
Identity-Based Encryption from the Diffie-Hellman Assumption∗

Nico Döttling Sanjam Garg

University of California, Berkeley

Abstract

We provide the first constructions of identity-based encryption and hierarchical identity-
based encryption based on the hardness of the (Computational) Diffie-Hellman Problem (with-
out use of groups with pairings) or Factoring. Our construction achieves the standard notion
of identity-based encryption as considered by Boneh and Franklin [CRYPTO 2001]. We by-
pass known impossibility results using garbled circuits that make a non-black-box use of the
underlying cryptographic primitives.

1 Introduction

Soon after the invention of public-key encryption [DH76,RSA78], Shamir [Sha84] posed the problem
of constructing a public-key encryption scheme where encryption can be performed using just
the identity of the recipient. In such an identity-based encryption (IBE) scheme there are four
algorithms: (1) Setup generates the global public parameters and a master secret key, (2) KeyGen
uses the master secret key to generate a secret key for the user with a particular identity, (3)
Encrypt allows for encrypting messages corresponding to an identity, and (4) Decrypt can be used
to decrypt the generated ciphertext using a secret key for the matching identity.

The ability of IBE to “compress” exponentially many public keys into “small” global public
parameters [Coc01,BF01] provides a way for simplifying certificate management in e-mail systems.
Specifically, Alice can send an encrypted email to Bob at bob@iacr.org by just using the string
“bob@iacr.org” and the public parameters generated by a setup authority. In this solution, there
is no need for Alice to obtain Bob’s public key. Bob could decrypt the email using a secret key
corresponding to “bob@iacr.org” that he can obtain from the setup authority.1

The more functional notion of hierarchical IBE (HIBE) [HL02,GS02] additionally allows a user
with a secret key for an identity id to generate a secret key for any identity id‖id′. For instance, in
the example above, Bob can use the secret key corresponding to identity “bob@iacr.org” to obtain

∗Research supported in part from AFOSR YIP Award, DARPA/ARL SAFEWARE Award W911NF15C0210,
AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397, and research grants by the Okawa Foundation, Visa
Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author
and do not reflect the official policy or position of the funding agencies. Nico Döttling was supported by a postdoc
fellowship of the German Academic Exchange Service (DAAD)

1Of course, Bob needs to authenticate his identity to the setup authority in this step. Bob can perform this
authentication in the same way as it would do to a Certification Authority while using a public-key encryption
scheme.

1

a secret key corresponding to the identity “bob@iacr.org‖2017”. Bob could then give this key to
his secretary who could now decrypt all his emails tagged as being sent during the year 2017, while
Bob is on vacation.

The first IBE schemes were realized by Boneh and Franklin [BF01] and Cocks [Coc01]. Sub-
sequently, significant research effort has been devoted to realizing IBE and HIBE schemes. By
now, several constructions of IBE are known based on (i) various assumptions on groups with a
bilinear map, e.g. [BF01, CHK03, BB04a, BB04b, Wat05, OT10], (ii) the quadratic residuocity as-
sumption [Coc01, BGH07] (in the random oracle model [BR93]), or (iii) the learning-with-errors
(LWE) assumption [GPV08,CHKP10,AB09]. On the other hand, HIBE schemes are known based
on (i) various assumptions on groups with a bilinear map [HL02,GS02,BB04a,BBG05,GH09,Wat09,
SW08,LW10], or (ii) LWE [CHKP10,ABB10a,ABB10b].

On the negative side, Boneh, Papakonstantinou, Rackoff, Vahlis, and Waters [BPR+08] show
that IBE cannot be realized using trapdoor permutations or CCA-secure public-key encryption
in a black-box manner. Furthermore, Papakonstantinou, Rackoff and Vahlis [PRV12] show that
black-box use of a group over which DDH is assumed to be hard is insufficient for realizing IBE.

1.1 Our Results

In this work, we show a fully-secure construction of IBE and a selectively secure HIBE based just
on the Computational Diffie-Hellman (CDH). In the group of quadratic residues this problem is as
hard as the Factoring problem [Shm85, McC88, BBR97]. Therefore, this implies a solution based
on the hardness of factoring as well.

Our constructions bypass the known impossibility results [BPR+08, PRV12] by making a non-
black-box use of the underlying cryptographic primitives. However, this non-black-box use of
cryptographic primitives also makes our scheme inefficient. In Section 6, we suggest ideas for
reducing the non-black-box of the underlying primitives thereby improving the efficiency of our
scheme. Even with these optimizations, our IBE scheme is prohibitive when compared with the
IBE schemes based on bilinear maps. We leave open the problem of realizing an efficient IBE
scheme from the Diffie-Hellman Assumption.

Subsequent work. In a followup paper [DG17] we show how the techniques from this paper can
be used to obtain generic constructions of fully-secure IBE and selectively-secure HIBE starting
with any selectively-secure IBE scheme.

2 Our Techniques

In this section, we give an intuitive explanation of our construction of IBE from the Decisional
Diffie-Hellman (DDH) Assumption. We defer the details on constructing HIBE and obtaining the
same results based on Computational Diffie-Hellman to the main body of the paper.

We start by describing a chameleon hash function [KR98] that supports certain encryption
and decryption procedures. We refer to this new primitive as a chameleon encryption scheme.2

Subsequently, we describe how chameleon encryption along with garbled circuits can be used to
realize IBE.

2The notion of chameleon hashing is closely related to the notion of chameleon commitment scheme [BCC88] and
we refer the reader to [KR98] for more discussion on this.

2

2.1 Chameleon Encryption

As mentioned above, a chameleon encryption scheme is a chameleon hash function that supports cer-
tain encryption and decryption procedures along with. We start by describing the chameleon hash
function and then the associated encryption and decryption procedures. Recall that a chameleon
hash function is a collision resistant hash function for which the knowledge of a trapdoor enables
collision finding.

Our Chameleon Hash. Given a cyclic group G of prime order p with a generator g consider
the following chameleon hash function:

H(k, x; r) = gr
∏
j∈[n]

gj,xj ,

where k = (g, {gj,0, gj,1}j∈[n]), r ∈ Zp and xj is the jth bit of x ∈ {0, 1}n. It is not very hard to note
that this hash function is (i) collision resistant based on the hardness of the discrete-log problem, and
(ii) chameleon given the trapdoor information {dlogg gj,0, dlogg gj,1}j∈[n] — specifically, given any
x, r, x′ and the trapdoor information we can efficiently compute r′ such that H(k, x; r) = H(k, x′; r′).

The Associated Encryption — Abstractly. Corresponding to a chameleon hash function, we
require encryption and decryption algorithms such that

1. encryption Enc(k, (h, i, b),m) on input a key k, a hash value h, a location i ∈ [n], a bit
b ∈ {0, 1}, and a message m ∈ {0, 1} outputs a ciphertext ct, and

2. decryption Dec(k, (x, r), ct) on input a ciphertext ct, x and coins r yields m if

h = H(k, x; r) and xi = b,

where (h, i, b) are the values used in the generation of the ciphertext ct.

In other words, the decryptor can use the knowledge of the preimage of h as the key to decrypt m
as long as the ith bit of the preimage it can supply is equal to the value b chosen at the time of
encryption. Our security requirement roughly is that

{k, x, r,Enc(k, (h, i, 1− xi), 0)}
c
≈ {k, x, r,Enc(k, (h, i, 1− xi), 1)},

where
c
≈ denotes computational indistinguishability.3

The Associated Encryption — Realization. Corresponding to the chameleon hash defined
above our encryption procedure Enc(k, (h, i, b),m) proceeds as follows. Sample a random value

ρ
$←− Zp and output the ciphertext ct where ct = (e, c, c′, {cj,0, cj,1}j∈[n]\{i}) and

c := gρ c′ := hρ,

∀j ∈ [n]\{i}, cj,0 := gρj,0 cj,1 := gρj,1,

e := m⊕ gρi,b.
3The success of decryption is conditioned on certain requirements placed on (x, r). This restricted decryption

capability is reminiscent of the concepts of witness encryption [GGSW13] and extractable witness encryption [BCP14,
ABG+13].

3

It is easy to see that if xi = b then decryption Dec(ct, (x, r)) can just output

e⊕ c′

cr
∏
j∈[n]\{i} cj,xj

.

However, if xi 6= b then the decryptor has access to the value gρi,xi but not gρi,b, and this prevents him
from learning the message m. Formalizing this intuition, we can argue security of this scheme based
on the DDH assumption.4 In a bit more detail, we can use an adversary A breaking the security
of the chameleon encryption scheme to distinguish DDH tuples (g, gu, gv, guv) from random tuples
(g, gu, gv, gs). Fix (adversarially chosen) x ∈ {0, 1}n, index i ∈ [n] and a bit b ∈ {0, 1}. Given a
tuple (g, U, V, T), we can simulate public key k, hash value h, coins r and ciphertext ct as follows.

Choose uniformly random values αj,0, αj,1
$←− Zp and set gj,0 = gαj,0 and gj,1 = gαj,1 for j ∈ [n].

Now reassign gi,1−xi = U and set k := (g, {gj,0, gj,1}j∈[n]). Choose r
$←− Zp uniformly at random

and set h := H(k, x; r). Finally prepare a challenge ciphertext ct := (e, c, c′, {cj,0, cj,1}j∈[n]\{i}) by
choosing

c := V c′ := V r ·
∏
j∈[n]

V αj,xj ,

∀j ∈ [n]\{i}, cj,0 := V αj,0 cj,1 := V αj,1 ,

e := m⊕ T,

where m ∈ {0, 1}. Now, if (g, U, V, T) = (g, gu, gv, guv), then a routine calculation shows that k, h,
r and ct have the same distribution as in the security experiment, thus A’s advantage in guessing
m remains the same. On the other hand, if T is chosen uniformly at random and independent of
g, U, V , then A’s advantage to guess m given k, h, r and ct is obviously 0, which concludes this
proof-sketch.

2.2 From Chameleon Encryption to Identity-Based Encryption

The public parameters of an IBE scheme need to encode exponentially many public keys suc-
cinctly — one per each identity. Subsequently, corresponding to these public parameters the setup
authority should be able to provide the secret key for any of the exponentially many identities.
This is in sharp contrast with public-key encryption schemes for which there is only one trapdoor
per public key, which if revealed leaves no security. This is the intuition behind the black-box
impossibility results for realizing IBE based on trapdoor permutations and CCA secure encryp-
tion [BPR+08,PRV12]. At a very high level, we overcome this intuitive barrier by actually allowing
for exponentially many public keys which are somehow compressed into small public parameters
using our chameleon hash function. We start by describing how these keys are sampled and hashed.

Arrangement of the keys. We start by describing the arrangement of the exponentially many
keys in our IBE scheme for identities of length n bits. First, imagine a fresh encryption decryption
key pair for any public-key encryption scheme for each identity in {0, 1}n. We will denote this pair
for identity v ∈ {0, 1}n by (ekv, dkv). Next, in order to setup the hash values, we sample n hash keys
— namely, k0, . . . kn−1. Now, consider a tree of depth n and for each node v ∈ {0, 1}≤n−1 ∪ {ε}5

4In Section 5, we explain our constructions of chameleon encryption based on the (Computational) Diffie-Hellman
Assumption, or the Factoring Assumption.

5We use ε to denote the empty string.

4

the hash value hv is set as:

hv =

{
H(ki, ekv‖0‖ekv‖1; rv) v ∈ {0, 1}n−1 where i = |v|
H(ki, hv‖0‖hv‖1; rv) v ∈ {0, 1}<n−1 ∪ {ε} where i = |v|

(1)

where rv for each v ∈ {0, 1}<n ∪ {ε} are chosen randomly.

Generating the tree on demand. Note that the setup authority cannot generate and hash
these exponentially many hash keys at setup time. Instead, it generates them implicitly. More
specifically, the setup authority computes each hv as H(k|v|, 0

λ;ωv). Then, later on when needed,
using the trapdoor t|v| for the hash key k|v| we can obtain coins rv such that the generated value hv
indeed satisfies Equation 1. Furthermore, in order to maintain consistency (in the tree and across
different invocations) the randomness ωv used for each v is chosen using a pseudorandom function.
In summary, with this change the entire can be represented succinctly.

What are the public parameters? Note that the root hash value hε somehow binds the entire
tree of hash values. With this in mind, we sent the public parameters of the scheme to be the n
hash keys and the root hash value, i.e.

k0, . . . kn−1, hε.

Secret-key for a particular identity id. Given the above tree structure the secret key for some
identity id simply consists of the hash values along the path from the root to the leaf corresponding
to id and their siblings along with the decryption key dkid.6 Specifically, the secret key skid for
identity id consists of ({lkv}v∈V , dkid) where V := {ε, id[1], . . . id[1 . . . n− 1]} and

lkv =

{
(hv, hv‖0, hv‖1, rv) for v ∈ V \{id[1 . . . n− 1]}
(hv, ekv‖0, ekv‖1, rv) for v = id[1 . . . n− 1]

.

Encryption and Decryption. Before providing details of encryption and decryption, we will
briefly discuss how chameleon encryption can be useful in conjunction with garbled circuits.7

Chameleon encryption allows an encryptor knowing a key k and a hash value h to encrypt a
set of labels {labj,0, labj,1}j such that a decryptor knowing x and r with H(k, x; r) = h can re-
cover {labj,xj}j . On the other hand, security of chameleon encryption guarantees that the receiver
learns nothing about the remaining labels. In summary, using this mechanism, an the generated
ciphertexts enable the decryptor to feed x into a garbled circuit to be processed further.

To encrypt a message m to an identity id ∈ {0, 1}n, the encryptor will generate a sequence of
n + 1 garbled circuits {P̃ 0, . . . P̃n−1, T̃} such that a decryptor in possession of the identity secret
key skid = ({lkv}v∈V , dkid) will be able evaluate these garbled circuits one after another. Roughly
speaking, circuit P i for any i ∈ {0 . . . n − 1} and v = id[1 . . . i] takes as input a hash value hv and
generates chameleon encryptions of the input labels of the next garbled circuit P̃ i+1 using a k|v|

6We note that our key generation mechanism can be seen as an instantiation of the Naor Yung [NY89] tree-based
construction of signature schemes from universal one-way hash functions and one-time signatures. This connection
becomes even more apparent in the follow up paper [DG17].

7For this part of the intuition, we assume familiarity with garbled circuits.

5

hardwired inside it and the hash value h given to it as input (in a manner as described above).
The last circuit T will just take as input an encryption key pkid and output an encryption of the
plaintext message m under ekid. Finally, the encryptor provides input labels for the first garbled
circuit P̃ 0 for the input hε in the ciphertext.

During decryption, for each i ∈ {0 . . . n − 1} and v = id[1 . . . i] the decryptor will use the local
key lkv to decrypt the ciphertexts generated by P̃ i and obtain the input labels for the garbled
circuits P̃ i+1 (or, T if i = n − 1). We will now explain the first iteration of this construction in
more detail, all further iterations proceed analogously. The encryptor provides garbled input labels
corresponding to input hε for the first garbled circuit P̃ 0 in the ciphertext. Thus the decryptor can
evaluate P̃ 0 and obtain encryptions of input labels {labj,0, labj,1}j∈[λ] for the circuit P̃ 1, namely:

{Enc(k0, (hε, id[1] · λ+ j, 0), labj,0), Enc(k0, (hε, id[1] · λ+ j, 1), labj,1)}j∈[λ]
The garbled circuit has id[1] and the input labels {labj,0, labj,1}j∈[λ] hardwired in it. Given these

encryptions the decryptor uses lkε = (hε, h0, h1, rε) to learn the garbled input labels {labj,hid[1],j}j∈[λ]
where hid[1],j is the jth bit of hid[1]. In other words, the decryptor now possesses input labels for the

input hid[1] for the garbled circuit P̃ 1 and can therefore evaluate P̃ 1. Analogous to the previous step,

the decryptor uses lkid[1] and rid[1] to obtain input labels to P̃ 2 and so on. The decryptor’s ability
to provide the local keys lkv for v ∈ V keeps this process going ultimately revealing an encryption
of the message m under the encryption key pkid. This final ciphertext can be decrypted using the
decryption key dkid. At a high level, our encryption method (and the use of garbled circuits for
it) has similarities with garbled RAM schemes [LO13, GHL+14, GLOS15, GLO15, CDG+17]. Full
details of the construction are provided in Section 6.

Proof Sketch. The intuition behind the proof of security which follows by a sequence of hybrid
changes is as follows. The first (easy) change is to replace the pseudorandom function used to
generate the local keys by a truly random function something that should go undetected against a
computationally bounded attacker. Next, via a sequence of hybrids we change the n + 1 garbled
circuits P̃ 0, . . . P̃n−1, T̃ to their simulated versions one by one. Once these changes are made the
simulated circuit T̃ just outputs an encryption of the message m under the encryption key pkid∗

corresponding challenge identity id∗, which hides m based on semantic security of the encryption
scheme.

The only “tricky” part of the proof is the one that involves changing garbled circuits to their
simulated versions. In this intuitive description, we explain how the first garbled circuit P̃ 0 is
moved to its simulated version. The argument of the rest of the garbled circuits is analogous. This
change involves a sequence of four hybrid changes.

1. First, we change how hε is generated. As a quick recap, recall that hε is generated as
H(k0, 0

2λ;ωε) and rε are set to H−1(t0, (0
2λ, ωε), h0‖h1). We instead generate hε directly to be

equal to the value rε are set to H(k0, h0‖h1, rε) using fresh coins rε. The trapdoor collision
and uniformity properties of the chameleon encryption scheme ensure that this change does
not affect the distribution of the hε and rε, up to a negligible error.

2. The second change we make is that the garbled circuit P̃ 0 is not generates in simulated form
instead of honestly. Note that at this point the distribution of this garbled circuit depends
only on its output which is {Enc(kε, (hε, j, b), labj,b)}j∈[λ],b∈{0,1} where {labj,b}j∈[λ],b∈{0,1} are

the input labels for the garbled circuit P̃ 1.

6

3. Observe that at this point the trapdoor tε is not being used at all and P̃ 0 is the simulated
form. Therefore, based on the security of the chameleon encryption we have that for all
j ∈ [λ],Enc(kε, (hε, j, 1 − hid[1],j), labj,1−hid[1],j) hides labj,1−hid[1],j . Hence, we can change the
hardcoded ciphertexts from

{Enc(kε, (hε, j, b), labj,b)}j∈[λ],b∈{0,1}

to
{Enc(kε, (hε, j, b), labj,hid[1],j)}j∈[λ],b∈{0,1}

4. Finally, the fourth change we make is that we reverse the first change. In particular, we
generate hε as is done in the real execution.

As a consequence, at this point only the labels {labj,hid[1],j}j∈[λ] are revealed in an information

theoretic sense and the same sequence of hybrids can be repeated for the next garbled circuit P̃ 1.
The only change in this step is that now both h0 and h1 will be generated (if needed) by first
sampling their children. The full proof of security is provided in Section 6.2.

3 Preliminaries

Let λ denote the security parameter. We use the notation [n] to denote the set {1, . . . , n}. By PPT

we mean a probabilistic polynomial time algorithm. For any set S, we use x
$←− S to mean that

x is sampled uniformly at random from the set S.8 Alternatively, for any distribution D we use

x
$←− D to mean that x is sampled from the distribution D. We use the operator := to represent

assignment and = to denote an equality check.

3.1 Computational Problems

Definition 3.1 (The Diffie-Hellman (DH) Problem). Let (G, ·) be a cyclic group of order p with

generator g. Let a, b be sampled uniformly at random from Zp (i.e., a, b
$←− Zp). Given (g, ga, gb),

the DH(G) problem asks to compute gab.

Definition 3.2 (The Factoring Problem). Given a Blum integer N = pq (p and q are large primes
with p = q = 3 mod 4) the FACT problem asks to compute p and q.

3.2 Identity-Based Encryption

Below we provide the definition of identity-based encryption (IBE).

Definition 3.3 (Identity-Based Encryption (IBE) [Sha84, BF01]). An identity-based encryption
scheme consists of four PPT algorithms (Setup,KeyGen,Encrypt,Decrypt) defined as follows:

• Setup(1λ): given the security parameter, it outputs a master public key mpk and a master
secret key msk.

8We use this notion only when the sampling can be done by a PPT algorithm and the sampling algorithm is
implicit.

7

• KeyGen(msk, id): given the master secret key msk and an identity id ∈ {0, 1}n, it outputs a
decryption key skid.

• Encrypt(mpk, id,m): given the master public key mpk, an identity id ∈ {0, 1}n, and a message
m, it outputs a ciphertext ct.

• Decrypt(skid, ct): given a secret key skid for identity id and a ciphertext ct, it outputs a string
m.

The following completeness and security properties must be satisfied:

• Completeness: For all security parameters λ, identities id ∈ {0, 1}n and messages m, the
following holds:

Decrypt(skid,Encrypt(mpk, id,m)) = m

where skid ← KeyGen(msk, id) and (mpk,msk)← Setup(1λ).

• Security: For any PPT adversary A = (A1,A2), there exists a negligible function negl(.)
such that the following holds:

Pr[INDIBE
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where INDIBE
A is shown in Figure 1, and for each key query id that A sends to the KeyGen

oracle, it must hold that id 6= id∗.

Experiment INDIBE
A (1λ):

1. (mpk,msk)
$←− Setup(1λ).

2. (id∗,m0,m1, st)
$←− AKeyGen(msk,.)

1 (mpk) where |m0| = |m1| and for each query id by A1 to
KeyGen(msk, .) we have that id 6= id∗.

3. b
$←− {0, 1}.

4. ct∗
$←− Encrypt(mpk, id∗,mb).

5. b′
$←− AKeyGen(msk,.)

2 (mpk, ct∗, st) where for each query id by A2 to KeyGen(msk, .) we have
that id 6= id∗.

6. Output 1 if b = b′ and 0 otherwise.

Figure 1: The INDIBE
A Experiment

Hierarchical Identity-Based Encryption (HIBE). A HIBE scheme is an IBE scheme except
that we set skε := msk and modify the KeyGen algorithm. In particular, KeyGen takes skid and a
string id′ as input and outputs a secret key skid‖id′ . More formally:

• KeyGen(skid, id
′): given the secret key skid and an identity id′ ∈ {0, 1}∗, it outputs a decryption

key skid‖id′ .

8

Correctness condition for HIBE is same as it was from IBE. Additionally, the security property
is analogous to INDIBE

A (1λ) except that now we only consider the notion of selective security for
HIBE — namely, the adversary A is required to announce the challenge identity id∗ before it has
seen the mpk and has made any secret key queries. This experiment INDHIBE

A is shown formally in
Figure 2.

Experiment INDHIBE
A (1λ):

1. (id∗,m0,m1, st)
$←− A1 where |m0| = |m1|.

2. (mpk,msk)
$←− Setup(1λ).

3. b
$←− {0, 1}.

4. ct∗
$←− Encrypt(mpk, id∗,mb).

5. b′
$←− AKeyGen(msk,.)

2 (mpk, ct∗, st) where for each query id by A2 to KeyGen(msk, .) we have
that id 6= id∗.

6. Output 1 if b = b′ and 0 otherwise.

Figure 2: The INDHIBE
A Experiment

3.3 Garbled Circuits

Garbled circuits were first introduced by Yao [Yao82] (see Lindell and Pinkas [LP09] and Bellare
et al. [BHR12] for a detailed proof and further discussion). A circuit garbling scheme is a tuple of
PPT algorithms (GCircuit,Eval). Very roughly GCircuit is the circuit garbling procedure and Eval
the corresponding evaluation procedure. More formally:

• (C̃, {labw,b}w∈inp(C),b∈{0,1})
$←− GCircuit

(
1λ,C

)
: GCircuit takes as input a security parameter λ

and a circuit C. This procedure outputs a garbled circuit C̃ and labels {labw,b}w∈inp(C),b∈{0,1}
where each labw,b ∈ {0, 1}λ.9

• y := Eval
(
C̃, {labw,xw}w∈inp(C)

)
: Given a garbled circuit C̃ and a garbled input represented

as a sequence of input labels {labw,xw}w∈inp(C), Eval outputs an output y.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}m (here m
is the input length to C) we have that:

Pr
[
C(x) = Eval

(
C̃, {labw,xw}w∈inp(C)

)]
= 1

where (C̃, {labw,b}w∈inp(C),b∈{0,1})
$←− GCircuit

(
1λ,C

)
.

9Typical definitions of garbled circuits do not require the length of each input label to be λ bits long. This
additional requirement is crucial in our constructions as we chain garbled circuits. Note that input labels in any
garbled circuit construction can always be shrunk to λ bits using a pseudorandom function.

9

Security. For security, we require that there is a PPT simulator Sim such that for any C, x, we
have that (

C̃, {labw,xw}w∈inp(C)
)

comp
≈ Sim

(
1λ,C(x)

)
where (C̃, {labw,b}w∈inp(C),b∈{0,1})

$←− GCircuit
(
1λ,C

)
.10

4 Chameleon Encryption

In this section, we give the definition of a chameleon encryption scheme.

Definition 4.1 (Chameleon Encryption). A chameleon encryption scheme consists of five PPT
algorithms Gen, H, H−1, Enc, and Dec with the following syntax.

• Gen(1λ, n): Takes the security parameter λ and a message-length n (with n = poly(λ)) as
input and outputs a key k and a trapdoor t.

• H(k, x; r): Takes a key k, a message x ∈ {0, 1}n, and coins r and outputs a hash value h,
where h is λ bits.

• H−1(t, (x, r), x′): Takes a trapdoor t, previously used message x ∈ {0, 1}n and coins r, and a
message x′ ∈ {0, 1}n as input and returns r′.

• Enc(k, (h, i, b),m): Takes a key k, a hash value h, an index i ∈ [n], b ∈ {0, 1}, and a message
m ∈ {0, 1}∗ as input and outputs a ciphertext ct.11

• Dec(k, (x, r), ct): Takes a key k, a message x, coins r and a ciphertext ct, as input and outputs
a value m (or ⊥).

We require the following properties12

• Uniformity: For x, x′ ∈ {0, 1}n we have that the two distributions H(k, x; r) and H(k, x′; r′)
are statistically close (when r, r′ are chosen uniformly at random).

• Trapdoor Collisions: For every choice of x, x′ ∈ {0, 1}n and r it holds that if (k, t)
$←−

Gen(1λ, n) and r′ := H−1(t, (x, r), x′), then it holds that

H(k, x; r) = H(k, x′; r′),

i.e. H(k, x; r) and H(k, x′; r′) generate the same hash h. Moreover, if r is chosen uniformly at
random, then r′ is also statistically close to uniform.

• Correctness: For any choice of x ∈ {0, 1}n, coins r, index i ∈ [n] and message m it holds that

if (k, t)
$←− Gen(1λ, n), h := H(k, x; r), and ct

$←− Enc(k, (h, i, xi),m) then Dec(k, ct, (x, r)) = m.

10In abuse of notation we assume that Sim knows the (non-private) circuit C. When C has (private) hardwired
inputs, we assume that the labels corresponding to these are included in the garbled circuit C̃.

11ct is assumed to contain (h, i, b).
12Typically, Chameleon Hash functions are defined to also have the collision resilience property. This property is

implied by the semantic security requirement below. However, we do not need this property directly. Therefore, we
do not explicitly define it here.

10

• Security: For any PPT adversary A = (A1,A2) there exists a negligible function negl(·) such
that the following holds:

Pr[INDCE
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where INDCE
A is shown in Figure 3.

Experiment INDCE
A=(A1,A2)

(1λ):

1. (k, t)
$←− Gen(1λ, n).

2. (x, r, i ∈ [n], st)
$←− A1(k).

3. b
$←− {0, 1}.

4. ct
$←− Enc(k, (H(k, x; r), i, 1− xi), b).

5. b′
$←− A2(k, ct, (x, r), st).

6. Output 1 if b = b′ and 0 otherwise.

Figure 3: The INDCE
A Experiment

5 Constructions of Chameleon Encryption from CDH

Let (G, ·) be a cyclic group of order p (not necessarily prime) with generator g. Let Sample(G)
be a PPT algorithm such that its output is statistically close to a uniform element in Zp, where p
(not necessarily prime) is the order of G.13 We will now describe a chameleon encryption scheme
assuming that the DH(G) problem is hard.

• Gen(1λ, n): For each j ∈ [n], choose uniformly random values αj,0, αj,1
$←− Sample(G) and

compute gj,0 := gαj,0 and gj,1 := gαj,1 . Output (k, t) where14

k :=

(
g,

(
g1,0, g2,0 . . . , gn,0
g1,1, g2,1, . . . , gn,1

))
t :=

(
α1,0, α2,0 . . . , αn,0
α1,1, α2,1, . . . , αn,1

)
. (2)

• H(k, x; r): Parse k as in Equation 2, sample r
$←− Sample(G), set h := gr ·

∏
j∈[n] gj,xj and

output h

• H−1(t, (x, r), x′): Parse t as in Equation 2, compute r′ := r +
∑

j∈[n](αj,xj − αj,x′j) mod p.

Output r′.

• Enc(k, (h, i, b),m): Parse k as in Equation 2, h ∈ G and m ∈ {0, 1}. Sample ρ
$←− Sample(G)

and proceed as follows:

13We will later provide instantiations of G which are of prime order and composite order. The use of Sample(G)
procedure is done to unify these two instantiations.

14We also implicitly include the public and secret parameters for the group G in k and t respectively.

11

1. Set c := gρ and c′ := hρ.

2. For every j ∈ [n]\{i}, set cj,0 := gρj,0 and cj,1 := gρj,1.

3. Set ci,0 := ⊥ and ci,1 := ⊥.

4. Set e := m⊕ HardCore(gρi,b).
15

5. Output ct :=

(
e, c, c′,

(
c1,0, c2,0 . . . , cn,0
c1,1, c2,1, . . . , cn,1

))
.

• Dec(k, (x, r), ct): Parse ct =

(
e, c, c′,

(
c1,0, c2,0 . . . , cn,0
c1,1, c2,1, . . . , cn,1

))
Output e⊕ HardCore

(
c′

cr·
∏
j∈[n]\{i} cj,xj

)
.

Multi-bit Encryption. The encryption procedure described above encrypts single bit messages.
Longer messages can be encrypted by encrypting individual bits.

Lemma 5.1. Assuming that DH(G) is hard, the construction described above is a chameleon en-
cryption scheme, i.e. it satisfies Definition 4.1.

Proof. We need to argue the trapdoor collision property, uniformity property, correctness of en-
cryption property and semantic security of the scheme above and we that below.

• Uniformity: Observe that for all k and x, we have that H(k, x; r) = gr ·
∏
j∈[n] gj,xj is

statistically close to a uniform element in G. This is because r is sampled statistically close
to uniform in Zp, where p is the order of G.

• Trapdoor Collisions: For any choice of x, x′, r, k, t the value r′ is obtained as r+
∑

j∈[n](αj,xj−
αj,x′j) mod p. We need to show that H(k, x′; r′) is equal to H(k, x; r). This can be established

as follows.

H(k, x′; r′) = gr
′ ·
∏
j∈[n]

gj,x′j

= g
r+

∑
j∈[n](αj,xj−αj,x′j

)
·
∏
j∈[n]

g
αj,x′

j

= g
r+

∑
j∈[n](αj,xj−αj,x′j

)
· g

∑
j∈[n] αj,x′

j

= gr+
∑
j∈[n] αj,xj

= gr ·
∏
j∈[n]

gαj,xj

= gr ·
∏
j∈[n]

gj,xj

= H(k, x; r).

15We assume that the HardCore(gab) is a hardcore bit of gab given ga and gb. If a deterministic hard-core bit for the
specific function is not known then we can always use the Goldreich-Levin [GL89] construction. We skip the details
of that with the goal of keeping exposition simple.

12

Moreover, as r is statistically close to uniform in Zp, r′ := r +
∑

j∈[n](αj,xj − αj,x′j) mod p is

also statistically close to uniform in Zp.

• Correctness: For any choice of x ∈ {0, 1}n, coins r, index i ∈ [n] and message m ∈ {0, 1} if

(k, t)
$←− Gen(1λ, n), h := H(k, x; r), and ct := Enc(k, (h, i, xi),m) then we have:

c′

cr ·
∏
j∈[n]\{i} cj,xj

=
hρ

gρ·r ·
∏
j∈[n]\{i} g

ρ·αj,xj

=
gρ·r

∏
j∈[n] g

ρ·αj,xj

gρ·r ·
∏
j∈[n]\{i} g

ρ·αj,xj

= gρ·αi,xi

= gρi,xi

Using the above calculation and parsing ct =

(
e, c, c′,

(
c1,0, c2,0 . . . , cn,0
c1,1, c2,1, . . . , cn,1

))
allows us to

conclude that

Dec (k, (x, r), ct) = e⊕ HardCore

(
c′

cr ·
∏
j∈[n]\{i} cj,xj

)
= e⊕ HardCore(gρi,xi)

= m⊕ HardCore(gρi,xi)⊕ HardCore(gρi,xi)

= m.

• Security: For the sake of contradiction, let us assume that there exists a PPT adversary
A = (A1,A2) and a non-negligible function µ(·) such that

Pr[INDCE
A (1λ) = 1] ≥ 1

2
+ µ(λ).

Now we will provide a PPT reduction RA which on input g, U = gu, V = gv correctly
computes the hardcore bit HardCore(guv) with probability 1

2 + ν(λ) for some non-negligible

function ν. Formally, Reduction RA=(A1,A2)(g, U, V) proceeds as follows:

1. For each j ∈ [n], sample αj,0, αj,1
$←− Sample(G) and set gj,0 := gαj,0 and gj,1 := gαj,1 .

2. Sample x
$←− {0, 1} and i∗

$←− [n] and reassign gi∗,x := U . Finally set

k :=

(
g,

(
g1,0, g2,0 . . . , gn,0
g1,1, g2,1, . . . , gn,1

))
.

3. (x, r, i)
$←− A1(k).

4. If i 6= i∗ or xi = x then skip rest of the steps and output a random bit b
$←− {0, 1}.

13

5. Otherwise, set h := H(k, x; r) and ct :=

(
e, c, c′,

(
c1,0, c2,0 . . . , cn,0
c1,1, c2,1, . . . , cn,1

))
where:

c := V c′ := V r+
∑
j∈[n] αi,xi ,

∀j ∈ [n]\{i}, cj,0 := V αj,0 cj,1 := V αj,1 ,

e
$←− {0, 1}.

6. b
$←− A2(k, (x, r), ct).

7. Output b⊕ e.

Let E be the event that the i = i∗ and xi 6= x. Now observe that the distribution of k in
Step 3 is statistically close to distribution resulting from Gen. This implies that (1) the view
of the attacker in Step 3 is statistically close to experiment INDCE

A , and (2) Pr[E] is close
to 1

2n up to a negligible additive term. Furthermore, conditioned on the fact that E occurs
we have that the view of the attacker in Step 3 is statistically close to experiment INDCE

A
where ct is an encryption of e ⊕ HardCore(guv) (where U = gu and V = gv). Now, if A2 in
Step 6 correctly predicts e⊕HardCore(guv) then we have that the output of our reduction R
is a correct prediction of HardCore(guv). Thus, we conclude that R predicts HardCore(guv)
correctly with probability at least 1

2 ·
(
1− 1

2n

)
+ 1

2n ·
(
1
2 + µ

)
= 1

2 + µ
2n up to a negligible

additive term.

5.1 Instantiations

Instantiating by prime order groups. Our scheme can be directly instantiated in any prime
order group G where DH(G) is assumed to be hard. Candidates are prime order multiplicative
subgroups of finite fields [DH76] and elliptic curve groups [Mil86,Kob87].

Corollary 5.2. Under the assumption that DH(G) is hard over some group G, there exists a
chameleon encryption scheme.

Instantiating by composite order groups and reduction to the Factoring Assumption.
Consider the group of quadratic residues QRN over a Blum integer N = PQ (P and Q are large safe
primes16 with P = Q = 3 mod 4). Let g be a random generator of G and Sample(G) just outputs
a uniformly random number from the set [(N − 1)/4]. Shmuely [Shm85] and McCurley [McC88]
proved that the DH(QRN) problem is at least as hard as FACT (also see [BBR97,HK09]).

For this instantiation, we assume that the Gen algorithm generates a fresh Blum integer N =
PQ = (2p + 1)(2q + 1), includes N in the public key k and |G| = |QRN | = φ(N)/4 = pq in the
trapdoor t. Notice that only the trapdoor-collision algorithm H−1 needs to know the group-order
|G| = pq, while all other algorithms use the public sampling algorithm Sample(G).

Hence, using the group QRN in the above described construction yields a construction of
chameleon encryption based on the FACT Assumption.

Corollary 5.3. Under the assumption that FACT is hard there exists a chameleon encryption
scheme.

16A prime number P > 2 is called safe prime if (P − 1)/2 is also prime

14

6 Construction of Identity-Based Encryption

In this section, we describe our construction of IBE from chameleon encryption. Let PRF : {0, 1}λ×
{0, 1}≤n ∪ {ε} → {0, 1}λ be a pseudorandom function, (Gen,H,H−1,Enc,Dec) be a chameleon
encryption scheme and (G,E,D) be any semantically secure public-key encryption scheme.17 We
let id[i] denote the ith-bit of id and let id[1 . . . i] denote the first i bits of id. Note that id[1 . . . 0] is
the empty string denoted by ε of length 0.

NodeGen and LeafGen functions. As explained in the introduction, we need an exponential sized
tree of hash values. The functions NodeGen and LeafGen provides efficient access to the hash value
corresponding to any node in this (exponential sized) tree. We will use these function repeatedly in
our construction. The NodeGen function takes as input the hash keys k0, . . . kn−1 and corresponding
trapdoors t0, . . . tn−1, the PRF seed s, and a node v ∈ {0, 1}≤n−2 ∪ {ε}. On the other hand, the
LeafGen function takes as input the hash key kn−1 and corresponding trapdoor tn−1, the PRF seed
s, and a node v ∈ {0, 1}n−1. The NodeGen and LeafGen functions are described in Figure 4.

NodeGen((k0, . . . kn−1), (t0, . . . tn−1, s), v):

1. Let i := |v| (length of v) and generate

hv := H(ki, 0
2λ;PRF(s, v)),

hv‖0 := H(ki+1, 0
2λ;PRF(s, v‖0)),

hv‖1 := H(ki+1, 0
2λ;PRF(s, v‖1)).

2. rv := H−1(tv, (0
2λ,PRF(s, v)), hv‖0‖hv‖1).

3. Output (hv, hv‖0, hv‖1, rv).

LeafGen(kn−1, (tn−1, s), v):

1. Generate

hv := H(kn−1, 0
2λ;PRF(s, v))

(ekv‖0, dkv‖0) := G(1λ;PRF(s, v‖0)),

(ekv‖1, dkv‖1) := G(1λ;PRF(s, v‖1)).

2. rv := H−1(tn, (0
2λ,PRF(s, v)), ekv‖0‖ekv‖1).

3. Output ((hv, ekv‖0, ekv‖1, rv), dkv‖0, dkv‖1).

Figure 4: Description of NodeGen and LeafGen.

Construction. We describe our IBE scheme (Setup,KeyGen,Encrypt,Decrypt).

• Setup(1λ, 1n): Proceed as18 follows:

1. Sample s
$←− {0, 1}λ (seeds for the pseudorandom function PRF).

2. For each i ∈ {0, . . . n− 1} sample (ki, ti)
$←− Gen(1λ, 2λ).

3. Obtain (hε, h0, h1, rε) := NodeGen((k0, . . . kn−1), (t0, . . . tn−1, s), ε)

17The algorithm G takes as input the security parameter 1λ and generates encryption key and decryption key pair
ek and dk respectively, where the encryption key ek is assumed to be λ bits long. The encryption algorithm E(ek,m)
takes as input an encryption key ek and a message m and outputs a ciphertext ct. Finally, the decryption algorithm
D(dk, ct) takes as input the secret key and the ciphertext and outputs the encrypted message m.

18The IBE scheme defined in Section 3 does not fix the length of identities that it can be used with. However, in
this section we fix the length of identities at setup time and use appropriately changed definitions. Looking ahead,
the HIBE construction in Section 7 works for identities of arbitrary length.

15

4. Output (mpk,msk) where mpk := (k0, . . . kn−1, hε) and msk := (mpk, t0, . . . tn−1, s)

• KeyGen(msk = ((k0, . . . kn−1, hε), t0, . . . tn−1, s), id ∈ {0, 1}n):

V := {ε, id[1], . . . id[1 . . . n− 1]}, where ε is the empty string
For all v ∈ V \{id[1 . . . n− 1]}:

lkv := NodeGen((k0, . . . kn−1), (t0, . . . tn−1, s), v)
For v = id[1 . . . n− 1], set (lkv, dkv‖0, dkv‖1) := LeafGen(kn−1, (tn−1, s), v)

skid := (id, {lkv}v∈V , dkid)

• Encrypt(mpk = (k0, . . . kn−1, hε), id ∈ {0, 1}n,m): Before describing the encryption procedure
we describe two circuits19 that will be garbled during the encryption process.

– T[m](ek): Compute and output E(ek,m).

– P[β ∈ {0, 1}, k, lab](h): Compute and output {Enc(k, (h, j + β · λ, b), labj,b)}j∈[λ],b∈{0,1},
where lab is short for {labj,b}j∈[λ],b∈{0,1}.

Encryption proceeds as follows:

1. Compute T̃ as:

(T̃ , lab)
$←− GCircuit(1λ,T[m]).

2. For i = n − 1, . . . , 0 generate (P̃ i, lab
′
)

$←− GCircuit(1λ,P[id[i + 1], ki, lab]) and set lab :=

lab
′
.

3. Output ct := ({labj,hε,j}j∈[λ], {P̃
0, . . . , P̃n−1, T̃}) where hε,j is the jth bit of hε.

• Decrypt(ct, skid = (id, {lkv}v∈V), dkid): Decryption proceeds as follows:

1. Parse ct as ({labj,hε,j}j∈[λ], {P̃
0, . . . , P̃n−1, T̃}).

2. Parse lkv as (hv, hv‖0, hv‖1, rv) for each v ∈ V \{id[1 . . . n−1]} . (Recall V = {ε, id[1] . . . id[1 . . . n−
1]}.)

3. And for v = id[1 . . . n− 1], parse lkv as (hv, ekv‖0, ekv‖1, rv).

4. Set y := hε.

5. For each i ∈ {0, . . . n− 1}, set v := id[1 . . . i], and proceed as follows:

(a) {ej,b}j∈[λ],b∈{0,1} := Eval(P̃ i, {labj,yj}j∈[λ]).
(b) If i = n− 1 then set y := ekid and for each j ∈ [λ], compute

labj,yj := Dec(kv, ej,yj , (ekv‖0‖ekv‖1, rv)).

(c) If i 6= n− 1 then set y := hv and for each j ∈ [λ], compute

labj,yj := Dec(kv, ej,yj , (hv‖0‖hv‖1, rv)).

6. Compute f := Eval(T̃ , {labj,yj}j∈[λ]).
7. Output m := Dec(dkid, f).

19Random coins used by these circuits are hardwired in them. For simplicity, we do not mention them explicitly.

16

A note on efficiency. The most computationally intensive part of the construction is the non-
black box use of Enc inside garblings of the circuit P and E inside garbling of the circuit T. However,
we note that not all of the computation corresponding to Enc and E needs to be performed inside
the garbled circuit and it might be possible to push some of it outside of the garbled circuits.
In particular, when Enc is instantiated with the DDH based chameleon encryption scheme then
we can reduce each Enc to a single modular exponentiation inside the garbled circuit. Similar
optimization can be performed for E. In short, this reduces the number of non-black-box modular
exponentiations to 2λ for every circuit P and 1 for the circuit T. Finally, we note that additional
improvements in efficiency might be possible by increasing the arity of the tree from 2 to a larger
value. This would also reduce the depth of the tree and thereby reduce the number of non-black-box
modular exponentiations needed.

6.1 Proof of Correctness

We will first show that our scheme is correct. For any identity id, let V = {ε, id[1], . . . id[1 . . . n−1]}.
Then the secret key skid consists of (id, {lkv}v∈V , dkid). We will argue that a correctly generated
ciphertext on decryption reveals the original message. Note that by construction (and the trapdoor
collision property of the chameleon encryption scheme for the first equation below) for all nodes
v ∈ V \{id[1 . . . n− 1]} we have that:

H(k|v|, hv‖0‖hv‖1; rv) = hv.

and additionally for v = id[1 . . . n− 1] we have

H(kn−1, ekv‖0‖ekv‖1; rv) = hv.

Next consider a ciphertext ct = ({labj,hε,j}j∈[λ], {P̃
0, . . . , P̃n−1, T̃}). We argue correctness as each

step of decryption is performed. By correctness of garbled circuits, we have that the evaluation of
P̃ 0 yields correctly formed ciphertexts ej,b which are encryptions of labels of the next garbled circuit
P̃ 1. Next, by correctness of Dec of the chameleon encryption scheme we have that the decrypting the
appropriate ciphertexts yields the correct labels {labj,hid[1],j}j∈[λ] for the next garbled circuit, namely

P̃ 1. Following the same argument we can argue that the decryption of the appropriate ciphertexts
generated by P̃ 1 yields the correct input labels for P̃ 2. Repeatedly applying this argument allows
us to conclude that the last garbled circuit P̃n−1 outputs labels corresponding to ekid as input for
the circuit T which outputs an encryption of m under ekid. Finally, using the correctness of the
public-key encryption scheme (G,E,D) we have that the recovered message m is the same as the
one encrypted.

6.2 Proof of Security

We are now ready to prove the security of the IBE construction above. For the sake of contradiction
we proceed by assuming that there exists an adversary A such that Pr[INDIBE

A (1λ) = 1] ≥ 1
2 + ε for

a non-negligible ε (in λ), where INDIBE
A is shown in Figure 1. Assume further that q is a polynomial

upper bound for the running-time of A, and thus also an upper bound for the number of A’s key
queries. Security follows by a sequence of hybrids. In our hybrids, changes are made in how the
secret key queries of the adversary A are answered and how the challenge ciphertext is generated.
Furthermore, these changes are intertwined and need to be done carefully. Our proof consist of a
sequence of n+ 2 hybrids H−1,H0,H1, . . .Hn+1. We next describe these hybrids .

17

• H−1: This hybrid corresponds to the experiment INDIBE
A as shown in Figure 1.

• H0: In this hybrid, we change how the public parameters are generated and how the adver-
sary’s requests to the KeyGen oracle are answered. Specifically, we replace all pseudorandom
function calls PRF(s, ·) with a random function.

The only change from H−1 to H0 is that calls to a pseudorandom are replaced by a random
function. Therefore, the indistinguishability between the two hybrids follows directly from
the pseudorandomness property of the pseudorandom function.

• Hτ for τ ∈ {0 . . . n}: For every τ , this hybrid is identical to the experiment H0 except in
how the ciphertext is generated. Recall that the challenge ciphertext consists of a sequence
of n+ 1 garbled circuits. In hybrid Hτ , we generate the first τ of these garbled circuits using
the simulator provided by the garbled circuit construction. The outputs hard-coded in the
simulated circuits are set to be consistent with the output that would have resulted from the
execution of honestly generated garbled circuits in there unsimulated versions. More formally,
for the challenge identity id∗ the challenge ciphertext is generated as follows (modifications
with respect to honest ciphertext generation have been highlighted in red). Even though, the
adversary never queries skid, we can generate it locally. In particular, it contains the values
lkv = (hv, hv‖0, hv‖1, rv) for each v ∈ {ε, . . . id[1 . . . n − 2]}, lkv = (hv, ekv‖0, ekv‖1, rv) for each
v = id[1 . . . n− 1], and dkid∗ .

1. Compute T̃ as:
If τ 6= n

(T̃ , lab)
$←− GCircuit(1λ,T[m])

where lab = {labj,b}j∈[λ],b∈{0,1}. Else set y = ekid∗ and generate garbled circuit as,

(T̃ , {labj,yj}j∈[λ])
$←− Sim(1λ,E(y,m))

and set lab := {labj,yj , labj,yj}j∈[λ].

2. For i = n − 1, . . . , τ generate (P̃ i, lab
′
)

$←− GCircuit(1λ,P[id[i + 1], ki, lab]) and set lab :=

lab
′
.

3. For i = τ − 1, . . . , 0, set v = id∗[1 . . . i− 1] and generate

P̃ i, {lab′j,hv,j}j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1})

and set lab := {lab′j,hv,j , lab
′
j,hv,j
}j∈[λ].

4. Output ct := ({labj,hε,j}j∈[λ], {P̃
0, . . . , P̃n−1, T̃}) where hε,j is the jth bit of hε.

The computational indistinguishability between hybrids Hτ−1 and Hτ is based on Lemma 6.1
which is proved in Section 6.3.

Lemma 6.1. For each τ ∈ {1 . . . n} it is the case that Hτ−1
c
≈ Hτ .

18

• Hn+1: This hybrid is same as Hn except that we change the ciphertext E(ekid∗ ,m) hardwired
in the simulated garbling of the circuit T to be E(ekid∗ , 0).

We can use an adversary distinguishing betweenHn andHn+1 to construct an attacker against
the semantic security of the public-key encryption scheme (G,E,D) in the following way. Let
q be a polynomial upper bound for the number of queries of the adversary (key-queries and
the challenge query). The reduction gets as input a public key ek. There are two cases that
might happen. In the first one, the challenge identity will be the sibling of an identity for
which the adversary makes a key-query, i.e. the adversary gets to see ekv‖0 and ekv‖1 such
that wlog ekv‖0 is the leaf key for a key-query of the adversary and ekv‖1 is the key for the
challenge identity v‖1. In the second one, this is not the case. To deal with both cases,
the reduction first guesses an index j∗ ∈ {0, . . . , q}. We interpret the guess j∗ = 0 as the
second case, i.e. the challenge identity id∗ will not be the sibling of an identity for which the
adversary makes a key query. All other guesses are interpreted as the challenge identity will
be the sibling of the identity of the j∗-th key query. Therefore, if j∗ = 0, the reduction will
not use ek before the adversary provides the challenge identity and then set ekid∗ = ek. In
the second case the reduction will use ek as the leaf key of the sibling of the identity of the
j∗-th key query. Once the adversary provides the challenge identity id∗, the reduction first
checks if its guess was correct. If not, it aborts and outputs a random bit. Otherwise, if its
guess turns out to be correct, which happens with probability at least 1/q, it forwards the
challenge messages of A to the IND-CPA experiment, uses the challenge ciphertext in its own
experiment and outputs whatever the adversary outputs. Note that the adversary A never
queries for skid∗ . Therefore, it is never provided the value dkid∗ .

It follows routinely that the advantage of the reduction is at least 1/q times the advantage of

the adversary A. This allows us to conclude that Hn
c
≈ Hn+1.

Finally, note that the hybrid Hn+1 is information theoretically independent of the plaintext
message m.

6.3 Proof of Lemma 6.1

The proof follows by a sequence of sub-hybrids Hτ,0 to Hτ,6 where Hτ,0 is same as Hτ−1 and Hτ,6
is same as Hτ .

• Hτ,0: This hybrid is same as Hτ−1.

• Hτ,1: Skip this hybrid if τ = n. Otherwise, this hybrid is identical to Hτ,0, except that we
change how the values hv and rv for v ∈ {0, 1}τ (if needed to answer a KeyGen query of the
adversary) are generated.

Recall that in hybrid Hτ,0, hv is generated as H(kτ , 0
2λ;ωv) and then

rv :=

{
H−1(kτ , (0

2λ, ωv), hv‖0‖hv‖1) if τ < n− 1

H−1(kτ , (0
2λ, ωv), ekv‖0‖ekv‖1) otherwise

.

In this hybrid, we generate rv first as being chosen uniformly. Next,

hv :=

{
H(kτ , hv‖0‖hv‖1; rv) if τ < n− 1

H(kτ , ekv‖0‖ekv‖1; rv) otherwise
.

19

Statistical indistinguishability of hybrids Hτ,0 and Hτ,1 follows from the trapdoor collision
and uniformity properties of the chameleon encryption scheme.

• Hτ,2: We start with the case when τ < n. For this case, in this hybrid, we change how the
garbled circuit P̃ τ is generated. Let v = id∗[1 . . . τ] and recall that

lkv =

{
(hv, ekv‖0, hv‖1, rv) if τ < n− 1

(hv, ekv‖0, ekv‖1, rv) if τ = n− 1
.

In this hybrid, we change the generation process of the garbled circuit P̃ τ from

(P̃ τ , lab
′
)

$←− GCircuit(1λ,P[id[τ + 1], kτ , lab])

and setting lab := lab
′

to

P̃ i, {lab′j,hv,j}j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1})

and set lab := {lab′j,hv,j , lab
′
j,hv,j
}j∈[λ].

For the case when τ = n, then we change computation of T̃ from

(T̃ , lab)
$←− GCircuit(1λ,T[m])

where lab = {labj,b}j∈[λ],b∈{0,1} to setting y = ekid∗ and generating garbled circuit as,

(T̃ , {labj,yj}j∈[λ])
$←− Sim(1λ,E(y,m))

and setting lab := {labj,yj , labj,yj}j∈[λ].
For the case when τ < n, computational indistinguishability of hybrids Hτ,1 and Hτ,2 follows
by the security of the garbling scheme and the fact that {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1}
is exactly the output of the circuit P[id[τ + 1], kτ , lab] on input hv. On the other hand, for
the case when τ = n, then again indistinguishability of hybrids Hn,1 and Hn,2 follows by the
security of the garbling scheme and the fact that E(ekid∗ ,m) is the output of the circuit T[m]
on input ekid∗ .

• Hτ,3: Skip this hybrid if τ = n. This hybrid is identical to Hτ,2, except that using v :=
id[1 . . . τ] we change

P̃ i, {lab′j,hv,j}j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1})

to
P̃ i, {lab′j,hv,j}j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,hid[1...τ+1],j

)}j∈[λ],b∈{0,1})

Notice that tv is not used in this experiment. Therefore computational indistinguishability of
hybrids Hτ,2 and Hτ,3 follows by λ2 invocations (one invocation for each bit of the λ labels)
of the security of the chameleon encryption scheme. We now provide the reduction for one
change below.

20

We will now outline a reduction to the security of the chameleon hash function. Specifically,
the challenger provides a hash key k∗ and the reduction needs to submit x∗, r∗. Recall that q
is an upper bound for the number of queries by the adversary (including key and challenge
queries). The reduction first guesses an index j∗ ∈ {0, . . . , q}, such that the node v∗ on level
τ of the j∗-th query is also on the root-to-leaf path of the challenge identity. We interpret
j∗ = 0 as the challenge identity not sharing a prefix of length τ with any keys queried by the
adversary.

The reduction now sets kτ := k∗ and submits x∗ := hv∗‖0‖hv∗‖1 and randomly chosen coins
rv∗ := r∗ to the experiment once the label hv∗ := H(kτ , x

∗; r∗) for the node v∗ is needed in its
simulation.

Once the adversary announces the challenge identity id∗, the reduction checks if v∗ is on the
root-to-leaf path of id∗, if not it aborts and outputs a random bit. Clearly, it holds that v∗

is on the root-to-leaf path of id∗ with probability 1/q. Now we can use the attackers ability
to distinguish the encryptions of the provided labels to break the security of the chameleon
encryption scheme, incurring a polynomial loss of 1/q.

Remark: We note that the ciphertexts hardwired inside the garbled circuit only provide
the labels {labj,hid[1...τ+1],j}j∈[λ] (in an information theoretical sense).

• Hτ,4: Skip this hybrid if τ = n. In this hybrid, we undo the change made in going from
hybrid Hτ,0 to hybrid Hτ,1, i.e. we go back to generating all hv values using NodeGen and
LeafGen.

Computational indistinguishability of hybrids Hτ,3 and Hτ,4 follows from the trapdoor colli-
sion and uniformity properties of the chameleon encryption scheme. Observe that the hybrid
Hτ,4 is the same as hybrid Hτ .

7 Construction of Hierarchical Identity-Based Encryption

In this section, we describe our construction of HIBE from chameleon encryption. Let (Gen,H,H−1,Enc,Dec)
be a chameleon encryption scheme and (G,E,D) be any semantically secure public-key encryp-
tion scheme. We let id[i] denote the ith-bit of id and id[1 . . . i] denote the first i bits of id (and
id[1 . . . 0] = ε).

Notation for the pseudorandom function F. Let PRG : {0, 1}λ → {0, 1}3λ be a length tripling
pseudorandom generator and PRG0,PRG1 and PRG2 be the 1 . . . λ, λ + 1 . . . 2λ and 2λ + 1 . . . 3λ
bits of the output of PRG, respectively. Now define a GGM-type [GGM84] pseudo-random function
F : {0, 1}λ × {0, 1, 2}∗ → {0, 1}λ such that F(s, x) := PRGxn(PRGxn−1(. . . (PRGx1(s)) . . .)), where
n = |x| and for each i ∈ [n] xi is the ith element (from 0, 1 or 2) of string x.20

NodeGen and NodeGen′ functions. As explained in the introduction, we need an exponential
sized tree of local-keys. The function NodeGen provides efficient access to local-keys corresponding
to any node in this (exponential sized) tree. We will use this function repeatedly in our construction.

20F(s, ε) is set to output s.

21

The function takes as input the hash key kG (a key of the chameleon hash function from 2` + 2λ
bits to λ bits, where ` is specified later), a node v ∈ {0, 1}∗ ∪ {ε} (ε denotes the empty string),
and s = (s1, s2, s3) seeds for the pseudo-random function PRF. This function is explained in the
Figure 5.

NodeGen(kG, v, (s1, s2, s3)):

1. Obtain ω1, ω2, and ω3 be the first, second and
third λ/3 bits of s1, respectively.

2. Generate (kv, tv) := Gen(1λ;ω1) and hv :=
H(kv, 0

λ;ω2).

3. Analogous to the previous two steps generate
kv‖0, hv‖0 using seed s2 and kv‖1, hv‖1 using seed
s3.

4. Sample r′v and generate (ekv‖0, dkv‖0)
$←− G(1λ)

and (ekv‖1, dkv‖1)
$←− G(1λ) using ω3 as random

coins.

5. h′v := H(kG, kv‖0||hv‖0||kv‖1||hv‖1‖ekv‖0‖ekv‖1; r′v).

6. rv := H−1(tv, (0
λ, ω2), h

′
v).

7. lkv := (kv, hv, rv, h
′
v, r
′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1).

8. Output lkv

λ

h′v

hv

kv‖0‖hv‖0‖kv‖1‖hv‖1‖ekv‖0‖ekv‖1

kG r′v

kv rv

2`′ + 4λ

Figure 5: Explanation on how NodeGen works. Strings ω1, ω2 and ω3 are used as randomness for
cryptographic functions and can be sufficiently expanded using a PRG.

We also define a function NodeGen′, which is identical to NodeGen except that it additionally
takes a bit β as input and outputs dkv‖β. More formally, NodeGen′(kG, v, (s1, s2, s3), β) executes
just like NodeGen but in Step 8 it outputs dkv‖β.

Construction. We describe our HIBE scheme (Setup,KeyGen,Encrypt,Decrypt).

• Setup(1λ): Proceed as follows:

1. Sample s
$←− {0, 1}λ (seeds for the pseudorandom function PRF).

2. Setup a global hash function (kG, ·) := Gen(1λ, 2`+ 2λ)21 where ` = `′ + λ and `′ is the
length of k generated from Gen(1λ, λ).

3. Obtain (kε, hε, rε, h
′
ε, r
′
ε, k0, h0, k1, h1) := NodeGen(kG, ε, s)

4. Output (mpk,msk) where mpk := (kG, kε, hε) and msk = skε := (ε, ∅, s,⊥)

• KeyGen(skid = (id, {lkv}v∈V , s, dkid), id′ ∈ {0, 1}∗):22

21The trapdoor for the global hash function is not needed in the construction or the proof and is therefore dropped.
22HIBE is often defined to have separate KeyGen and Delegate algorithms. For simplicity, we describe our scheme

with just one KeyGen algorithm that enables both the tasks of decryption and delegation. Secret-keys without
delegation capabilities can be obtained by dropping the third entry (the PRG seed) from skid.

22

Let n := |id′| and set V ′ := {id‖id′[1 . . . j − 1]}j∈[n]
For all v ∈ V ′:

lkv := NodeGen(kG, v, (F(s, v‖2),F(s, v‖0‖2),F(s, v‖1‖2)))
Let v := id‖id′[1 . . . n− 1]

dkid‖id′ := NodeGen′(kG, v, (F(s, v‖2),F(s, v‖0‖2),F(s, v‖1‖2)), id′[n])

Output skid‖id′ := (id, {lkv}v∈V ∪V ′ ,F(s, id′), dkid‖id′)

Remark: We note that in our construction the secret key for any identity is unique regardless
of many iterations of KeyGen operations were performed to obtain it.

• Encrypt(mpk = (kG, kε, hε), id ∈ {0, 1}n,m): Before describing the encryption procedure we
describe four circuits that will be garbled during the encryption process.

– T[m](ek): Compute and output E(ek,m).

– Qlast[β ∈ {0, 1}, kG, tlab](h): Compute and output {Enc(kG, (h, j+β·λ+2`, b), tlabj,b)}j∈[λ],b∈{0,1},
where tlab is short for {tlabj,b}j∈[λ],b∈{0,1}.

– Q[β ∈ {0, 1}, kG, plab](h): Compute and output {Enc(kG, (h, j+β·`, b), plabj,b)}j∈[`],b∈{0,1},
where plab is short for {plabj,b}j∈[`],b∈{0,1}.

– P[qlab](k, h): Compute and output {Enc(k, (h, j, b), qlabj,b)}j∈[λ],b∈{0,1}, where qlab is
short for {qlabj,b}j∈[λ],b∈{0,1}.

Encryption proceeds as follows:

1. Compute T̃ as:

(T̃ , tlab)
$←− GCircuit(1λ,Qout[kG,m])

2. For i = n, . . . , 1 generate

(a) If i = n then

(Q̃n, qlab
n
)

$←− GCircuit(1λ,Qlast[id[n], kG, tlab]),

else
(Q̃i, qlab

i
)

$←− GCircuit(1λ,Q[id[i], kG, plab
i+1

]).

(b) (P̃ i, plab
i
)

$←− GCircuit(1λ,P[qlab
i
]).

3. Set xε := kε‖hε.
4. Output ct := ({plab1j,xε,j}j∈[`], {P̃

i, Q̃i}i∈[n], T̃) where xε,j is the jth bit of xε.

• Decrypt(ct, skid = (id, {lkv}v∈V), s, dkid): Decryption proceeds as follows:

1. Parse ct as ({plab1j,xε,j}j∈[`], {P̃
i, Q̃i}i∈[n], T̃) where xε := kε‖hε and xε,j is its jth bit.

2. Parse lkv as (hv, rv, h
′
v, r
′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1) for each v ∈ V . (Recall V =

{id[1 . . . j − 1]}j∈[n].)
3. For each i ∈ [n], proceed as follows:

23

(a) Set v := id[1 . . . i−1], xv := kv‖hv, yv := h′v, and if i < n then set zv := kv‖id[i]‖hv‖id[i]
else set zv := ekid.23

(b) {eij,b}j∈[λ],b∈{0,1} := Eval(P̃ i, {plabij,xv,j}j∈[`]).
(c) For each j ∈ [λ], compute qlabij,yv,j := Dec(kv, e

i
j,yv,j

, (h′v, rv)).

(d) If i < n then,

{f ij,b}j∈[`],b∈{0,1} := Eval(Q̃i, qlabij,yv,j)

and for each j ∈ [`]

plabi+1
j,zv,j

:= Dec(kG, f
i
j,zv,j , (kv‖0‖hv‖0‖kv‖1‖hv‖1‖ekv‖0‖ekv‖1, r

′
v))

(e) else,

{gj,b}j∈[λ],b∈{0,1} := Eval(Q̃n, qlabnj,yv,j)

and for each j ∈ [λ]

tlabj,zv,j := Dec(kG, gj,zv,j , (kv‖0‖hv‖0‖kv‖1‖hv‖1‖ekv‖0‖ekv‖1, r′v)).

4. Output D(dkid,Eval(T̃ , {tlabj,ekid,j}j∈[λ])).

7.1 Proof of Correctness

For any identity id, let V = {id[1 . . . j − 1]}j∈[n] be the set of nodes on the root-to-leaf path
corresponding to identity id. Then the secret key skid consists of {lkv}v∈V , dkid and a seed of the
pseudorandom function F. {lkv}v∈V , dkid and will be used for decryption and s is used for delegating
keys. Note that by construction (and the trapdoor collision property of the chameleon encryption
scheme for the first equation below) for all nodes v ∈ V we have that:

H(kG, kv‖0||hv‖0||kv‖1||hv‖1‖ekv‖0‖ekv‖1; r′v) = h′v,

H(kv, h
′
v; rv) = hv.

By correctness of garbled circuits, we have that the evaluation of P̃ 1 yields correctly formed ci-
phertexts f1j,b. Next, by correctness of Dec of the chameleon encryption scheme we have that the

decrypted values qlab1j,yε,j are the correct input labels for the next garbled circuit Q̃1. Following

the same argument we can argue that the decryption of ciphertexts generated by Q̃1 yields the
correct input labels for P̃ 2. Repeatedly applying this argument allows us to conclude that the last
garbled circuit Q̃n outputs correct encryptions of input labels of T̃ . The decryption of appropriate
ciphertexts among these and the execution of the garbled circuit T̃ using the obtained labels yields
the ciphertext E(ekid,m) which can be decrypted using the decryption key dkid. Correctness of the
last steps depends on the correctness of the public-key encryption scheme.

Next, the correctness of delegation follows from the fact that that for every id and id′

KeyGen(skε, id‖id′) = KeyGen(KeyGen(skε, id), id′).

This fact follows directly from the the following property of the GGM PRF. Specifically, for every
x we have that F(s, id‖x) = F(F(s, id), x).

23For i < n, zv will become the xv in next iteration.

24

7.2 Proof of Security

We are now ready to prove the selective security of the HIBE construction above. For the sake of
contradiction we proceed by assuming that there exists an adversary A such that Pr[INDHIBE

A (1λ) =
1] ≥ 1

2 +ε for a non-negligible ε (in λ), where INDHIBE
A is shown in Figure 2. Assume further that q is

a polynomial upper bound for the running-time of A, and thus also an upper bound for the number
of A’s key queries. Security follows by a sequence of hybrids. In our hybrids, changes are made
in how the secret key queries of the adversary A are answered and how the challenge ciphertext
is generated. However, unlike the IBE case these changes are not intertwined with each other.
In particular, we will make changes to the secret keys first and then the ciphertext. We describe
our hybrids next. Our proof consist of a sequence of hybrids H−3,H−2,H−1,H0,H1, . . .Hn+2. We
describe these below. Since we are in the selective the case the adversary declares the challenge
identity id∗ before the public parameters mpk are provided to it. Also, we let V ∗ be the set
{ε, id∗[1] . . . id∗[1 . . . n− 1]}.
• H−3 : This hybrid corresponds to the experiment INDHIBE

A as shown in Figure 2.

• H−2 : In this hybrid, we change how the seed s of generated in Step 1 of Setup is used.

Specifically, we sample s
$←− {0, 1}λ and generate

1. For each i ∈ [n], let ai := F(s, id∗[1 . . . i− 1]‖(1− id∗[i]).

2. b := F(s, id∗).

3. For each i ∈ {0 . . . n− 1}, let ci := F(s, id∗[1 . . . i]‖2).

Now, through out the execution of the experiment we replace the use of s with the values
({ai}, b, {ci}). First, observe that (by standard properties of the GGM pseudorandom func-
tion) given these values we can generate F(s, v‖2) for all v ∈ {0, 1}∗ ∪{ε}. Also, note that for
the execution of the functions NodeGen and NodeGen′ only F(s, v‖2) needs to be generated.
Therefore, all executions of NodeGen and NodeGen′ remain unaffected.

Secondly, note that the A is only allowed to make KeyGen queries for identities id 6∈ V ∗∪{id∗}.
Therefore, in order to answer these queries the experiment needs to generate F(s, v) for
v /∈ V ∗∪{id∗}. Observe that using ({ai}, b) by standard properties of the GGM pseudorandom
function the experiment can compute F(s, v) for any v 6∈ V ∗. Therefore, all of A’s KeyGen
queries can be answered.24

The hybrids H−3 and H−2 are the same distribution and the only change we have made is
syntactic.

• H−1 : In this hybrids, we change how each ci is generated. In particular, we sample each ci
uniformly and independently instead of using F.

The indistinguishability between hybrids H−2 and H−1 follows based on the pseudorandom-
ness of the pseudorandom function F.

• H0 : In this hybrid, we change how NodeGen and NodeGen′ behave when computed with an
input v ∈ V ∗.25 For all v 6∈ V ∗ the behavior of NodeGen and NodeGen′ remains unchanged.

24The experiment can provide F(s, id∗) even though it does not appear in any of the A’s secret key queries. The
reason is that F(s, id∗) allows the capabilities of delegation but not decryption for ciphertexts to identity id∗.

25Observe that these are specifically the cases in which one or two of the values s1, s2 and s3 given as input to
NodeGen and NodeGen′ depend on the {ci} values.

25

At a high level, the goal is to change the generating of {lkv}v∈V ∗ such that the trapdoor values
tv∈V ∗ are unused and so that the encryption key ekid∗ is sampled independent of everything
else. The execution of NodeGen and NodeGen′ for every v 6∈ V ∗ remain unaffected. In particu-
lar, at Setup time we proceed as follows and fix the values {lkv}v∈V ∗ and {dkv‖0, dkv‖1}v∈V ∗ .26

1. For every v ∈ V ∗:

(a) Generate (kv, tv)
$←− Gen(1λ).

(b) Generate (ekv‖0, dkv‖0)
$←− G(1λ) and (ekv‖1, dkv‖1)

$←− G(1λ).

(c) Sample r′v, rv.

2. Let S∗ := {id∗[1 . . . i− 1]‖(1− id∗[i])}i∈[n] ∪ {id∗}. (Note that S∗ ∩ V ∗ = ∅.)
3. For all v ∈ S∗ set kv, hv as first two outputs of NodeGen(kG, v, (F(s, v‖2),F(s, v‖0‖2),F(s, v‖1‖2))).

4. For each i ∈ {n− 1 . . . 0}:
(a) Set v := id∗[1 . . . i]

(b) Generate h′v := H(kG, kv‖0||hv‖0||kv‖1||hv‖1‖ekv‖0‖ekv‖1; r′v).
(c) hv := H(kv, h

′
v; rv).

(d) lkv := (kv, hv, rv, h
′
v, r
′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1).

5. Output {lkv}v∈V ∗ and {dkv‖0, dkv‖1}v∈V ∗ .

Statistical indistinguishability of hybrids Hτ,−1 and Hτ,0 follows from the trapdoor collision
and uniformity properties of the chameleon encryption scheme. Note that in this hybrid the
trapdoor tv for any node v ∈ V ∗ is no longer being used.

• Hτ for τ ∈ {1 . . . n} : This hybrid is identical to H0 except we change how the ciphertext is
generated. Recall that the challenge ciphertext consists of a sequence of 2n+1 garbled circuits.
In hybrid Hτ , we generate the first 2τ of these garbled circuits (namely, P̃ 1, Q̃1 . . . P̃ τ , Q̃τ)
using the simulator provided by the garbled circuit construction. The outputs hard-coded in
the simulated circuits are set to be consistent with the output that would have resulted from
the execution of honestly generated garbled circuits using keys obtained from invocations of
NodeGen. More formally, for the challenge identity id∗ the challenge ciphertext is generated
as follows (modifications with respect to honest ciphertext generation have been highlighted
in red):

1. Compute T̃ as:

(T̃ , tlab)
$←− GCircuit(1λ,Qout[kG,m])

2. For i = n, . . . , τ + 1 generate

(a) If i = n then

(Q̃n, qlab
n
)

$←− GCircuit(1λ,Qlast[id[n], kG, tlab]),

else
(Q̃i, qlab

i
)

$←− GCircuit(1λ,Q[id[i], kG, plab
i+1

]).

26Note that since the adversary never makes a KeyGen query for an identity id that is a prefix of id∗. Therefore,
we have that dkv for v ∈ V ∗ ∪ {id∗} will not be provided to A.

26

(b) (P̃ i, plab
i
)

$←− GCircuit(1λ,P[qlab
i
]).

3. For i = τ, . . . , 1:

(a) Set v = id∗[1 . . . i− 1], xv := kv‖hv, yv := h′v, and if i < n then zv := kv‖id∗[i]‖hv‖id∗[i]
else zv := ekid∗ .

(b) If i = n then

(Q̃n, {qlabnj,yv,j}j∈[λ]) := Sim(1λ, {Enc(kG, (h′v, j+id∗[n]·λ+2`, b), tlabj,zv,j)}j∈[λ],b∈{0,1})

else

(Q̃i, {qlabij,yv,j}j∈[λ]) := Sim(1λ, {Enc(kG, (h′v, j + id∗[i] · `, b), plabi+1
j,zv,j

)}j∈[`],b∈{0,1}).

(c) qlab
i

:= {qlabij,yv,j , qlab
i
j,yv,j}j∈[λ].

(d) (P̃ i, {plabij,xv,j}j∈[`]) := Sim(1λ, {Enc(kv, (hv, j, b), qlabij,yv,j)}j∈[λ],b∈{0,1}).

(e) plab
i

:= {plabij,xv,j , plab
i
j,xv,j}j∈[`].

4. Set xε := kε‖hε.
5. Output ct := ({plab1j,xε,j}j∈[λ], {P̃

i, Q̃i}i∈[n], T̃) where xε,j is the jth bit of xε.

The computational indistinguishability between hybrids Hτ−1 and Hτ is based on Lemma 7.1
which is proved in Section 7.3.

Lemma 7.1. For each τ ∈ {1 . . . n} it is the case that Hτ−1
c
≈ Hτ .

• Hn+1 : This hybrid is same as hybrid Hn except that we generate the garbled circuit T̃ to
using the garbling simulator. More specifically, instead of generating T̃ as

(T̃ , tlab)
$←− GCircuit(1λ,Qout[kG,m])

we set y = ekid∗ and generate garbled circuit as,

(T̃ , {labj,yj}j∈[λ])
$←− Sim(1λ,E(y,m))

and set lab := {labj,yj , labj,yj}j∈[λ].
Computational indistinguishability between hybrids Hn and Hn+1 follows directly from the
security of the gabled circuits.

• Hn+2 : This hybrid is same as Hn except that we change the ciphertext E(ekid∗ ,m) hardwired
in the simulated garbling of the circuit T to be E(ekid∗ , 0).

Note that the adversary A never queries for skid∗ . Therefore, it is never provided the value
dkid∗ . Therefore, we can use an adversary distinguishing betweenHn+1 andHn+2 to construct
an attacker against the semantic security of the public-key encryption scheme (G,E,D). This

allows us to conclude that Hn+1
c
≈ Hn+2.

Finally, note that the hybrid Hn+2 is information theoretically independent of the plaintext
message m.

27

7.3 Proof of Lemma 7.1

The proof follows by a sequence of sub-hybrids Hτ,0 to Hτ,4 where Hτ,0 is same as Hτ−1 and Hτ,4
is same as Hτ .

• Hτ,0: This hybrid is same as Hτ−1.

• Hτ,1: In this hybrid, we change how the garbled circuit P̃ τ is generated. Let v = id∗[1 . . . τ − 1]
and lkv = (kv, hv, rv, h

′
v, r
′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1) and define xv := kv‖hv. The

change we make is the following. We generate

(P̃ τ , plab
τ
)

$←− GCircuit(1λ,P[qlab
τ
])

now as

(P̃ τ , {plabτj,xv,j}j∈[`])
$←− Sim(1λ, {Enc(kv, (hv, j, b), qlabτj,b)}j∈[λ],b∈{0,1})

where xv,j is the jth bit of xv. Next, we set plab
i

:= {plabij,xv,j , plab
i
j,xv,j}j∈[`].

Computational indistinguishability of hybrids Hτ,0 and Hτ,1 follows by the security of the
garbling scheme GCircuit and the fact that {Enc(kv, (hv, j, b), qlabτj,b)}j∈[λ],b∈{0,1} is exactly the

output of the circuit P [qlab
τ
] on input xv.

• Hτ,2: This hybrid is identical to Hτ,2, except that for v = id∗[1 . . . τ − 1] we change

(P̃ τ , {plabτj,xv,j}j∈[`]) := Sim(1λ, {Enc(kv, (hv, j, b), qlabτj,b)}j∈[λ],b∈{0,1})

to

(P̃ τ , {plabτj,xv,j}j∈[`]) := Sim(1λ, {Enc(kv, (hv, j, b), qlabτj,yv,j)}j∈[λ],b∈{0,1}),

where yv := h′v.

Notice that node v is generated so that the trapdoor value tv is not used in the execution of the
experiment. Therefore, computational indistinguishability of hybrids Hτ,1 and Hτ,2 follows
by λ2 invocations (one invocation for each bit of the λ labels) of the security of the chameleon
encryption scheme. The reduction is analogous to the reduction proving indistinguishability
of hybrids Hτ,2 and Hτ,3 in the proof of Lemma 6.1.

Remark: We note that the ciphertexts hardwired inside the garbled circuit only provide
the labels {qlabτj,yv,j}j∈[λ] (in an information theoretical sense).

• Hτ,3 This hybrid is identical to Hτ,2, except that for v = id∗[1 . . . τ − 1] we change how Q̃τ is
generated. If τ = n then

(Q̃n, qlab
n
)

$←− GCircuit(1λ,Qlast[id
∗[n], kG, tlab]),

is changed to

(Q̃n, {qlabnj,yv,j}j∈[λ]) := Sim(1λ, {Enc(kG, (h′v, j + id∗[n] · λ+ 2`, b), tlabj,b)}j∈[λ],b∈{0,1}),

28

and qlab
n

:= {qlabnj,yv,j , qlab
n
j,yv,j}j∈[λ] where yv := h′v. Otherwise, if τ 6= n then

(Q̃τ , qlab
τ
)

$←− GCircuit(1λ,Q[id∗[τ], kG, plab
τ+1

])

is changed to

(Q̃τ , {qlabτj,yv,j}j∈[λ]) := Sim(1λ, {Enc(kG, (h′v, j + id∗[τ] · `, b), plabτ+1
j,b)}j∈[`],b∈{0,1}),

and qlab
τ

:= {qlabτj,yv,j , qlab
τ
j,yv,j}j∈[λ] where yv := h′v.

Computational indistinguishability between hybrids Hτ,2 and Hτ,3 follows by the security
of the garbling scheme and the fact that is the output of the circuit Qlast[id

∗[n], kG, tlab] is

{Enc(kG, (h′v, j+id∗[n]·λ+2`, b), tlabj,b)}j∈[λ],b∈{0,1} and the output of the circuit Q[id∗[τ], kG, plab
τ+1

]

is {Enc(kG, (h′v, j + id∗[τ] · `, b), plabτ+1
j,b)}j∈[`],b∈{0,1}.

• Hτ,4: This hybrid is identical to Hτ,4, except that we change generation of Q̃τ . Specifically,
in the case τ = n then we change the generation process of Q̃n from

(Q̃n, {qlabnj,yv,j}j∈[λ]) := Sim(1λ, {Enc(kG, (h′v, j + id∗[n] · λ+ 2`, b), tlabj,b)}j∈[λ],b∈{0,1})

to

(Q̃n, {qlabnj,yv,j}j∈[λ]) := Sim(1λ, {Enc(kG, (h′v, j + id∗[n] · λ+ 2`, b), tlabj,zv,j)}j∈[λ],b∈{0,1}),

where zv := ekid∗ . On the other hand, when τ 6= n then it is changed from

(Q̃τ , {qlabτj,yv,j}j∈[λ]) := Sim(1λ, {Enc(kG, (h′v, j + id∗[τ] · `, b), plabτ+1
j,b)}j∈[`],b∈{0,1})

to

(Q̃τ , {qlabτj,yv,j}j∈[λ]) := Sim(1λ, {Enc(kG, (h′v, j + id∗[τ] · `, b), plabτ+1
j,zv,j

)}j∈[`],b∈{0,1}),

where zv := hv‖id∗[τ]‖kv‖id∗[τ].
Notice that since the trapdoor for kG is unavailable (never generated or used), computational
indistinguishability of hybrids Hτ,3 and Hτ,4 follows by λ2 invocations (one invocation per bit
of the λ labels) if τ = n and by `λ invocations (one invocation per bit of the ` labels) otherwise
of the security of the chameleon encryption scheme. And the reduction to the security of the
chameleon encryption scheme is analogous to the reduction described for indistinguishability
between hybrids Hτ,1 and Hτ,2.
Observe that the hybrid Hτ,4 is the same as hybrid Hτ .

8 Acknowledgments

We thank the anonymous reviewers of CRYPTO 2017 for their valuable feedback.

29

References

[AB09] Shweta Agrawal and Xavier Boyen. Identity-based encryption from lattices in the
standard model. Manuscript, 2009. http://www.cs.stanford.edu/ xb/ab09/.

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 553–572, French Riviera, May 30 –
June 3, 2010. Springer, Heidelberg, Germany.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In Tal Rabin, editor, Advances in
Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
98–115, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013. http://eprint.iacr.org/2013/689.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption
without random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in
Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 223–238, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without random ora-
cles. In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 443–459, Santa Barbara, CA, USA,
August 15–19, 2004. Springer, Heidelberg, Germany.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Ronald Cramer, editor, Advances in Cryptology –
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 440–
456, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

[BBR97] Eli Biham, Dan Boneh, and Omer Reingold. Generalized Diffie-Hellman modulo a
composite is not weaker than factoring. Cryptology ePrint Archive, Report 1997/014,
1997. http://eprint.iacr.org/1997/014.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156–189, October 1988.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference, volume
8349 of Lecture Notes in Computer Science, pages 52–73, San Diego, CA, USA, Febru-
ary 24–26, 2014. Springer, Heidelberg, Germany.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Heidelberg, Germany.

30

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/1997/014

[BGH07] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based en-
cryption without pairings. In 48th Annual Symposium on Foundations of Computer
Science, pages 647–657, Providence, RI, USA, October 20–23, 2007. IEEE Computer
Society Press.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12: 19th Confer-
ence on Computer and Communications Security, pages 784–796, Raleigh, NC, USA,
October 16–18, 2012. ACM Press.

[BPR+08] Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, and Brent
Waters. On the impossibility of basing identity based encryption on trapdoor permuta-
tions. In 49th Annual Symposium on Foundations of Computer Science, pages 283–292,
Philadelphia, PA, USA, October 25–28, 2008. IEEE Computer Society Press.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on
Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA, Novem-
ber 3–5, 1993. ACM Press.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic oblivious transfer and its applications. CRYPTO, 2017. (to
appear).

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 255–271, Warsaw, Poland, May 4–8,
2003. Springer, Heidelberg, Germany.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In Henri Gilbert, editor, Advances in Cryptology – EU-
ROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 523–552,
French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Bahram Honary, editor, 8th IMA International Conference on Cryptography and
Coding, volume 2260 of Lecture Notes in Computer Science, pages 360–363, Cirencester,
UK, December 17–19, 2001. Springer, Heidelberg, Germany.

[DG17] Nico Döttling and Sanjam Garg. From selective ibe to full ibe and selective hibe.
Manuscript, 2017.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions (extended abstract). In 25th Annual Symposium on Foundations of Computer
Science, pages 464–479, Singer Island, Florida, October 24–26, 1984. IEEE Computer
Society Press.

31

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto, CA,
USA, June 1–4, 2013. ACM Press.

[GH09] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially
many levels. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Con-
ference, volume 5444 of Lecture Notes in Computer Science, pages 437–456. Springer,
Heidelberg, Germany, March 15–17, 2009.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, edi-
tors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in
Computer Science, pages 405–422, Copenhagen, Denmark, May 11–15, 2014. Springer,
Heidelberg, Germany.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In 21st Annual ACM Symposium on Theory of Computing, pages 25–32, Seattle, WA,
USA, May 15–17, 1989. ACM Press.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In Venkatesan
Guruswami, editor, 56th Annual Symposium on Foundations of Computer Science,
pages 210–229, Berkeley, CA, USA, October 17–20, 2015. IEEE Computer Society
Press.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
Annual ACM Symposium on Theory of Computing, pages 449–458, Portland, OR, USA,
June 14–17, 2015. ACM Press.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, edi-
tors, 40th Annual ACM Symposium on Theory of Computing, pages 197–206, Victoria,
British Columbia, Canada, May 17–20, 2008. ACM Press.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang
Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 548–566, Queenstown, New Zealand, December 1–5,
2002. Springer, Heidelberg, Germany.

[HK09] Dennis Hofheinz and Eike Kiltz. The group of signed quadratic residues and applica-
tions. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677
of Lecture Notes in Computer Science, pages 637–653, Santa Barbara, CA, USA, Au-
gust 16–20, 2009. Springer, Heidelberg, Germany.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 466–481, Amsterdam, The Netherlands,
April 28 – May 2, 2002. Springer, Heidelberg, Germany.

32

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–
209, 1987.

[KR98] Hugo Krawczyk and Tal Rabin. Chameleon hashing and signatures. Cryptology ePrint
Archive, Report 1998/010, 1998. http://eprint.iacr.org/1998/010.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 719–734, Athens, Greece, May 26–30,
2013. Springer, Heidelberg, Germany.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010:
7th Theory of Cryptography Conference, volume 5978 of Lecture Notes in Computer
Science, pages 455–479, Zurich, Switzerland, February 9–11, 2010. Springer, Heidelberg,
Germany.

[McC88] Kevin S. McCurley. A key distribution system equivalent to factoring. Journal of
Cryptology, 1(2):95–105, 1988.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, Ad-
vances in Cryptology – CRYPTO’85, volume 218 of Lecture Notes in Computer Science,
pages 417–426, Santa Barbara, CA, USA, August 18–22, 1986. Springer, Heidelberg,
Germany.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In 21st Annual ACM Symposium on Theory of Computing, pages 33–43,
Seattle, WA, USA, May 15–17, 1989. ACM Press.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In Tal Rabin, editor, Advances
in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 191–208, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg,
Germany.

[PRV12] Periklis A. Papakonstantinou, Charles W. Rackoff, and Yevgeniy Vahlis. How powerful
are the DDH hard groups? Cryptology ePrint Archive, Report 2012/653, 2012. http:
//eprint.iacr.org/2012/653.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signature and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Advances in Cryptology – CRYPTO’84, volume 196 of Lecture
Notes in Computer Science, pages 47–53, Santa Barbara, CA, USA, August 19–23,
1984. Springer, Heidelberg, Germany.

33

http://eprint.iacr.org/1998/010
http://eprint.iacr.org/2012/653
http://eprint.iacr.org/2012/653

[Shm85] Z. Shmuely. Composite diffie-hellman public-key generating systems are hard to break.
Technical Report No. 356, Computer Science Department, Technion, Israel, 1985.

[SW08] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption sys-
tems. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th International
Colloquium on Automata, Languages and Programming, Part II, volume 5126 of Lec-
ture Notes in Computer Science, pages 560–578, Reykjavik, Iceland, July 7–11, 2008.
Springer, Heidelberg, Germany.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lec-
ture Notes in Computer Science, pages 114–127, Aarhus, Denmark, May 22–26, 2005.
Springer, Heidelberg, Germany.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 619–636, Santa Barbara, CA,
USA, August 16–20, 2009. Springer, Heidelberg, Germany.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago,
Illinois, November 3–5, 1982. IEEE Computer Society Press.

34

	Introduction
	Our Results

	Our Techniques
	Chameleon Encryption
	From Chameleon Encryption to Identity-Based Encryption

	Preliminaries
	Computational Problems
	Identity-Based Encryption
	Garbled Circuits

	Chameleon Encryption
	Constructions of Chameleon Encryption from CDH
	Instantiations

	Construction of Identity-Based Encryption
	Proof of Correctness
	Proof of Security
	Proof of Lemma 6.1

	Construction of Hierarchical Identity-Based Encryption
	Proof of Correctness
	Proof of Security
	Proof of Lemma 7.1

	Acknowledgments

