate an attack against even the (weaker) notion of
anonymity considered in [Abe99, AH01, AI06], in the case that this swap-bit witness information
is leaked in gates with two adversarially chosen ciphtertexts. In the attack, the adversary corrupts
all but two users, and can predict with higher probability than he should where each honest user’s
vote was permuted.

In line with our indistinguishability-based notion of anonymity, we show a strategy in which
the adversary needs to only corrupt four users out of an arbitrary total number n, and (given gate
leakage information) can distinguish between the use of two different permutations which agree on
corrupted parties.

Both attacks leverage the combinatorial structure of the Beneš network.

B.1 Gate Leakage Would Break [AI06] Anonymity

We demonstrate that such gate leakage in the case of a malicious verifier would result in a break
of the (weaker) notion of anonymity considered in [Abe99, AH01, AI06].

Consider a setting with n ≥ 4 users, with a single uncorrupted mix-server. The attack: Corrupt
all but the last two users, A = [n] \ {n− 1, n}. For each corrupt user i submit a unique vote value
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i. Note that the uncorrupted users are neighbors in the first level of the Beneš network, and in
particular that they are necessarily in the same Beneš cycle (as in Waksman [Wak68]).

Now, consider an execution of the Abe mix-net, in which a random permutation π is imple-
mented. By the unique choice of votes of corrupted parties, the adversary can completely identify
the permutation π except for the ordering of the two uncorrupted votes. Two different cases may
occur:

• The uncorrupted users end in the same gate: i.e., there exists i ∈ [n/2] for which π(n− 1) =
2i − 1, π(n) = 2i or vice versa. In this case, there are 2 degrees of freedom (no attack).
However, this occurs with probability less than 1

n (this is the probability that the uncorrupted
users are neighbors in the permutation, not necessarily in the same output gate).

• The uncorrupted users end in different gates: in this case, the uncorrupted parties are on a
Beneš cycle which includes corrupted parties (their neighbors in the output gates), and thus
must necessarily include a gate with two corrupt parties (namely, there will be at least one
additional input gate, which must have this property). This means the switch value of this
gate is leaked. However, setting the switch value of any gate within a Beneš cycle, together
with the corresponding known permutation information, determines the switch values of all
other gates in the same cycle. In particular, this reveals the corresponding ordering of the
two uncorrupted parties.

B.2 Gate Leakage Would Break Indistinguishability Anonymity

More in line with the indistinguishability-based notion of anonymity we consider, we next demon-
strate a simple permutation distinguishing attack on Abe’s mix-net given the above-described gate
leakage.

Namely, for any choice of n = 2d ≥ 8 users, we present a choice of corruptions A ⊂ [n], and a
pair of permutations σ, π ∈ Sn with the following properties:

• A = {1, 2, 5, 6} ⊂ [n] consists of exactly 4 corrupted users. Note that 1, 2 and 5, 6, respectively,
are neighbors in gate 1 and in gate 3 of the first level of the Beneš network on n users, so
that both gates Bπ[1, 1] and Bπ[3, 1] would be subject to leakage in the above scenario.

• π and σ agree on the corrupted set A: i.e., ∀i ∈ A, π(i) = σ(i).

• For any Beneš representation Bπ of π and Bσ of σ, it holds that (Bπ[1, 1], Bπ[3, 1]) 6=
(Bσ[1, 1], Bσ[3, 1]). That is, the Beneš control bits for gates 1 and 3 (in the first level of
the Beneš network) for permutations π and σ cannot both agree.

This means that if the control bits of “adversarially controlled” Beneš mix gates are revealed, then
an adversary can distinguish which of these two permutations was used for mixing, even though
the permutations differ only on honest votes.

The counterexample permutations are as follows, depicted in Figure 2:

Permutation 1: π ∈ S8 given by (1)(3)(5)(7)(2864). All possible Beneš settings for π require the
control bit Bπ[1] of the first gate in level 1 (dictating swap of inputs 1&2) to agree with the
control bit Bπ[3] of the third gate in level 1 (dictating swap of inputs 5&6).
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Figure 2: Pair of permutations π (left) and σ (right) for permutation distinguishing attack on Abe’s
mix-net [Abe99, AH01].

Permutation 2: σ ∈ S8 given by (1)(5)(2873)(46). Here, all possible Beneš settings for π require
the control bit Bσ[1] to disagree with the control bit Bσ[3].

Note that both permutations agree on the image of corrupt indices 1,2,5,6 (shaded in Figure 2).
When determining possible Beneš control bit settings for a given permutation (as first presented by
Waksman [Wak68]), one considers cycles within the Beneš network. For example, for permutation
π, starting with input index 1 in gate [1, 1], one first traces to the last-level gate of 1’s image (gate
[L, 1]), sees its output gate neighbor (here, 4), traces back to the input gate of this index 4 (gate
[1, 2]), sees 4’s input gate neighbor (3), tracing to 3’s output gate (gate [L, 2]), etc.

For both of the chosen permutations π, σ, the Beneš settings result in a single cycle, so that the
Beneš settings Bπ and Bσ in the first and last level are completely determined by the choice of the
first gate setting Bπ[1, 1] (and Bσ[1, 1])

We remark that this conclusion holds even if we were to assume a large honest majority of
users, as the same counterexample holds with 4 corrupted users even as the number of overall users
n grows arbitrarily large (considering πd, σd ∈ S8 × S2d−8).

C Omitted Proofs

C.1 Proof of Lossy Abe Anonymity (Theorem 3)

Proof of Theorem 3. The sequence of hybrids is as follows:

Hybrid 0 H0: We starts with ViewV∗ [D
MixNet,A
λ ((ui)i∈UĀ)]. Informally, the relevant parts of the

adversary A view consists of:

(ui)i∈UĀ , pk, (skj)j∈SA , (c0
i )i∈UĀ ,

(
viewMixj

)
j∈[m]

, viewDec, ~v,

corresponding to the (adversarially chosen) input vote vector, public key, secret shares of the
secret key, honest-user encrypted votes, the view during the mix-phase of all m mix-servers,
the view during the decryption (Decrypt) phase, and the final vector of decrypted (shuffled)
votes.
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Hybrid 1 H1: In this hybrid we replace viewDec with a simulated view SimDec. Namely, we change

ViewDec
V∗
[
(pk,~cm, ~v) , (skj)j∈[m] , z

]
.

with

Simloss
Dec [(pk,~cm, ~v) , z]

By the zero-knowledge of (P loss
Dec,V lossDec), it holds that H0

c
≈ H1.

Hybrid 2 H2: In this hybrid we replace the setup phase Setup with a lossy setup SetupH2 , where5

Setup(1λ) : SetupH2(1λ) :

(pk, sk)← KeyGen(1λ) pkloss ← KeyGenloss(1
λ)

sk1, . . . , skm ← SecretShare(sk) r1, . . . , rm ← {0, 1}λ

This change the view, so instead of pk, (skj)j∈SA we have pkloss, (rj)j∈SA .

By the keys indistinguishability of Lossy ElGamal and the pseudorandomness of shares of the

secret sharing algorithm, it holds that H1
c
≈ H2.

Hybrid 3 H3: In this hybrid we use semantic security and change the encrypted user votes from
(c0
i )i∈UĀ to encryption of the permuted user votes (c0

i )σ(i)∈UĀ . Namely, we change

∀i ∈ UĀ : c0
i ← Encpk(ui)

with

∀i ∈ UĀ : c0
i ← Encpk(uσ(i))

By the semantic security of Lossy ElGamal, it holds that H2
c
≈ H3.

Remark. The simulator Simloss
Dec still runs given the input ((pkloss,~c

m, ~v), z) where ~v is a per-
mutation π of the original votes.

Hybrid 4 H4: Let j∗ be an honest mixing server, and let πj be the selected permutation of server
j. Let π̃j∗−1 denote the cumulative permutations implemented by mix-servers 1, . . . , j∗ − 1.
Note that these permutations are contained as part of the witness of the mix proof and thus
can be extracted by the special soundness property of the underlying proof sub-protocols.

In this hybrid we use the WI property, and we change the permutation runs by the honest
server j∗ to undo the permutation σ. Namely, instead of the permutation πj∗ , the honest
server j∗ runs the permutation π∗ := πj∗ ◦ π̃j∗−1 ◦ σ−1 ◦ π̃−1

j∗−1. Informally, the relevant parts
of the adversary view consists of:

(ui)i∈UĀ , pkloss, (rj)j∈SA , (c0
i )σ(i)∈UĀ , view

Mix1 , . . . , viewMixj∗ , . . . , viewMixm , Simloss
Dec, ~v

5We assume that λ is the length of regular share of a key (if the length is p(λ), SetupH2 samples ri ← {0, 1}p(λ))
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where in hybrid H3 the view viewMixj∗ is

View
Mixj∗
V∗

[(
pkloss,~c

j∗−1,~cj
∗
)
,
(
Bπj∗ , R̂

j∗

0 , R̂
j∗

1

)
, z
]
.

and in H4

View
Mixj∗
V∗

[(
pkloss,~c

j∗−1,~c∗
)
,
(
Bπ∗ , R̂

∗
0, R̂

∗
1

)
, z
]
.

By Claim 1, for any fixed choice of intermediate ciphertext vectors ~c, (~c(`))`∈[L] for the Beneš

execution, and for any Beneš setting Bπ∗ ∈ {0, 1}L×
n
2 , there exist matrices R∗0, R

∗
1 of random-

ness such that R∗0, R
∗
1 are consistent re-randomization for Bπ∗ .

By the WI of (P loss
Gate,V lossGate) and Claim 1, it holds that H3

c
≈ H4.

Hybrid 5 H5: In this hybrid we replace the lossy setup phase SetupH2 with Setup (i.e., we undo
the change made in hybrid 2).

By the keys indistinguishability of Lossy ElGamal and the pseudorandomness of shares of the

secret sharing algorithm, it holds that H4
c
≈ H5.

Hybrid 6 H6: In this hybrid we replace the simulated view Simloss
Dec with an viewDec (i.e, we undo

the change made in hybrid 1).

By the zero-knowledge of (P loss
Dec,V lossDec), it holds that H5

c
≈ H6.

C.2 Proof of Injected Abe Anonymity (Lemma 5)

The proof will make repeated use of the following two useful lemmata.
Observe that if the two input ciphertexts x0, x1 to a Beneš switch gate encrypt the same

plaintext, then any corresponding common input x = (pk, x0, x1, y0, y1) for the relation RGate has
exactly two witnesses of the form (b, r0, r1) as in Eq (3). We next define notation for the set of all
such instances and witness pairs.

Definition 15 (SamePlaintextλ). For ElGamal encryption (KeyGen,Enc,Dec,ReRand), and for se-
curity parameter λ, we define the following set

SamePlaintextλ =


 x = (pk, x0, x1, y0, y1),

w0 = (0, r0, r1),
w1 = (1, r0 − r, r1 + r)


∣∣∣∣∣∣∣∣∣∣
∃u ∈M : pk ∈ KeyGen(1λ)1,

x0 ∈ Encpk(u),
x1 = ReRandpk(x0; r),
y0 = ReRandpk(x0; r0),
y1 = ReRandpk(x1; r1)

 .

Lemma 8 ((PGate,VGate) Same Plaintext). For every (x,w0, w1) ∈ SamePlaintextλ, and for any
auxiliary input z,

ViewVGate [(x,w0, z)]
c
≈ ViewVGate [(x,w1, z)].

Proof. Follows by the WI property of the interactive proof system (PGate,VGate), as per Theorem 6.
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Lemma 9 ((PGate,VGate) Same Permutation). For every w ∈ {0, 1} × [q − 1]2 and non-uniform
PPT A, the interactive proof system (PGate,VGate) for the gate-consistency relation RGate (eq. (3))
in Abe Mix-net is distributional witness-indistinguishability (D-WI) with respect to the following
two distribution ensembles

Dλ = (DGate,w,A
λ (0)) D′λ = (DGate,w,A

λ (1)),

where DGate,w,A
λ is as in Definition 16.

Definition 16 (DGate,w,A
λ ). For any w = (b, r0, r1) ∈ {0, 1} × [q − 1]2, (adversarial) non-uniform

PPT algorithm A, and security parameter λ ∈ N, we define the following distribution DGate,w,A
λ as

follows:

DGate,w,A
λ (u):

Input Plaintext u ∈M

– Sample pk← KeyGen(1λ)

– Sample c0 ← Encpk(u)

– Obtain (c1, β, z)← A(pk, c0)

– Set x0 = cβ and x1 = c¬β

– Set yb = ReRandpk(x0; r0) and y¬b = ReRandpk(x1; r1)

Output (Xλ = (pk, x0, x1, y0, y1),Wλ = w,Zλ = z)

Proof. Suppose for contradiction there exists w = (b, r0, r1), non-uniform PPT algorithm A, non-
uniform (adversarial) verifier V∗, and non-uniform PPT distinguisher Adv who successfully distin-
guishes ViewV∗ [Dλ] and ViewV∗ [D

′
λ] with non-negligible advantage ε. We construct an adversary

Adv′ who breaks the semantic security of ElGamal.
Adv′ has ((b, r0, r1),A,V∗, Adv) hardcoded. In the semantic security challenge, Adv′ receives a

public key pk and a challenge ciphertext c∗ which encrypts either 0 or 1. Adv′ executes (c1, β, z)←
A(pk, c∗), sets x := (pk, cβ, c¬β, ReRandpk(xb; rb),ReRandpk(x¬b; r¬b)) and simulates the interactive
proof
(PGate,VGate) with V∗ to generate view← ViewV∗ [(x,w, z)]. Finally, Adv′ outputs Adv(view).

If c∗ is an encryption of 0, then ViewV∗ [(x,w, z)] is identically distributed to Dλ, whereas if c∗

is an encryption of 1, then it is identically distributed to D′λ. The lemma follows.

Using the lemmata 8 and 9, we now prove Lemma 5.

Proof. LetA be a non-uniform PPT ciphertexts generator, and let π0 and π1 be two permutations in

Sn. We show that for any PPT interactive machine V∗: ViewV∗ [D
Mix,A
λ (π0)]

c
≈ ViewV∗ [D

Mix,A
λ (π1)]
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(where DMix,A
λ is as in Definition 14), by a sequence of the following hybrids. We denote by

L = N log(N) (number of levels), N = 2n (number of users),(
X0
λ =

(
pk, ~C, ~C ′

)
,W 0

λ =
(
Bπnew

0
, R̂0

0, R̂
0
1

)
, Z0

λ = ~z
)
← DMix,A

λ (π0)

and similarly (
X1
λ =

(
pk, ~C, ~C ′′

)
,W 1

λ =
(
Bπnew

0
, R̂1

0, R̂
1
1

)
, Z1

λ = ~z
)
← DMix,A

λ (π1)

Hybrid 0 H0: ViewV∗ [D
Mix,A
λ (π0)]

Hybrid 1 H1: In this hybrid we change the input ciphertexts at the even positions to be

∀i ∈ [n] : C2i ← ReRandpk(C
′
2i−1)

instead of an encryptions of ⊥. Namely, ∀i ∈ [n] : C2i ← Encpk(⊥). After this change, the
two input ciphertexts CL−1

2i−1, C
L−1
2i (i.e. two input ciphertexts of every gate at the last level

in the Beneš network) have the same plaintexts. This is because πnew0 acts as the identity on
the even positions. By Lemma 9 (same permutation):

H0
c
≈ H1

Hybrid 2 H2: In this hybrid we change the last level control bits from Bπnew
0

[L] to Bπnew
1

[L]. By
Lemma 8 (same plaintext):

H1
c
≈ H2

Hybrid 3 H3: In this hybrid we change the input ciphertexts at the even positions to be

∀i ∈ [n] : C2i ← ReRandpk(C2i−1)

instead of C2i ← ReRandpk(C
′
2i−1) for all i ∈ [n]. After this change, the two input ciphertexts

C2i−1, C2i (i.e. two input ciphertexts of every gate at the first level in the Beneš network)
have the same plaintexts. By Lemma 9 (same permutation):

H2
c
≈ H3

Hybrid 4 H4: In this hybrid we change the first level control bits from Bπnew
0

[1] to all be one (i.e.,
all even positions are going to the (d − 1)-dimensional Beneš Network Bup) . By Lemma 8
(same plaintext):

H3
c
≈ H4

Hybrid 5 H5: In this hybrid we change the input ciphertexts at the even positions to be

∀i ∈ [n] : C2i ← Encpk(⊥)

instead of C2i ← ReRandpk(C2i−1) for all i ∈ [n]. After this change, all the ciphertexts in the
(d− 1)-dimensional Beneš Network Bup have the same plaintext (which is ⊥). By Lemma 9
(same permutation):

H4
c
≈ H5
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Hybrid 6 H6: In this hybrid we change the (d − 1)-dimensional Beneš Network Bup control bits
from Bπnew

0
[i][`] to Bπnew

1
[i][`] (for every i ∈ [n/4], ` ∈ {2, . . . , L − 1}). By Lemma 8 (same

plaintext):

H5
c
≈ H6

Hybrid 7 H7: In this hybrid we repeat hybrid 3 and change injected ciphertexts in such a way
that the two input ciphertexts of every gate at the first level in the Beneš network have the
same plaintexts. By Lemma 9 (same permutation):

H6
c
≈ H7

Hybrid 8 H8: In this hybrid we change the first level control bits from Bπnew
0

[1] to all be zero (i.e.,
all even positions are going to the (d− 1)-dimensional Beneš Network Bdown) . By Lemma 8
(same plaintext):

H7
c
≈ H8

Hybrid 9 H9: In this hybrid we repeat hybrid 5 and change the input ciphertexts at the even
positions to be

∀i ∈ [n] : C2i ← Encpk(⊥)

instead of C2i ← ReRandpk(C2i−1) for all i ∈ [n]. After this change, all the ciphertexts in the
(d− 1)-dimensional Beneš Network Bdown have the same plaintext (which is ⊥). By Lemma
9 (same permutation):

H8
c
≈ H9

Hybrid 10 H10: In this hybrid we change the (d − 1)-dimensional Beneš Network Bdown control
bits from Bπnew

0
[i][`] to Bπnew

1
[i][`] (for every i ∈ {n/4 + 1, . . . n/2}, ` ∈ {2, . . . , L − 1}). By

Lemma 8 (same plaintext):

H9
c
≈ H10

Hybrid 11 H11: In this hybrid we repeat hybrid 3 (and 7) and change injected ciphertexts in such
a way that the two input ciphertexts of every gate at the first level in the Beneš network have
the same plaintexts. By Lemma 9 (same permutation):

H10
c
≈ H11

Hybrid 12 H12: In this hybrid we change the first level control bits from Bπnew
0

[1] to Bπnew
1

[1]. By
Lemma 8 (same plaintext):

H11
c
≈ H12

Hybrid 13 H13: In this hybrid we repeat hybrid 5 (and 9) and change the input ciphertexts at
the even positions to be

∀i ∈ [n] : C2i ← Encpk(⊥)

instead of C2i ← ReRandpk(C2i−1) for all i ∈ [n]. By Lemma 9 (same permutation):

H12
c
≈ H13
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