
Functional Graph Revisited: Updates on (Second) Preimage
Attacks on Hash Combiners

Zhenzhen Bao1,2, Lei Wang1,3, Jian Guo2, and Dawu Gu1

1 Shanghai Jiao Tong University, Shanghai, China
2 Nanyang Technological University, Singapore

3 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

baozhenzhen10@gmail.com, {wanglei hb,dwgu}@sjtu.edu.cn, guojian@ntu.edu.sg

Abstract. This paper studies functional-graph-based (second) preimage attacks against hash combiners.
By exploiting more properties of cyclic nodes of functional graph, we find an improved preimage attack
against the XOR combiner with a complexity of 25n/8, while the previous best-known complexity is 22n/3.
Moreover, we find the first generic second-preimage attack on Zipper hash with an optimal complexity of
23n/5.

Keywords: Hash Combiner · Functional Graph · XOR Combiner · Zipper Hash · (Second) Preimage
Attack

1 Introduction

A cryptographic hash function H : {0, 1}∗ → {0, 1}n maps arbitrarily long messages to n-bit digests. It is a
fundamental primitive in modern cryptography and has been widely utilized in various cryptosystems. There
are three basic security requirements on a hash function H:

• Collision Resistance. It must be computationally infeasible to find two distinct messages M and M ′ such
that H(M) = H(M ′);
• Second Preimage Resistance. Given a message M , it must be computationally infeasible to find a
message M ′ such that M ′ 6= M and H(M ′) = H(M);
• Preimage Resistance. Given a target hash digest V , it must be computationally infeasible to find a
message M such that H(M) = V .

As generic birthday attack and the brute-force attack require complexities of 2n/2 and 2n to find a collision and
a (second) preimage, respectively, it is expected that a secure hash function should provide the same security
level of resistance.

Among various approaches of designing a hash function, one is to build a hash combiner from two (or more)
hash functions in order to achieve security amplification, that is the hash combiner has higher bound of security
resistance than its underlying hash functions, or to achieve security robustness, that is the hash combiner is
secure as long as (at least) any one of its underlying hash functions is secure. In particular, hash combiners were
used in practice, e.g., in SSL [14] and TLS [2].

Concatenation combiner and XOR combiner are the two most classical hash combiners. Using two (indepen-
dent) hash functions H1 and H2, the former concatenates their outputs: H1(M)‖H2(M), and the latter XORs
their outputs: H1(M) ⊕ H2(M). From a theoretical point of view, the concatenation combiner is robust with
respect to collision resistance, and the XOR combiner is robust with respect to PRF (Pseudo-Random Function)
and MAC (Message Authentication Code) in the black-box reduction model [22]. Advanced security amplifi-
cation combiners and robust multi-property combiners for hash functions have been constructed [9,10,11,12].
More generally4, cryptographers have also studied cascade constructions of two (or more) hash functions, that
is to compute H1 and H2 in a sequential order. Well-known examples are Hash Twice: H2(H1(IV,M),M) and

Zipper Hash [25]: H2(H1(IV,M),
←−
M), where

←−
M is the reversed (block) order of original message M . We regard

these cascade constructions of hash functions as hash combiners in this paper.

This paper is mainly interested in combiners of iterative hash functions, in particular following the Merkle-
Damg̊ard construction [27,6]. An iterative hash function splits a message M into blocks m1, . . ., m` of fixed
length, and processes these blocks by iterating a compression function h (or a series of compression functions)
over an internal state x with an initial value denoted as IV . Finally, the hash digest is computed by a finalization

4 Here we need to generalize the syntax of hash functions such that the initial value IV is also regarded as an input
parameter.



function with the bit length ofM denoted as |M | as input. The finalization function can be either the compression
function h or another independent function. For the simplicity of description, we fix the finalization function as
h in the rest of the paper, but we stress that our attacks also work in a straight forward way for the case of an
independent finalization function. We mainly focus on narrow-pipe iterative hash functions, i.e., every internal
state xi (0 ≤ i ≤ `) have the same bit length with the output hash digest (Fig. 1).

x0 = IV xi+1 = h(xi,mi+1) H(M) = h(x`, |M |)
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Fig. 1: Narrow-pipe Merkle-Damg̊ard Hash Function

Combiners of iterative hash functions have received extensive analysis. Several generic attacks have been
devised on the above combiners, which can work even with ideal compression functions, indicating the upper
security bound of these combiners. In a seminal paper [20], Joux presents a technique to find multi-collision on
an iterative hash function that has a complexity not much greater than that of finding a single collision. Based
on this technique, he finds collision and preimage attacks on the concatenation combiner with complexities
much lower than expected, and shows that it offers essentially the same security level with a single n-bit hash
function.5 In [24], Leurent and Wang propose an interchange structure that can break the pairwise dependency
between the internal states of two iterative hash functions during computing a common message. Based on this
structure, they are able to compute the two hash functions independently, and then launch a meet-in-the-middle
preimage attack on the XOR combiner with a complexity exponentially lower than 2n, more precisely Õ(25n/6).

For combiners of cascade constructions, towards the three basic security requirements, a second preimage
attack on Hash twice has been published by Andreeva et al. in [3] with a complexity of O(2n/2 ·

√
L + 2n/L),

where L is the block length of the challenging message. On the other hand, there is no generic attack on
Zipper hash with respect to the basic security notions, which is highlighted as an open problem in [24]. Besides,
cryptographers have also analyzed the resistance of Hash twice and Zipper hash with respect to other security
notions such as multi-collision, herding attack, etc. Examples include [28,17,3,19].

Very recently Dinur in [7] publishes new generic attacks on the concatenation combiner and the XOR com-
biner. He finds a second preimage attack on the concatenation combiner with a complexity of optimallyO(23n/4),
and an improved preimage attack on the XOR combiner with a complexity of optimally O(22n/3). Differently
from previous attacks on combiners in [20,24] which are mainly based on collision-finding techniques [20,21], one
main technical contribution of Dinur’s attacks is to exploit properties of functional graph of a random mapping.
More specifically, one can fix the message input as a constant, and then turn the compression function h to
an n-bit to n-bit random mapping. It has many interesting properties, and has been extensively studied and
utilized in cryptography. Examples include [16,29,31,23,32,8,15,30].

Lines of research of combining iterative hash functions also include the study of hash combiners with weak
compression functions, i.e., the attacker is given additional interfaces to receive random preimages of the com-
pression functions [25,18,5,19], and analysis of combiners of dedicated hash functions [26]. In particular, the con-
catenation combiner, the XOR combiner and Zipper hash with weak compression functions have been proven
in [25,18] to be indifferentiable from a random oracle with an n/2-bit security, indicating the lower security
bound regarding basic security notions for these combiners.

1.1 Our Contributions

This paper investigates functional graph of a random mapping, and based on its properties evaluates the security
of hash combiners.

We find an improved preimage attack on the XOR combiner, by exploiting the cyclic nodes in a functional
graph. One main step in previous preimage attack on the XOR combiner is to search for a pair of nodes, x
in functional graph of a function f1 and y in functional graph of another function f2, which reach to a pair

5 In fact, Joux’s attacks require that only one hash function is iterative and narrow-pipe.



of predefined nodes x̄ of f1 and ȳ of f2 at a common distance. We find that the probability of a random pair
xr and yr reaching to x̄ and ȳ at a common distance can be greatly amplified, by exploiting some property of
cyclic nodes as follows. When applying a function f to update a cyclic node in its functional graph iteratively,
the cyclic node loops along the cycle and goes back to itself after a number of multi-cycle-length function calls.
This property of cyclic nodes turns out to be very beneficial for finding a pair (x, y) that reach to (x̄, ȳ) at a
common distance. More specifically, x̄ and ȳ are predefined to be cyclic nodes within the largest components
in the functional graphs of f1 and f2 respectively. Suppose a random pair of xr and yr reach to x̄ and ȳ at
distances of d1 and d2 respectively. We can try correcting the distance bias d1 − d2 6= 0, by letting x̄ and ȳ
loop along their cycles. Note these two cycles have different lengths with an overwhelming probability, and their
length are denoted as L1 and L2 respectively. More precisely, we search for a pair of integers i and j such that
d1 + i · L1 = d2 + j · L2. Thus, the probability of a random pair (xr, yr) being the expected (x, y) is amplified
by #C times, where #C is the maximum number of cycle loops that can be added. It contributes to improving
preimage attacks on the XOR combiner. The complexity of our attack is 25n/8, which is 2n/24 times lower than
previous best-known complexity of 22n/3 in [7]. We point out that the preimage message of our attack has a
length of at least 2n/2 blocks, since the cycle length of an n-bit functional graph is Θ(2n/2).

Moreover, we propose functional-graph-based second preimage attacks on Zipper hash. Differently from the
XOR combiner and the concatenation combiner, the two passes of Zipper hash are sequential. Moreover, the
second pass processes message blocks in a reversed order. These unique specifications bring extra degrees of
freedom for the attacker. In details, after being linked to an internal state of the original message in the second
pass, the first few blocks of our second preimage message are fixed. Note these blocks do not include the padding
block of message length. As a result, we are always able to choose a length for second preimage message that
optimizes the complexity. Moreover, when looking for a pair of nodes (x̌, y̌) reaching two predefined nodes of
deep iterates (x̄, ȳ) at a common distance, x̌ and y̌ are generated with different message blocks, since the message
blocks are hashed in different orders in two passes. It enables us to launch a meet-in-the-middle procedure by
using Joux’s multi-collision when finding a pair of nodes (x̌, y̌), then the complexity of the attack is further
reduced. If message length longer than 2n/2 is allowed, the complexity of our second preimage attack on Zipper
hash is 23n/5 for L ≥ 22n/5, and 2n/L for 0 < L < 22n/5, where L is the block length of original message.
Otherwise, the complexity of our attack is 25n/8 for 23n/8 < L ≤ 2n/2, and 2n/L for 0 ≤ L < 23n/8. We note
these attacks are the first generic second-preimage attacks on Zipper hash to our best knowledge,6 which solve
an open problem proposed in [24].

Roadmap. Section 2 describes preliminaries. In Section 3, we further investigate properties of functional graph.
Sections 4 and 5 present (second) preimage attacks on the XOR combiner and Zipper hash, respectively. Finally,
we conclude the paper in Section 6.

2 Preliminaries

2.1 Functional Graph

The functional graph (FG) of a random function f is defined by the successive iteration of this function.
Explicitly, let f be an element of FN which is the set of all mappings with a set N as both domain and
range. The functional graph of f is a directed graph whose nodes are the elements [0, . . . , N − 1] and whose
edges are the ordered pairs 〈x, f(x)〉, for all x ∈ [0, . . . , N − 1]. If starting from any x0 and iterating f , that is
x1 = f(x0), x2 = f(x1), . . . , we are going to find, before N iterations, a value xj equal to one of x0, x1, . . . , xj−1.
In this case, we say xj is a collision and the path x0 → x1 → · · · → xj−1 → xj connects to a cycle which
describes the iteration structure of f starting from x0. If we consider all possible starting points x0, paths exhibit
confluence and form into trees; trees grafted on cycles form components; a collection of components forms a
functional graph [13].

Structure of FG has been studied for a long time, some parameters such as the number of components (i.e.,
the number of connected components), the number of cyclic nodes (a node is cyclic if it belongs to a cycle), the
number of terminal points (i.e., nodes without preimage: f−1(x) = ∅), the number of image points (i.e., nodes
with preimage), the expectation of tail length, the expectation of cycle length and rho-length have got accurate
asymptotic evaluation [13], which are summarized below. A k-th iterate image point of f is an image point of
the k-th iterate fk of f .

Theorem 1 ([13]). The expectations of parameters, number of components, number of cyclic points, number
of terminal points, number of image points, and number of k-th iterate image points in a random mapping of
size N have the asymptotic forms, as N →∞,

6 Assuming compression functions are weak, second-peimage attacks have been published on Zipper hash [5,19].



1. # Components 1
2 logN = 0.5 · n

2. # Cyclic nodes
√

πN/2 ≈ 1.2 · 2n/2
3. # Terminal nodes e−1N ≈ 0.37 · 2n

4. # Image points (1− e−1)N ≈ 0.62 · 2n
5. # k-th iterate image points (1 − τk)N , where the

τk satisfies the recurrence τ0 = 0, τk+1 = e−1+τk

Theorem 2 ([13]). Seen from a random point (any of the N nodes in the associated functional graph is taken
equally likely) in a random mapping of FN , the expectations of parameters tail length, cycle length, rho-length,
tree size, component size, and predecessors size have the following asymptotic forms:

1. Tail length (λ)
√
πN/8 ≈ 0.62 · 2n/2

2. Cycle length (µ)
√
πN/8 ≈ 0.62 · 2n/2

3. Rho length (ρ = λ+ µ)
√
πN/2 ≈ 1.2 · 2n/2

4. Tree size N/3 ≈ 0.34 · 2n
5. Component size 2N/3 ≈ 0.67 · 2n
6. Predecessors size

√
πN/8 ≈ 0.62 · 2n/2

Theorem 3 ([13]). The expectation of the maximum cycle length (µmax), maximum tail length (λmax) and
maximum rho length (ρmax) in the functional graph of a random mappings of FN respectively satisfies:

1. E{µmax | FN} = c1
√
N = 0.78248 · 2n/2

2. E{λmax | FN} = c2
√
N = 1.73746 · 2n/2

3. E{ρmax | FN} = c3
√
N = 2.41490 · 2n/2

Theorem 4 ([13]). Assuming the smoothness condition, the expected value of the size of the largest tree and
the size of the largest connected component in a random mapping of FN , are asymptotically:

1. Largest tree: 0.48 · 2n 2. Largest component: 0.75782 · 2n

Results from these theorems indicate that, in a random mapping, most of the points tend to be grouped
together in a single giant component. This component is therefore expected to have very tall trees and a large
cycle.

2.2 XOR Combiner

The XOR combiner xors the outputs of two independent hash functions H1 and H2, i.e. H1(M) ⊕ H2(M),
which is depicted in Fig. 2 and Fig. 3.
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Fig. 2: The XOR combiner
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Fig. 3: Condensed graphical representation of the XOR combiner

2.3 Zipper Hash

Zipper hash is composed of two passes, denoted by H1 and H2 respectively, operating on a single message. The
two passes in Zipper hash are sequential, and the second pass operates the sequence of message blocks in a
reversed order. The construction is depicted in Fig. 4 and Fig. 5.
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2.4 Joux’s Multi-Collision [20]

In 2004, Joux [20] introduced multi-collisions on narrow-pipe Merkle-Damg̊ard hash functions. Given a hash
function H, a multi-collision refers to a set of messagesM = {M1,M2, . . .} whose hash digests are all the same,
i.e., H(Mi) = H(Mj) for any pair Mi,Mj ∈ M. The computational complexity of generic brute-force search
increases exponentially when the target size |M| increases, more precisely, about 2(|M|−1)·n/|M|. Utilizing the
iterative nature of Merkle-Damg̊ard structure, Joux’s algorithm is able to find multi-collision of size 2k with a
complexity of k · 2n/2, i.e., a complexity not much greater than that of finding a single collision. It works as
follows. Given an iterative hash function H with a compression function h, and an initial value x0, one finds a
pair of message (m1,m

′
1) such that h(x0,m1) = h(x0,m

′
1) = x1 with a complexity of 2n/2. The process can be

repeated to find (mi,m
′
i) such that h(xi−1,mi) = h(xi−1,m

′
i) = xi for i = 2, 3, . . . , k iteratively, as shown in

Fig. 6. It is trivial to see the message setM = {m1‖m2‖ · · · ‖mk | mi = mi or m
′
i for i = 1, 2, . . . , k} form a

multi-collision of size 2k, and the overall complexity is O(k · 2n/2).

2.5 Expandable Message [21]

In 2005, Kelsey and Schneier [21] introduced a technique named expandable message to find second-preimages
of Merkle-Damg̊ard structure with a complexity of 2n−l, instead of the long believed 2n, for a given challenging
message of about 2l blocks. As depicted in Fig. 7, given a chaining value x0 one finds a pair of message (m1,m

′
1)

in time 2n/2 such that h(x0,m1) = h(x0,m
′
1) = x1, and m1 and m′

1 are of 1, and 2 blocks, respectively. The
process can be repeated to find (mi,m

′
i) such that h(xi−1,mi) = h(xi−1,m

′
i) = xi for i = 2, 3, . . . , k iteratively,

where mi and m′
i are of 1, and 1 + 2i−1 blocks respectively. As a result, for each t ∈ [k, k + 2k − 1], there

is a message of t blocks from the set M = {m1‖m2‖ · · · ‖mk | mi = mi or m
′
i for i = 1, 2, . . . , k}. Note

h(x0,M) = xk for any M ∈M and the overall complexity is O(k ·2n/2+2k). It is a special multi-collision, from
which one can choose a message of any desired block length in the range [k, k + 2k − 1].

Extension to two hash functions [7]. Dinur extends Kelsey and Schneier’s technique [21] to build simulta-
neous expandable message on two hash functions H1 and H2. Independently, Jha and Nandi propose a similar
construction of an expandable message over two hash functions in [19]. The main idea is, when building an
expandable message on H1, to find two sets ofM = {mi} andM′ = {m′

i} by Joux’s multi-collision such that
h1(xi−1,mi) = h1(xi−1,m

′
i) = xi for any mi ∈M and any m′

i ∈M′. Later, find a pair of mi ∈M and m′
i ∈M′

colliding on H2 that is h2(yi−1,mi) = h2(yi−1,m
′
i) = yi. Hence, we find a pair of mi and m′
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pre-determined lengths, colliding on both H1 and H2, with a complexity not much greater than that of finding
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Fig. 6: Joux’s multicollision structure and its condensed representation in R.H.S. [19]
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Fig. 7: The expandable message and its condensed representation in R.H.S. [19]

a collision on a single hash function. The complexity is upper bounded by L+n2 ·2n/2, where L is the maximum
length that expandable message can produce. For a completed description of the procedure, we refer to [7] or
to Section 5.3 (slightly adapted due to the specification of Zipper hash).

2.6 Dinur’s Attack [7]

In [7], Dinur proposed second preimage attacks on the concatenation combiner and preimage attack on the
XOR combiner, which are built on two independent Merkle-Damg̊ard hash functions. In this section, we briefly
describe his attack on the XOR combiner H1(M)⊕H2(M).

The attack is based on functional graph. Fix a message m, and define f1(x) = h1(x,m) and f2(y) = h2(y,m),
where h1 and h2 are the compression functions of H1 and H2 respectively. In particular, the attack uses some
special nodes, which are located deep in functional graphs defined by f1 and f2 and hence referred to as deep
iterates. In other words, a deep iterate is a node that is reached after iterating f1 (resp. f2) many times.

Given a target hash digest V , the attack is composed of three main steps:

1. Build a simultaneous expandable messageM for both H1 and H2. It starts from the initial values (IV1, IV2)
and ends at state (x̂, ŷ).

2. Generate a set of tuples {(x̄1, ȳ1, m̄1), (x̄2, ȳ2, m̄2), . . .} such that h1(x̄i, m̄i)⊕ h2(ȳi, m̄i) = V , where x̄i and
ȳi are chosen with a special property (being deep iterates).

3. Find a message Mlink = mr‖md, which links (h1(x̂,mr), h2(ŷ,mr)) to some (x̄i, ȳi) after iterating f1 and
f2 by d times.

At the end, derive a message ML−2−d with a block length of L − 2 − d from the expandable messageM, and
produce a preimage of V with a length L: M = ML−2−d‖Mlink‖m̄i.

(IV1, IV2)
ML−2−d−−−−−→ (x̂, ŷ)

Mlink−−−−→ (x̄i, ȳi)
m̄i−−→ (H1(M),H2(M)),

where H1(M) ⊕H2(M) = V holds. The overall time complexity of Dinur’s attack is optimally 22n/3 obtained
for L = 2n/2.

The complexity advantage is gained thanks to two properties of deep iterates, which are listed below infor-
mally:

(i) it is easy to get a large set of deep iterates;
(ii) a deep iterate has a (relatively) high probability to be reached from an arbitrary starting node.

Property (i) contributes to the efficiency of Step 2, since one can find large sets of deep iterates in f1 and f2
independently, and then carry out a meet-in-the-middle procedure to find a set of tuples {(x̄i, ȳi, m̄i)}. Property
(ii) contributes to the efficiency of Step 3. Thus, in order to estimate the complexity of the attack, it is necessary
and important to study these two properties quantitatively.

– For property (i), Θ(2t) iterates of depth 2n−t can be collected with a complexity of 2t by using Algorithm 1
for t ≥ n/2;

– For property (ii), the probability of a random pair (xr, yr) encountering d-th iterates x̄ and ȳ at a common
distance (no larger than d) is d3/22n. Dinur conjectures and experimentally verifies that after 22n/d3 trials,
such a random pair (xr, yr) can be found [7]. The proof of the expected number of trials stays incomplete.
In brief, with the number of chains increasing, there will be dependency between chains due to colliding and
merging, which cannot be analyzed probabilistically anymore. More details are referred to [7, Appendix B].

3 Functional Graph Revisited

This section investigates the properties of functional graph. To start with, we estimate the expected number
of k-th iterates. Then based on it, we provide further discussion about the expected number of trials to reach
two deep-iterates simultaneously at a common distance. More importantly, we find certain properties of cyclic
nodes in functional graph that will be utilized in our attacks on hash combiners in next sections.



Algorithm 1 Collect Θ(2t) iterates of depth 2n−t with a complexity of 2t, for t ≥ n/2

1: procedure Gen(t)
2: G← ∅
3: while |G| < 2t do
4: Chain← ∅
5: x←$ {0, 1, . . . , 2n − 1} \G
6: while true do
7: if x ∈ G or x ∈ Chain then
8: G←merge Chain
9: go to line 3
10: else
11: Chain←insert x
12: x← f(x)
13: end if
14: end while
15: end while
16: output G
17: end procedure

3.1 The Expected Number of k-th Iterates

We make an asymptotic estimate for the number of k-th iterates in the functional graph of a random mapping.
As stated in Theorem 1, the expectation of the number of k-th iterate image points in a random mapping of
size N has the asymptotic forms (1− τk)N , as N →∞, where the τk satisfies the recurrence

τ0 = 0, τk+1 = e−1+τk .

Based on it, we calculate the bounds on the number of k-th iterate image points.

Lemma 1. The expectation of the number of k-th iterate image points (1− τk)N is bounded by

1

k
N < (1− τk)N <

2

k
N,

where the τk satisfies the recurrence τ0 = 0, τk+1 = e−1+τk , and suppose N = 2n and 3 ≤ k ≤
√
N = 2n/2 .

Proof. Here, we use mathematical induction to prove this lemma:
Let fk = 1− τk. Then, we need to prove that

1 < kfk < 2.

Let gk = kfk, then it has

1 < g3 = 3f3 = 3(1− e−1+e−1+e−1

) < 2 (1)

For k ≥ 3, suppose 1 < gk < 2, then we can prove 1 < gk+1 < 2 as follows:

(k + 1)fk+1 = gk+1 = (k + 1)fk+1

(k + 1)(1− e−
1
k gk) = gk+1 = (k + 1)(1− e−

1
k gk)

(k + 1)(1− e−
1
k ) < gk+1 < (k + 1)(1− e−

2
k )

(k + 1)(
1

k
− 1

2!
(
1
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)2 +

1

3!
(
1

k
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The last line holds as k ≥ 3. �



We refer to Rényi and Szekeres’s paper [34] in which one can find a consistent yet more precise estimate on
the ratio τk. It suggests that limk→∞ kfk = 2. Thus, one can get the following analogous lemma.

Lemma 2. The expectation of number of k-th iterate image points is

(1− τk)×N ≈ (
2

k
− 2

3

log k

k2
− c

k2
− · · · )×N ≈ 2n−log2(k)+1,

where the τk satisfy the recurrence τ0 = 0, τk+1 = e−1+τk , c is a certain constant, and suppose N = 2n and
k ≤
√
N = 2n/2.

Proof. Refer to Equation (3.9) and (3.10) in [34].

Remark 1. We note that Lemmas 1 and 2 imply a theorem about the entropy loss shown in [8] when each fi’s
are all identical and one takes 2s = k as iterate depth, see Theorem 5. Moreover, these Lemmas show that the
entropy loss 2n−s is not only an upper bound, i.e., Õ(2n−s), but also a tight bound i.e., Θ(2n−s).

Theorem 5 (Entropy loss [8]). Let s ≤ n/2 be a non-negative integer. Let f1, f2, . . . , f2s be a fixed sequence

of random functions over the set of 2n elements, and g2s
∆
= f2s ◦ f2s−1 ◦ · · · ◦ f2 ◦ f1 (with the fi being either all

identical, or independently distributed). Then, the images of g2s contains at most Õ(2n−s) points.

3.2 The Expected Number of Trials Reaching Deep-iterates Simultaneously

This section considers the expected number of samplings to find one pair of starting points simultaneously
reaching two k-th iterate image points in the functional graphs of two independent random mappings.

Firstly, we focus on the case of a single function. We write a random image point y of a function f(·), if it is
sampled by selecting an element x in the domain of f uniformly at random, and then computing y = f(x). For
a random image point of d-th iterate of a random mapping, we estimate the expected number of its preimages.

Theorem 6. Let f be a random mapping with domain and range of {0, 1}n, and d be a positive integer. Let y
be a random image point of fd. Then

E(
∣∣{x | fd(x) = y}

∣∣) ≥ d. (2)

Proof. Denote the range of fd as R. Then the cardinality of R has been proven 2n/d, by ignoring the constant
factor. We introduce a function #Pre(·) that takes each image value of fd as input, and outputs the number of
its preimages. For a random image point y of fd, the expected number of its preimages is estimated as

E(
∣∣{x | fd(x) = y}

∣∣) = ∑
y∈R

Pr
[
y = fd(x) | x $←− {0, 1}n

]
×#Pre(y)

=
∑
y∈R

#Pre(y)

2n
×#Pre(y)

=

∑
y∈R #Pre(y)2

2n
. (3)

Moreover, we have that ∑
y∈R

#Pre(y) = 2n. (4)

From the equations (3) and (4), the lower bound of E(
∣∣{x | fd(x) = y}

∣∣) is obtained in the case of #Pre(y1) =
#Pre(y2) for any two elements y1 and y2 in R, according to the following lemma.

Lemma 3. Let a1, a2, . . . , at be positive integer variables such that their sum
∑

1≤i≤t ai is fixed a constant c.
Then we have that ∑

1≤i≤t

a2i ≥ t× (
c

t
)2 =

c2

t
,

where the lower is obtained in the case of ai = c/t for any 1 ≤ i ≤ t.

The proof of lemma 3 is provided in Appendix A.

Thus, since the sum of #Pre(y) for all y in R is 2n and the cardinality of R is 2n/d, the lower bound of
E(

∣∣{x | fd(x) = y}
∣∣) is obtained in the case of #Pre(y) = d for each y ∈ R.

E(
∣∣{x | fd(x) = y}

∣∣) ≥ ∑
y∈R

d2

2n
=

2n

d
× d2

2n
= d.

The proof is completed. �



Next, we extend to discuss the case of multiple functions. Let f1 and f2 be two random mappings with
domain and range of {0, 1}n. Let y1 (resp. y2) be a random image point of k-th iterate of f1 (resp. f2), that
is fk

1 (resp. fk
2 ). We estimate the expected number of preimage pairs (x1, x2), where there exists (at least) one

positive integer d such that 1 ≤ d ≤ k and

fd
1 (x1) = y1, fd

2 (x2) = y2,

A straightforward (but a bit rough, as discussed in Remark 2) evaluation is as follows.

E(
∣∣{(x1, x2) | fd

1 (x1) = y1, f
d
2 (x2) = y2}, 1 ≤ d ≤ k

∣∣) = k∑
d=1

E(
∣∣{(x1, x2) | fd

1 (x1) = y1, f
d
2 (x2) = y2}

∣∣)
=

k∑
d=1

E(
∣∣{x1 | fd

1 (x1) = y1}
∣∣)× E(

∣∣{x2 | fd
2 (x2) = y2}

∣∣)
≥

k∑
d=1

d× d

= Θ(k3). (5)

Finally, we move to estimate the expected number of trials to find one pair (x1, x2) that reaches k-th iterate
image points (y1, y2) of random mappings (f1, f2) simultaneously. There are in total 22n starting points. The
number of preimages of (y1, y2) is around Θ(k3). Thus, by sampling starting points uniformly at random, the
expected number of trials is bounded as O(22n/k3), which is consistent with Dinur’s experimental results in [7].

Remark 2. The estimate at Equation (5) is based on Theorem 6, which is a bit rough. In Equation (5), an
implicit requirement is that y1 (resp. y2) must be a common image point for all the functions {f i

1 | 1 ≤ i ≤ k}
(resp. {f i

2 | 1 ≤ i ≤ k}). As proven, the ranges of these functions are not the same. Then y1 is not exactly a
random image point of functions f i

d for 1 ≤ i ≤ k−1. Furthermore, in our attack procedure on hash combiners in
next sections, the target deep iterates are essentially selected from the range of fk uniformly at random. Hence,
the distribution of y1 in Equation (5) and deep iterates in our attack procedure is not exactly the same with
the prerequisite of Theorem 6. A future work is to further estimate the case of multiple functions rigorously,
and to eliminate the gap between the theoretical analysis and the actual attacks.

3.3 Cyclic Node and Multi-Cycles

In this section, we study a property of cyclic nodes within functional graph of a random mapping. Each cyclic
node in a functional graph defined by f loops along the cycle when computed by f iteratively, and goes back
to itself after a (multi-) cycle-length number of function calls. This property can be utilized to provide extra
degrees of freedom, when estimating the distance of other nodes to a cyclic node in the functional graph, i.e.,
it can be expanded to a set of discrete values by using multi-cycles. For example, let x and x′ be two nodes in
a component of the functional graph defined by f , x is a cyclic node, and the cycle length of the component is
denoted as L. Clearly there exists a path from x′ to x as they are in the same component, and the path length
is denoted as d. Then we have

fd(x′) = x; fL(x) = x =⇒ f (d+i·L)(x′) = x for any positive integer i.

Suppose it is limited to use at most t cycles. Then the distance from x′ to x is expanded to a set of t+1 values
{d+ i · L | i = 0, 1, 2, ..., t}.

Now let us consider a special case of reaching two deep iterates from two random starting nodes: select two
cyclic nodes within the largest components in the functional graphs as the deep iterates. More specifically, let
two functional graphs be defined by f1 and f2. Let x̄ and xr be two nodes in a common largest component
of functional graph defined by f1, where x̄ is a cyclic node. Let L1 denote the cycle length of the component
and d1 denote the path length from xr to x̄. Similarly, we define notations ȳ, yr, L2 and d2 in functional
graph of f2. We are interested in the probability of linking xr to x̄ and yr to ȳ at a common distance. Thanks
to the usage of multiple cycles, the distance values from xr to x̄ and from yr to ȳ can be selected from two
sets {d1 + i · L1 | i = 0, 1, 2, . . . , t} and {d2 + j · L2 | j = 0, 1, 2, . . . t}, respectively. Hence, as long as there
exists a pair of integers (i, j) such that 0 ≤ i, j ≤ t and d1 + i · L1 = d2 + j · L2, we get a common distance
d = d1 + i · L1 = d2 + j · L2 such that

fd
1 (xr) = x̄, fd

2 (yr) = ȳ.



Next, we evaluate the probability amplification of reaching (x̄, ȳ) from a random pair (xr, yr) at the same
distance. Without loss of generality, we assume L1 ≤ L2. Let ∆L be ∆L = L2 mod L1. Then, it has that

d1 + i · L1 = d2 + j · L2 =⇒
d1 − d2 = j · L2 − i · L1 =⇒

(d1 − d2) mod L1 = j ·∆L mod L1

Letting j range over all integer values in internal [0, t], we will collect a set of t + 1 values S = {j · ∆L
mod L1 | j = 0, 1, . . . , t}.7 Since d1 = O(2n/2), d2 = O(2n/2) and L1 = Θ(2n/2), it has |d1 − d2| = O(L1), and
we assume |d1 − d2| < L1 by ignoring the constant factor. Therefore, for a randomly sampled pair (xr, yr) that
encounter (x̄, ȳ), we are able to derive a pair of (i, j) such that d1 + i ·L1 = d2 + j ·L2, as long as their distance
bias d1−d2 is in the set S. In other words, we are able to correct such a distance bias by using multi-cycles. Thus,
the probability of reaching (x̄, ȳ) from a random pair (xr, yr) at a common distance is amplified by roughly t
times, which is the maximum number of cycles used.

This property of cyclic nodes in functional graph can be utilized to improve preimage attacks on the XOR
combiner, which is presented in next sections. The set S is referred to as the set of correctable distance bias
hereafter.

4 Improved Preimage Attack on XOR Combiner

4.1 Attack Overview

Firstly, we recall previous preimage attack on the XOR combiner [7] introduced in Section 2.6. We name (x̄i, ȳi)’s
as target node pairs. Clearly the larger the number of target node pairs (generated at Step 2) is, the higher
the probability of a random node pair (xr = h1(x̂,mr), yr = h2(ŷ,mr)) reaching a target node pair (x̄i, ȳi) (at
Step 3) at a common distance becomes. Hence, a complexity tradeoff exists between Steps 2 and 3. The optimal
complexity is obtained by balancing Step 2 and Step 3.

In this section, we use cyclic nodes and multi-cycles to improve preimage attack on the XOR combiner. More
specifically, if a target node pair (x̄, ȳ) are both cyclic nodes within the largest components in two functional
graphs respectively, the probability of a random pair (xr = h1(x̂,mr), yr = h2(ŷ,mr)) reaching (x̄, ȳ) at a
common distance is amplified by #C times, the maximum number of cycles that can be used, by using the
set of correctable distance bias as stated in Section 3.3. Moreover, such a probability amplification comes with
almost no increase of complexity at Step 2, which leads to a new complexity tradeoff between Steps 2 and 3.
Thus, the usage of cyclic nodes and multi-cycles enables us to reduce the computational complexity of preimage
attacks on the XOR combiner.

Here we briefly list the main steps of our preimage attack on the XOR combiner.

Step A. Build a simultaneous expandable messageM for H1 and H2 ending with (x̂, ŷ).
Step B. Collect cyclic nodes within the largest components in functional graphs of f1 = h1(·,m) and f2 =

h2(·,m) with a fixed m, and compute the set of correctable distance bias

S = {i ·∆L mod L1 | i = 0, 1, . . . ,#C},

where L1 and L2 are cycle length of the largest components in the functional graphs of f1 and f2 respectively
and ∆L = L2 − L1 mod L1.

Step C. Find a set of tuples {(x̄1, ȳ1, m̄1), (x̄2, ȳ2, m̄2), . . .} such that x̄i’s and ȳj ’s are cyclic nodes within the
largest components in functional graphs of f1 and f2 respectively, and h1(x̄i, m̄i) ⊕ h2(ȳi, m̄i) = V , where
V is the target hash digest.

Step D. Find a message Mlink = mr‖md that links (x̂, ŷ) to some (x̄i, ȳi). For each pair (xr = h1(x̂,mr), yr =
h2(ŷ,mr)) that encounters (x̄i, ȳi), compute the distance difference and examine whether it belongs to S.

Up to now, we are able to derive a message Me from the expandable message M with an appropriate length,
and produce a preimage message M = Me‖Mlink‖m̄i:

(IV1, IV2)
Me−−→ (x̂, ŷ)

Mlink−−−−→ (x̄i, ȳi)
m̄i−−→ (H1(M),H2(M)) : H1(M)⊕H2(M) = V

By balancing the complexities of these steps, we obtain an optimal complexity of 25n/8.

A completed description of attack procedure and complexity evaluation is provided in next sections and
also depicted in Fig. 8. We point out the length of our preimage is at least 2n/2 block long due to the usage of
(multi-) cycles.

7 It is with very low probability that the set contains repeated values, particularly when t is significantly small compared
with L1. Here we omit the discussion.
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ŷ

L1

L2

ȳ1
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ȳi
m[d2]

⊕ = V
m̄i

m̄i

Me

Me

loop

loop

- Step 1

- Step 2

- Step 4

- Step 5

- Step 6 ∼ 7

Fig. 8: Preimage attack on the XOR hash combiner H1(M)⊕H2(M)

4.2 Attack Procedure

Denote by V the target hash digest. Suppose the attacker is going to produce a preimage message with a length
L. The value of L will be discussed later. The attack procedure is described below.

1. Build a simultaneous expandable message structureM ending with a pair of state (x̂, ŷ) such that for each
positive integer i of an integer interval, there is a message Mi with a block length i inM that links (IV1, IV2)
to (x̂, ŷ):

hi
1(IV1,Mi) = x̂, hi

2(IV2,Mi) = ŷ.

Refer to Section 2.5 and [7] for more descriptions of the procedure.
2. Fix a single-block message m, and construct two n-bit to n-bit random mappings as f1(x) = h1(x,m) and

f2(y) = h2(y,m). Repeat the cycle search several times, and find all the cyclic nodes within the largest
components in the functional graphs defined by f1 and f2. Denote their cycle lengths as L1 and L2, and
the two sets of cyclic nodes as {x1, x2, . . . , xL1

} and {y1, y2, . . . , yL2
}, and store them in tables T1 and T2,

respectively.
3. Without loss of generality, assume L1 ≤ L2. Compute #C = bL/L1c as the maximum number of cycles that

can be used to correct distance bias. Compute ∆L = L2 mod L1, and then compute the set of correctable
distance bias: S = {i ·∆L mod L1 | i = 0, 1, 2, . . . ,#C}.

4. Find a set of 2s tuples (x̄, ȳ, m̄) such that h1(x̄, m̄) ⊕ h2(ȳ, m̄) = V . The search procedure is described as
follows.

(a) Initialize a table T3 as empty.
(b) Select a random single-block message m̄.
(c) Compute h1(xi, m̄) for all xi’s in T1, and store them in a table T4.
(d) For each yj in T2, compute h2(yj , m̄)⊕ V , and match it to the elements in T4. If it is matched to some

h1(xi, m̄), that is

h2(yj , m̄)⊕ V = h1(xi, m̄) =⇒ h1(xi, m̄)⊕ h2(yj , m̄) = V,

store (xi, yj , m̄) in T3.
(e) If T3 contains less than 2s elements, goto step 4(b) and repeat the search procedure.

Denote the stored tuples in T3 as {(x̄1, ȳ1, m̄1), . . . , (x̄2s , ȳ2s , m̄2s)}. Moreover, x̄i’s and ȳj ’s are called target
nodes in functional graphs of f1 and f2 respectively.

5. Run Algorithm 1 with a parameter t to develop 2t nodes in the functional graph of f1 (resp. f2), and store
them in a table T4x (resp. T4y). Moreover,
(a) Store at each node its distance from a particular target node (say target node x̄1 (resp. ȳ1), similar to

phase 3 in Section 3.3 of [7]), together with its distance from the cycle (i.e. its height, similar to phase
3 in Section 5 of [33]).

(b) Store the distance of other target nodes x̄i (resp. ȳi) to this particular target node x̄1 (resp. ȳ1) in a
table T3x (resp. T3y) by iterating f1 (resp. f2) along the cycle.

(c) Thus, when the distance of a node from the particular target node and that from the cycle is known
from T4x (resp. T4y), the distances of this node from all the other target nodes can be immediately
deduced from T3x (resp. T3y). Specifically, suppose the distance of a node xr from x̄1 is d1 and its height
is e1, and suppose the distance of a target node x̄i from x̄1 is di, then the distance of xr from x̄i is
d1 − di if di ≤ (d1 − e1), and L1 − di + d1 if di > (d1 − e1).



6. Find a message Mlink that links (x̂, ŷ) to a pair of target nodes (x̄i, ȳi) in T3. We search for such a linking
message among a set of special messages: Mlink = mr‖m‖m‖ · · · ‖m, where mr is a random single-block
message, and m is the fixed message at Step 2. The search procedure is as follows.

(a) Select a random mr, and compute xr = h1(x̂,mr) and yr = h2(ŷ,mr);
(b) Compute a chain by iteratively applying f1 (resp. f2) to update xr (resp. yr), until either of the following

two cases occurs.

− The chain length reaches 2n−t. In this case, goto step 6(a);
− The chain encounters a node stored in T4x (resp. T4y). Compute the distance of xr (resp. yr) to

every target node x̄i (resp. ȳi) as described in step 5(c), and denote it as dxi (resp. dyi).

(c) Examine whether dxi − dyi mod L1 is a correctable distance difference in S. If it is, derive the corre-
sponding j and k such that dxi + j · L1 = dyi + k · L2 holds. Let p be p = dxi + j · L1 = dyj + k · L2,
and then Mlink = mr‖mp. Otherwise, goto step 6(a).

7. Derive a message ML−2−p with a block length of L− 2− p from the expandable messageM.
8. Produce a preimage M of the target hash digest V as

M = ML−2−p‖Mlink‖m̄i = ML−2−p‖mr‖mp‖m̄i.

4.3 Attack Complexity

This section evaluates the attack complexity. In particular, we note that we ignore the constant and polynomial
factors for the simplicity of description.

• Step 1: L+ n2 · 2n/2 (refer to Sect 2.5);
• Step 2: 2n/2;
• Step 3: L/L1 ≈ 2−n/2 · L;
• Step 4: 2s+n/2;
One execution of the search procedure takes a complexity of L1 + L2, and contributes to L1 · L2 pairs. As
L1 · L2 = Θ(2n), one tuple can be obtained by a constant number of executions. Hence, the number of
necessary executions is Θ(2s), and the complexity of this step is Θ(2s+n/2).
• Step 5: 2t + 2n/2;
The complexity of developing 2t nodes and computing their distance to a particular target node is 2t (refer
to Algorithm 1 and step 5(a)). The complexity to compute the distance of all the other target nodes to the
particular target node is upper bounded by 2n/2 (refer to the expectation of the maximum cycle length in
Theorem 3). Hence, the complexity of this step is 2t + 2n/2.
• Step 6: 22n−t−s/L;
One execution of the search procedure needs a time complexity of 2n−t. Clearly a constant factor of both
of the two chains encounter nodes stored in T4x and T4y. We mainly need to evaluate the probability of
deriving a common distance for each chain. For every pair of target nodes (x̄i, ȳi), the value of dxi − dyi
is equal to a correctable distance bias in S with a probability of #C · 2−n/2 ≈ L · 2−n. Since there are 2s

pairs of target nodes, the success probability of each chain is L · 2s−n. Hence, the total number of chains is
2n−s/L, and the complexity of this step is 2n−t · 2n−s/L = 22n−t−s/L.
• Steps 7 and 8: O(L).

The overall complexity is computed as

L+ 2s+n/2 + 2t + 2t + 2n/2 +
22n−t−s

L
,

where the complexities of steps 2, 7 and 8 are ignored.

Now we search for parameters L, t and s that give the lowest complexity. Firstly, we balance the complexities
between Step 1 and Step 6, that gives

L =
22n−t−s

L
=⇒ L = 2n−t/2−s/2

Hence, the total complexity becomes (ignoring constant factors)

2n−t/2−s/2 + 2s+n/2 + 2t + 2n/2.

By balancing the complexities, we have that setting parameters t = 25n/8 and s = 2n/8 contributes to the lowest
complexities: 25n/8. In the setting, we produce a preimage message with a length of L = 2n−t/2−s/2 = 25n/8.



5 Second Preimage Attacks on Zipper Hash

In this section, we give a second preimage attack on Zipper hash, which is applicable even for idealized com-
pression functions, and hence a generic attack.

5.1 Attack Overview
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Fig. 9: Second preimage attack on Zipper hash

Given a message M = m1‖m2‖ · · · ‖mL, the second preimage attack on Zipper hash is to find another

message M ′ such that H2(H1(IV,M),
←−
M) = H2(H1(IV,M

′),
←−
M ′), where

←−
M is a message generated by reversing

the order of message blocks of M (we call
←−
M the reverse of M for simplicity), i.e.,

←−
M = mL‖mL−1‖ · · · ‖m2‖m1,

and
←−
M ′ is the reverse of M ′.
In contrast to the attack against XOR combiner, here we make use of a single pair of target α-nodes (x̄, ȳ),

the roots of the largest trees within the largest components in functional graphs defined by f1(·) = h1(·,m) and
f2 = h2 with a fixed single-block message value m.

Here we briefly list the main steps of the attack.

Step A. Compute a multi-collision M1 (resp. M2) from x̄ (resp. ȳ) as the starting value to an ending value
denoted as x̂ (resp. ŷ).

Step B. Build a simultaneous expandable message Me across the two passes, starting from x̂ to an ending
value denoted as ỹ.

Step C. Find m̄ linking ŷ to one of the chaining values yq of the second pass of the original message, and then
compute from xq with m̄ to an internal value denoted as x̃ in the first pass.

Step D. Exploit the messages ofM2 andM1 to link x̃ and ỹ to x̄ and ȳ, respectively, at a common distance.

Finally, we just need to derive a message with a suitable length fromMe to contribute to a second preimage
message. There are two main differences between the attack on Zipper hash and the attack on the XOR combiner
in Section 4. One is that linking x̃ to x̄ and linking ỹ to ȳ can be carried out independently, resulting in a meet-
in-the-middle like effect. The other is that the message length is embedded inside the expandable messageMe,
which enables us to choose the length of second preimage message to optimize the complexity.

The detailed procedure is presented in next section and depicted in Fig. 9.

5.2 Attack Procedure

In the attack procedure below, we omit the description of using multi-cycles to correct distance bias for the
simplicity of description. We note that multi-cycles should be used at Steps 6 and 7, which provides extra
degrees of freedom, in the case that the message length is allowed beyond the birthday bound.

1. Fix an arbitrary single-block message value m, and construct f1(·) = h1(·,m) and f2(·) = h2(·,m). Repeat
the cycle search several times to locate the largest tree and corresponding α-node in functional graph of f1
(resp. f2) and denote it by x̄ (resp. ȳ ).



2. Run Algorithm 1 with a parameter t to develop 2t nodes, compute and store their distance from x̄ (resp. ȳ)
in functional graph of f1 (resp. f2). Store these nodes of f1 (resp. f2) in the data structure G1 (resp. G2).
The role of G1 (resp. G2) is to reduce the number of evaluations of f1 (resp. f2) to find the distance of a
random starting node from the target node x̄ (resp. ȳ) at Step 6 and Step 7. This is similar to the lookahead
procedure of phase 3 in Section 3.3 of [7].

3. Build a Joux’s multi-collision of size 2r for h1 (resp. h2) starting from x̄ (resp. ȳ) and ending at a node x̂
(resp. ŷ). Denote the multi-collision message set byM1 (resp.M2).

4. Construct a simultaneous expandable messageMe across the two hash functions, which starts from the node
x̂ in the first pass and ends at a node ỹ in the second pass. The details of constructing such an expandable
message is provided in Section 5.3.

5. Find a single-block m̄ that links ŷ to some internal state yq of the second pass on computing the original
message M . The search procedure is trivial and hence omitted. Compute x̃ = h1(xq, m̄).

6. For each message M2 inM2,

(a) Compute x̌ = hr
1(x̃,M2);

(b) Compute a chain x by applying f1 to update x̌ iteratively until up to a maximum length 2n−t or until
it hits G1. In the latter case, compute the distance d1 of x̌ to x̄, and store (d1,M2) in a table T1.

7. For each message M1 inM1,

(a) Compute y̌ = hr
2(ỹ,M1);

(b) Compute a chain y by applying f2 to update y̌ up to a maximum length 2n−t or until it hits G2. In the
latter case, compute the distance d2 of y̌ to ȳ, and store (d2,M1) in a table T2.

8. Find (d1,M2) in T1 and (d2,M1) in T2 with d1 = d2. The search is a meet-in-the-middle procedure to match
elements between T1 and T2.

9. Derive a message Me with a block length L′ − q − 1 − r − d2 − r from Me, where L′ is the length of the
constructed second preimage. Construct a message M ′ = m1‖m2‖ · · · ‖mq‖m̄‖M2‖m[d2]‖M1‖Me and output
M ′ as a second preimage.

5.3 Step 4: Constructing an Expandable Message

The constructing method is similar with that proposed in [7] with slight modifications. Detailed steps are as
follows and the constructing process is depicted in Fig. 10, where C is a constant such that C ≈ n/2 + log(n):

1. x′
0 ← x̂

2. For i← 1, 2, · · · , C − 1 + k:

(a) Build a 2C−1 standard Joux’s multi-collision in h1 starting from x′
i−1, denote its final endpoint by spi.

(b) Compute xpi = h1(spi,0), where 0 is an all zero message of size s blocks, where s = i if i ≤ C − 1 and
s = C2i−(C−1)−1 if C − 1 < i ≤ C − 1 + k.

(c) Find a collision h1(spi,mi) = h1(xpi,m
′
i) with single block messages mi, m′

i. Denote the collision by
x′
i.

(d) We get a multi-collision in h1 with 2C messages that map x′
i−1 to x′

i.

i. Out of these messages, 2C−1 are of length b (obtained by combine one of the 2C−1 Joux’s multi-
collisions with mi ) and we denote this set of messages by SSi, where b = C.

ii. Out of these messages, 2C−1 are of length b (obtained by combine one of the 2C−1 Joux’s multi-
collisions with 0‖m′

i) and we denote this set of messages by SLi, where b = C + i if i ≤ C − 1 and
b = C(2i−(C−1)−1 + 1) if C − 1 < i ≤ C − 1 + k.

3. Denote the last collision state x′
C−1+k by ẍ, and compute ÿ = h2(h1(ẍ,m

′
L′),m′

L′), where m′
L′ is a message

block padded with the length L′ of the second preimage.
4. y′C−1+k ← ÿ, MS ← ∅, ML← ∅.
5. For i← C − 1 + k, C − 1 + k − 1, . . . , 2, 1:

(a) For each msi ∈ SSi, compute ui = h2(y
′
i,
←−−msi) where

msi = msi,1‖msi,2‖ . . . ‖msi,C−1‖msi,C and
←−−msi = msi,C‖msi,C−1‖ . . . ‖msi,1. Store each pair (ui, msi) in a table Ui indexed by ui. The final size
of Ui is 2

C−1.

(b) For each mli ∈ SLi, compute vi = h2(y
′
i,
←−
mli) where

mli = mli,1‖mli,2‖ . . . ‖mli,s−1‖mli,s and
←−
mli = mli,s‖mli,s−1‖ . . . ‖mli,1. Where s = C(2i−(C−1)−1 + 1) if C − 1 < i ≤ C − 1 + k and s = C + i
if 1 ≤ i ≤ C − 1. Store each pair (vi, mli) in a table Vi indexed by vi. The final size of Vi is 2

C−1.
(c) Find a match ui = vi between Ui and Vi, denote the matched state by y′i−1 = ui. Combine the

corresponding message fragment msi indexed by y′i with MS and mli indexed by y′i with ML, i.e.
MS = msi‖MS and ML = mli‖ML.



Then, for any length κ lying in the appropriate range of [C(C − 1) + kC, C2 − 1 + C(2k + k − 1)], one can
construct a message Me mapping x̂ to ỹ = y′0 through h1 and h2 by picking messages fragment either from MS
or from ML as described in [7]:

1. Select the length κ′ ∈ [C(C − 1), C2− 1] such that κ′ = κ mod C, defining the first C − 1 message fragment
choices: Selecting the message fragment msi in MS for 1 ≤ i ≤ C−1 and i 6= κ′−C; Selecting the message
fragment mli in ML for i = κ′ − C.

2. Compute kp← (κ− κ′)/C which is an integer in the range of [k, 2k + k − 1] and select the final k message
fragment choices as in a standard expandable message using the binary representation of kp− k.

x′
0 = x̂

ỹ = y′
0

sp1

C − 1 1

C − 1 1 + 1

x′
1

m1

xp1

0
m′

1

y′
1

m1

m′
1

0

sp2

C − 1 1

C − 1 2 + 1

x′
2

m2

xp2

0
m′

2

y′
2

m2

m′
2

0

C − 1

[C(C − 1), C2 − 1]

spC−1+k

C − 1 1

C − 1 C2k−1 + 1

x′
C−1+k

mC−1+k

xpC−1+k0 m′
C−1+k

y′
C−1+k

mC−1+k

m′
C−1+k

0

k

C[k, 2k + k − 1]

[C(C − 1) + kC,C2 − 1 + (2k + k − 1)C]-expandable message

Fig. 10: Flowchart of constructing a simultaneous expandable message

5.4 Complexity of Second Preimage Attack on Zipper Hash
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Fig. 11: Trade-offs between the message length and the complexity

The computational complexity of this second preimage attack on Zipper hash are summarized as follows,
where the constant and polynomial factors are ignored.



• Step 1: 2
n
2

• Step 2: 2 · 2t
• Step 3: r · 2n

2

• Step 4: n · 2k + n2 · 2n
2 +log2(n) = 2l

′
+ 2

n
2 +3 log2(n)

• Step 5: 2n−l

• Step 6: 2r · 2n−t

• Step 7: 2r · 2n−t

• Step 8: 2r

• Step 9: 2l
′

According to Section 3.2, it is expected to sampling 22n−3w different starting point pairs until they simul-
taneously hit two α-nodes (x̄, ȳ) using up to 2w iterates in two independent functional graphs of f1 and f2,
where w is the allowed maximum distance to reach x̄ and ȳ, which is determined by the allowed length L′ of the
second preimage, and is set to be L′−q−2r−C(C−1)−kC. Thus, the number of messages inM1 which is set

to be 2r and that inM2 which is also set to be 2r should satisfy 2r × 2r = 22n−3w ≈ 22n−3l′ , then 2r ≈ 2n−
3
2 l

′
.

The computational complexity is dominated by Step 2, 4, 5, 6, 7. In Step 2, we develop 2t nodes for each
functional graph of f1 and f2. So it requires 2 · 2t function calls. In Step 4, we build a simultaneous expandable
message by a slightly modified constructing method proposed in [7]. The complexity is almost the same as that
in [7]. We refer to [7] for the detailed discussion on the complexity of this step. Complexity of Step 5 depends
on the probability of a collision h2(ȳ, m̄) = yq where yq has L = 2l choices. According to the birthday paradox,
it requires 2n/L = 2n−l trails for a collision. Complexity of Step 6 ( resp. Step 7) depends on the number
of starting point x̌ (resp. y̌) and the expected number of iterates before the chain x (resp. y) hits G1 (resp.
G2). Considering that the size of G1 (resp. G2) is 2

t, it is expected to require 2n−t iterates before a chain hits
a point in G1 starting from a random point. Thus, the computational complexity of Step 6 (resp. Step 7) is
r · 2r + 2r · 2n−t = Θ(2r · 2n−t). Complexity of Step 8 depends on numbers of entries in T1 and T2 which are
upper bounded by the size ofM1 andM2.

– When the allowed length L′ of the second preimage is limited by 2
n
2 , then 2w ≈ 2l

′
and 2r = 2n−

3
2w ≈ 2n−

3
2 l

′
.

To achieve optimal complexity, we balance Step 2 and Step 6, 7 by setting t = r + n− t⇒ t = n− 3
4 l

′. We

set l′ to be the allowed maximum value, that is we set 2l
′
= 2

n
2 ⇒ 2t = 2

5
8n. This attack is valid and faster

than 2n as long as l < n.
– When the allowed length L′ of the second preimage is not limited and can be greater than 2

n
2 , we utilize

multi-cycles to reach x̄ and ȳ simultaneously as the technique used to improve preimage attack on XOR

combiner in Section 4. In this case, we set r =
n
2 −(l′−n

2 )

2 . That is because, the number of pairs (x̌, y̌) is

22r, and the required number of pairs to find one pair simultaneously reaching (x̄, ȳ) is 22n−
3n
2 /2l

′−n
2 when

multi-cycles are used to amplify the probability of linking each pair to (x̄, ȳ) at a common distance. Thus,

we set 2r = 2n− 3n
2 − (l′ − n

2 )⇒ r =
n
2 −(l′−n

2 )

2 .

• For 3
8n < l ≤ 2

5n, we can set l′ = n− l. And balance Step 2 and Step 6, 7 by setting t = r + n − t =
n
2 −(l′−n

2 )

2 + n− t = l
2 + n− t ⇒ t = l

4 +
n
2 . Since l ≤ 2

5n, one have t = l
4 +

n
2 ≤ n− l. Thus, complexity

of Step 5, i.e. 2n−l, is the dominating part.
• For 2

5n < l, we set l′ = 3
5n and limit q < l′ = 3

5n where q is the merged point of the second message to the

state chain of the original message. And balance Step 2 and Step 6, 7 by setting t =
n
2 −(l′−n

2 )

2 +n− t =

⇒ t = 3
5n. Thus, keep a stable complexity 2

3
5n for attack on messages of length l > 2

5n.

A trade-off curve for these cases is shown in Fig. 11. In these attacks, length of the constructed second
message L′ is 2n/2 when limit on length of message is 2n/2, or l′ = n− l for 3

8n < l ≤ 2
5n and l′ = 3

5n for 2
5n < l

when no limit on length of message.

Remark 3. We notice that, when l < 2
5n, the complexity of this second preimage attack on Zipper hash is domi-

nated by Step 5. Thus, in this case the strength of Zipper Hash (with each pass using Merkle-Damg̊ard-structure
compression functions) against second preimage attack is no more than that of a single pass Merkle-Damg̊ard-structure
Hash function.

5.5 Experimental Results

We have simulated the entire process of this second preimage attack on Zipper hash (simulated h1 with chopped
AES-128 and h2 with chopped SM4-128) for n = 24 and n = 32 with t = 5

8n, r = 1
4n+1. In our simulations we

preformed 1000 times attack for n = 24 and 100 times for n = 32. The success probability is 0.684 for n = 24
and is 0.8 for n = 32. The number of function calls for each step in those attacks are all as expected.



6 Conclusion

In this paper, we proposed the first second-preimage attack on Zipper hash and improved preimage attack on the
XOR combiner with two narrow-pipe Merkle-Damg̊ard hash functions. These attacks are based on functional
graphs of random mappings. A future work might be to further investigate properties of functional graph in
order to improve generic attacks on hash combiners, e.g., reducing the complexity of generic attacks to match
the lower bounds of provable security, or shortening the length of (second) preimage messages.

Acknowledgments. The authors would like to thank the anonymous reviewers of CRYPTO 2017 and Itai
Dinur for their valuable comments and suggestions. Lei Wang and Dawu Gu are sponsored by National Nat-
ural Science Foundation of China (61602302, 61472250, 61672347), Natural Science Foundation of Shanghai
(16ZR1416400), Shanghai Excellent Academic Leader Funds (16XD1401300).

References
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A Proof of Lemma 3

The proof follows mathematical induction. Firstly, for t = 2, we have that

a21 + a22 = a21 + (c− a1)
2 = 2a21 − 2ca1 + c2 = 2(a1 −

c

2
)2 +

c2

2
.

Hence, the lower bound is obtained in the case of a1 = c/2 and a2 = c − a1 = c/2. Thus, the lemma holds for
t = 2.

Next, assume that the lemma holds for t = k − 1. Then we have for t = k,

∑
1≤i≤k

a2i = a2k +
∑

1≤i≤k−1

a2i

≥ a2k +
∑

1≤i≤k−1

(
c− ak
k − 1

)2

= a2k + (k − 1)× (
c− ak
k − 1

)2

=
(k − 1)a2k + (c− ak)

2

k − 1

=
k

k − 1
× (ak −

c

k
)2 +

c2

k

Hence, the lower bound is obtained in the case of ak = c/k, and ai = (c− ak)/(k − 1) = c/k for 1 ≤ i ≤ k − 1.
Thus the lemma holds for t = k. This completes the proof.
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