
Laconic Oblivious Transfer and its Applications

Chongwon Cho
HRL Laboratories

Nico Döttling∗

UC Berkeley

Sanjam Garg†

UC Berkeley

Divya Gupta†,‡

Microsoft Research India

Peihan Miao†

UC Berkeley

Antigoni Polychroniadou§

Cornell University

Abstract

In this work, we introduce a novel technique for secure computation over large inputs. Specif-
ically, we provide a new oblivious transfer (OT) protocol with a laconic receiver. Laconic OT
allows a receiver to commit to a large input D (of length M) via a short message. Subsequently,
a single short message by a sender allows the receiver to learn mD[L], where the messages m0,m1

and the location L ∈ [M] are dynamically chosen by the sender. All prior constructions of OT
required the receiver’s outgoing message to grow with D.

Our key contribution is an instantiation of this primitive based on the Decisional Diffie-
Hellman (DDH) assumption in the common reference string (CRS) model. The technical core
of this construction is a novel use of somewhere statistically binding (SSB) hashing in conjunction
with hash proof systems. Next, we show applications of laconic OT to non-interactive secure
computation on large inputs and multi-hop homomorphic encryption for RAM programs.

∗Research supported by a postdoc fellowship of the German Academic Exchange Service (DAAD).
†Research supported in part from 2017 AFOSR YIP Award, DARPA/ARL SAFEWARE Award W911NF15C0210,

AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397, and research grants by the Okawa Foundation, Visa
Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author
and do not reflect the official policy or position of the funding agencies.
‡Work done while at University of California, Berkeley.
§Part of the work done while visiting University of California, Berkeley. Research supported in part the National

Science Foundation under Grant No. 1617676, IBM under Agreement 4915013672, and the Packard Foundation under
Grant 2015-63124.

1

Contents

1 Introduction 4
1.1 Laconic OT . 4
1.2 Warm-Up Application: Non-Interactive Secure Computation on Large Inputs 5
1.3 Main Application: Muti-Hop Homomorphic Encryption for RAM Programs 6
1.4 Roadmap . 7

2 Technical Overview 8
2.1 Laconic OT . 8

2.1.1 Laconic OT with Factor-2 Compression . 8
2.1.2 Bootstrapping Laconic OT . 10

2.2 Non-interactive Secure Computation on Large Inputs 12
2.3 Multi-Hop Homomorphic Encryption for RAM Programs 13

3 Laconic Oblivious Transfer 14
3.1 Laconic OT . 15
3.2 Updatable Laconic OT . 17

4 Laconic Oblivious Transfer with Factor-2 Compression 18
4.1 Somewhere Statistically Binding Hash Functions and Hash Proof Systems 18
4.2 HPS-friendly SSB Hashing . 19
4.3 A Hash Proof System for Knowledge of Preimage Bits 22
4.4 The Laconic OT Scheme . 23

5 Construction of Updatable Laconic OT 26
5.1 Background . 26

5.1.1 Garbled Circuits . 26
5.1.2 Merkle Tree . 27

5.2 Construction . 27
5.3 Security . 32

6 Warm-Up Application: Non-Interactive Secure Computation (NISC) on Large
Inputs in RAM Setting 36
6.1 Background . 36

6.1.1 Random Access Machine (RAM) Model of Computation 36
6.1.2 Oblivious Transfer . 37

6.2 Formal Model for NISC in RAM Setting . 38
6.3 Construction . 40
6.4 Correctness . 42
6.5 Security Proof . 44
6.6 Extension . 46

7 Main Application: Multi-Hop Homomorphic Encryption for RAM Programs 47
7.1 Our Model . 47
7.2 Building Blocks Needed . 50

7.2.1 2-message Secure Function Evaluation based on Garbled Circuits 50

2

7.2.2 Re-Randomizable Secure Function Evaluation based on Garbled Circuits . . . 50
7.3 Our Construction of Multi-hop RAM Scheme . 52

7.3.1 UMA Secure Construction . 52
7.3.2 Correctness . 58
7.3.3 Extending to Multiple Executions . 61
7.3.4 Security Proof . 61
7.3.5 UMA to Full Security for Multi-hop RAM Scheme 66

3

1 Introduction

Big data poses serious challenges for the current cryptographic technology. In particular, crypto-
graphic protocols for secure computation are typically based on Boolean circuits, where both the
computational complexity and communication complexity scale with the size of the input dataset,
which makes it generally unsuitable for even moderate dataset sizes. Over the past few decades,
substantial effort has been devoted towards realizing cryptographic primitives that overcome these
challenges. This includes works on fully-homomorphic encryption (FHE) [Gen09, BV11b, BV11a,
GSW13] and on the RAM setting of oblivious RAM [Gol87, Ost90] and secure RAM computa-
tion [OS97, GKK+12, LO13, GHL+14, GGMP16]. Protocols based on FHE generally have a favor-
able communication complexity and are basically non-interactive, yet incur a prohibitively large
computational overhead (dependent on the dataset size). On the other hand, protocols for the
RAM model generally have a favorable computational overhead, but lack in terms of communica-
tion efficiency (that grows with the program running time), especially in the multi-party setting.
Can we achieve the best of both worlds? In this work we make positive progress on this question.
Specifically, we introduce a new tool called laconic oblivious transfer that helps to strike a balance
between the two seemingly opposing goals.

Oblivious transfer (or OT for short) is a fundamental and powerful primitive in cryptography
[Kil88, IPS08]. Since its first introduction by Rabin [Rab81], OT has been a foundational building
block for realizing secure computation protocols [Yao82, GMW87, IPS08]. However, typical secure
computation protocols involve executions of multiple instances of an oblivious transfer protocol.
In fact, the number of needed oblivious transfers grows with the input size of one of the parties,
which is the receiver of the oblivious transfer.1 In this work, we observe that a two-message OT
protocol, with a short message from the receiver, can be a key tool towards the goal of obtaining
simultaneous improvements in computational and communication cost for secure computation.

1.1 Laconic OT

In this paper, we introduce the notion of laconic oblivious transfer (or laconic OT for short). La-
conic OT allows an OT receiver to commit to a large input D ∈ {0, 1}M via a short message.
Subsequently, the sender responds with a single short message to the receiver depending on dy-
namically chosen two messages m0,m1 and a location L ∈ [M]. The sender’s response message
allows the receiver to recover mD[L] (while m1−D[L] remains computationally hidden). Furthermore,
without any additional communication with the receiver, the sender could repeat this process for
multiple choices of L. The construction we give is secure against semi-honest adversaries, but it
can be upgraded to the malicious setting in a similar way as we will discuss in Section 1.2 for the
first application.

Our construction of laconic OT is obtained by first realizing a “mildly compressing” laconic
OT protocol for which the receiver’s message is factor-2 compressing, i.e., half the size of its input.
We base this construction on the Decisional Diffie-Hellman (DDH) assumption. We note that,
subsequent to our work, the factor-2 compression construction has been simplified by Döttling and
Garg [DG17] (another alternative simplification can be obtained using [AIKW13]). Next we show
that such a “mildly compressing” laconic OT can be bootstrapped, via the usage of a Merkle Hash

1We remark that related prior works on OT extension [Bea96, IKNP03, KK13, ALSZ13] makes the number of
public key operations performed during protocol executions independent of the receiver’s input size. However, the
communication complexity of receivers in these protocols still grows with the input size of the receiver.

4

Tree and Yao’s Garbled Circuits [Yao82], to obtain a “fully compressing” laconic OT, where the
size of the receiver’s message is independent of its input size. The laconic OT scheme with a Merkle
Tree structure allows for good properties like local verification and local updates, which makes it a
powerful tool in secure computation with large inputs.

We will show new applications of laconic OT to non-interactive secure computation and homo-
morphic encryption for RAM programs, as briefly described below in Sections 1.2 and 1.3.

1.2 Warm-Up Application: Non-Interactive Secure Computation on Large In-
puts

Can a receiver publish a (small) encoding of her large confidential database D so that any sender,
who holds a secret input x, can reveal the output f(x,D) (where f is a circuit) to the receiver
by sending her a single message? For security, we want the receiver’s encoding to hide D and the
sender’s message to hide x. Using laconic OT, we present the first solution to this problem. In our
construction, the receiver’s published encoding is independent of the size of her database, but we
do not restrict the size of the sender’s message.2

RAM Setting. Consider the scenario where f can be computed using a RAM program P of
running time t. We use the notation PD(x) to denote the execution of the program P on input x
with random access to the database D. We provide a construction where as before the size of the
receiver’s published message is independent of the size of the database D. Moreover, the size of the
sender’s message (and computational cost of the sender and the receiver) grows only with t and
the receiver learns nothing more than the output PD(x) and the locations in D touched during the
computation. Note that in all prior works on general secure RAM computation [OS97, GKK+12,
LO13,WHC+14,GHL+14,GLOS15,GLO15] the size of the receiver’s message grew at least with its
input size.3

Against Malicious Adversaries. The results above are obtained in the semi-honest setting. We
can upgrade to security against a malicious sender by use of (i) non-interactive zero knowledge proofs
(NIZKs) [FLS90] at the cost of additionally assuming doubly enhanced trapdoor permutations or
bilinear maps [CHK04,GOS06], (ii) the techniques of Ishai et al. [IKO+11] while obtaining slightly
weaker security,4 or (iii) interactive zero-knowledge proofs but at the cost of additional interaction.

Upgrading to security against a malicious receiver is tricky. This is because the receiver’s public
encoding is short and hence, it is not possible to recover the receiver’s entire database just given
the encoding. Standard simulation-based security can be obtained by using (i) universal arguments

2We remark that solutions for this problem based on fully-homomorphic encryption (FHE) [Gen09,LNO13], unlike
our result, reduce the communication cost of both the sender’s and the receiver’s messages to be independent of the
size of D, but require additional rounds of interaction.

3The communication cost of the receiver’s message can be reduced to depend only on the running time of the
program by allowing round complexity to grow with the running time of the program (using Merkle Hashing).
Analogous to the circuit case, we remark that FHE-based solutions can make the communication of both the sender
and the receiver small, but at the cost of extra rounds. Moreover, in the setting of RAM programs FHE-based solutions
additionally incur an increased computational cost for the receiver. In particular, the receiver’s computational cost
grows with the size of its database.

4The receiver is required to keep the output of the computation private.

5

as done by [CV12, COV15] at the cost of additional interaction, or (ii) using SNARKs at the cost
of making extractability assumptions [BCCT12,BSCG+13].5

Other Related Work. Prior works consider secure computation which hides the input size of
one [MRK03,IP07,ADT11,LNO13] or both parties [LNO13]. Our notion only requires the receiver’s
communication cost to be independent of the its input size, and is therefore weaker. However, these
results are largely restricted to special functionalities, such as zero-knowledge sets and computing
certain branching programs (which imply input-size hiding private set intersection). The general
result of [LNO13] uses FHE and as mentioned earlier needs more rounds of interaction.6

1.3 Main Application: Muti-Hop Homomorphic Encryption for RAM Pro-
grams

Consider a scenario where S (a server), holding an input x, publishes an encryption ct0 of her private
input x under her public key. Now this ciphertext is passed on to a client Q1 that homomorphically
computes a (possibly private) program P1 accessing (private) memory D1 on the value encrypted
in ct0, obtaining another ciphertext ct1. More generally, the computation could be performed by
multiple clients. In other words, clients Q2, Q3, · · · could sequentially compute private programs
P2, P3, · · · accessing their own private databases D2, D3, · · · . Finally, we want S to be able to
use her secret key to decrypt the final ciphertext and recover the output of the computation. For
security, we require simulation based security for a client Qi against a collusion of the server and
any subset of the clients, and IND-CPA security for the server’s ciphertext.

S Q1 Q2 Q3 Q4 Q5

ct0 ct1

ct2

ct3

ct4 ct5 ct6

ct7

ct′0

ct′1

ct′2

Figure 1: Two example paths of computation on
server S’s ciphertexts.

Though we described the simple case
above, we are interested in the general case
when computation is performed in different
sequences of the clients. Examples of two
such computation paths are shown in Fig-
ure 1. Furthermore, we consider the setting
of persistent databases, where each client is
able to execute dynamically chosen programs
on the encrypted ciphertexts while using the
same database that gets updated as these
programs are executed.

FHE-Based Solution. Gentry’s [Gen09]
fully homomorphic encryption (FHE) scheme
offers a solution to the above problem when
circuit representations of the desired pro-
grams P1, P2, . . . are considered. Specifically,
S could encrypt her input x using an FHE

5We finally note that relaxing to the weaker notion of indistinguishability-based security we can expect to obtain
the best of both worlds, i.e. a non-interactive solution while making only a black-box use of the adversary (a.k.a.
avoiding the use of extractability assumptions). We leave this open for future work.

6We remark that in an orthogonal work of Hubacek and Wichs [HW15] obtain constructions where the com-
munication cost is independent of the length of the output of the computation using indistinguishability obfusca-
tion [GGH+13b].

6

scheme. Now, the clients can publicly com-
pute arbitrary programs on the encrypted value using a public evaluation procedure. This procedure
can be adapted to preserve the privacy of the computed circuit [OPP14, DS16, BPMW16] as well.
However, this construction only works for circuits. Realizing the scheme for RAM programs involves
first converting the RAM program into a circuit of size at least linear in the size of the database.
This linear effort can be exponential in the running time of the program for several applications of
interest such as binary search.

Our Relaxation. In obtaining homomorphic encryption for RAM programs, we start by re-
laxing the compactness requirement in FHE.7 Compactness in FHE requires that the size of the
ciphertexts does not grow with computation. In particular, in our scheme, we allow the evaluated
ciphertexts to be bigger than the original ciphertext. Gentry, Halevi and Vaikuntanathan [GHV10]
considered an analogous setting for the case of circuits. As in Gentry et al. [GHV10], in our setting
computation itself will happen at the time of decryption. Therefore, we additionally require that
clients Q1, Q2, · · · first ship pre-processed versions of their databases to S for the decryption, and
security will additionally require that S does not learn the access pattern of the programs on client
databases. This brings us to the following question:

Can we realize multi-hop encryption schemes for RAM programs where the ciphertext grows
linearly only in the running time of the computation performed on it?

We show that laconic OT can be used to realize such a multi-hop homomorphic encryption
scheme for RAM programs. Our result bridges the gap between growth in ciphertext size and
computational complexity of homomorphic encryption for RAM programs.

Our work also leaves open the problem of realizing (fully or somewhat) homomorphic encryption
for RAM programs with (somewhat) compact ciphertexts and for which computational cost grows
with the running time of the computation, based on traditional computational assumptions. Our
solution for multi-hop RAM homomorphic encryption is for the semi-honest (or, semi-malicious)
setting only. We leave open the problem of obtaining a solution in the malicious setting.8

1.4 Roadmap

We now lay out a roadmap for the remainder of the paper. In Section 2 we give a technical overview
of this work. We introduce the notion of laconic OT formally in Section 3, and give a construction
with factor-2 compression in Section 4, which can be bootstrapped to a fully compressing updatable
laconic OT in Section 5. Finally we present our two applications in Sections 6 and 7.

7One method for realizing homomorphic encryption for RAM programs [GKP+13, GHRW14, CHJV15, BGL+15,
KLW15] would be to use obfuscation [GGH+13b] based on multilinear maps [GGH13a]. However, in this paper we
focus on basing homomorphic RAM computation on DDH and defer the work on obfuscation to future work.

8Using NIZKs alone does not solve the problem, because locations accessed during computation are dynamically
decided.

7

2 Technical Overview

2.1 Laconic OT

We will now provide an overview of laconic OT and our constructions of this new primitive. Laconic
OT consists of two major components: a hash function and an encryption scheme. We will call the
hash function Hash and the encryption scheme (Send,Receive). In a nutshell, laconic OT allows a
receiver R to compute a succinct digest digest of a large database D and a private state D̂ using the
hash function Hash. After digest is made public, anyone can non-interactively send OT messages
to R w.r.t. a location L of the database such that the receiver’s choice bit is D[L]. Here, D[L]
is the database-entry at location L. In more detail, given digest, a database location L, and two
messages m0 and m1, the algorithm Send computes a ciphertext e such that R, who owns D̂, can
use the decryption algorithm Receive to decrypt e to obtain the message mD[L].

For security, we require sender privacy against semi-honest receiver. In particular, given an
honest receiver’s view, which includes the database D, the message m1−D[L] is computationally
hidden. We formalize this using a simulation based definition. On the other hand, we do not require
receiver privacy as opposed to standard oblivious transfer, namely, no security guarantee is provided
against a cheating (semi-honest) sender. This is mostly for ease of exposition. Nevertheless, adding
receiver privacy to laconic OT can be done in a straightforward manner via the usage of garbled
circuits and two-message OT (see Section 3.1 for a detailed discussion).

For efficiency, we have the following requirement: First, the size of digest only depends on the
security parameter and is independent of the size of the database D. Moreover, after digest and D̂
are computed by Hash, the workload of both the sender and receiver (that is, the runtime of both
Send and Receive) becomes essentially independent of the size of the database (i.e., depending at
most polynomially on log(|D|)).

Notice that our security definition and efficiency requirement immediately imply that the Hash
algorithm used to compute the succinct digest must be collision resistant. Thus, it is clear that the
hash function must be keyed and in our case it is keyed by a common reference string.

Construction at a high level. We first construct a laconic OT scheme with factor-2 compres-
sion, which compresses a 2λ-bit database to a λ-bit digest. Next, to get laconic OT for databases of
arbitrary size, we bootstrap this construction using an interesting combination of Merkle hashing
and garbled circuits. Below, we give an overview of each of these steps.

2.1.1 Laconic OT with Factor-2 Compression

We start with a construction of a laconic OT scheme with factor-2 compression, i.e., a scheme that
hashes a 2λ-bit database to a λ-bit digest. This construction is inspired by the notion of witness
encryption [GGSW13]. We will first explain the scheme based on witness encryption. Then, we
show how this specific witness encryption scheme can be realized with the more standard notion of
hash proof systems (HPS) [CS02]. Our overall scheme will be based on the security of Decisional
Diffie-Hellman (DDH) assumption.

Construction Using Witness Encryption. Recall that a witness encryption scheme is defined
for an NP-language L (with corresponding witness relation R). It consists of two algorithms
Enc and Dec. The algorithm Enc takes as input a problem instance x and a message m, and

8

produces a ciphertext. A recipient of the ciphertext can use Dec to decrypt the message if x ∈ L
and the recipient knows a witness w such that R(x,w) holds. There are two requirements for a
witness encryption scheme, correctness and security. Correctness requires that if R(x,w) holds,
then Dec(x,w,Enc(x,m)) = m. Security requires that if x /∈ L, then Enc(x,m) computationally
hides m.

We will now discuss how to construct a laconic OT with factor-2 compression using a two-to-one
hash function and witness encryption. Let H : K × {0, 1}2λ → {0, 1}λ be a keyed hash function,
where K is the key space. Consider the language L = {(K,L, y, b) ∈ K×[2λ]×{0, 1}λ×{0, 1} | ∃D ∈
{0, 1}2λ such that H(K,D) = y and D[L] = b}. Let (Enc,Dec) be a witness encryption scheme for
the language L.

The laconic OT scheme is as follows: The Hash algorithm computes y = H(K,D) where K
is the common reference string and D ∈ {0, 1}2λ is the database. Then y is published as the
digest of the database. The Send algorithm takes as input K, y, a location L, and two mes-
sages (m0,m1) and proceeds as follows. It computes two ciphertexts e0 ← Enc((K,L, y, 0),m0)
and e1 ← Enc((K,L, y, 1),m1) and outputs e = (e0, e1). The Receive algorithm takes as input
K,L, y,D, and the ciphertext e = (e0, e1) and proceeds as follows. It sets b = D[L], computes
m← Dec((K,L, y, b), D, eb) and outputs m.

It is easy to check that the above scheme satisfies correctness. However, we run into trouble
when trying to prove sender privacy. Since H compresses 2λ bits to λ bits, most hash values have
exponentially many pre-images. This implies that for most values of (K,L, y), it holds that both
(K,L, y, 0) ∈ L and (K,L, y, 1) ∈ L, that is, most problem instances are yes-instances. However,
to reduce sender privacy of our scheme to the security of witness encryption, we ideally want that
if y = H(K,D), then (K,L, y,D[L]) ∈ L while (K,L, y, 1−D[L]) /∈ L. To overcome this problem,
we will use a somewhere statistically binding hash function that allows us to artificially introduce
no-instances as described below.

Somewhere Statistically Binding Hash to the Rescue. Somewhere statistically binding
(SSB) hash functions [HW15,KLW15,OPWW15] support a special key generation procedure such
that the hash value information theoretically fixes certain bit(s) of the pre-image. In particular,
the special key generation procedure takes as input a location L and generates a key K(L). Then
the hash function keyed by K(L) will bind the L-th bit of the pre-image. That is, K(L) and
y = H(K(L), D) uniquely determines D[L]. The security requirement for SSB hashing is the index-
hiding property, i.e., keys K(L) and K(L′) should be computationally indistinguishable for any
L 6= L′.

We can now establish security of the above laconic OT scheme when instantiated with SSB
hash functions. To prove security, we will first replace the key K by a key K(L) that statistically
binds the L-th bit of the pre-image. The index hiding property guarantees that this change goes
unnoticed. Now for every hash value y = H(K(L), D), it holds that (K,L, y,D[L]) ∈ L while
(K,L, y, 1 − D[L]) /∈ L. We can now rely on the security of witness encryption to argue that
Enc((K(L), L, y, 1−D[L]),m1−D[L]) computationally hides the message m1−D[L].

Working with DDH. The above described scheme relies on a witness encryption scheme for the
language L. We note that witness encryption for general NP languages is only known under strong
assumptions such as graded encodings [GGSW13] or indistinguishability obfuscation [GGH+13b].
Nevertheless, the aforementioned laconic OT scheme does not need full power of general witness

9

encryption. In particular, we will leverage the fact that hash proof systems [CS02] can be used
to construct statistical witness encryption schemes for specific languages [GGSW13]. Towards this
end, we will carefully craft an SSB hash function that is hash proof system friendly, that is, allows
for a hash proof system (or statistical witness encryption) for the language L required above. Our
construction of the HPS-friendly SSB hash is based on the Decisional Diffie-Hellman assumption
and is inspired from a construction by Okamoto et al. [OPWW15].

We will briefly outline our HPS-friendly SSB hash below. We strongly encourage the reader to
see Section 4.2 for the full construction or see [DG17] for a simplified construction.

Let G be a (multiplicative) cyclic group of order p generated by a generator g. A hashing key is
of the form Ĥ = gH (the exponentiation is done component-wisely), where the matrix H ∈ Z2×2λ

p

is chosen uniformly at random. The hash function of x ∈ Z2λ
p is computed as H(Ĥ,x) = Ĥx ∈ G2

(where (Ĥx)i =
∏2λ
k=1 Ĥxk

i,k, hence Ĥx = gHx). The binding key Ĥ(i) is of the form Ĥ(i) = gA+T,

where A ∈ Z2×2λ
p is a random rank 1 matrix, and T ∈ Z2×2λ

p is a matrix with zero entries
everywhere, except that T2,i = 1.

Now we describe a witness encryption scheme (Enc,Dec) for the language L = {(Ĥ, i, ŷ, b) | ∃x ∈
Z2λ
p s.t. Ĥx = ŷ and xi = b}. Enc((Ĥ, i, ŷ, b),m) first sets

Ĥ′ =

(
Ĥ

ge
>
i

)
∈ G3×2λ,ŷ′ =

(
ŷ
gb

)
∈ G3,

where ei ∈ Z2λ
p is the i-th unit vector. It then picks a random r ∈ Z3

p and computes a ciphertext

c =
((

(Ĥ′)>
)r
,
(
(ŷ′)>

)r ⊕m). To decrypt a ciphertext c = (ĥ, z) given a witness x ∈ Z2λ
p , we

compute m = z ⊕ ĥx. It is easy to check correctness. For the security proof, see Section 4.3.

2.1.2 Bootstrapping Laconic OT

We will now provide a bootstrapping technique that constructs a laconic OT scheme with arbitrary
compression factor from one with factor-2 compression. Let `OTconst denote a laconic OT scheme
with factor-2 compression.

Bootstrapping the Hash Function via a Merkle Tree. A binary Merkle tree is a natural way
to construct hash functions with an arbitrary compression factor from two-to-one hash functions,
and this is exactly the route we pursue. A binary Merkle tree is constructed as follows: The
database is split into blocks of λ bits, each of which forms the leaf of the tree. An interior node is
computed as the hash value of its two children via a two-to-one hash function. This structure is
defined recursively from the leaves to the root. When we reach the root node (of λ bits), its value
is defined to be the (succinct) hash value or digest of the entire database. This procedure defines
the hash function.

The next step is to define the laconic OT algorithms Send and Receive for the above hash func-
tion. Our first observation is that given the digest, the sender can transfer specific messages corre-
sponding to the values of the left and right children of the root (via 2λ executions of `OTconst.Send).
Hence, a naive approach for the sender is to output `OTconst encryptions for the path of nodes from
the root to the leaf of interest. This approach runs into an immediate issue because to compute
`OTconst encryptions at any layer other than the root, the sender needs to know the value at that
internal node. However, in the scheme a sender only knows the value of the root and nothing else.

10

Traversing the Merkle Tree via Garbled Circuits. Our main idea to make the above naive
idea work is via an interesting usage of garbled circuits. At a high level, the sender will output a
sequence of garbled circuits (one per layer of the tree) to transfer messages corresponding to the
path from the root to the leaf containing the L-th bit, so that the receiver can traverse the Merkle
tree from the root to the leaf as illustrated in Figure 2.

digest

e0 = `OTconst.Send(crs, digest,Keys1)

node1

node2

C̃1 = GCircuit(`OTconst.Send(crs, ·,Keys2),Keys1)

Above GCircuit is a circuit garbling procedure, which garbles the circuit `OTconst.Send(crs, ·,Keys2)
using input keys Keys1 (see Section 5.1.1for the definition of garbled circuits).

Figure 2: The Bootstrapping Step

In more detail, the construction works as follows: The Send algorithm outputs `OTconst encryp-
tions using the root digest and a collection of garbled circuits, one per layer of the Merkle tree. The
i-th circuit has a bit b hardwired in it, which specifies whether the path should go to the left or
right child at the i-th layer. It takes as input a pair of sibling nodes (node0, node1) along the path
at layer i and outputs `OTconst encryptions corresponding to nodes on the path at layer i+ 1 w.r.t.
nodeb as the hash value. Conceptually, the circuit computes `OTconst encryptions for the next layer.

The `OTconst encryptions at the root encrypt the input keys of the first garbled circuit. In the
garbled circuit at layer i, the messages being encrypted/sent correspond to the input keys of the
garbled circuit at layer i + 1. The last circuit takes two sibling leaves as input which contains
D[L], and outputs `OTconst encryptions of m0 and m1 corresponding to location L (among the 2λ
locations).

Given a laconic OT ciphertext, which consists of `OTconst ciphertexts w.r.t. the root digest and
a sequence of garbled circuits, the receiver can traverse the Merkle tree as follows. First he runs
`OTconst.Receive for the `OTconst ciphertexts using as witness the children of the root, obtaining the
input labels corresponding to these to be fed into the first garbled circuit. Next, he uses the input
labels to evaluate the first garbled circuit, obtaining `OTconst ciphertexts for the second layer. He
then runs `OTconst.Receive again for these ciphertexts using as witness the children of the second
node on the path. This procedure continues till the last layer.

Security of the construction can be established using the sender security of `OTconst.Receive and
simulation based security of the circuit garbling scheme.

11

Extension. Finally, for our RAM applications we need a slightly stronger primitive which we
call updatable laconic OT that additionally allows for modifications/writes to the database while
ensuring that the digest is updated in a consistent manner. The construction sketched in this
paragraph can be modified to support this stronger notion. For a detailed description of this
notion refer to Section 3.2.

2.2 Non-interactive Secure Computation on Large Inputs

The Circuit Setting. This is the most straightforward application of laconic OT. We will provide
a non-interactive secure computation protocol where the receiver R, holding a large database D,
publishes a short encoding of it such that any sender S, with private input x, can send a single
message to reveal C(x,D) to R. Here, C is the circuit being evaluated.

Recall the garbled circuit based approach to non-interactive secure computation, where R can
publish the first message of a two-message oblivious transfer (OT) for his input D, and the sender
responds with a garbled circuit for C[x, ·] (with hardcoded input x) and sends the input labels
corresponding to D via the second OT message. The downside of this protocol is that R’s public
message grows with the size of D, which could be substantially large.

We resolve this issue via our new primitive laconic OT. In our protocol, R’s first message is the
digest digest of his large database D. Next, the sender generates the garbled circuit for C[x, ·] as
before. It also transfers the labels for each location of D via laconic OT Send messages. Hence,
by efficiency requirements of laconic OT, the length of R’s public message is independent of the
size of D. Moreover, sender privacy against a semi-honest receiver follows directly from the sender
privacy of laconic OT and security of garbled circuits. To achieve receiver privacy, we can enhance
the laconic OT with receiver privacy (discussed in Section 3.1).

The RAM Setting. This is the RAM version of the above application where S holds a RAM
program P and R holds a large database D. As before, we want that (1) the length of R’s
first message is independent of |D|, (2) R’s first message can be published and used by multiple
senders, (3) the database is persistent for a sequence of programs for every sender, and (4) the
computational complexity of both S and R per program execution grows only with running time
of the corresponding program. For this application, we only achieve unprotected memory access
(UMA) security against a corrupt receiver, i.e., the memory access pattern in the execution of
PD(x) is leaked to the receiver. We achieve full security against a corrupt sender.

For simplicity, consider a read-only program such that each CPU step outputs the next location
to be read based on the value read from last location. At a high level, since we want the sender’s
complexity to grow only with the running time t of the program, we cannot create a garbled circuit
that takes D as input. Instead, we would go via the garbled RAM based approaches where we have
a sequence of t garbled circuits where each circuit executes one CPU step. A CPU step circuit
takes the current CPU state and the last bit read from the database D as input and outputs an
updated state and a new location to be read. The new location would be read from the database
and fed into the next CPU step. The most non-trivial part in all garbled RAM constructions is
being able to compute the correct labels for the next circuit based on the value of D[L], where L
is the location being read. Since we are working with garbled circuits, it is crucial for security that
the receiver does not learn two labels for any input wire. We solve this issue via laconic OT as
follows.

12

For the simpler case of sender security, R publishes the short digest of D, which is fed into the
first garbled circuit and this digest is passed along the sequence of garbled circuits. When a circuit
wants to read a location L, it outputs the laconic OT ciphertexts which encrypt the input keys for
the next circuit and use digest of D as the hash value.9 Security against a corrupt receiver follows
from the sender security of laconic OT and security of garbled circuits. To achieve security against
a corrupt sender, R does not publishes digest in the clear. Instead, the labels for digest for the first
circuit are transferred to R via regular OT.

Note that the garbling time of the sender as well as execution time of the receiver will grow
only with the running time of the program. This follows from the efficiency requirements of laconic
OT.

Above, we did not describe how we deal with general programs that also write to the database
or memory. We achieve this via updatable laconic OT (for definition see Section 3.2), This allows
for transferring the labels for updated digest (corresponding to the updated database) to the next
circuit. For a formal description of our scheme for general RAM programs, see Section 6.

2.3 Multi-Hop Homomorphic Encryption for RAM Programs

Our model and problem — a bit more formally. We consider a scenario where a server
S, holding an input x, publishes a public key pk and an encryption ct of x under pk. Now this
ciphertext is passed on to a client Q that will compute a (possibly private) program P accessing
memory D on the value encrypted in ct, obtaining another ciphertext ct′. Finally, we want that the
server can use its secret key to recover PD(x) from the ciphertext ct′ and D̃, where D̃ is an encrypted
form of D that has been previously provided to S in a one-time setup phase. More generally, the
computation could be performed by multiple clients Q1, . . . , Qn. In this case, each client is required
to place a pre-processed version of its database D̃i with the server during setup. The computation
itself could be performed in different sequences of the clients (for different extensions of the model,
see Section 7.1). Examples of two such computation paths are shown in Figure 1.

For security, we want IND-CPA security for server’s input x. For honest clients, we want
program-privacy as well as data-privacy, i.e., the evaluation does not leak anything beyond the
output of the computation even when the adversary corrupts the server and any subset of the
clients. We note that data-privacy is rather easy to achieve via encryption and ORAM. Hence we
focus on the challenges of achieving UMA security for honest clients, i.e., the adversary is allowed
to learn the database D as well as memory access pattern of P on D.

UMA secure multi-hop scheme. We first build on the ideas from non-interactive secure com-
putation for RAM programs. Every client first passes its database to the server. Then in every
round, the server sends an OT message for input x. We assume for simplicity that every client has
an up-to-date digest of its own database. Next, the first client Q1 generates a garbled program for
P1, say ct1 and sends it to Q2. Here, the garbled program consists of t1 (t1 is the running time of
P1) garbled circuits accessing D1 via laconic OT as described in the previous application. Now, Q2

appends its garbled program for P2 to the end of ct1 and generates ct2 consisting of ct1 and new
garbled program. Note that P2 takes the output of P1 as input and hence, the output keys of the

9We note that the above idea of using laconic OT also gives a conceptually very simple solution for UMA secure
garbled RAM scheme [LO13]. Moreover, there is a general transformation [GHL+14] that converts any UMA secure
garbled RAM into one with full security via the usage of symmetric key encryption and oblivious RAM. This would
give a simplified construction of fully secure garbled RAM under DDH assumption.

13

last garbled circuit of P1 have to be compatible with the input keys of the first garbled circuit of
P2 and so on. If we continue this procedure, after the last client Qn, we get a sequence of garbled
circuits where the first t1 circuits access D1, the next set accesses from D2 and so on. Finally,
the server S can evaluate the sequence of garbled circuits given D1, . . . , Dn. It is easy to see that
correctness holds. But we have no security for clients.

The issue is similar to the issue pointed out by [GHV10] for the case of multi-hop garbled circuits.
If the client Qi−1 colludes with the server, then they can learn both input labels for the garbled
program of Qi. To resolve this issue it is crucial that Qi re-randomizes the garbled circuits provided
by Qi−1. For this we rely on re-randomizable garbled circuits provided by [GHV10], where given
a garbled circuit anyone can re-garble it such that functionality of the original circuit is preserved
while the re-randomized garbled circuit is unrecognizable even to the party who generated it. In
our protocol we use re-randomizable garbled circuits but we stumble upon the following issue.

Recall that in the RAM application above, a garbled circuit outputs the laconic OT ciphertexts
corresponding to the input keys of the next circuit. Hence, the input keys of the (τ + 1)-th circuit
have to be hardwired inside the τ -th circuit. Since all of these circuits will be re-randomized for
security, for correctness we require that we transform the hardwired keys in a manner consistent
with the future re-randomization. But for security, Qi−1 does not know the randomness that will
be used by Qi.

Our first idea to resolve this issue is as follows: The circuits generated by Qi−1 will take addi-
tional inputs si, . . . sn which are the randomness used by future parties for their re-randomization
procedure. Since we are in the non-interactive setting, we cannot run an OT protocol between
clients Qi−1 and later clients. We resolve this issue by putting the first message of OT for sj in the
public key of client Qj and client Qi−1 will send the OT second messages along with cti−1. We do
not want the clients’ public keys to grow with the running time of the programs, hence, we think
of sj as PRF keys and each circuit re-randomization will invoke the PRF on a unique input.

The above approach causes a subtle issue in the security proof. Suppose, for simplicity, that
client Qi is the only honest client. When arguing security, we want to simulate all the garbled
circuits in cti. To rely on the security of re-randomization, we need to replace the output of the
PRF with key si with uniform random values but this key is fed as input to the circuits of the
previous clients. We note that this is not a circularity issue but makes arguing security hard. We
solve this issue as follows: Instead of feeding in PRF keys directly to the garbled circuits, we feed
in corresponding outputs of the PRF. We generate the PRF output via a bunch of PRF circuits
that take the PRF keys as input (see Figure 3). Now during simulation, we will first simulate these
PRF circuits, followed by the simulation of the main circuits. We describe the scheme formally in
Section 7.3.

3 Laconic Oblivious Transfer

In this section, we will introduce a primitive we call Laconic OT (or, `OT for short). We will start
by describing laconic OT and then provide an extension of it to the notion of updatable laconic
OT.

14

CPRF[i+ 1] CPRF[n]

si+1 sn

state

rData

digest

Cstep [P, nextKeys]

Figure 3: One step circuit for Pi along with the attached PRF circuits generated by Qi.

3.1 Laconic OT

Definition 3.1 (Laconic OT). A laconic OT (`OT) scheme syntactically consists of four algorithms
crsGen, Hash, Send and Receive.

• crs← crsGen(1λ). It takes as input the security parameter 1λ and outputs a common reference
string crs.

• (digest, D̂) ← Hash(crs, D). It takes as input a common reference string crs and a database
D ∈ {0, 1}∗ and outputs a digest digest of the database and a state D̂.

• e ← Send(crs, digest, L,m0,m1). It takes as input a common reference string crs, a digest
digest, a database location L ∈ N and two messages m0 and m1 of length λ, and outputs a
ciphertext e.

• m ← ReceiveD̂(crs, e, L). This is a RAM algorithm with random read access to D̂. It takes
as input a common reference string crs, a ciphertext e, and a database location L ∈ N. It
outputs a message m.

We require the following properties of an `OT scheme (crsGen,Hash,Send,Receive).

• Correctness: We require that it holds for any database D of size at most M = poly(λ) for
any polynomial function poly(·), any memory location L ∈ [M], and any pair of messages

15

(m0,m1) ∈ {0, 1}λ × {0, 1}λ that

Pr

m = mD[L]

crs ← crsGen(1λ)

(digest, D̂) ← Hash(crs, D)
e ← Send(crs, digest, L,m0,m1)

m ← ReceiveD̂(crs, e, L)

 = 1,

where the probability is taken over the random choices made by crsGen and Send.

• Sender Privacy Against Semi-Honest Receivers: There exists a PPT simulator `OTSim
such that the following holds. For any database D of size at most M = poly(λ) for any poly-
nomial function poly(·), any memory location L ∈ [M], and any pair of messages (m0,m1) ∈
{0, 1}λ × {0, 1}λ, let crs← crsGen(1λ) and digest← Hash(crs, D). Then it holds that

(crs, Send(crs, digest, L,m0,m1))
c
≈
(
crs, `OTSim(D,L,mD[L])

)
.

• Efficiency Requirement: The length of digest is a fixed polynomial in λ independent of the
size of the database; we will assume for simplicity that |digest| = λ. Moreover, the algorithm
Hash runs in time |D| · poly(log |D|, λ), Send and Receive run in time poly(log |D|, λ).

Receiver Privacy. In the above definition, we do not require receiver privacy as opposed to
standard oblivious transfer, namely, no security guarantee is provided against a cheating (semi-
honest) sender. This is mostly for ease of exposition. We would like to point out that adding
receiver privacy (i.e., standard simulation based security against a semi-honest sender) to laconic
OT can be done in a straightforward way. Instead of sending digest directly from the receiver
to the sender and sending e back to the receiver, the two parties compute Send together via a
two-round secure 2PC protocol, where the input of the receiver is digest and the input of the
sender is (L,m0,m1), and only the receiver obtains the output e. This can be done using standard
two-message OT and garbled circuits.

Multiple executions of Send that share the same digest. Notice that since the common
reference string is public (i.e., not chosen by the simulator), the sender can involve Send function
multiple times while still ensuring that security can be argued from the above definition (for the
case of single execution) via a standard hybrid argument.

It will be convenient to use the following shorthand notations (generalizing the above notions) to
run laconic OT for every single element in a database. Let Keys = ((Key1,0,Key1,1), . . . , (KeyM,0,KeyM,1))
be a list of M = |D| key-pairs, where each key is of length λ. Then we will define

Send(crs, digest,Keys) =
(
Send(crs, digest, 1,Key1,0,Key1,1), . . . ,Send(crs, digest,M,KeyM,0,KeyM,1)

)
.

Likewise, for a vector e = (e1, . . . , eM) of ciphertexts define

ReceiveD̂(crs, e) =
(
ReceiveD̂(crs, e1, 1), . . . ,ReceiveD̂(crs, eM ,M)

)
.

Similarly, let Labels = KeysD = (Key1,D[1], . . . ,KeyM,D[M]), and define

`OTSim(crs, D, Labels) =
(
`OTSim(crs, D, 1,Key1,D[1]), . . . , `OTSim(crs, D,M,KeyM,D[M]

)
.

By the sender security for multiple executions, we have that

(crs,Send(crs, digest,Keys))
c
≈ (crs, `OTSim(crs, D, Labels)) .

16

3.2 Updatable Laconic OT

For our applications, we will need a version of laconic OT for which the receiver’s short commitment
digest to his database can be updated quickly (in time much smaller than the size of the database)
when a bit of the database changes. We call this primitive supporting this functionality updatable
laconic OT and define more formally below. At a high level, updatable laconic OT comes with an
additional pair of algorithms SendWrite and ReceiveWrite which transfer the keys for an updated
digest digest∗ to the receiver. For convenience, we will define ReceiveWrite such that it also performs
the write in D̂.

Definition 3.2 (Updatable Laconic OT). An updatable laconic OT (updatable `OT) scheme con-
sists of algorithms crsGen,Hash,Send,Receive as per Definition 3.1 and additionally two algorithms
SendWrite and ReceiveWrite with the following syntax.

• ew ← SendWrite
(
crs, digest, L, b, {mj,0,mj,1}|digest|j=1

)
. It takes as input the common reference

string crs, a digest digest, a location L ∈ N, a bit b ∈ {0, 1} to be written, and |digest| pairs of

messages {mj,0,mj,1}|digest|j=1 , where each mj,c is of length λ. And it outputs a ciphertext ew.

• {mj}|digest|j=1 ← ReceiveWriteD̂(crs, L, b, ew). This is a RAM algorithm with random read/write

access to D̂. It takes as input the common reference string crs, a location L, a bit b ∈ {0, 1}
and a ciphertext ew. It updates the state D̂ (such that D[L] = b) and outputs messages

{mj}|digest|j=1 .

We require the following properties on top of properties of a laconic OT scheme.

• Correctness With Regard To Writes: For any database D of size at most M = poly(λ)
for any polynomial function poly(·), any memory location L ∈ [M], any bit b ∈ {0, 1}, and

any messages {mj,0,mj,1}|digest|j=1 of length λ, the following holds. Let D∗ be identical to D,
except that D∗[L] = b,

Pr


m′j = mj,digest∗j

∀j ∈ [|digest|]

crs ← crsGen(1λ)

(digest, D̂) ← Hash(crs, D)

(digest∗, D̂∗) ← Hash(crs, D∗)

ew ← SendWrite
(
crs, digest, L, b, {mj,0,mj,1}|digest|j=1

)
{m′j}

|digest|
j=1 ← ReceiveWriteD̂(crs, L, b, ew)

 = 1,

where the probability is taken over the random choices made by crsGen and SendWrite. Fur-

thermore, we require that the execution of ReceiveWriteD̂ above updates D̂ to D̂∗. (Note that
digest is included in D̂, hence digest is also updated to digest∗.)

• Sender Privacy Against Semi-Honest Receivers With Regard To Writes: There
exists a PPT simulator `OTSimWrite such that the following holds. For any database D of
size at most M = poly(λ) for any polynomial function poly(·), any memory location L ∈ [M],

any bit b ∈ {0, 1}, and any messages {mj,0,mj,1}|digest|j=1 of length λ, let crs ← crsGen(1λ),

17

(digest, D̂) ← Hash(crs, D), and (digest∗, D̂∗) ← Hash(crs, D∗), where D∗ is identical to D
except that D∗[L] = b. Then it holds that(

crs, SendWrite(crs, digest, L, b, {mj,0,mj,1}|digest|j=1)
)

c
≈

(
crs, `OTSimWrite

(
crs, D, L, b, {mj,digest∗j

}j∈[|digest|]
))

.

• Efficiency Requirements: We require that both SendWrite and ReceiveWrite run in time
poly(log |D|, λ).

4 Laconic Oblivious Transfer with Factor-2 Compression

In this section, based on the DDH assumption we will construct a laconic OT scheme for which the
hash function Hash compresses a database of length 2λ into a digest of length λ. We would refer
to this primitive as laconic OT with factor-2 compression. We note that, subsequent to our work,
the factor-2 compression construction has been simplified by Döttling and Garg [DG17] (another
alternative simplification can be obtained using [AIKW13]). We refer the reader to [DG17] for the
simpler construction and preserve the older construction here.

We will first construct the following two primitives as building blocks: (1) a somewhere statis-
tically binding (SSB) hash function, and (2) a hash proof system that allows for proving knowledge
of preimage bits for this SSB hash function. We will then present the `OT scheme with factor-2
compression in Section 4.4.

4.1 Somewhere Statistically Binding Hash Functions and Hash Proof Systems

In this section, we give definitions of somewhere statistically binding (SSB) hash functions [HW15]
and hash proof systems [CS98]. For simplicity, we will only define SSB hash functions that compress
2λ values in the domain into λ bits. The more general definition works analogously.

Definition 4.1 (Somewhere Statistically Binding Hashing). An SSB hash function SSBH consists
of three algorithms crsGen, bindingCrsGen and Hash with the following syntax.

• crs← crsGen(1λ). It takes the security parameter λ as input and outputs a common reference
string crs.

• crs← bindingCrsGen(1λ, i). It takes as input the security parameter λ and an index i ∈ [2λ],
and outputs a common reference string crs.

• y ← Hash(crs, x). For some domain D, it takes as input a common reference string crs and a
string x ∈ D2λ, and outputs a string y ∈ {0, 1}λ.

We require the following properties of an SSB hash function.

• Statistically Binding at Position i: For every i ∈ [2λ] and an overwhelming fraction of
crs in the support of bindingCrsGen(1λ, i) and every x ∈ D2λ, we have that (crs,Hash(crs, x))
uniquely determines xi. More formally, for all x′ ∈ D2λ such that xi 6= x′i we have that
Hash(crs, x′) 6= Hash(crs, x).

18

• Index Hiding: It holds for all i ∈ [2λ] that crsGen(1λ)
c
≈ bindingCrsGen(1λ, i), i.e., common

reference strings generated by crsGen and bindingCrsGen are computationally indistinguishable.

Next, we define hash proof systems [CS98] that are designated verifier proof systems that allow
for proving that the given problem instance in some language. We give the formal definition as
follows.

Definition 4.2 (Hash Proof System). Let Lz ⊆ Mz be an NP-language residing in a universe
Mz, both parametrized by some parameter z. Moreover, let Lz be characterized by an efficiently
computable witness-relation R, namely, for all x ∈ Mz it holds that x ∈ Lz ⇔ ∃w : R(x,w) = 1.
A hash proof system HPS for Lz consists of three algorithms KeyGen, Hpublic and Hsecret with the
following syntax.

• (pk, sk) ← KeyGen(1λ, z): Takes as input the security parameter λ and a parameter z, and
outputs a public-key and secret key pair (pk, sk).

• y ← Hpublic(pk, x, w): Takes as input a public key pk, an instance x ∈ Lz, and a witness w,
and outputs a value y.

• y ← Hsecret(sk, x): Takes as input a secret key sk and an instance x ∈ Mz, and outputs a
value y.

We require the following properties of a hash proof system.

• Perfect Completeness: For every z, every (pk, sk) in the support of KeyGen(1λ, z), and
every x ∈ Lz with witness w (i.e., R(x,w) = 1), it holds that

Hpublic(pk, x, w) = Hsecret(sk, x).

• Perfect Soundness: For every z and every x ∈Mz \ Lz, let (pk, sk)← KeyGen(1λ, z), then
it holds that

(z, pk,Hsecret(sk, x)) ≡ (z, pk, u),

where u is distributed uniformly random in the range of Hsecret. Here, ≡ denotes distributional
equivalence.

4.2 HPS-friendly SSB Hashing

In this section, we will construct an HPS-friendly SSB hash function that supports a hash proof
system. In particular, there is a hash proof system that enables proving that a certain bit of the
pre-image of a hash-value has a certain fixed value (in our case, either 0 or 1).

We start with some notations. Let (G, ·) be a cyclic group of order p with generator g. Let
M ∈ Zm×np be a matrix. We will denote by M̂ = gM ∈ Gm×n the element-wise exponentiation of

g with the elements of M. We also define L̂ = ĤM ∈ Gm×k, where Ĥ ∈ Gm×n and M ∈ Zn×kp

as follows: Each element L̂i,j =
∏n
k=1 Ĥ

Mk,j

i,k (intuitively this operation corresponds to matrix
multiplication in the exponent). This is well-defined and efficiently computable.

19

Computational Assumptions. In the following, we first define the computational problems on
which we will base the security of our HPS-friendly SSB hash function.

Definition 4.3 (The Decisional Diffie-Hellman (DDH) Problem). Let (G, ·) be a cyclic group
of prime order p and with generator g. Let a, b, c be sampled uniformly at random from Zp
(i.e., a, b, c

$←− Zp). The DDH problem asks to distinguish the distributions (g, ga, gb, gab) and
(g, ga, gb, gc).

Definition 4.4 (Matrix Rank Problem). Let m,n be integers and let Zm×n;rp be the set of all m×n
matrices over Zp with rank r. Further, let 1 ≤ r1 < r2 ≤ min(m,n). The goal of the matrix rank
problem, denoted as MatrixRank(G,m, n, r1, r2), is to distinguish the distributions gM1 and gM2,

where M1
$←− Zm×n;r1p and M2

$←− Zm×n;r2p .

In a recent result by Villar [Vil12] it was shown that the matrix rank problem can be reduced
almost tightly to the DDH problem.

Theorem 4.5 ([Vil12] Theorem 1, simplified). Assume there exists a PPT distinguisher D that
solves MatrixRank(G,m, n, r1, r2) problem with advantage ε. Then, there exists a PPT distin-
guisher D′ (running in almost time as D) that solves DDH problem over G with advantage at
least ε

dlog2(r2/r1)e
.

We next give the construction of an HPS-friendly SSB hash function.

Construction. Our construction builds on the scheme of Okamoto et al. [OPWW15]. We will
not delve into the details of their scheme and directly jump into our construction.

Let n be an integer such that n = 2λ, and let (G, ·) be a cyclic group of order p and with
generator g. Let Ti ∈ Z2×n

p be a matrix which is zero everywhere except the i-th column, and the

i-th column is equal to t = (0, 1)>. The three algorithms of the SSB hash function are defined as
follows.

• crsGen(1λ): Pick a uniformly random matrix H
$←− Z2×n

p and output Ĥ = gH.

• bindingCrsGen(1λ, i): Pick a uniformly random vector (w1, w2)
> = w

$←− Z2
p with the re-

striction that w1 = 1, pick a uniformly random vector a
$←− Znp and set A ← w · a>. Set

H← Ti + A and output Ĥ = gH.

• Hash(crs,x): Parse x as a vector in Dn (D = Zp) and parse crs = Ĥ. Compute y ∈ G2 as

y = Ĥx. Parse y as a binary string and output the result.

Compression. Notice that we can get factor two compression for an input space {0, 1}2λ by
restricting the domain to D′ = {0, 1} ⊂ D. The input length n = 2λ, where λ is set to be twice the
number of bits in the bit representation of a group element in G. In the following we will assume
that n = 2λ and that the bit-representation size of a group element in G is λ

2 .
We will first show that the distributions crsGen(1λ) and bindingCrsGen(1λ, i) are computationally

indistinguishable for every index i ∈ [n], given that the DDH problem is computationally hard in
the group G.

20

Lemma 4.6 (Index Hiding). Assume that the MatrixRank(G, 2, n, 1, 2) problem is hard. Then the
distributions crsGen(1λ) and bindingCrsGen(1λ, i) are computationally indistinguishable, for every
i ∈ [n].

Proof. Assume there exists a PPT distinguisher D that distinguishes the distributions crsGen(1λ)
and bindingCrsGen(1λ, i) with non-negligible advantage ε. We will construct a PPT distinguisher
D′ that distinguishes MatrixRank(G, 2, n, 1, 2) with non-negligible advantage.

The distinguisher D′ does the following on input M̂ ∈ G2×n. It computes Ĥ ∈ G2×n as element-
wise multiplication of M̂ and gTi and runs D on Ĥ. If D outputs crsGen, then D′ outputs rank 2,
otherwise D′ outputs rank 1.

We will now show that D′ also has non-negligible advantage. Write D′’s input as M̂ = gM.
If M is chosen uniformly random with rank 2, then M is uniform in Z2×n

p with overwhelming
probability. Hence with overwhelming probability, M + Ti is also distributed uniformly random
and it follows that Ĥ = gM+Ti is uniformly random in G2×n which is identical to the distribution
generated by crsGen(1λ). On the other hand, if M is chosen uniformly random with rank 1, then
there exists a vector w ∈ Z2

p such that each column of M can be written as ai · w. We can
assume that the first element w1 of w is 1, since the case w1 = 0 happens only with probability
1/p = negl(λ) and if w1 6= 0 we can replace all ai by a′i = ai ·w1 and replace wi by w′i = wi

w1
. Thus,

we can write M as M = w · a> and consequently Ĥ as Ĥ = gw·a
>+Ti . Notice that a is uniformly

distributed, hence Ĥ is identical to the distribution generated by bindingCrsGen(1λ, i). Since D
can distinguish the distributions crsGen(1λ) and bindingCrsGen(1λ, i) with non-negligible advantage
ε, D′ can distinguish MatrixRank(G, 2, n, 1, 2) with advantage ε − negl(λ), which contradicts the
hardness of MatrixRank(G, 2, n, 1, 2).

A corollary of Lemma 4.6 is that for all i, j ∈ [n] the distributions bindingCrsGen(1λ, i) and
bindingCrsGen(1λ, j) are indistinguishable, stated as follows.

Corollary 4.7. Assume the MatrixRank(G, 2, n, 1, 2) problem is computationally hard. Then it
holds for all i, j ∈ [n] that bindingCrsGen(1λ, i) and bindingCrsGen(1λ, j) are computationally indis-
tinguishable.

We next show that if the common reference string crs = Ĥ is generated by bindingCrsGen(1λ, i),
then the hash value Hash(crs,x) is statistically binded to xi.

Lemma 4.8 (Statistically Binding at Position i). For every i ∈ [n], every x ∈ Znp , and all choices

of crs in the support of bindingCrsGen(1λ, i) we have that for every x′ ∈ Znp such that x′i 6= xi,
Hash(crs,x) 6= Hash(crs,x′).

Proof. We first write crs as Ĥ = gH = gw·a
>+Ti and Hash(crs,x) as Hash(Ĥ,x) = gy = gH·x.

Thus, by taking the discrete logarithm with basis g our task is to demonstrate that there exists a
unique xi from H = w · a> + Ti and y = H · x. Observe that

y = H · x = (w · a> + Ti) · x = w · 〈a,x〉+ Ti · x

=

(
1
w2

)
· 〈a,x〉+

(
0
1

)
· xi,

where 〈a,x〉 is the inner product of a and x. If a 6= 0, then we can use any non-zero element of a to
compute w2 from H, and recover xi by computing xi = y2−w2 ·y1; otherwise a = 0, so xi = y2.

21

4.3 A Hash Proof System for Knowledge of Preimage Bits

In this section, we give our desired hash proof systems. In particular, we need a hash proof system
for membership in a subspace of a vector space. In our proof we need the following technical lemma.

Lemma 4.9. Let M ∈ Zm×np be a matrix. Let colsp(M) = {M · x | x ∈ Znp} be its column space,

and rowsp(M) = {x> ·M | x ∈ Zmp } be its row space. Assume that y ∈ Zmp and y /∈ colsp(M). Let

r
$←− Zmp be chosen uniformly at random. Then it holds that

(M,y, r>M, r>y) ≡ (M,y, r>M, u),

where u
$←− Zp is distributed uniformly and independently of r. Here, ≡ denotes distributional

equivalence.

Proof. For any t ∈ rowsp(M) and s ∈ Zp, consider following linear equation system{
r>M = t
r>y = s

.

Let N be the left null space of M. We know that y /∈ colsp(M), hence M has rank ≤ m − 1,
therefore N has dimension ≥ 1. Let r0 be an arbitrary solution for r>M = t, and let n be a vector
in N such that n>y 6= 0 (there must be such a vector since y /∈ colsp(M)). Then there exists a
solution r for the above linear equation system, that is,

r = r0 + (n>y)−1 · (s− r>0 y) · n,

where (n>y)−1 is the multiplicative inverse of n>y in Zp. Then two cases arise: (i) column vectors
of (M y) are full-rank, or (ii) not. In this first case, there is a unique solution for r. In the second
case the solution space has the same size as the left null space of (M y). Therefore, in both cases,
the number of solutions for r is the same for every (t, s) pair.

As r is chosen uniformly at random, all pairs (t, s) ∈ rowsp(M)×Zp have the same probability
of occurrence and the claim follows.

Construction. Fix a matrix Ĥ ∈ G2×n and an index i ∈ [n]. We will construct a hash proof
system HPS = (KeyGen,Hpublic,Hsecret) for the following language LĤ,i:

LĤ,i = {(ŷ, b) ∈ G2 × {0, 1} | ∃x ∈ Znp s.t. ŷ = Ĥx and xi = b}.

Note that in our hash proof system we only enforce that a single specified bit is b, where
b ∈ {0, 1}. However, our hash proof system does not place any requirement on the value used at
any of the other locations. In fact the values used at the other locations may actually be from the
full domain D (i.e., Zp). Observe that the formal definition of the language LĤ,i above incorporates
this difference in how the honest computation of the hash function is performed and what the hash
proof system is supposed to prove.

For ease of exposition, it will be convenient to work with a matrix Ĥ′ ∈ G3×n
p :

Ĥ′ =

(
Ĥ

ge
>
i

)
,

where ei ∈ Znp is the i-th unit vector, with all elements equal to zero except the ith one which is
equal to one.

22

• KeyGen(1λ, (Ĥ, i)): Choose r
$←− Z3

p uniformly at random. Compute ĥ =
(

(Ĥ′)>
)r

. Set

pk = ĥ and sk = r. Output (pk, sk).

• Hpublic(pk, (ŷ, b),x): Parse pk as ĥ. Compute ẑ = (ĥ>)x and output ẑ.

• Hsecret(sk, (ŷ, b)): Parse sk as r and set ŷ′ =

(
ŷ
gb

)
. Compute ẑ = ((ŷ′)>)r and output ẑ.

Lemma 4.10. For every matrix Ĥ ∈ G2×n and every i ∈ [n], HPS is a hash proof system for the
language LĤ,i.

Proof. Let Ĥ = gH, r = (r∗, r3) where r∗ ∈ Z2
p. Let y′ := logg ŷ′, y := logg ŷ, H′ := logg Ĥ′,

h := logg ĥ.

For perfect correctness, we need to show that for every i ∈ [n], every Ĥ ∈ G2×n, and every
(pk, sk) in the support of KeyGen(1λ, (Ĥ′, i)), if (ŷ, b) ∈ LĤ,i and x is a witness for membership

(i.e., ŷ = Ĥx and xi = b), then it holds that Hpublic(pk, (ŷ, b),x) = Hsecret(sk, (ŷ, b)).
To simplify the argument, we again consider the statement under the discrete logarithm with

basis g. Then it holds that

logg (Hsecret(sk, (ŷ, b)))

= logg

((
(ŷ′)>

)r)
= 〈y′, r〉 = 〈y, r∗〉+ b · r3

=〈H · x, r∗〉+ xi · r3 = 〈H′x, r〉 = 〈(H′)>r,x〉

=〈h,x〉 = logg

(
(ĥ>)x

)
= logg (Hpublic(pk, (ŷ, b),x)) .

For perfect soundness, let (pk, sk) ← KeyGen(1λ, (Ĥ′, i)). We will show that if (ŷ, b) /∈ LĤ,i,
then Hsecret(sk, (ŷ, b)) is distributed uniformly random in the range of Hsecret, even given Ĥ, i, and
pk. Again under the discrete logarithm, this is equivalent to showing that 〈y′, r〉 is distributed
uniformly random given H′ and h = (H′)>r.

Note that we can re-write the language LĤ,i = {(ŷ, b) ∈ G2 × Zp | ∃x ∈ Znp s.t. H′x = y′}. It

follows that if (ŷ, b) /∈ LĤ,i, then y′ /∈ span(H′). Now it follows directly from Lemma 4.9 that

r>y′ ≡ u

given H′ and r>H′, where u is distributed uniformly random. This concludes the proof.

Remark 4.11. While proving the security of our applications based on the above hash-proof system,
we would generate Ĥ to be the output of bindingCrsGen(1λ, i) and use the property that if (ŷ, b) ∈
LĤ,i, then (ŷ, (1 − b)) /∈ LĤ,i. This follows directly from Lemma 4.8 (that is, Ĥ and ŷ uniquely
fixes xi).

4.4 The Laconic OT Scheme

We are now ready to put the pieces together and provide our `OT scheme with factor-2 compression.

23

Construction. Let SSBH = (SSBH.crsGen, SSBH.bindingCrsGen,SSBH.Hash) be the HPS-friendly
SSB hash function constructed in Section 4.2 with domain D = Zp. Notice that we achieve
factor-2 compression (namely, compressing 2λ bits into λ bits) by restricting the domain from
Dn to {0, 1}n in our laconic OT scheme. Also, abstractly let the associated hash proof system be
HPS = (HPS.KeyGen,HPS.Hpublic,HPS.Hsecret) for the language

Lcrs,i = {(digest, b) ∈ {0, 1}λ × {0, 1} | ∃D ∈ D2λ : SSBH.Hash(crs, D) = digest and D[i] = b}.

Recall that the bit-representation size of a group element of G is λ
2 , hence the language defined

above is the same as the one defined in Section 4.3.

Now we construct the laconic OT scheme `OT = (crsGen,Hash,Send,Receive) as follows.

• crsGen(1λ): Compute crs← SSBH.crsGen(1λ) and output crs.

• Hash(crs, D ∈ {0, 1}2λ) :
digest← SSBH.Hash(crs, D)

D̂← (D, digest)

Output (digest, D̂)

• Send(crs, digest, L,m0,m1):
Let HPS be the hash-proof system for the language Lcrs,L
(pk, sk)← HPS.KeyGen(1λ, (crs, L))
c0 ← m0 ⊕ HPS.Hsecret(sk, (digest, 0))
c1 ← m1 ⊕ HPS.Hsecret(sk, (digest, 1))
Output e = (pk, c0, c1)

• ReceiveD̂(crs, e, L):
Parse e = (pk, c0, c1)

Parse D̂ = (D, digest), and set b← D[L].
m← cb ⊕ HPS.Hpublic(pk, (digest, b), D)
Output m

We will now show that `OT is a laconic OT protocol with factor-2 compression, i.e., it has
compression factor 2, and satisfies the correctness and sender privacy requirements. First notice
that SSBH.Hash is factor-2 compressing, so Hash also has compression factor 2. We next argue
correctness and sender privacy in Lemmas 4.12 and 4.13, respectively.

Lemma 4.12. Given that HPS satisfies the correctness property, the `OT scheme also satisfies the
correctness property.

Proof. Fix a common reference string crs in the support of crsGen(1λ), a database string D ∈
{0, 1}2λ and an index L ∈ [2λ]. For any crs, D, L such that D[L] = b, let digest = Hash(crs, D).
Then it clearly holds that (digest, b) ∈ Lcrs,L. Thus, by the correctness property of the hash proof
system HPS it holds that

HPS.Hsecret(sk, (digest, b)) = HPS.Hpublic(pk, (digest, b), D).

24

By the construction of Send(crs, digest, L,m0,m1), cb = mb ⊕HPS.Hsecret(sk, (digest, b)). Hence the

output m of ReceiveD̂(crs, e, L) is

m =cb ⊕ HPS.Hpublic(pk, (digest, b), D)

=mb ⊕ HPS.Hsecret(sk, (digest, b))⊕ HPS.Hpublic(pk, (digest, b), D)

=mb.

Lemma 4.13. Given that SSBH is index-hiding and has the statistically binding property and that
HPS is sound, then the `OT scheme satisfies sender privacy against semi-honest receiver.

Proof. We first construct the simulator `OTSim.

`OTSim(crs, D, L,mD[L]):

digest← SSBH.Hash(crs, D)
Let HPS be the hash-proof system for the language Lcrs,L
(pk, sk)← HPS.KeyGen(1λ, (crs, L))
c0 ← mD[L] ⊕ HPS.Hsecret(sk, (digest, 0))

c1 ← mD[L] ⊕ HPS.Hsecret(sk, (digest, 1))

Output (pk, c0, c1)

For any database D of size at most M = poly(λ) for any polynomial function poly(·), any mem-
ory location L ∈ [M], and any pair of messages (m0,m1) ∈ {0, 1}λ×{0, 1}λ, let crs← crsGen(1λ) and
digest← Hash(crs, D). Then we will prove that the two distributions (crs, Send(crs, digest, L,m0,m1))
and (crs, `OTSim(crs, D, L,mD[L])) are computationally indistinguishable. Consider the following
hybrids.

• Hybrid 0: This is the real experiment, namely (crs,Send(crs, digest, L,m0,m1)).

• Hybrid 1: Same as hybrid 0, except that crs is computed by crs← SSBH.bindingCrsGen(1λ, L).

• Hybrid 2: Same as hybrid 1, except that c1−D[L] is computed by c1−D[L] ← mD[L]⊕HPS.Hsecret(sk,
(digest, 1−D[L])). That is, both c0 and c1 encrypt the same message mD[L].

• Hybrid 3: Same as hybrid 2, except that crs is computed by crs← SSBH.crsGen(1λ). This is
the simulated experiment, namely (crs, `OTSim(crs, D, L,mD[L])).

Indistinguishability of hybrid 0 and hybrid 1 follows directly from Lemma 4.6, as we replace
the distribution of crs from SSBH.crsGen(1λ) to SSBH.bindingCrsGen(1λ, L). Indistinguishabil-
ity of hybrids 2 and 3 also follows from Lemma 4.6, as we replace the distribution of crs from
SSBH.bindingCrsGen(1λ, L) back to SSBH.crsGen(1λ).

We will now show that hybrids 1 and 2 are identically distributed. Since crs is in the support of
SSBH.bindingCrsGen(1λ, i) and digest = SSBH.Hash(crs, D), by Lemma 4.8 it holds that (digest, 1−
D[L]) /∈ Lcrs,L. By the soundness property of the hash-proof system HPS, it holds that

(crs, L, pk,HPS.Hsecret(sk, (digest, 1−D[L]))) ≡ (crs, L, pk, u),

25

for a uniformly random u. Furthermore, cD[L] can be computed by mD[L]⊕HPS.Hpublic(pk, (digest,
D[L]), D). Hence

(crs, L, pk,mD[L] ⊕ HPS.Hsecret(sk, (digest, 1−D[L])), cD[L])

≡(crs, L, pk, u, cD[L])

≡(crs, L, pk,m1−D[L] ⊕ HPS.Hsecret(sk, (digest, 1−D[L])), cD[L]).

This concludes the proof.

5 Construction of Updatable Laconic OT

In this section, we will construct an updatable laconic OT that supports a hash function that allows
for compression from an input (database) of size an arbitrary polynomial in λ to λ bits. As every
updatable laconic OT protocol is also a (standard) laconic OT protocol, we will only construct
the former. Our main technique in this construction, is the use of garbled circuits to bootstrap a
laconic OT with factor-2 compression into one with an arbitrary compression factor.

Below in Section 5.1 we describe some background on the primitives needed for realizing our
laconic OT construction. Then we will give the construction of laconic OT along with its correctness
and security proofs in Sections 5.2 and 5.3, respectively.

5.1 Background

In this section we recall the needed background of garbled circuits and Merkle trees.

5.1.1 Garbled Circuits

Garbled circuits were first introduced by Yao [Yao82] (see Lindell and Pinkas [LP09] and Bellare et
al. [BHR12] for a detailed proof and further discussion). A circuit garbling scheme GC is a tuple of
PPT algorithms (GCircuit,Eval). Very roughly GCircuit is the circuit garbling procedure and Eval
the corresponding evaluation procedure. Looking ahead, each individual wire w of the circuit being
garbled will be associated with two labels, namely keyw,0, keyw,1.

• C̃ ← GCircuit
(
1λ,C, {keyw,b}w∈inp(C),b∈{0,1}

)
: GCircuit takes as input a security parameter λ,

a circuit C, and a set of labels keyw,b for all the input wires w ∈ inp(C) and b ∈ {0, 1}. This

procedure outputs a garbled circuit C̃.

• y ← Eval
(
C̃, {keyw,xw}w∈inp(C)

)
: Given a garbled circuit C̃ and a garbled input represented

as a sequence of input labels {keyw,xw}w∈inp(C), Eval outputs y.

Terminology of Keys and Labels. We note that, in the rest of the paper, we use the notation
Keys to refer to both the secret values sampled for wires and the notation Labels to refer to exactly
one of them. In other words, generation of garbled circuit involves Keys while computation itself
depends just on Labels. Let Keys = ((key1,0, key1,1), . . . , (keyn,0, keyn,1)) be a list of n key-pairs, we
denote Keysx for a string x ∈ {0, 1}n to be a list of labels (key1,x1 , . . . , keyn,xn).

26

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}m (here m
is the input length to C) we have that:

Pr
[
C(x) = Eval

(
C̃, {keyw,xw}w∈inp(C)

)]
= 1

where C̃← GCircuit
(
1λ,C, {keyw,b}w∈inp(C),b∈{0,1}

)
.

Security. For security, we require that there is a PPT simulator CircSim such that for any C, x,
and uniformly random keys {keyw,b}w∈inp(C),b∈{0,1}, we have that(

C̃, {keyw,xw}w∈inp(C)
)

c
≈ CircSim

(
1λ,C, y

)
where C̃← GCircuit

(
1λ,C, {keyw,b}w∈inp(C),b∈{0,1}

)
and y = C(x).

5.1.2 Merkle Tree

In this section we briefly review Merkle trees. A Merkle tree is a hash based data structure that
generically extend the domain of a hash function. The following description will be tailored to the
hash function of the laconic OT scheme that we will present in Section 5.2. Given a two-to-one
hash function Hash : {0, 1}2λ → {0, 1}λ, we can use a Merkle tree to construct a hash function that
compresses a database of an arbitrary (a priori unbounded polynomial in λ) size to a λ-bit string.
Now we briefly illustrate how to compress a database D ∈ {0, 1}M (assume for ease of exposition
that M = 2d · λ). First, we partition D into strings of length 2λ; we call each string a leaf. Then
we use Hash to compress each leaf into a new string of length λ; we call each string a node. Next,
we bundle the new nodes in pairs of two and call these pairs siblings, i.e., each pair of siblings is a
string of length 2λ. We then use Hash again to compress each pair of siblings into a new node of
size λ. We continue the process till a single node of size λ is obtained. This process forms a binary
tree structure, which we refer to as a Merkle tree. Looking ahead, the hash function of the laconic
OT scheme has output (D̂, digest), where D̂ is the entire Merkle tree, and digest is the root of the
tree.

A Merkle tree has the following property. In order to verify that a database D with hash root
digest has a certain value b at a location L (namely, D[L] = b), there is no need to provide the
entire Merkle tree. Instead, it is sufficient to provide a path of siblings from the Merkle tree root
to the leaf that contains location L. It can then be easily verified if the hash values from the leaf
to the root are correct.

Moreover, a Merkle tree can be updated in the same fashion when the value at a certain location
of the database is updated. Instead of recomputing the entire tree, we only need to recompute the
nodes on the path from the updated leaf to the root. This can be done given the path of siblings
from the root to the leaf.

5.2 Construction

We will now provide our construction to bootstrap an `OT scheme with factor-2 compression into
an updatable `OT scheme with an arbitrary compression factor, which can compress a database of
an arbitrary (a priori unbounded polynomial in λ) size.

27

Overview. We first give an overview of the construction. Consider a database D ∈ {0, 1}M such
that M = 2d · λ. Given a laconic OT scheme with factor-2 compression (denoted as `OTconst),
we will first use a Merkle tree to obtain a hash function with arbitrary (polynomial) compression
factor. As described in Section 5.1.2, the Hash function of the updatable `OT scheme will have an
output (D̂, digest), where D̂ is the entire Merkle tree, and digest is the root of the tree.

In the Send algorithm, suppose we want to send a message depending on a bit D[L], we will
follow the natural approach of traversing the Merkle tree layer by layer until reaching the leaf
containing L. In particular, L can be represented as L = (b1, . . . , bd−1, t), where b1, . . . , bd−1 are
bits representing the path from the root to the leaf containing location L, and t ∈ [2λ] is the
position within the leaf. The Send algorithm first takes as input the root digest of the Merkle tree,
and it will generate a chain of garbled circuits, which would enable the receiver to traverse the
Merkle tree from the root to the leaf. And upon reaching the leaf, the receiver will be able to
evaluate the last garbled circuit and retrieve the message corresponding to the t-th bit of the leaf.

We briefly explain the chain of garbled circuits as follows. The chain consists of d−1 traversing
circuits along with a reading circuit. Every traversing circuit takes as input a pair of siblings
sbl = (sbl0, sbl1) at a certain layer of the Merkle tree, chooses sblb which is the node in the path
from root to leaf, and generates a laconic OT ciphertext (using `OTconst.Send) which encrypts the
input keys of the next traversing garbled circuit and uses sblb as the hash value. Looking ahead,
when the receiver evaluates the traversing circuit and obtains the laconic OT ciphertext, he can
then use the siblings at the next layer to decrypt the ciphertext (by `OTconst.Receive) and obtain
the corresponding input labels for the next traversing garbled circuit. Using the chain of traversing
garbled circuits the receiver can therefore traverse from the first layer to the leaf of the Merkle tree.
Furthermore, the correct keys for the first traversing circuit are sent via the `OTconst with digest
(i.e., root of the tree) as the hash value.

Finally, the last traversing circuit will transfer keys for the last reading circuit to the receiver
in a similar fashion as above. The reading circuit takes the leaf as input and outputs mleaf[t], i.e.,
the message corresponding to the t-th bit of the leaf. Hence, when evaluating the reading circuit,
the receiver can obtain the message mleaf[t].

SendWrite and ReceiveWrite are similar as Send and Receive, except that (a) ReceiveWrite updates
the Merkle tree from the leaf to the root, and (b) the last writing circuit recomputes the root of the
Merkle tree and outputs messages corresponding to the new root. To enable (b), the writing circuit
will take as input the whole path of siblings from the root to the leaf. The input keys for the writing
circuit corresponding to the siblings at the (i + 1)-th layer are transferred via the i-th traversing
circuit. That is, the i-th traversing circuit transfers the keys for the (i+ 1)-th transferring circuit
as well as partial keys for the writing circuit. In the actual construction, both the reading circuit
and writing circuit take as input the entire path of siblings (for the purpose of symmetry).

The Construction. Let `OTconst = (`OTconst.crsGen, `OTconst.Hash, `OTconst.Send, `OTconst.Receive)
be a laconic OT protocol with factor-2 compression. Let GC = (GCircuit,Eval) be a circuit garbling
scheme. Without loss of generality, let D ∈ {0, 1}M be a database such that |M | = 2d · λ. A
location L ∈ [M] can be represented as (b1, b2, . . . , bd−1, t) ∈ {0, 1}d−1 × [2λ], where the bits bi’s
define the path from the root to a leaf in the Merkle tree, and t ∈ [2λ] defines a position in that
leaf.

Before delving into the construction, we first describe three gadget circuits: the traversing
circuit Ctrav, the reading circuit Cread, and the writing circuit Cwrite. These circuits are defined

28

formally in Figures 4, 5, and 6, respectively.
The traversing circuit has hardwired inside it a common reference string crs, a bit b and two

vectors of input keys Keys, K̃eys, each containing 2λ key-pairs (a key-pair is a pair of λ-bit strings).
It takes as input a pair of siblings sbl = (sbl0, sbl1), each of length λ, and generates two laconic OT

Send messages with sblb as the digest and Keys, K̃eys as message vectors respectively. Further, it
also has the randomness needed for `OTconst.Send hardwired inside it.

The reading circuit Cread has a location t ∈ [2λ], and messages m0,m1 ∈ {0, 1}λ hardwired
inside it. It takes as input a path of siblings from the root to a leaf, reads the t-th bit of the leaf,
and outputs either m0 or m1 depending on that bit.

The writing circuit Cwrite has hardwired inside it a common reference string crs, a location
L ∈ [M], a bit b and a vector of messages Keys consisting of λ key-pairs. It takes as input a
path of siblings from the root to a leaf, changes the t-th bit of the leaf to b (where L corresponds
to t-th location in the leaf), recomputes the Merkle tree root along the path, and outputs the
corresponding labels for the new root/digest.

Circuit Ctrav

Hardwired Values: crs, b, Keys, K̃eys, r, r̃
Input: sbl
Parse sbl as (sbl0, sbl1)
e← `OTconst.Send(crs, sblb,Keys; r)

ẽ← `OTconst.Send(crs, sblb, K̃eys; r̃)
Output (e, ẽ)

Figure 4: The Traversing Circuit Ctrav[crs, b,Keys, K̃eys, r, r̃]

Circuit Cread

Hardwired Values: t, m0, m1

Input: path

Parse path = (sbl1, . . . , sbld−1, leaf)
Output mleaf[t]

Figure 5: The Reading Circuit Cread[t,m0,m1]

Now we construct the updatable `OT , namely (crsGen,Hash, Send,Receive, SendWrite,ReceiveWrite)
as follows.

• crsGen(1λ): Sample crs← `OTconst.crsGen(1λ) and output crs.

• Hash(crs, D ∈ {0, 1}M):

Build a Merkle tree D̂ of D using `OTconst.Hash(crs, ·), as in Section 5.1.2.

Let digest be the root of D̂.

Output (digest, D̂).

• Send(crs, digest, L,m0,m1):
Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cread,

29

Circuit Cwrite

Hardwired Values: crs, L, b, Keys
Input: path
Parse L = (b1, b2, . . . , bd−1, t)

Parse path = (sbl1, . . . , sbld−1, leaf), and parse sbli = (sbli0, sbl
i
1) for i ∈ [d− 1]

leaf[t]← b

sbld ← leaf
For i = d− 1 downto 1:

sblibi ← `OTconst.Hash(crs, sbli+1)
digest∗ ← `OTconst.Hash(crs, sbl1).
Output Keysdigest∗

Figure 6: The Writing Circuit Cwrite[crs, L, b,Keys]

where K̃eys
i

corresponds to the input keys of sbli for i ∈ [d− 1],

and K̃eys
d

corresponds to the input keys of leaf.

C̃read ← GCircuit
(

1λ,Cread[t,m0,m1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto 1:

Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1λ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)

e0 ← `OTconst.Send(crs, digest,Keys1)

ẽ0 ← `OTconst.Send(crs, digest, K̃eys
1
)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

• ReceiveD̂(crs, L, e):

Parse e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

Parse L = (b1, b2, . . . , bd−1, t)

Parse D̂ as a Merkle tree.

Denote the end node of path b1b2 . . . bi by D̂b1b2...bi .
For i = 1 to d− 1:

sbli ← (D̂b1...bi−10, D̂b1...bi−11)

Labelsi ← `OTconst.Receive(crs, ei−1, sbl
i)

L̃abels
i
← `OTconst.Receive(crs, ẽi−1, sbl

i)

(ei, ẽi)← Eval(C̃i, Labels
i)

leaf ← (D̂b1...bd−10, D̂b1...bd−11)

L̃abels
d
← `OTconst.Receive(crs, ẽd−1, leaf)

m← Eval

(
C̃read,

(
L̃abels

1
, . . . , L̃abels

d
))

Output m

• SendWrite(crs, digest, L, b, {mj,0,mj,1}λj=1):

30

Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cwrite,

where K̃eys
i

corresponds to the input keys of sbli for i ∈ [d− 1],

and K̃eys
d

corresponds to the input keys of leaf.

C̃write ← GCircuit
(

1λ,Cwrite[crs, L, b, {mj,0,mj,1}λj=1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto 1:

Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1λ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)

e0 ← `OTconst.Send(crs, digest,Keys1)

ẽ0 ← `OTconst.Send(crs, digest, K̃eys
1
)

Output ew = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
write)

• ReceiveWriteD̂(crs, L, b, ew):

Parse ew = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
write)

Parse L = (b1, b2, . . . , bd−1, t)

Parse D̂ as a Merkle tree.

Denote the end node of path b1b2 . . . bi by D̂b1b2...bi .
Computing messages corresponding to the new digest:

For i = 1 to d− 1:

sbli ← (D̂b1...bi−10, D̂b1...bi−11)

Labelsi ← `OTconst.Receive(crs, ei−1, sbl
i)

L̃abels
i
← `OTconst.Receive(crs, ẽi−1, sbl

i)

(ei, ẽi)← Eval(C̃i, Labels
i)

leaf ← (D̂b1...bd−10, D̂b1...bd−11)

L̃abels
d
← `OTconst.Receive(crs, ẽd−1, leaf)

{mj}λj=1 ← Eval

(
C̃write,

(
L̃abels

1
, . . . , L̃abels

d
))

Updating the Merkle tree:(
D̂b1...bd−10||D̂b1...bd−11

)
[t]← b

For i = d− 1 downto 0:

D̂b1...bi ← `OTconst.Hash(crs, D̂b1...bi0||D̂b1...bi1)
Update digest with the new root of D̂

Output {mj}λj=1

Efficiency. It can be seen from the scheme that the length of digest is λ. The algorithm Hash
runs in time |D| · poly(log |D|, λ). Furthermore, Send,Receive,SendWrite,SendWrite all run in time
poly(log |D|, λ).

31

Correctness. We briefly argue (perfect) correctness of the updatable laconic OT scheme. Given
a ciphertext e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃

read) computed by Send, correctness of `OTconst ensures

that Labels1 ← `OTconst.Receive(crs, e0, sbl
1) outputs the correct labels for C̃1 and that L̃abels

1
←

`OTconst.Receive(crs, ẽ0, sbl
1) outputs the correct labels for C̃read, namely Labels1 = Keys1

sbl1
and

L̃abels
1

= K̃eys
1

sbl1 . In turn, correctness of the garbling scheme guarantees that C̃1 outputs the cor-

rect (e1, ẽ1), namely e1 = `OTconst.Send(crs, sbl1b1 ,Keys
2; r1) and ẽ1 = `OTconst.Send(crs, sbl1b1 , K̃eys

2
; r̃1).

It follows inductively that for every i = 1, 2, . . . , d − 1, Labelsi = Keysi
sbli

, L̃abels
i

= K̃eys
i

sbli , ei =

`OTconst.Send(crs, sblibi ,Keys
i+1; ri), ẽi = `OTconst.Send(crs, sblibi , K̃eys

i+1
; r̃i). Again by using the

correctness of `OTconst, L̃abels
d
← `OTconst.Receive(crs, ẽd−1, leaf) gives L̃abels

d
= K̃eys

d

leaf . Then by
using correctness of the garbling scheme it follows that evaluating C̃read gives the correct output
mD[L]. Correctness with regard to writes can be argued analogously.

5.3 Security

In this section, we will prove the security of the above updatable laconic OT scheme.

Theorem 5.1 (Sender Privacy against Semi-honest Receivers). Given that `OTconst has sender
privacy and that the garbled circuit scheme GCircuit is secure, the updatable laconic OT scheme
`OT has sender privacy.

Proof. Let `OTSimconst be the simulator for `OTconst and CircSim be the simulator for the garbling
scheme GCircuit. Below, we provide the two simulators `OTSim for a read and `OTSimWrite for
the write.

• `OTSim(crs, D, L,m):

(digest, D̂)← Hash(crs, D)
Parse L = (b1, b2, . . . , bd−1, t)(
C̃read,

(
L̃abels

1
, . . . , L̃abels

d
))
← CircSim(1λ,Cread,m)

leaf ← (D̂b1...bd−10, D̂b1...bd−11)
ed−1 ← `OTSimconst (crs, leaf, 0∗)

ẽd−1 ← `OTSimconst

(
crs, leaf, L̃abels

d
)

For i = d− 1 downto 1:

(C̃i, Labels
i)← CircSim(1λ,Ctrav, (ei, ẽi))

sbli ← (D̂b1...bi−10, D̂b1...bi−11)

ei−1 ← `OTSimconst(crs, sbl
i, Labelsi)

ẽi−1 ← `OTSimconst(crs, sbl
i, L̃abels

i
)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

• `OTSimWrite(crs, D, L, b, {mj}λj=1):

(digest, D̂)← Hash(crs, D)
Parse L = (b1, b2, . . . , bd−1, t)(
C̃write,

(
L̃abels

1
, . . . , L̃abels

d
))
← CircSim(1λ,Cwrite, {mj}λj=1)

32

leaf ← (D̂b1...bd−10, D̂b1...bd−11)
ed−1 ← `OTSimconst (crs, leaf, 0∗)

ẽd−1 ← `OTSimconst

(
crs, leaf, L̃abels

d
)

For i = d− 1 downto 1:

(C̃i, Labels
i)← CircSim(1λ,Ctrav, (ei, ẽi))

sbli ← (D̂b1...bi−10, D̂b1...bi−11)

ei−1 ← `OTSimconst(crs, sbl
i, Labelsi)

ẽi−1 ← `OTSimconst(crs, sbl
i, L̃abels

i
)

Output ew = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
write)

In the following we will only prove sender security with regard to reads. Since (Send, `OTSim)
and (SendWrite, `OTSimWrite) are very similar, sender security with regard to writes can be argued
analogously.

We prove security via a hybrid argument. In the first hybrid, we replace the ciphertexts e0 and
ẽ0 computed by `OTconst.Send with ciphertexts computed by `OTSimconst.

Afterwards, we can use security of the garbling scheme to replace the honestly generated C̃1

with a simulated one, and run `OTSimconst using the simulated input labels of C̃1. As the output of
C̃1 is again a pair of ciphertexts (e1, ẽ1), we will simulate it using `OTSimconst in the next hybrid.
We continue alternating between simulating the garbled circuits and simulating the ciphertexts,

until reaching the reading circuit. Once we reach the reading circuit, it holds that all L̃abels
i

are
information theoretically fixed to the path from the root to the leaf containing L. We will then
invoke the garbled circuit security of the reading circuit, and conclude the hybrid argument.

The formal proof is as follows. For every PPT machine A, let crs ← crsGen(1λ), and let
(D,L,m0,m1) ← A(crs). Further let digest ← Hash(crs, D). Then we will prove that the two dis-
tributions (crs, Send(crs, digest, L,m0,m1)) and (crs, `OTSim(crs, D, L,mD[L])) are computationally
indistinguishable. Consider the following hybrids.

• Hybrid 0: This is the real experiment, i.e., (crs,Send(crs, digest, L,m0,m1)).

• Hybrid 1: Same has hybrid 0, except that e0 and ẽ0 are computed as follows.

(digest, D̂)← Hash(crs, D)

Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cread

C̃read ← GCircuit
(

1λ,Cread[t,m0,m1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto 1:

Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1λ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)

sbl1 ← (D̂0, D̂1)

Labels1 ← Keys1
sbl1

33

L̃abels
1
← K̃eys

1

sbl1

e0 ← `OTSimconst(crs, sbl
1, Labels1)

ẽ0 ← `OTSimconst(crs, sbl
1, L̃abels

1
)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

The differences between hybrid 0 and hybrid 1 have been marked with boxes. Indistin-
guishability between hybrid 0 and hybrid 1 can be argued from the multi-execution sender
security of `OTconst via the following reduction. Given crs by the experiment and the ad-
versarial input D, compute hybrid 1 until e0 and ẽ0 are computed. In particular, compute

D̂,Keys1, K̃eys
1
, sbl1, Labels1 = Keys1

sbl1
, L̃abels

1
= K̃eys

1

sbl1 . Then choose sbl1 as the database

and (Keys1, K̃eys
1
) as the messages for `OTconst, and obtain the challenge (e∗0, ẽ

∗
0), which is

from one of the following two distributions:(
`OTconst.Send(crs, sbl1,Keys1), `OTconst.Send(crs, sbl1, K̃eys

1
)
)

;(
`OTSimconst(crs, sbl

1, Labels1), `OTSimconst(crs, sbl
1, L̃abels

1
)

)
.

If (e∗0, ẽ
∗
0) is from the first distribution, then it results in hybrid 0; otherwise it results in

hybrid 1. Hence the indistinguishability of the two distributions implies indistinguishability
of the two hybrids.

• Hybrid 2k (k = 1, 2, . . . , d − 1): Same has hybrid 2k − 1, except that C̃k is computed as
follows.

(digest, D̂)← Hash(crs, D)
Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cread

C̃read ← GCircuit
(

1λ,Cread[t,m0,m1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto k + 1 :

Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1λ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)

sblk ← (D̂b1...bk−10, D̂b1...bk−11)

ek ← `OTconst.Send(crs, sblkbk ,Keys
k+1)

ẽk ← `OTconst.Send(crs, sblkbk , K̃eys
k+1

)

For i = k downto 1:

(C̃i, Labels
i)← CircSim(1λ,Ctrav, (ei, ẽi))

sbli ← (D̂b1...bi−10, D̂b1...bi−11)

34

L̃abels
i
← K̃eys

i

sbli

ei−1 ← `OTSimconst(crs, sbl
i, Labelsi)

ẽi−1 ← `OTSimconst(crs, sbl
i, L̃abels

i
)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

• Hybrid 2k+1 (k = 1, 2, . . . , d−1): Same has hybrid 2k, except that ek and ẽk are computed
as follows.

(digest, D̂)← Hash(crs, D)
Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cread

C̃read ← GCircuit
(

1λ,Cread[t,m0,m1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto k + 1:

Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1λ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)

sblk+1 ← (D̂b1...bk0, D̂b1...bk1)

Labelsk+1 ← Keysk+1
sblk+1

L̃abels
k+1
← K̃eys

k+1

sblk+1

ek ← `OTSimconst(crs, sbl
k+1, Labelsk+1)

ẽk ← `OTSimconst(crs, sbl
k+1, L̃abels

k+1
)

For i = k downto 1:

(C̃i, Labels
i)← CircSim(1λ,Ctrav, (ei, ẽi))

sbli ← (D̂b1...bi−10, D̂b1...bi−11)

L̃abels
i
← K̃eys

i

sbli

ei−1 ← `OTSimconst(crs, sbl
i, Labelsi)

ẽi−1 ← `OTSimconst(crs, sbl
i, L̃abels

i
)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

We will first show that hybrids 2k − 1 and 2k are indistinguishable via a reduction to the
security of the garbling scheme GCircuit. Notice that the only difference between hybrids
2k − 1 and 2k is (C̃k, ek−1). Consider the following two distributions:

(C̃k, Labels
k)←

(
GCircuit

(
1λ,Ctrav[crs, bk,Keys

k+1, K̃eys
k+1

, ri, r̃k],Keys
k
)
,Keysk

sblk

)
;

(C̃k, Labels
k)← CircSim

(
1λ,Ctrav, (ek, ẽk)

)
,

where ek ← `OTconst.Send(crs, sblkbk ,Keys
k+1) and ẽk ← `OTconst.Send(crs, sblkbk , K̃eys

k+1
). No-

tice that (ek, ẽk) is the output of (C̃k, Labels
k) from the first distribution. By security of

35

the garbled circuit scheme, the above two distributions are computationally indistinguish-
able. Furthermore, if C̃k is generated using the first distribution and ek−1 is computed using
Labelsk from the first distribution, then it results in hybrid 2k − 1; otherwise it results in
hybrid 2k. Hence the two hybrids are computationally indistinguishable.

Indistinguishability of hybrids 2k and 2k + 1 follows again from sender security of `OTconst,
in the same fashion as the indistinguishability between hybrids 0 and 1.

• Hybrid 2d: This is the simulated experiment, namely (crs, `OTSim(crs, D, L,mD[L])).

The difference between hybrids 2d − 1 and 2d is
(
C̃read, ẽ0, . . . , ẽd−1

)
. The indistinguisha-

bility would follow from the security of garbled circuit scheme, similarly as when we argue
indistinguishability hybrids 2k − 1 and 2k.

6 Warm-Up Application: Non-Interactive Secure Computation
(NISC) on Large Inputs in RAM Setting

In this section, we consider the application of non-interactive secure computation in the RAM
(random access machine) setting.

6.1 Background

We recall the needed background of RAM computation model and two-message oblivious transfer
in this section. We will also use garbled circuits (see Section 5.1.1) as building blocks.

6.1.1 Random Access Machine (RAM) Model of Computation

Now we define the RAM model of computation. Parts of this subsection have been taken verbatim
from [GLO15].

Notation for the RAM Model of Computation. The RAM model consists of a CPU and
a memory storage of size M . The CPU executes a program that can access the memory by using
read/write operations. In particular, for a program P with memory of size M we denote the
initial contents of the memory data by D ∈ {0, 1}M . Additionally, the program gets a “short”
input x ∈ {0, 1}m, which we alternatively think of as the initial state of the program. We use
the notation PD(x) to denote the execution of program P with initial memory contents D and
input x. The program P can read from and write to various locations in memory D throughout its
execution.10

We will also consider the case where several different programs are executed sequentially and the
memory persists between executions. We denote this process as (y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D

to indicate that first PD1 (x1) is executed, resulting in some memory contents D1 and output y1,
then PD1

2 (x2) is executed resulting in some memory contents D2 and output y2 etc. As an example,

10In general, the distinction between what to include in the program P , the memory data D and the short input
x can be somewhat arbitrary. However as motivated by our applications we will typically be interested in a setting
where the data D is large while the size of the program |P | and input length m is small.

36

imagine that D is a huge database and the programs Pi are database queries that can read and
possibly write to the database and are parameterized by some values xi.

CPU-Step Circuit. Consider an execution of a RAM program which involves at most t CPU
steps. We represent a RAM program P via t small CPU-Step Circuits each of which executes one
CPU step. In this work we will denote one CPU step by:

CPCPU(state, rData) = (state′,R/W, L,wData)

This circuit takes as input the current CPU state state and a bit rData. Looking ahead the bit rData
will be read from the memory location that was requested by the previous CPU step. The circuit
outputs an updated state state′, a read or write bit R/W, the next location to read/write from
L ∈ [M], and a bit wData to write into that location (wData = ⊥ when reading). The sequence
of locations and read/write values collectively form what is known as the access pattern, namely
MemAccess = {(R/Wτ , Lτ ,wDataτ) : τ = 1, . . . , t}.

Note that in the description above without loss of generality we have made some simplifying
assumptions. We assume that each CPU-step circuit always reads from or write some location in
memory. This is easy to implement via a dummy read and write step. Moreover, we assume that
the instructions of the program itself are hardwired into the CPU-step circuits.

Representing RAM computation by CPU-Step Circuits. The computation PD(x) starts
with the initial state set as state1 = x. In each step τ ∈ {1, . . . t}, the computation proceeds as
follows: If τ = 1 or R/Wτ−1 = write, then rDataτ := 0; otherwise rDataτ := D[Lτ−1]. Next it
executes the CPU-Step Circuit CPCPU(stateτ , rDataτ) = (stateτ+1,R/Wτ , Lτ ,wDataτ). If R/Wτ =
write, then set D[Lτ] = wDataτ . Finally, when τ = t, then stateτ+1 is the output of the program.

6.1.2 Oblivious Transfer

[AIR01,NP01,HK12] gave two-message oblivious transfer (OT) protocols. We describe the defini-
tion below and refer the reader to [AIR01,NP01,HK12] for details.

Definition 6.1 (Two-Message Oblivious Transfer). A two-message oblivious transfer protocol OT =
(OT1,OT2,OT3) is a protocol between a sender S and a receiver R where S gets as input two strings
s1, s2 of equal length and R gets as input a choice bit x ∈ {0, 1}. The algorithms have the following
syntax:

• (m1, secret) ← OT1(1
λ, x): It takes as input the security parameter 1λ and receiver’s choice

bit x ∈ {0, 1} and outputs the first OT message m1 (sent by the receiver) and receiver’s secret
state secret.

• m2 ← OT2(m1, s0, s1): It takes as input the first OT message and the sender’s input (s0, s1),
and outputs the second OT message m2 (sent back to the receiver).

• s← OT3(m2, secret): It takes m2 and secret as input, and outputs a string s.

The following conditions are satisfied:

37

• Perfect Correctness: For all security parameter λ, sender input strings (s1, s2) of equal
length, and receiver’s choice bit x, let (m1, secret)← OT1(1

λ, x), m2 ← OT2(m1, s0, s1), and
s← OT3(m2, secret), then it holds that

Pr [s = sx] = 1.

• Receiver Security: The following two distributions are computationally indistinguishable:

OT1(1
λ, 0)

c
≈ OT1(1

λ, 1).

• Sender Security: There exists a PPT simulator OTSim such that for all sender input strings
(s1, s2) of equal length and receiver’s choice bit x, and any first message m1 in the support of
OT1(1

λ, x), the following two distributions are statistically close:

OT2(m1, s0, s1)
s
≈ OTSim(1λ, x, sx,m1).

We described the above definition with respect to one OT, but the same formalism natu-
rally extends to support multiple parallel executions of OT. We will use the following short-
hand notations (generalizing the above notions) to run multiple parallel executions. Let Keys =
((Key1,0,Key1,1), . . . , (Keyn,0,Keyn,1)) be a list of n string-pairs, and x ∈ {0, 1}n be an n-bit choice
string. Then we define

• (m1, secret)← OT1(1
λ, x) =

(
OT1(1

λ, x1), . . . ,OT1(1
λ, xn)

)
.

• m2 ← OT2(m1,Keys) =
(
OT2(m1,1,Key1,0,Key1,1), · · · ,OT2(m1,n,Keyn,0,Keyn,1)

)
.

• Labels← OT3(m2, secret) = (OT3(m2,1, secret1), . . . ,OT3(m2,n, secretn)) .

In the above m1 = (m1,1, . . . ,m1,n), m2 = (m2,1, . . . ,m2,n), secret = (secret1, . . . , secretn). Cor-
rectness guarantees that Labels = Keysx =

(
Key1,x1 , . . . ,Keyn,xn

)
.

Moreover, we will use two important properties of the oblivious transfer [NP01] for our applica-
tions: (1) Security holds for multiple second OT messages with regard to the same first OT message.
This will be crucial for extending NISC for RAM to support multiple senders with the same re-
ceiver. (2) The second OT message is re-randomizable. This will be crucial for the application of
multi-hop homomorphic encryption for RAM.

6.2 Formal Model for NISC in RAM Setting

Suppose the receiver owns a large confidential database D ∈ {0, 1}M . It first publishes a short
message, denoted by m1, which hides D. Afterwards, if a sender wants to run a RAM program P
(with input x) on D, it can send a single message m2 to the receiver. For security we require that
m2 only reveals the output PD(x) and the memory access pattern MemAccess of the execution to
the receiver. We require that once m1 is published, the computational cost of both the sender (in
computing m2) and the receiver (in evaluation), as well as the size of m2, should grow only with
the running time of the RAM computation and the size of m1, and is independent of the size of D.

Moreover, the sender can run a sequence of programs on a persistent database by sending one
message per program to the receiver. Finally, the receiver can run the protocol in parallel with
multiple senders, where the same m1 is used. For ease of exposition, below we will describe the
setting of one single sender executing one program with the receiver. We provide details on above
extensions in Section 6.6.

38

The Model. A non-interactive secure RAM computation scheme NISC-RAM = (Setup,EncData,
EncProg,Dec) has the following syntax. It is a two-party protocol between a receiver holding a
large secret database D and a sender holding secret program P of running time t and a short input
x.

• Setup: crs← Setup(1λ).
On input the security parameter 1λ, it outputs a common reference string.

• Database Encryption: (m1, D̃)← EncData(crs, D).
On input the common reference string crs and a database D ∈ {0, 1}M , it outputs a message
m1 and a secret state D̃. The receiver publishes m1 as the short message corresponding to
D.

• Program Encryption: m2 ← EncProg(crs,m1, (P, x, t)).
It takes as input the crs, a message m1, a RAM program P with input x and maximum
run-time t. It then outputs another message m2. The sender sends the message m2.

• Decryption: y ← DecD̃(crs,m2).
The procedure Dec is modeled as a RAM program that can read and write to arbitrary
locations of its database initially containing D̃. This procedure is run by the receiver. On
input the crs and m2, it outputs y.

The following conditions are satisfied:

• Correctness: For every database D ∈ {0, 1}M where M = poly(λ) for any polynomial
function poly(·), for every RAM program (P, x, t), it holds that

Pr
[
DecD̃(crs,m2) = PD(x)

]
= 1,

where crs← Setup(1λ), (m1, D̃)← EncData(crs, D), m2 ← EncProg(crs,m1, (P, x, t)).

• Receiver Privacy: For every pair of databases D0 ∈ {0, 1}M , D1 ∈ {0, 1}M where M is
polynomial in λ, for every crs in the support of Setup(1λ), let (m0, D̃0) ← EncData(crs, D0),
(m1, D̃1)← EncData(crs, D1). Then it holds that

(crs,m0)
c
≈ (crs,m1).

• Sender Privacy: There exists a PPT simulator niscSim such that for every database D ∈
{0, 1}M where M = poly(λ) for any polynomial function poly(·), and for every RAM program
(P, x, t), let y = PD(x) be the output of the program, and MemAccess be the memory access
pattern, then it holds that

(crs, D, (m1, D̃),m2)
c
≈ niscSim(1λ, D, (y,MemAccess))

where crs← Setup(1λ), (m1, D̃)← EncData(crs, D) and m2 ← EncProg(crs,m1, (P, x, t)).

• Efficiency: The length of m1 is a fixed polynomial in λ independent of the size of the
database. Moreover, the algorithm EncData runs in time M ·poly(λ, logM), EncProg and Dec
run in time t · poly(λ, logM).

39

6.3 Construction

Overview. We first give an overview of the construction. For ease of exposition, consider a read-
only program where each CPU step outputs the next location to be read based on the value read
from last location.

We first describe the EncProg procedure. As already mentioned in technical overview (see
Section 2.2), our construction is based on high level ideas of garbled RAM (introduced by Lu and
Ostrovsky [LO13]) to make sender and receiver complexity grow only with the running time of the
program. In particular, the sender would generate a garbled RAM program consisting of a sequence
of t garbled step circuits. Similar to the RAM computation model described in Section 6.1.1, every
step circuit takes as input the current CPU state and the last read bit and outputs the updated
state and the next read location, say L. Note that the next step circuit would take the new value
read from database as input.

The main challenge in program garbling is revealing the correct labels for the next circuit based
on the value of D[L]. Moreover, it is crucial for garble circuit security that the receiver does not
learn the label corresponding to 1−D[L]. Prior works [LO13,GHL+14,GLOS15,GLO15] proposed
several different solutions to the above problem. Here we present a new and arguably simpler
solution for achieving this using laconic oblivious transfer.

Let digest be the hash value of D that would be fed into the first step circuit and passed along
the sequence of circuits. That is, each circuit would take this digest as input and also output the
correct input labels corresponding to the digest for the next circuit. Now, to transfer the correct
label corresponding to the value in the database, a step circuit would output a laconic OT ciphertext
(using algorithm Send) that encrypts the input keys of the next step circuit and uses digest as the
hash value. Looking ahead, when the receiver evaluates the step circuit which outputs the laconic
OT ciphertext, he can use D to decrypt it to obtain the correct labels (using the procedure Receive
of laconic OT).

We would show that the sender privacy follows from the sender privacy of laconic OT and
security of circuit garbling. In order to achieve receiver privacy, the receiver does not publish digest
in the clear, but instead, the labels for digest of the first step circuit are transferred from the sender
to the receiver via a two-message OT. In particular, the EncData procedure outputs the first OT
message of digest, and EncProg will output the garbled step circuits along with the second OT
message for digest’s labels.

Finally, note that a general program can also write to the database, in which case we need to
update the database as well as the step circuits need to know the updated digest for the correctness
of laconic OT and future reads/writes. This is achieved via the updatability property of the laconic
OT which allows a sender to generate a ciphertext that allows the receiver to learn messages
corresponding to the updated digest. In our case, the messages encrypted would be the input
digest keys of the next step circuit.

Next, we give a more formal construction of our scheme.

The Construction. Let `OT = (crsGen,Hash, Send,Receive, SendWrite,ReceiveWrite) be an up-
datable laconic OT protocol as per Definition 3.2. Let OT = (OT1,OT2,OT3) be a two-message
secure oblivious transfer, and let GC = (GCircuit,Eval) be a circuit garbling scheme. The non-
interactive secure RAM computation scheme NISC-RAM = (Setup,EncData,EncProg,Dec) is con-
structed as follows.

40

Setup: crs← Setup(1λ).
The set up algorithm is described in Figure 7. It generates the common reference string for the
updatable laconic OT scheme.

Set up. crs← Setup(1λ).

1. crs← crsGen(1λ).

2. Output crs.

Figure 7: Set up procedure of NISC-RAM

Database Encryption: (m1, D̃)← EncData(crs, D).
The algorithm is formally described in Figure 8. It hashes the database D using laconic OT Hash
function and obtains digest. Then digest is encrypted using the OT1 procedure of two-message OT
protocol.

Database Encryption. (m1, D̃)← EncData(crs, D).

1. (digest, D̂)← Hash(crs, D).

2. (m1, secret)← OT1(1
λ, digest).

3. Output
(
m1, D̃ = (digest, D̂, secret)

)
.

Figure 8: Database encryption procedure of NISC-RAM

Program Encryption: m2 ← EncProg(crs,m1, (P, x, t)).
The program encryption procedure is formally described in Figure 9. As mentioned above, it
generates t garbled step circuits {C̃step

τ }tτ=1, where every step circuit implements the functionality
of a CPU-step circuit. We describe the structure of a step circuit Cstep below. The program
encryption also consists of the second OT message corresponding to the short message m1 of the
receiver (for digest) where the sender’s messages consist of the input keys for the first garbled
circuit. Finally, it also outputs the keys for decrypting the output of the last step circuit.

Now we elaborate on the logic of a step circuit. The pseudocode of a step circuit Cstep is formally
described in Figure 10, and the structure is illustrated in Figure 11. The input of a step circuit
can be partitioned into (state, rData, digest), where state is the current CPU state, rData is the bit
read from the database, and digest is the up-to-date digest of the database. If the previous step is
a write, then rData = 0. The program encryption outputs garbled circuits for these step circuits,
hence, the first step of EncProg is to pick the input keys for all the circuits. The τ -th step circuit
Cstep
τ has hardwired in it the input keys nextKeys = (stateKeys, dataKeys, digestKeys) for the next

step circuit Cstep
τ+1.

The logic of the step circuit is as follows: It first computes the new (state′,R/W, L,wData).
Then, in the case of a “read” it outputs stateKeys corresponding to state′, labels for rData via
laconic OT procedure Send(·), and digestKeys corresponding to digest. The case of a write is similar,
but now the labels of new updated digest are transferred via laconic OT procedure SendWrite(·).

41

Program Encryption. m2 ← EncProg(crs,m1, (P, x, t)).

1. Generate the garbled program for P : Generate garbled circuits {C̃step
τ }tτ=1.

(a) Sample stateKeysτ , dataKeysτ , digestKeysτ for each τ ∈ {1, . . . , t+ 1}.
(b) For each τ ∈ {1, . . . , t}

C̃step
τ ← GCircuit

(
1λ,Cstep[crs, P,Keysτ+1],Keysτ

)
,

where Keysτ = (stateKeysτ , dataKeysτ , digestKeysτ).

(c) For τ = 1, embed labels dataKeys10 and stateKeys1x in C̃step
1 .

2. Compute L← OT2

(
m1, digestKeys

1
)
.

3. Output m2 =
(
L, {C̃step

τ }tτ=1, stateKeys
t+1
)

.

Figure 9: Program encryption procedure of NISC-RAM

Hardwired Parameters: [crs, P, nextKeys = (stateKeys, dataKeys, digestKeys)].
Input: (state, rData, digest).

(state′,R/W, L,wData) := CPCPU(state, rData).

if R/W = read then
edata ← Send(crs, digest, L, dataKeys).
return

(
(stateKeysstate′ , edata, digestKeysdigest),R/W, L

)
.

else
edigest ← SendWrite (crs, digest, L,wData, digestKeys).
return ((stateKeysstate′ , dataKeys0, edigest,wData),R/W, L).

Figure 10: Pseudocode of a step circuit Cstep [crs, P, nextKeys].

Decryption: y ← DecD̃(crs,m2).
The decryption procedure is described in Figure 13. At a high level the receiver evaluates the garbled
step circuits one by one from C̃step

1 to C̃step
t , and uses the database to decrypt `OT ciphertexts

between two consecutive circuits. The output of the last step circuit can be decrypted using
stateKeyst+1 and hence y is obtained.

More precisely, the receiver first obtains the digestLabels for the first step circuit by running
OT3. Note that the first garbled step circuit already has labels for the rData and state embedded.
Hence the receiver can obtain all the labels for the first step circuit and evaluate it. Then the
receiver executes the circuits {C̃step

τ }tτ=1 one by one, and learns the labels for the next circuit by
running the receiver algorithms of laconic OT on its database.

6.4 Correctness

For correctness, we require that for every database D ∈ {0, 1}M , for every RAM program (P, x, t),
it holds that

Pr
[
DecD̃(crs,m2) = PD(x)

]
= 1,

42

state

rData

digest

stateKeysstate′

edata or dataKeys0,

digestKeysdigest or (edigest,wData)

R/W, L

Cstep [crs, P, nextKeys]

Figure 11: A step circuit Cstep [crs, P, nextKeys]

where crs ← Setup(1λ), (m1, D̃) ← EncData(crs, D), m2 ← EncProg(crs,m1, (P, x, t)). Correctness
follows from Lemma 6.3 that we will prove below.

Claim 6.2. The first garbled step circuit C̃step
1 gets evaluated on (x, 0, digest), where (digest, D̂) =

Hash(crs, D).

Proof. Since (m1, secret) ← OT1(1
λ, digest), L ← OT2

(
m1, digestKeys

1
)
, and digestLabels1 ←

OT3(L, secret), by correctness of OT, digestLabels1 = digestKeys1digest. Moreover, C̃step
1 already has

labels stateKeys1x and dataKeys10 embedded in it, by correctness of the circuit garbling scheme, C̃step
1

gets evaluated on (x, 0, digest).

Lemma 6.3. Consider the execution of PD(x). Let (stateτ , rDataτ) be the input to the τ -th CPU
step. Let Dτ be the database at the beginning of step τ , and let (digestτ , D̂τ) = Hash(crs, Dτ).
During the Dec procedure, for every τ ∈ [t], C̃step

τ is evaluated on inputs (stateτ , rDataτ , digestτ).
Moreover, the state of the database held by the receiver at the beginning of evaluating C̃step

τ is D̂τ .

Proof. We will prove this lemma by induction on τ . The base case follows from Claim 6.2. Assume
that the lemma holds for τ = ρ, then we prove that the lemma holds for ρ + 1 in the following.
We know that (D̂ρ, digestρ) = Hash(crs, Dρ), and that C̃step

ρ is executed on (stateρ, rDataρ, digestρ).

By correctness of GC, C̃step
ρ implements its code of a CPU step, namely (state′,R/W, L,wData) =

CPCPU(stateρ, rDataρ). Also notice that nextKeys = (stateKeys, dataKeys, digestKeys) hardwired in

C̃step
ρ are the input keys for C̃step

ρ+1. There are two cases:

• R/W = read: In this case, it follows directly from the Dec procedure that stateLabelsρ+1 =
stateKeysstate′ and digestLabelsρ+1 = digestKeysdigest. Since edata ← Send(crs, digestρ, L, dataKeys)

and dataLabelsρ+1 = ReceiveD̂
ρ
(crs, edata, L), by correctness of the `OT scheme, dataLabelsρ+1 =

dataKeysDρ[L]. Hence C̃step
ρ+1 is evaluated on inputs (state′, Dρ[L], digest), which is exactly

(stateρ+1, rDataρ+1, digestρ+1). And (D̂ρ, digestρ) remains unchanged.

43

Decryption. y ← DecD̃(crs,m2).

1. Parse D̃ = (digest, D̂, secret).

2. Parse m2 =
(
L, {C̃step

τ }tτ=1, stateKeys
t+1
)

.

3. Compute digestLabels1 ← OT3(L, secret).

4. Parse C̃step
1 = (C̃step

1 , dataLabels1, stateLabels1).

5. For τ = 1 to t do the following:

(X,R/W, L) := Eval
(
C̃step
τ , (stateLabelsτ , dataLabelsτ , digestLabelsτ)

)
.

if R/W = read then
Parse X = (stateLabelsτ+1, edata, digestLabels

τ+1)

dataLabelsτ+1 = ReceiveD̂(crs, edata, L)
else

Parse X = (stateLabelsτ+1, dataLabelsτ+1, edigest,wData)

digestLabelsτ+1 = ReceiveWriteD̂(crs, L,wData, edigest)

6. Use stateKeyst+1 to decode stateLabelst+1 and obtain y.

Figure 13: Decryption procedure of NISC-RAM

• R/W = write: In this case, it follows from the Dec procedure that stateLabelsρ+1 = stateKeysstate′
and dataLabelsρ+1 = dataKeys0. Since edigest ← SendWrite(crs, digestρ, L,wData, digestKeys)

and digestLabelsρ+1 = ReceiveWriteD̂
ρ
(crs, L,wData, edigest), by correctness of the `OT scheme,

digestLabelsρ+1 = digestKeysdigest′ where (D̂′, digest′) = Hash(crs, D′) for an updated database

D′ (D′ is identical to Dρ except that D′[L] = wData). Hence C̃step
ρ+1 is evaluated on inputs

(state′, 0, digest′), which is exactly (stateρ+1, rDataρ+1, digestρ+1). And (D̂ρ, digestρ) gets up-
dated to (D̂′, digest′), which is exactly (D̂ρ+1, digestρ+1).

6.5 Security Proof

In this section we prove sender privacy and receiver privacy as defined in Section 6.2 under the
decisional Diffie-Hellman (DDH) assumption. The receiver privacy follows directly from the receiver
security of OT. Below we prove sender privacy by describing a PPT simulator niscSim such that
for every database D ∈ {0, 1}M where M is polynomial in λ, and for every RAM program (P, x, t),
let y = PD(x) be the output of the program, and MemAccess be the memory access pattern, then
it holds that(

crs, (m1, D̃),EncProg(crs,m1, (P, x, t))
)

c
≈
(
crs, (m1, D̃), niscSim(crs,m1, D, y,MemAccess)

)
,

where crs← Setup(1λ), (m1, D̃)← EncData(crs, D). Notice that this definition is slightly different
from the definition in Section 6.2, but in the semi-honest case it implies a simulator as defined in
Section 6.2

44

1. Sample input keys (stateKeyst+1, dataKeyst+1, digestKeyst+1) for Cstep.

2. Parse MemAccess as {(R/Wτ , Lτ ,wDataτ) : τ ∈ [t]}, where (R/Wτ , Lτ ,wDataτ) is partial
output of the τ -th CPU step circuit. Compute (rDataτ , Dτ , digestτ) at the beginning of step
τ for every τ ∈ [t+ 1].

3. Compute (stateLabelst+1, dataLabelst+1, digestLabelst+1):

stateLabelst+1 ← stateKeyst+1
y .

digestLabelst+1 ← digestKeyst+1
digestt+1 .

dataLabelst+1 ← dataKeyst+1
rDatat+1 .

4. For τ = t downto 1, proceed as follows:

if R/Wτ = read then
edata ← `OTSim

(
crs, Dτ , Lτ , dataLabelsτ+1

)
.

X ← (stateLabelsτ+1, edata, digestLabels
τ+1).

else
edigest ← `OTSimWrite

(
crs, Dτ , Lτ ,wDataτ , digestLabelsτ+1

)
.

X ← (stateLabelsτ+1, dataLabelsτ+1, edigest,wData
τ).(

C̃step
τ , stateLabelsτ , dataLabelsτ , digestLabelsτ

)
← CircSim

(
1λ,Cstep, (X,R/Wτ , Lτ)

)
.

5. L← OT2

(
m1, (digestLabels

1, digestLabels1)
)
.

6. Output
(
L, {C̃step

τ }tτ=1, stateKeys
t+1
)

.

We show that the above simulation is indistinguishable from the real execution through a
sequence of hybrids where the first hybrid outputs the real execution and the last hybrid outputs
the simulated one.

• H2i for i ∈ {0, 1, . . . , t}: Notice that in the output, there are t garbled step circuits {C̃step
τ }tτ=1.

In hybrid H2i, the garbled step circuits from 1 to i are simulated while the remaining step
circuits (i+ 1 to t) are generated honestly. Given the program, all the intermediate outputs
of every step circuit can all be computed. Given the correct output of circuit Cstep

i , the step
circuits from 1 to i can be simulated one by one from the i-th to the first similarly as niscSim.
More formally, it proceeds as follows.

1. Execute PD(x) to obtain (R/Wτ , Lτ ,wDataτ) for every τ ∈ [t] and statet+1 = y. Com-
pute (rDataτ , Dτ , digestτ) at the beginning of step τ for every τ ∈ [t+ 1].

2. Generate the garble circuits {C̃step
τ }tτ=i+1 honestly (same as Step 1 in EncProg).

3. Let
(
stateKeysi+1, dataKeysi+1, digestKeysi+1

)
be the input keys of C̃step

i+1 .

4. Compute (stateLabelsi+1, dataLabelsi+1, digestLabelsi+1):

stateLabelsi+1 ← stateKeysi+1
statei+1 .

digestLabelsi+1 ← digestKeysi+1
digesti+1 .

dataLabelsi+1 ← dataKeysi+1
rDatai+1 .

45

5. For τ = i downto 1, proceed as in Step 4 of the simulator niscSim.

6. L← OT2

(
m1, (digestLabels

1, digestLabels1)
)
.

7. Output
(
L, {C̃step

τ }tτ=1, stateKeys
t+1
)

.

• H2i+1 for i ∈ {0, . . . , t − 1}: Hybrid H2i+1 is identical to H2i except that H2i+1 simulates
C̃step
i+1 based on the real output of Cstep

i+1 . In particular, H2i+1 is the same as H2i except that
Steps 2, 3, 4 proceed as follows:

2. Generate the garble circuits {C̃step
τ }tτ=i+2 honestly (same as Step 1 in EncProg).

3. Let
(
stateKeysi+2, dataKeysi+2, digestKeysi+2

)
be the input keys of C̃step

i+2 .

4. if R/Wi+1 = read then
edata ← Send(crs, digesti+1, Li+1, dataKeysi+2).
X ← (stateKeysi+2

statei+2 , edata, digestKeys
i+2
digest).

else
edigest ← SendWrite

(
crs, digesti+1, Li+1,wDatai+1, digestKeysi+2

)
.

X ← (stateKeysi+1
statei+1 , dataKeys

i+1
0 , edigest,wData

i+1).(
C̃step
i+1 , stateLabels

i+1, dataLabelsi+1, digestLabelsi+1
)
← CircSim

(
1λ,Cstep, (X,R/Wi+1, Li+1)

)
.

It is easy to see that H0 is the output of the real execution, and H2t is the simulated out-
put. Now we prove that the consecutive hybrids are computationally indistinguishable. Below we

prove that H2i
c
≈ H2i+1

c
≈ H2(i+1) for every i ∈ {0, . . . , t − 1}. Since hybrid H2i+1 simulates C̃step

i+1

based on the real output of Cstep
i+1 , the output of C̃step

i+1 is identical for hybrids H2i and H2i+1. That
said, indistinguishibility of hybrids H2i and H2i+1 follows from the garbled circuit security. Next,
indistinguishability between H2i+1 and H2(i+1) follows from the sender’s privacy property of the
updatable laconic OT since the laconic OT responses are simulated in H2(i+1). This concludes the
proof.

6.6 Extension

For simplicity of exposition, the protocol we described so far is for a single sender executing a single
program with the receiver. It can be extended to the setting where a sender can execute a sequence
of programs on a persistent database. Moreover, the message m1 published by the receiver can be
used by multiple senders, in which case the receiver maintains a different copy of the database for
every sender.

Executing multiple programs on a persistent database. After receiving the first message
m1 from the receiver, a sender can run multiple programs on a persistent database (with initial
content D) by sending one message per program to the receiver. For security we require only the
output and the memory access pattern of every program execution are revealed to the receiver.
We also require that once m1 is published, the computational cost of both the sender and the
receiver for every program should grow only with the running time of the RAM computation,
and is independent of the size of D. The NISC-RAM scheme we constructed in Section 6.3 can
be naturally extended to the multi-program setting. We explain the extension by describing the
changes of EncProg and Dec procedures for the second program. Encryption and evaluation of more
programs would follow analogously.

46

• EncProg: When encrypting the first program, the sender should store locally digestKeys∗ =
digestKeyst+1. Then, when encrypting the second program, there are two changes in EncProg
compared to encrypting the first program: (1) digestKeys∗ is used as the digest keys of the
first step circuit, (2) L is not generated.

• Dec: When evaluating the first program, the receiver should store locally digestLabels∗ =
digestLabelst+1. Then, when evaluating the second program, the sender should use digestLabels∗

as the digest labels for the first step circuit.

Multiple senders with a single receiver. The above protocol also works for multiple parallel
senders. That is, after the receiver publishes the first message m1, every sender S can send a
message mS to the receiver enabling the execution of PDS (xS), where D is the initial database of
the receiver, and (PS , xS) is the program of S. Security follows from the security of OT which
supports multiple second OT messages with the same first OT message. Moreover, every sender
can execute a sequence of programs on a persistent database. In this case, the receiver keeps a
different copy of her initial database for every sender.

7 Main Application: Multi-Hop Homomorphic Encryption for
RAM Programs

7.1 Our Model

Consider a server S and a collection of clients Q1, Q2, . . . with private databases D1, D2, . . ., re-
spectively. The clients ship their encrypted databases to S to be computed on later in multiple
executions in a persistent manner. At the beginning of any execution, the server S encrypts his
private input x as ct0, chooses a subset of clients Qi1 , . . . , Qin and sends the ct0 to client Qi1 .
Next, for all j ∈ [n], client Qij homomorphically evaluates an arbitrary program Pj of his choice
on ctj−1 to obtain ctj . Finally, client Qin sends ctn to the server S. The server decrypts this
ciphertext using his secret key of encryption as well as encrypted databases sent earlier to learn

P
Din
n

(
. . . P

Di1
1 (x) . . .

)
. During this execution, the databases get updated and future execution of

any client happens on respective updated databases.
We require that the size of the ciphertext only grows with the cumulative running time of all

programs in an execution and is independent of the size of the databases. For security, we require
program and data privacy for all honest clients against an adversary that corrupts the server and
any subset of the clients. Next, we describe the model formally.

We say that an ordered sequence of RAM programs P1, · · · , Pn are compatible if the output
length of Pi is the same as the input length of Pi+1 for every i ∈ [n − 1]. A multi-hop RAM
homomorphic encryption scheme mhop-RAM = (Setup,KeyGen, InpEnc,EncData,Eval,Dec) has the
following syntax. We define the algorithms w.r.t. clients Q1, . . . , Qn.

• Setup: crs← Setup(1λ).
On input the security parameter 1λ, it outputs a common reference string.

• Key Generation: (pk, sk)← KeyGen(1λ).
On input the security parameter 1λ, it outputs a public/secret key pair (pk, sk).

47

• Database Encryption: (D̃ = (D̂, digest))← EncData(crs, D).
On input the common reference string crs and database D ∈ {0, 1}M , it outputs an encrypted
database D̃ = (D̂, digest), where digest is a short digest of the database.

• Input Encryption: (ct, x secret)← InpEnc(x).
On input S’s input x, it outputs a ciphertext ct and secret state for S denoted by x secret.

• Homomorphic Evaluation: ct′ ← Eval(crs, i, {pkj}nj=i+1, ct, sk, (P, t), digest).
It takes as input the crs, the client number i, the public keys of the clients later in the
sequence, i.e., Qi+1, · · · , Qn, a ciphertext from the previous client, Q’s secret key sk, Q’s
RAM program P with maximum run-time t and the digest digest of the database D of Q. It
then outputs a new ciphertext ct′.

• Decryption: y = DecD̃1,··· ,D̃n(crs, x secret, ct).
On input the crs, server’s state x secret, the final ciphertext ct from client Qn, and RAM
access to encrypted databases D̃1, · · · , D̃n, it outputs y. The procedure Dec is itself modeled
as a RAM program that can read and write to arbitrary locations of its database initially
containing D̃1, · · · , D̃n.

Next, we describe how these algorithms are used in a real execution.

Real Scenario. In our multi-hop scheme for RAM programs, after the initialization phase that
generates the common-random string crs, each cleint runs key generation to generate the public
key and the secret key, followed by the database encryption. The encrypted database is sent to
the server, and the cleint stores the digest of the database locally. After this initialization phase,
the server S can initiate various executions of RAM computations with different subsets of the
clients. After each execution, the database of a client gets updated by the server during the
decryption phase. It is ensured that the server also learns the updated digest of the database that
is communicated to the clients during the start of the next execution.

At the onset of any execution, the server S encrypts his input and sends the ciphertext ct0 to
the first client Q1 and maintains x secret to be used later. The client Q1 generates the ciphertext
ct1 using his program P1 and digest digest1 and sends it to Q2. Similarly, when a client Qi receives
cti−1 from Qi−1, it uses program Pi and digesti to generate cti and sends it to Qi+1. This continues
and finally, Qn sends ctn back to the server S. Then, the server runs the decryption procedure on
ctn using all the encrypted databases and secret state x secret to obtain output y.

For the case of multiple executions, each of the above procedures take the session identifier sid

as additional input. We denote by D̃
(sid)
1 , · · · , D̃(sid)

n the encrypted databases before the execution

with session identifier sid. Initially D̃
(1)
1 = D̃1, · · · , D̃(1)

n = D̃n.
We require the algorithms above to satisfy the correctness, sender-privacy, client-privacy and

efficiency properties described below.

Correctness. We require that in a sequence of executions, each output of homomorphic eval-
uation equals the output of the corresponding computation in the clear. We formalize this as
follows: For every set of keys {(pki, ski)}

n
i=1 in the support of KeyGen, and any collection of initial

databases D1, · · · , Dn, for any unbounded polynomial N number of executions the following holds:

48

For sid ∈ N, let P
(sid)
1 , . . . , P

(sid)
n be the sequence of programs, x(sid) be the server’s input and D

(sid)
i

be the resulting database after executing the session sid-1 in the clear, then

Pr

[
DecD̃

(sid)
1 ,··· ,D̃(sid)

n

(
crs, x secret(sid), ct(sid)n

)
= P (sid)

n

D
(sid)
n

(
· · ·

(
P

(sid)
1

D
(sid)
1

(x(sid))

)
· · ·

)]
= 1,

where D̃
(sid)
i is the resulting garbled database after executing sid-1 homomorphic evaluations,

(ct
(sid)
0 , x secret(sid))← InpEnc(x(sid)), ct

(sid)
i ← Eval(crs, i, {pkj}nj=i+1, ct

(sid)
i−1 , sk, P

(sid)
i , t

(sid)
i , digest

(sid)
i).

Server Privacy (Semantic Security). For server privacy, we require that for every pair of
inputs (x0, x1), let (CTb, x secretb)← InpEnc(xb) for b ∈ {0, 1}, then

CT0
c
≈ CT1.

Client Privacy (Program Privacy) with Unprotected Memory Access (UMA). We
define client privacy against a semi-honest adversary that corrupts the server S as well as an
arbitrary subset of clients I ⊂ [n]. Intuitively, we require program-privacy for the honest clients
such that the adversary cannot learn anything beyond the output of the honest client’s program
on one input. We formalize this as follows:

There exists a PPT simulator ihopSim such that the following holds. Let crs ← Setup(1λ), for
every set of keys {(pki, ski)}

n
i=1 in the support of KeyGen, and any collection of initial databases

D1, · · · , Dn, for any unbounded polynomial N number of executions: For sid ∈ N, let P
(sid)
1 , . . . , P

(sid)
n

be the sequence of programs, x(sid) be the server’s input, then(
crs, (D̃1, . . . , D̃n),

{
ct

(sid)
0 , ct

(sid)
1 , . . . , ct(sid)n

}
sid∈[N]

)
c
≈(

crs, ihopSim

(
crs,

{
{pki, ski}i∈[n],

(
{Dj , P

(sid)
j }j∈I , x(sid)

)
,
{
Dj ,MemAccess

(sid)
j , y

(sid)
j

}
j∈[n]\I

}
sid∈[N]

))

where D̃i, ct
(sid)
i corresponds to outputs in the real execution given all the programs and databases

and y
(sid)
j = P

(sid)
j

D
(sid)
j

(
· · ·

(
P

(sid)
1

D
(sid)
1

(x(sid))

)
· · ·

)
.

Remark 7.1. We note that the above definition also captures the security against a semi-malicious
adversary who may choose his randomness for KeyGen maliciously but behaves honestly in the
protocol.

Client Privacy (Program Privacy) with Full Security. In the case of full client privacy, the
simulator ihopSim does not get the database and the access pattern for the honest clients. That is,

the simulator ihopSim takes as input

{
{pki, ski}i∈[n], ({Dj , P

(sid)
j }j∈I , x(sid)),

{
1Mj , 1t

(sid)
j , y

(sid)
j

}
j∈[n]\I

}
sid∈[N]

,

where Mj is the size of Dj and t
(sid)
j is the running time of P

(sid)
j .

49

Efficiency. We require the following efficiency guarantees from mhop-RAM. Let Mi = |Di|.

• |D̃i| = Mi · poly(λ, logMi) for all i ∈ [n].

• |ct0| = |x| · poly(λ), where ct0 is the output of InpEnc(x).

• |cti| =
∑i

j=1 n · tj · poly(λ, logMj , log tj) for all i ∈ [n].

Extension. This definition (and our construction) can be extended to the setting where in each
execution all the clients do not necessarily join the homomorphic evaluation. We allow for different
set of clients to participate in different executions. In particular, before the first execution, the
initial database of every client is encrypted. Later before each execution, a sequence of distinct
clients 〈i1, · · · , im〉 can be specified.

The input encryption is the same as above, while the homomorphic evaluation is executed in the
specified order (as specified by the server) as ctj ← Eval(crs, j, {pkiu}

n
u=j+1, skij , ctj−1, Pij , tij , digestij)

for every j ∈ [m]. And the decryption is executed as y = DecD̃i1 ,··· ,D̃im (crs, x secret, ctm), where
D̃i1 , · · · , D̃im are the up-to-date garbled databases of clients Qi1 , . . . , Qim . The correctness and
privacy properties can be naturally extended to this setting.

7.2 Building Blocks Needed

In this section we introduce building blocks needed in our construction. In addition to these building
blocks, we will also need RAM computation model (see Section 6.1.1) and two-message oblivious
transfer (see Section 6.1.2). We use [n] to denote the set {1, . . . , n}.

7.2.1 2-message Secure Function Evaluation based on Garbled Circuits

A two-message secure function evaluation (SFE) based on garbled circuits is as follows: Let U(·, ·)
be a particular “universal circuit evaluator” that takes as input the description of a circuit C and
an argument x, and returns U(C, x). We write C(x) as a shorthand for U(C, x). Let Alice be the
client with private input x and Bob have private input a circuit C. The protocol is as follows:

1. (m1, x secret)← SFE1(x): Alice computes (m1, x secret)← OT1(x) and sends m1 to Bob.

2. m2 ← SFE2(C,m1): Bob computes C̃← GCircuit
(
C, {keywb }w∈inp(C),b∈{0,1}

)
and

L← OT2

(
m1, {keywb }w∈inp(C),b∈{0,1}

)
. Sends m2 := (C̃, L).

3. y = SFEout(x secret,m2): Alice locally computes the output: {keywxw}w∈inp(C) = OT3(L, s secret),

and y = Eval
(
C̃, {keywxw}w∈inp(C)

)
.

The correctness of the above protocol follows from the correctness of Yao garbled circuits.
It can be shown that the above protocol is a secure function evaluation protocol satisfying both
semi-honest client privacy and semi-honest server privacy.

7.2.2 Re-Randomizable Secure Function Evaluation based on Garbled Circuits

[GHV10] defined the tool of “re-randomizable secure function evaluation” that was used to re-
alize multi-hop homomorphic computation for circuits. This tool was constructed under the
DDH assumption by instantiating Yao’s garbled circuits with a special encryption scheme (BHHO
[BHHO08]) and using re-randomizable two-message oblivious transfer [NP01].

50

Definition 7.2. A secure function evaluation protocol is said to be re-randomizable if there exists
an efficient procedure Re-rand such that for every input x and function f and every (m1, x secret) ∈
SFE1(x) and m2 ∈ SFE2(C,m1), the distributions {x,C,m1, x secret,m2,Re-rand(m1,m2)} and
{x,C,m1, x secret,m2,SFE2(C,m1)} are computationally indistinguishable.

[GHV10] proved the following:

Theorem 7.3 ([GHV10]). Under the DDH assumption, there exists a re-randomizable secure
function evaluation protocol satisfying Definition 7.2.

Below, we abstract out the scheme of [GHV10] by stating some of the procedures implicitly
provided by [GHV10] that will be needed for this paper.

Definition 7.4 (Re-randomizable Yao garbled circuits.). The scheme in [GHV10] provides the
following algorithms (implicitly) for their re-randomizable Yao scheme.

1. Keys = SampleKeys(1λ,W; r): Takes as input a set of input wires W as well randomness
r and outputs the input-keys for set of wires W for re-randomizable Yao. Note that it is
a deterministic function given the randomness r. When clear from context, we will skip
mentioning the inputs in the calls to this function.

2. C̃← ReGCircuit(C, InpKeys): Takes as input a circuit C and InpKeys for the input wires of C
and outputs a re-randomizable garbled circuit C̃ where input wires have keys as InpKeys.

3. C̃′ ← ReGCircuit′(C, InpKeys,OutKeys): Takes as input a circuit C, InpKeys for input wires of
C and OutKeys for output wires of C, and outputs a re-randomizable garbled circuit C̃ where
input wires have keys as InpKeys and output wires have keys as OutKeys.

4. Keys† = Transform(Keys, r): Takes as input Keys and randomness r and outputs randomized
keys Keys†. Also, we use Transform(Keys, {r1, . . . , rk}) to denote

Transform(Transform(. . . (Transform(Keys, r1), . . .), rk−1), rk)

5. (C̃′, L′) ← Re-rand
(

(C̃, L), {rw}w∈Wires(C)

)
: Takes as input a re-randomizable garbled circuit

C̃ and OT second messages L for the keys of input wires of C and randomness to re-randomize
each wire of C and outputs a new functionally equivalent re-randomizable garbled circuit C̃′

and consistent OT second messages L′. This procedure satisfies the property of re-randomizable
SFE. Moreover, the guarantee is that after randomization, for any wire w, the new keys for
w in C̃′ are Transform(keyw, rw). Finally, re-randomization of OT messages only requires11

{rw}w∈inp(C).

For our multi-hop homomorphic scheme for RAM it will be useful to define SampleKeys(·) as
follows: SampleKeys(1λ,W, r) = Transform(SampleKeys(1λ,W, 0?), r).

11In fact, each OT message for keys of a wire can be randomized consistently just given the randomness used for
that wire.

51

7.3 Our Construction of Multi-hop RAM Scheme

Below, in Section 7.3.1 we provide our construction for multi-hop scheme for RAM satisfying UMA-
security for clients (see Section 7.1). We give a general transformation for UMA to full security in
Section 7.3.5.

7.3.1 UMA Secure Construction

In this section, we first describe the UMA-secure scheme for one execution and then explain how
this scheme can be extended naturally for multiple executions in Section 7.3.3. Also, as we shall
see our scheme can easily be extended to the setting where different subset of parties participate
in each session.

UMA-secure multi-hop RAM scheme for a single execution involving all parties.
Let Q1, . . . , Qn be the clients holding databases D1, . . . , Dn, respectively, and S be the server.
Let the server’s private input be x and secret programs of clients be P1, . . . , Pn, respectively.
Let `OT = (crsGen,Commit,Send,Receive, SendWrite,ReceiveWrite) be an updatable laconic OT
scheme with sender privacy as defined in Definition 3.2. Let Re-GC = (SampleKeys,ReGCircuit,
ReGCircuit′,Transform,Re-rand) be a re-randomizable scheme for Yao’s garbled circuits given by
[GHV10] (see Definition 7.4). Let OT = (OT1,OT2,OT3) be a two-message oblivious transfer
protocol as defined in Section 6.1.2.

The multi-hop RAM scheme mhop-RAM = (Setup,KeyGen,EncData, InpEnc,Eval,Dec) is as fol-
lows: The algorithms Setup,KeyGen,EncData are formally described in Figure 14.

Setup: crs← Setup(1λ)
Setup algorithm generates the common reference string for laconic OT.

Key Generation: (pk, sk)← KeyGen(1λ)
Each client runs this algorithm once to generate the secret-key sk and public-key pk. A client Q
picks a PRF seed s as the secret key. Next, it generates the public key as the first message of OT
for s and secret-key as the secret state for OT as well as PRF key.

Looking ahead, the client Q will use the PRF key s to garble his own P and to randomize the
garbled program generated by all previous clients in any execution.

Database Encryption: D̃ ← EncData(crs, D)
Each client runs this algorithm at the beginning to garble the database and sends the garbled
database to the server S. The garbled database is generated by executing the Hash procedure of
laconic OT. This outputs an encoded database D̂ and a digest digest, both of which are given to
the server S.

Input Encryption: (ct, x secret)← InpEnc(x)
In each execution, the server S encrypts its input x as follows: It computes the first message of OT
as the ciphertext and stores the secret state of OT to be used for decryption of computation later.
The ciphertext is sent the first client, w.l.o.g. Q1. The algorithm InpEnc is described formally in
Figure 15.

52

Set up. crs← Setup(1λ).

1. Sample crs← crsGen(1λ).

2. Output crs.

Key Generation. (pk, sk)← KeyGen(1λ).
1. Sample a PRF key s← {0, 1}λ and generate (pk, s secret)← OT1(s).

2. Output (pk, sk := (s, s secret)).

Database Encryption. D̃ ← EncData(crs, D).
1. (digest, D̂)← Hash(crs, D).

2. Output D̃ = (digest, D̂).

Figure 14: Formal description of the set up, key generation and database encryption algorithms.

Input Encryption. (ct, x secret)← InpEnc(crs, x).

1. (ct, x secret)← OT1(x).

Figure 15: Input encryption algorithm.

Homomorphic Evaluation: ct′ ← Eval
(
crs, i, {pkj}nj=i+1, ct, sk = (s, s secret), (P, t), digest

)
.

This algorithm is executed by client Qi to generate the next ciphertext ct′ given ct from client Qi−1,
and is described formally in Figure 16. This is the most involved procedure in our construction, and
hence, we first provide an informal description. At a very high level, as illustrated in Figure 17, the
client Qi generate the garbled program for P consisting of t garbled circuits and also re-randomize
all the circuits in ct. As mentioned before, this re-randomization step is crucial to get program
privacy for this client. Moreover, the re-randomization has to be done carefully so that the previous
ct is consistent with the new garbled program.12

This procedure consists of four main steps: Let T be the number of step-circuits in ct.

1. Garble the new program P : For each τ ∈ [T + 1, T + t], client does the following: It generates
a “super-circuit” that is illustrated in Figure 18 consisting of a CPU step circuit Cstep

τ (see
Figure 19) and PRF circuits CPRF

τ,i+1, . . . ,C
PRF
τ,n (see Figure 20). A step circuit, encodes the

logic of a CPU step of a program P and PRF circuits provide a part of the randomness used
in re-randomization. We will elaborate on the functionality of PRF circuits later.

The garbled program will consists of garbled circuits corresponding to all the step circuits
and PRF circuits. The first step is to pick the keys for the input wires of all of these circuits.
Next, we begin by describing the step circuits.

Step Circuits Cstep
τ (Figure 19) : The inputs of a step circuit (see Figure 18) can be

partitioned into ((state, rData, digest),Rd), where state is the current CPU state, rData is the
bit-read from database, and digest is the up-to-date digest of the database. Rd corresponds
to the randomness given as input to the step-circuit computed from the PRF circuits. A step

12We do this by keeping track of the randomness used in randomizing the input wires for each garbled circuit.

53

Homomorphic Evaluation.

ct′ ← Eval

(
crs, i, {pkj}nj=i+1, ct =

(
L0,
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i
}
τ∈[T]

)
, sk = (s, s secret), (P, t), digest

)
.

1. Generate the “new” garbled program for P : Generate garbled circuits{
C̃step
τ , {C̃PRF

τ,j }nj=i+1

}T+t
τ=T+1

.

(a) Set stateKeysτ , dataKeysτ , digestKeysτ ,RdKeysτ,j ,PKeysτ,j for each τ ∈ [T + 1, T + t] and
j ∈ [i+ 1, n] as SampleKeys(Fs(GC ? ||τ)) where Fs(GC ? ||τ) is the randomness used and
? ∈ {STATE, DATA, DIGEST, RD, P}, respectively.
Set stateKeysτ , dataKeysτ , digestKeysτ to SampleKeys(0∗) for τ = T + t+ 1.

(b) Garble Cstep circuits: For each τ ∈ [T + 1, T + t]

C̃step
τ ← ReGCircuit

(
Cstep[i, crs, P,Keysτ+1, Fs(PSI||τ)],

(
Keysτ , {RdKeysτ,j}nj=i+1

))
,

where Keysτ = (stateKeysτ , dataKeysτ , digestKeysτ).
Embed labels dataKeysT+1

0 and digestKeysT+1
digest in C̃step

T+1.

(c) Garble CPRF circuits: For each [T + 1, T + t] and j ∈ [i+ 1, n], compute

C̃PRF
τ,j ← ReGCircuit′

(
CPRF[τ],PKeysτ,j ,RdKeysτ,j

)
.

2. Generate the OT second messages for newly generated circuits: For all τ ∈ [T +
1, T + t] and j ∈ [i+ 1, n] compute Lτ,j ← OT2

(
pkj ,PKeys

τ,j
)
.

3. Obtain partial labels for previous circuits:

(a) For every τ ∈ [T], compute Mτ,i = OT3 (Lτ,i, s secret) and C̃PRF
τ,i using input labels Mτ,i

and embed the labels in C̃step
τ .

(b) If i = 1, then L0 ← OT2(L0, stateKeys
1).

4. Re-randomize previous garbled circuits: If i > 1, do the following:

(a) For each τ ∈ [T], re-randomize the circuit C̃step
τ using Re-rand(·) (see Definition 7.4)

such that the input wire keys are randomized using Fs(GC ? ||τ), where ? ∈
{STATE, DATA, DIGEST, RD} for different input wires appropriately.

(b) For each τ ∈ [T], re-randomize the circuits {CPRF
τ,j }j∈[i+1,n] and {Lτ,j}j∈[i+1,n] using

Re-rand(·) such that the input wires are randomized using Fs(GC P||τ) and output wires
are randomized using Fs(GC RD||τ).

(c) Re-randomize L0 using Fs(GC STATE||1).

5. Output ct′ =

(
L0,
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i+1

}T+t
τ=1

)
.

Figure 16: Homomorphic evaluation algorithm

54

Homomorphic Evaluation by Qi

Program by Q1

si sn si sn si sn

Program by Q2

si sn si sn si sn

Program by Qi−1

si sn si sn si sn

Program by Q1

si+1 sn si+1 sn si+1 sn

Program by Qi−1

si+1 sn si+1 sn si+1 sn

Program by Qi

si+1 sn si+1 sn si+1 sn

Figure 17: Homomorphic Evaluation by Qi: Qi contributes new circuits (denoted in white in the
lower layer) and processes the input circuits as follows: (i) computes the yellow circuits, and (ii)
re-randomizes all input circuits. The re-randomized circuits are shown in gray color.

circuit executes one CPU step and passes on the updated state, new bit read, and new digest
to the next step circuit. Note that we do not achieve this by passing the output wires of τ
into input wires of τ + 1. That is, the output wire of τ will not have same keys as input
wires of τ + 1 (Note that the two consecutive step circuits are not connected by solid lines in
Figure 17.). Hence, the step circuit τ will have the keys of the next circuit hard-coded inside
it.

Next, we explain the logic of a step-circuit. First, it computes the new (state′,R/W, L,wData).
Next, it computes the transformed keys nextKeys† of the next step-circuit using the hard-coded
keys and the input randomness (this uses the transform functionality of re-randomizable Yao
from Section 7.2.2). Then, in the case of a “read” it outputs stateKeys† corresponding to
new state′, labels for data via laconic OT procedure Send(·) for location L where the sender’s

inputs are dataKeys†0, dataKeys
†
1 and digestKeys† corresponding to digest. The case of a write

is similar, but now the labels of new updated digest are transferred via laconic OT procedure
SendWrite(·). Note that it follows via correctness of reads and writes of the laconic OT that
the evaluator would be able to recover the correct labels for the read-data and the new digest.

The down-bend in output and input wires of step-circuits for data and digest in Figure 17
represents that these keys are not output in the clear, but are output using laconic OT.

55

CPRF[i+ 1]

Rdi+1

CPRF[n]

si+1 sn

Rdn

state

rData

digest

stateKeys†state′

edata or dataKeys†0

digestKeys†digest or (edigest,wData)

R/W, L

Cstep [crs, P, nextKeys, ψ]

Figure 18: One step circuit along with the attached PRF circuits.

Correct labels will be learnt during execution using the encoded database D̃i and laconic OT
procedures.

PRF circuits CPRF
τ,j (Figure 20) : This circuit takes as input a PRF key sj of client Qj

and outputs the PRF value corresponding to time-step τ . The use of these circuits will be
clear when we describe the re-randomization step below.

All these circuits are garbled such that the keys for output wires of PRF circuits are same as
keys for Rd input keys of step circuits. In Figure 17, this is depicted by joining the output wires
of PRF circuits with Rd input wires of step circuit with a solid line. The garbled program con-
sists of garbled step circuits and garbled PRF circuits {C̃step

τ , {C̃PRF
τ,j }j∈{i+1,...,n}}τ∈[T+1,T+t].

The client also embeds labels for rData = 0 and digesti in the first step circuit.

2. Generate OT messages for CPRF
τ,j : Recall that this circuit takes as input a PRF key sj of client

Qj whose OT first message is present in pkj . Client Qi generates the OT second message Lτ,j

for the input keys of C̃PRF
τ,j .

3. Evaluating the PRF circuits for itself: Note that the ciphertext ct consists of a sequence
of step circuits and PRF circuits for each step circuit corresponding to j ∈ {i, . . . , n}. See
Figure 17 where the PRF circuits for client Qi are depicted in yellow. Qi computes the
input labels for C̃PRF

τ,i using the OT message Lτ,i and embeds the output labels in to C̃step
τ for

56

Hard-coded parameters: [i, crs, P, nextKeys = (stateKeys, dataKeys, digestKeys), ψ].
Input: ((state, rData, digest), ({ωj , φj}j>i)).

(state′,R/W, L,wData) := CPCPU(state, rData).
nextKeys† := Transform(nextKeys, {ωj}j>i).
Parse nextKeys† as (stateKeys†, dataKeys†, digestKeys†).

if R/W = read then
edata ← Send(crs, digest, L, dataKeys†;ψ ⊕

⊕
j>i φj).

return
(

(stateKeys†state′ , edata, digestKeys†digest),R/W, L
)

.

else
edigest ← SendWrite

(
crs, digest, L,wData, digestKeys†;ψ ⊕

⊕
j>i φj

)
.

return
(

(stateKeys†state′ , dataKeys†0, edigest,wData),R/W, L
)

.

Figure 19: Pseudocode of the step circuit Cstep [i, crs, P, nextKeys, ψ].

Hard-coded parameters: [τ].
Input: s.

Output:
(
{Fs(GC ? ||τ + 1)}?∈{STATE,DATA,DIGEST} , Fs(LACONIC OT||τ)

)
.

Figure 20: PRF circuit CPRF[τ].

all τ ∈ [T]. In other words, Qi consumes the first PRF circuits from each step of previous
ciphertext ct.

4. Re-randomize the previous circuits: After consuming the first PRF circuit from each step,
Qi randomizes all the remaining circuits using appropriate randomness. Note that the input
keys of C̃step

τ+1 are randomized using the exact randomness that was fed into Cstep
τ via the PRF

circuit for Qi. This makes sure that the hard-coded input keys of step τ + 1 are randomized
consistently in the same way as how Qi will randomize the circuit C̃step

τ+1.

Hence, to conclude, the PRF circuits are present to provide the randomness needed to ran-
domize the hard-coded keys inside the step circuits 13.

Homomorphic Decryption: y = DecD̃1,··· ,D̃n
(
crs, x secret, ct =

(
L0,
{
C̃step
τ

}
τ∈[T]

))
.

The algorithm is described formally in Figure 21. It takes as input the secret state of the server
x secret and the final ciphertext ctn consisting of OT message for x and sequence of T step-circuits,
where T =

∑
i∈[n] ti. Note that all the PRF circuits have been evaluated already by correct parties

and correct labels for RdKeys have been embedded into the step-circuits. The server does the
following for decryption:

1. It obtains the stateLabels for the first circuit by running OT3. Note that the first circuit of
program of any client has labels for data and digest already embedded. Hence, now the server
knows all the labels for the first circuit.

13Note that randomization of garbled circuits preserves the functionality. Since the keys for the next circuit are
transferred using the laconic OT, we need to feed in correct keys into the Send functions of laconic OT.

57

Homomorphic Decryption.

y = DecD̃1,··· ,D̃n
(
crs, x secret, ct =

(
L0,
{
C̃step
τ

}
τ∈[T]

))
, where T =

∑
i∈[n] ti.

1. For all i ∈ [n], parse D̃i =
(
digesti, D̂i

)
.

2. Compute M0 = OT3 (L0, x secret).

3. Parse C̃step
1 = (C̃step

1 , dataLabels, digestLabels).

4. Define Labels1 = (stateLabels1 = M0, dataLabels
1 = dataLabels, digestLabels1 = digestLabels).

5. For τ = 1 to T do the following:

Define i s.t. τ ∈
[∑

j∈[i−1] tj + 1,
∑

j∈[i] tj

]
.

(X,R/W, L) := ReEval
(
C̃step
τ , Labelsτ

)
.

if R/W = read then
Parse X = (stateLabelsτ+1, edata, digestLabels

τ+1).

dataLabelsτ+1 := ReceiveD̂i(crs, edata, L).
else

Parse X = (stateLabelsτ+1, dataLabelsτ+1, edigest,wData).

digestLabelsτ+1 := ReceiveWriteD̂i(crs, L,wData, edigest).

if τ =
∑

j∈[i] tj and τ < T then

Parse C̃step
τ+1 = (C̃step

τ+1, dataLabels, digestLabels)
Set dataLabelsτ+1 = dataLabels and digestLabelsτ+1 = digestLabels.

Labelsτ+1 := (stateLabelsτ+1, dataLabelsτ+1, digestLabelsτ+1).

6. Decode output y using
(
stateLabelsT+1,SampleKeys(0∗)

)
.

Figure 21: Decryption algorithm for multi-hop scheme for RAM.

2. For τ ∈ [T], the server executes the circuit C̃step
τ , and learns the labels for the next circuit via

running the receiver algorithms of laconic OT correctly.

7.3.2 Correctness

Here we first prove correctness (as defined in Section 7.1) for a single execution. In fact, we would
prove something stronger that would help us extend the scheme to multiple executions in a straight-
forward manner. We prove the following two properties:

Property 1. For the above scheme, y = PDnn

(
. . . PD1

1 (x) . . .
)

, where programs, databases and

input x are as defined above.

Property 2. Let D̂′i, digest
′
i denote the updated encoded database and digest with the server after

58

the execution. We show that these are equal to Hash(crs, D′i), where D′ results after executing

PDii (P
Di−1

i−1 (. . . PD1
1 (x) . . .)).

Below we prove correctness via a sequence of facts and claims.

Fact 7.5. At any point in homomorphic evaluation, the circuit C̃PRF
τ,j and the second OT message

for its input keys Lτ,j are consistent.

This follows from correctness of OT2(·, ·) procedure when it is generated and the fact that
re-randomization happens consistently in Re-rand procedure of re-randomizable garbled circuits.

Fact 7.6. During the homomorphic evaluation of client Qi, in Step 3a, Figure 16 while obtaining
partial labels, Mτ,i = PKeysτ,is , where s is the PRF key of Qi.

This follows from the correctness of OT protocol as well as Fact 7.5.

Fact 7.7. During the homomorphic evaluation of client Qi, in Step 3a, Figure 16 the labels
embedded in circuit C̃step

τ correspond to RdKeysτ,iωi,φi where φi = Fs(LACONIC OT||τ) and ωi =
{Fs(GC ? ||τ + 1)}?∈{STATE,DATA,DIGEST}.

This is because the functionality of the CPRF is preserved in randomization so far, Fact 7.6
and because the output keys of C̃PRF

τ,i and RdKeysτ,i are same when they are generated and are
re-randomized using same randomness in Step 4b of Figure 16.

Recall that ctn consists of garbled step-circuits of client Q1 followed by Q2 and so on. We prove
the following fact about garbled step circuits belonging to some client Qi in final ciphertext ctn.

Claim 7.8. Consider circuits C̃step
τ and C̃step

τ+1 such that both belong to program Pi for some i. Since

all the PRF circuits C̃PRF have been evaluated, the value nextKeys† in C̃step
τ is well defined. Then,

nextKeys† = Keysτ+1 where Keysτ+1 corresponds to the input keys for C̃step
τ+1 in ctn.

Proof. Initially, Qi picks Keysτ+1 as SampleKeys(Fs(GC ? ||τ+1)), where ? ∈ {STATE, DATA, DIGEST}
and uses them in garbling of C̃step

τ+1 as well as are hardcoding inside Cstep
τ .

Then, C̃step
τ+1 is randomized by clients Qi+1, . . . , Qn such that the stateKeys, dataKeys, digestKeys

are randomized sequentially using ωj = (Fsj (GC STATE||τ+1), Fsj (GC DATA||τ+1), Fsj (GC DIGEST||τ+

1)). This is same as Transform(Keysτ+1, {ωj}j>i) inside C̃step
τ . By Fact 7.7, ωj is the value used for

Transform in C̃step
τ .

Claim 7.9. The above claim also holds for C̃step
τ and C̃step

τ+1 when τ is the last circuit of a program
for Qi and τ + 1 is the first circuit for Qi+1.

Proof. When the client Qi generates C̃step
τ , the keys hard-coded are SampleKeys(0?). Then, this

circuit is re-randomized by Qi+1 resulting in keys SampleKeys(Fsi+1(GC ? ||τ + 1)) which same as

the value used by Qi+1 to generate the step-circuit C̃step
τ+1.

Fact 7.10. The first garbled step circuit C̃step
1 gets evaluated on (x, 0, digest1).

This follows from correctness of OT and consistency of re-rerandomization of OT and garbled
circuits similar to Fact 7.5.

Now, we will prove a lemma about the execution of circuits generated by client Q1. Then, we
will prove a claim about the inputs on which circuit of Q2 is executed. Finally, the correctness of
execution programs of all clients would follow in a similar manner.

59

Lemma 7.11. Consider the program P1 and the database D1 of the first client and the input x of
the server. Consider the execution PD1

1 (x) execution in the clear as (stateτ , rDataτ) as the values on

which Cstep is executed. Also, let (D̂τ1 , digestτ) denote the Hash(crs, Dτ
1), where Dτ

1 is the database

at beginning of step τ . Then, while decryption, C̃step
τ is executed on inputs (stateτ , rDataτ , digestτ).

Moreover, the encoded database held by the server before step τ is D̂τ1.

Proof. We will prove this lemma by induction on τ . The base case follows from Fact 7.10. As-
sume that the lemma holds for τ = ρ, then we prove that the lemma holds for ρ + 1 as follows:
So it holds that C̃step

ρ is executed on (stateρ, rDataρ, digestρ). Moreover, (D̂ρ1, digestρ) denote the

Hash(crs, Dρ
1). Note that C̃step

ρ correctly implements its code that includes one CPU step of P1.

Hence, (state′,R/W, L,wData) = CPCPU(stateρ, rDataρ). Also, by Claim 7.8, nextKeys† in C̃step
ρ are

correct input keys for C̃step
ρ+1. There are following two cases:

• R/W = read: In this case, database and the digest are unchanged. New CPU state and digest
are output correctly. Moreover, the labels for bit read from the memory will be learnt via
Receive of updatable laconic OT. Correctness of these labels follows from correctness of read
of laconic OT.

• R/W = write: Similar to above, in this case new state and data keys are correctly output.
Moreover, the digest keys w.r.t. the new updated digest are output via laconic OT. The
correctness of these labels follows from correctness of laconic OT write function ReceiveWrite.
Finally, in this function, the encoded database is updated correctly.

Lemma 7.12. Let C̃step
t1

be the last circuit of client Q1 or program P1. Then, during decryption,

C̃step
t1+1 is executed on (y1, 0, digest2), where y1 = PD1

1 (x) and digest2 is the digest for D2.

Proof. At the time of homomorphic evaluation, in Step 1b, Figure 16, labels dataKeyst1+1
0 and

digestKeyst1+1
digest are embedded in C̃step

t1+1. Also, by Claim 7.9, in the final ciphertext ct, nextKeys†

inside C̃step
t1

are correct keys for C̃step
t1+1. Hence, the lemma holds since C̃step

t1
outputs stateKeys†state′ ,

where state′ = y1.

Lemma 7.13. Consider the program Pi and the database Di of the client Qi and the input x of the
server. Consider the execution PDii (yi−1) execution in the clear as (stateτ , rDataτ) as the values on

which Cstep is executed. Also, let (D̂τi , digestτ) denote the Hash(crs, Dτ
i), where Dτ

i is the database

at beginning of step τ . Then, while decryption, C̃step
τ is executed on inputs (stateτ , rDataτ , digestτ).

Moreover, the encoded database held by the server before step τ is D̂τi .

Proof. The lemma follows via induction on number of clients where the base case is proved in
Lemma 7.11. The rest of the proof follows simply via induction similar to Lemma 7.11 where at
the end of each program and beginning of a new program we prove Lemma 7.12. This proves both
the properties 1 and 2.

60

7.3.3 Extending to Multiple Executions

Recall that for correctness we also proved that the after one execution, the resulting garbled
database D̃ = (D̂, digest) corresponds to the output of Hash(crs, D′), where D′ is the correct
database resulting after the execution in the clear (See Property 2, Section 7.3.2).

Given this invariant after the first execution, the next execution happens identically as the first
execution with minor differences. To run the algorithm Eval, the clients need the updated digest of
their respective databases. The updated digests of all the clients taking part in an execution would
be sent by the server to the first client on that execution path, and would be passed along with
each ciphertext. Also, to ensure that no PRF output is used twice, each PRF invocation would
take the session identifier sid as an additional input. With these changes, the second execution is
identical to the first execution and hence, its correctness follows in a straight-forward manner.

Also, this does not affect the UMA-security because the simulator of the ideal world is given
the databases as well as memory access pattern of the honest clients as input as well.

Moreover, note that this generalizes to the scenario when different subset of clients take part in
different executions. Only the digests of the relevant client are passed around by the server.14

7.3.4 Security Proof

Server privacy follows receiver privacy of oblivious transfer. For ease of exposition, we prove client
UMA privacy for the setting of a single honest client Qi for a single execution. At the end of this
section we will show that the proof can be extended for the case of multiple honest clients and
multiple executions as well.

In the following, we prove that there exists a PPT simulator ihopSim such that, for any set of
databases {Dj}j∈[n], any sequence of compatible programs P1, · · · , Pn running time t1, · · · , tn and
input x, the outputs of the following two experiments are computational indistinguishable:
Real experiment

• (pkj , skj)← KeyGen(1λ) for ∀j ∈ [n].

• D̃j = (digestj , D̂j)← EncData(crs, Dj) for ∀j ∈ [n].

• (ct0, x secret)← InpEnc(crs, x).

• ctj ← Eval
(
crs, j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for ∀j ∈ [n].

• Output ct0, {D̃j , ctj}j∈[n].

Simulated experiment

• (pki, ski)← ihopSim(1λ, i).

• (pkj , skj)← KeyGen(1λ; rj) for ∀j ∈ [n] \ {i}. Here, rj are uniform random coins.

•
(
ct0, {D̃j , ctj}j∈[n]

)
← ihopSim(crs, x, {pkj , skj , Dj , tj}j∈[n], {Pj , rj}j∈[n]\{i},MemAccessi, yi),

where yi = Pi
Di
(
· · ·
(
P1

D1(x)
)
· · ·
)
.

• Output ct0, {D̃j , ctj}j∈[n].
14It can also extended to the setting, when a client Qi occurs multiple times in the chain of clients in an execution.

To handle this setting, the digest of Di is passed along all the programs between two instances of this client as
additional state.

61

The above definition can be made semi-malicious by allowing the adversary to pick random coins
rj adversarially given the public key pki of honest client as follows: {rj}j∈[n]\{i} ← A(1λ, crs, pki)
that will be used to define (pkj , skj) in Step 2. Our proof would also support this stronger setting
as well.

Construction of ihopSim: We describe the two phases of ihopSim. In the first phase, ihopSim
generates the keys of honest client Qi as (pki, ski)← KeyGen(1λ).

In the second phase, ihopSim is described in Figure 22. At a high level, ihopSim generates
everything honestly except cti. When generating cti, it simulates the step circuits one by one from
the last to the first using the output yi and memory access MemAccessi. In particular, since ihopSim
takes Di and MemAccessi as input, it can compute Di and digesti before every step circuit, and use
that to compute the output of every step circuit. Security follows from security of re-randomization
of SFE, namely re-randomized garbled circuits are indistinguishable from freshly generated ones
and that freshly generated garbled circuits are indistinguishable from simulated ones.

Now we give a series of hybrids such that the first hybrid outputs
(
ct0, {D̃j , ctj}j∈[n]

)
in the

real execution, and the last hybrid is the output of ihopSim. Notice that the only difference between
the real and ideal experiments is cti, so all the hybrids generate everything in the same way except
cti.

• Ĥ0: Output in the real experiment.

• H0: In this hybrid, replace Fsi(·) with a truly random function F . In particular, when
computing cti as in Figure 16, in steps 1a and 4, use the values generated by F ; in step 3a
embed labels corresponding to the values from F . The indistinguishability of this hybrid
with Ĥ0 follows from the pseudo-randomness of Fsi(·) and privacy of oblivious transfer (si is
hidden in pki).

• Hm (m ∈ [Ti]): Next we consider a sequence of hybrids H1, · · · ,HTi . The description of Hm
is in Figure 23. Notice that cti consists of Ti step circuits with corresponding PRF circuits.
In hybrid Hm, the step circuits from 1 to m are simulated while the remaining step circuits
(m+1 to Ti) are generated honestly. Given all the programs and secret keys, the intermediate
outputs as well as input/output labels of every step circuit can all be computed. Given the
correct output of circuit Cstep

m , the step circuits from 1 to m can be simulated one by one from
the m-th to the first similarly as in ihopSim.

To show Hm is indistinguishable from Hm−1, first notice that they are the same except(
C̃step
m , {C̃PRF

m,j , Lm,j}nj=i+1

)
in cti. Consider an intermediate hybrid Ĥm which is the same

as Hm except that in step 2f when τ = m, follow the steps in Figure 24. In particular, when
τ = m, Ĥm computes the output of Cstep

m and uses that output to simulate C̃step
m by CircSim

and OT2. The output of C̃step
m is the same for Hm−1 and Ĥm. The indistinguishibility of Ĥm

and Hm−1 follows from the security of garbled circuits directly when m ∈ [Ti−1 +1, Ti]. When
m ∈ [Ti−1], it follows from the security of garbled circuits and re-randomization. More pre-
cisely, the re-randomized garbled circuit is indistinguishable from a freshly generated garbled
circuit, which is indistinguishable from a simulated one. Notice that the random coins used
in re-randomization for C̃step

m is F (GC ? ||m), which is not used anywhere else in Hm−1, so it
can be treated as truly random coins.

62

(
ct0, {D̃j , ctj}j∈[n]

)
← ihopSim

(
crs, x, {pkj , skj , Dj , tj}j∈[n], {Pj}j∈[n]\{i},MemAccessi, yi

)
.

1. Compute D̃j = (digestj , D̂j)← EncData(crs, Dj) for ∀j ∈ [n].
Compute (ct0, x secret)← InpEnc(x).

Compute ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for every j ∈ [i− 1].

Pick a random function F (in the following use random values for F (·)).
2. Let Tj :=

∑
k∈[j] tk. Generate cti as follows:

(a) Run the program Pi−1
Di−1

(
· · ·
(
P1

D1(x)
)
· · ·
)

to obtain (R/Wτ
, Lτ ,wDataτ) for every CPU step

τ ∈ [Ti−1]. Obtain (R/Wτ
, Lτ ,wDataτ) for τ ∈ [Ti−1 + 1, Ti] from MemAccessi.

(b)
(
stateKeysTi+1, dataKeysTi+1, digestKeysTi+1

)
← SampleKeys(0∗).

Compute stateLabelsTi+1 using yi; compute dataLabelsTi+1, digestLabelsTi+1 using
(Di, digesti,R/W, L,wData) of the last CPU step.

(c) For τ = Ti downto 1, do the following:

(R/W, L,wData) := (R/Wτ
, Lτ ,wDataτ).

Define j s.t. τ ∈ [Tj−1 + 1, Tj].
Let D be the database of Qj before step τ .(
stateLabelsτ+1, dataLabelsτ+1, digestLabelsτ+1

)
← Transform

(
(stateLabelsτ+1, dataLabelsτ+1, digestLabelsτ+1),{

Fsi+1
(GC ? ||τ + 1)

}
?∈{STATE,DATA,DIGEST} || · · · || {Fsn(GC ? ||τ + 1)}?∈{STATE,DATA,DIGEST}

)
.

if R/W = read then
edata ← `OTSim

(
crs, D, L, dataLabelsτ+1

)
.

X ← (stateLabelsτ+1, edata, digestLabels
τ+1).

else
edigest ← `OTSimWrite

(
crs, D, L,wData, digestLabelsτ+1

)
.

X ← (stateLabelsτ+1, dataLabelsτ+1, edigest,wData)({
C̃step
τ , {C̃PRF

τ,j }nj=i+1

}
, Labelsτ

)
← CircSim

(
1λ,U , (X,R/W, L)

)
such that the output labels

of C̃PRF
τ,j are the same as input labels of RdLabsτ,j for C̃step

τ .

Parse Labelsτ =
(
stateLabelsτ , dataLabelsτ , digestLabelsτ , {PLabelsτ,j}j∈[i+1,n]

)
.

Lτ,j ← OT2

(
pkj , (PLabels

τ,j ,PLabelsτ,j)
)

for every j ∈ [i+ 1, n].

if τ = Tj−1 + 1 then

Embed stateLabelsτ and digestLabelsτ in C̃step
τ .

(stateKeysτ , dataKeysτ , digestKeysτ)← Transform
(
SampleKeys(0∗),{

Fsj (GC ? ||τ)
}
|| · · · ||

{
Fsi−1

(GC ? ||τ)
}
|| {F (GC ? ||τ)}?∈{STATE,DATA,DIGEST}

)
.

Compute (dataLabelsτ , digestLabelsτ) using (Dj−1, digestj−1,R/W, L,wData) at step τ − 1.

(d) L0 ← OT2

(
ct0, (stateLabels

1, stateLabels1)
)
.

(e) cti :=

(
L0,
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i+1

}
τ∈[Ti]

)
.

3. Compute ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for every j ∈ [i+ 1, n].

4. Output ct0, {D̃j , ctj}j∈[n].

Figure 22: Simulator of multi-hop RAM63

1. Compute D̃j = (digestj , D̂j)← EncData(crs, Dj) for ∀j ∈ [n].
Compute (ct0, x secret)← InpEnc(x).

Compute ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for every j ∈ [i− 1].

Pick a random function F (in the following use random values for F (·)).
2. Let Tj :=

∑
k∈[j] tk. Generate cti as follows:

(a) Compute
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i+1

}
τ∈[m+1,Ti]

honestly as in Figure 16.

(b) Run the program Pi
Di
(
· · ·
(
P1

D1(x)
)
· · ·
)

to obtain (stateτ ,R/Wτ
, Lτ ,wDataτ) for every τ ∈ [Ti].

(c) Define j s.t. m ∈ [Tj−1 + 1, Tj].

(d) Set stateKeysm+1, dataKeysm+1, digestKeysm+1 as SampleKeys(Fsj (GC ? ||m + 1)) where
? ∈ {STATE, DATA, DIGEST}, respectively.
If m = Tj , then set stateKeysm+1, dataKeysm+1, digestKeysm+1 to SampleKeys(0∗).
If j < i, then

(
stateKeysm+1, dataKeysm+1, digestKeysm+1

)
← Transform

((
stateKeysm+1, dataKeysm+1, digestKeysm+1

)
,{

Fsj+1(GC ? ||m+ 1)
}
|| · · · ||

{
Fsi−1(GC ? ||m+ 1)

}
|| {F (GC ? ||m+ 1)}?∈{STATE,DATA,DIGEST}

)
.

(e) Compute (stateLabelsm+1, dataLabelsm+1, digestLabelsm+1) using (statem,R/Wm
, Lm,wDatam)

and (Dj , digestj) at step m.

(f) For τ = m downto 1, do the following:
Follow the same steps as in Figure 22 step 2c.

(g) L0 ← OT2

(
ct0, (stateLabels

1, stateLabels1)
)
.

(h) cti :=

(
L0,
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i+1

}
τ∈[Ti]

)
.

3. Compute ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for every j ∈ [i+ 1, n].

4. Output ct0, {D̃j , ctj}j∈[n].

Figure 23: Hybrid Hm

64

(R/W, L,wData) := (R/Wτ
, Lτ ,wDataτ).

Define j s.t. τ ∈ [Tj−1 + 1, Tj].
Let (D, digest) be the database and digest of Qj before step τ .
Let state′ be the CPU state after step τ .(
stateKeysτ+1, dataKeysτ+1, digestKeysτ+1

)
← Transform

(
(stateKeysτ+1, dataKeysτ+1, digestKeysτ+1),{

Fsi+1
(GC ? ||τ + 1)

}
?∈{STATE,DATA,DIGEST} || · · · || {Fsn(GC ? ||τ + 1)}?∈{STATE,DATA,DIGEST}

)
.

if R/W = read then
edata ← Send(crs, digest, L, dataKeysτ+1;F (PSI||τ)⊕

⊕
j>i Fsj (LACONIC OT||τ)).

X ← (stateKeysτ+1
state′ , edata, digestKeys

τ+1
digest).

else
edigest ← SendWrite

(
crs, digest, L,wData, digestKeysτ+1;F (PSI||τ)⊕

⊕
j>i Fsj (LACONIC OT||τ)

)
.

X ← (stateKeysτ+1
state′ , dataKeys

τ+1
0 , edigest,wData).({

C̃step
τ , {C̃PRF

τ,j }nj=i+1

}
, Labelsτ

)
← CircSim

(
1λ,U , (X,R/W, L)

)
such that the output labels of C̃PRF

τ,j are

the same as input labels of RdLabsτ,j for C̃step
τ .

Parse Labelsτ =
(
stateLabelsτ , dataLabelsτ , digestLabelsτ , {PLabelsτ,j}j∈[i+1,n]

)
.

Lτ,j ← OT2

(
pkj , (PLabels

τ,j ,PLabelsτ,j)
)

for every j ∈ [i+ 1, n].

if τ = Tj−1 + 1 then

Embed stateLabelsτ and digestLabelsτ in C̃step
τ .

(stateKeysτ , dataKeysτ , digestKeysτ)← Transform
(
SampleKeys(0∗),{

Fsj (GC ? ||τ)
}
|| · · · ||

{
Fsi−1(GC ? ||τ)

}
|| {F (GC ? ||τ)}?∈{STATE,DATA,DIGEST}

)
.

Compute (dataLabelsτ , digestLabelsτ) using (Dj−1, digestj−1,R/W, L,wData) at step τ − 1.

Figure 24: Difference of Hm and Ĥm.

65

To switch from Ĥm to Hm, we replace X in Figure 24 with simulated edata and edigest for
CircSim and OT2. The indistinguishability follows from sender privacy of updatable laconic
OT and that Send and SendWrite both take random coins F (PSI||m).

• ĤTi : Output in the simulated experiment. This hybrid is the same as HTi .

Extension. The above proof can be naturally extended to provide security for multiple clients
and many executions. For example in the case of two clients Qi1 and Qi2 , ihopSim first computes(
ct0, {D̃j}j∈[n], {ctj}j∈[i1−1]

)
honestly, then computes cti1 same as in Figure 22 step 2. It then

computes {ctj}j∈[i1+1,i2−1] from cti1 by Eval, and computes cti2 same as in Figure 22 step 2.15

Finally it computes {ctj}j∈[i2+1,n] from cti2 by Eval. To show this is indistinguishable from the real
execution, we consider the following hybrids:

• H0: Output in the real experiment.

• H1: First compute
(
ct0, {D̃j}j∈[n], {ctj}j∈[i2−1]

)
honestly, and then compute cti2 same as in

Figure 22 step 2. Finally it computes {ctj}j∈[i2+1,n] from cti2 honestly by Eval.

• H2: Output in the simulated experiment.

The above hybrids are indistinguishable because an honestly generated cti1 or cti2 is indistinguish-
able from a simulated one, as we have shown in the single-client case.

To simulate multiple executions, ihopSim can simply repeat the procedure for every execution.
We note that there is no connection between executions except the digest, so they can be simulated
separately given the initial digests of every execution. The hybrids go from the real experiment to
the simulated experiment by replacing all the honestly generated ct’s in one execution by simulated
ones, one execution per hybrid.

7.3.5 UMA to Full Security for Multi-hop RAM Scheme

In this section we provide a fully secure multi-hop RAM scheme. We first review Oblivious RAM
(ORAM), which was first introduced by Goldreich [Gol87, GO96] and Ostrovsky [Ost90, Ost92,
GO96]. We then use ORAM as a compiler to encode the memory and program into a special
format that does not reveal the access pattern or data contents during an execution.

Definition 7.14 (Oblivious RAM). An Oblivious RAM scheme consists of two procedures (OData,OProg)
with syntax:

• (D∗, s∗) ← OData(1λ, D): Given a security parameter λ and memory D ∈ {0, 1}M as input,
OData outputs the encoded memory D∗ and encoding key s∗.

• P ∗ ← OProg(1λ, 1logM , 1t, P): Given a security parameter λ, a memory size M , and a pro-
gram P that runs in time t, OProg outputs an oblivious program P ∗ that can access D∗ as
RAM and takes two inputs x and s∗.

15Notice that different from Figure 22, the simulator here doesn’t take Pi1 as input, but the simulation can still
obtain (R/Wτ , Lτ ,wDataτ) for every step τ ∈ [Ti1−1 + 1, Ti1] given Di1 and MemAccessi1 , and that is enough for the
simulation.

66

Efficiency. We require that the run-time of OData should be M · polylog(M) · poly(λ), and the
run-time of OProg should be t · poly(λ) · polylog(M). Finally, the oblivious program P ∗ itself should
run in time t′ = t · poly(λ) · polylog(M). Both the new memory size M ′ = |D∗| and the running
time t′ should be efficiently computable from M, t, and λ.

Correctness. Let P1, . . . , P` be programs running in polynomial times t1, . . . , t` on memory D of
size M . Let x1, . . . , x` be the inputs and λ be a security parameter. Then we require that:

Pr[(P ∗1 (x1, s
∗), . . . , P ∗` (x`, s

∗))D
∗

= (P1(x1), . . . , P`(x`))
D] = 1

where (D∗, s∗) ← OData(1λ, D), P ∗i ← OProg(1λ, 1logM , 1t, Pi) and (P ∗1 (x1, s
∗), . . . , P ∗` (x`, s

∗))D
∗

indicates running the ORAM programs on D∗ sequentially.

Security. For security, we require that there exists a PPT simulator S such that for any sequence
of programs P1, . . . , P`, initial memory data D ∈ {0, 1}M , and inputs x1, . . . , x` we have that:

(D∗,MemAccess)
c
≈ S(1λ, 1M , {1ti , yi}`i=1)

where (y1, . . . , y`) = (P1(x1), . . . , P`(x`))
D, (D∗, s∗) ← OData(1λ, D), and MemAccess corresponds

to the access pattern of the CPU-step circuits during the sequential execution of the oblivious pro-
grams (P ∗1 (x1, s

∗), . . . , P ∗` (x`, s
∗))D

∗
.

We prove the following theorem.

Theorem 7.15. Assume there exists a UMA-secure multi-hop RAM scheme and an ORAM scheme.
Then there exists a fully secure multi-hop RAM scheme. Moreover, we give a black-box construction
of one given a UMA-secure multi-hop RAM and ORAM scheme.

Proof. We first give the construction of the scheme itself and then provide a construction of an
appropriate simulator to prove security. Let (Setup,KeyGen,EncData, InpEnc,Eval,Dec) be a UMA-
secure multi-hop RAM scheme and let (OData,OProg) be an ORAM scheme. We construct a new

multi-hop RAM scheme (Ŝetup, K̂eyGen, ̂EncData, ̂InpEnc, Êval, D̂ec) as follows:

• Ŝetup(1λ): Generate crs same as Setup.

• K̂eyGen(1λ): Generate (pk, sk) same as KeyGen.

• ̂EncData(crs, D): Execute (D∗, s∗)← OData(1λ, D) followed by D̃ ← EncData(1λ, D∗).

• ̂InpEnc(x): Execute (ct, x secret)← InpEnc(x).

• Êval
(
i, {pkj}nj=i+1, ct, sk, (P, t), digest

)
: Execute (P ∗, t∗) ← OProg(1λ, 1logM , 1t, P) followed

by Eval
(
i, {pkj}nj=i+1, ct, sk, (P

∗[s∗], t∗), digest
)

, where P ∗ has s∗ hard-coded inside it.

• D̂ec
D̃1,··· ,D̃n

(x secret, ct): Output DecD̃1,··· ,D̃n (x secret, ct).

We prove that the construction above given by (Ŝetup, K̂eyGen, ̂EncData, ̂InpEnc, Êval, D̂ec) is a
fully secure multi-hop RAM scheme.

67

Correctness in a single execution. First we prove correctness for a single execution, and then
we will generalize to multiple executions. In a single execution, our goal is to demonstrate that

Pr

[
D̂ec

D̃1,··· ,D̃n
(x secret, ctn) = Pn

Dn
(
· · ·
(
P1

D1(x)
)
· · ·
)]

= 1,

where D̃i ← ̂EncData(1λ, Di), (ct0, x secret)← ̂InpEnc(x), cti ← Êval(i, {pkj}nj=i+1, cti−1, sk, Pi, ti, digesti).

By definition, D̂ec
D̃1,··· ,D̃n

(x secret, ctn) = DecD̃1,··· ,D̃n (x secret, ctn). By the correctness of the

UMA-secure multi-hop RAM scheme, we have that DecD̃1,··· ,D̃n(x secret, ctn) = P ∗n [s∗n]D
∗
n

(
· · ·
(
P ∗1 [s∗1]

D∗1 (x)
)
· · ·
)

.

Finally, by the correctness of the ORAM scheme, P ∗n [s∗n]D
∗
n

(
· · ·
(
P ∗1 [s∗1]

D∗1 (x)
)
· · ·
)

= Pn
Dn
(
· · ·
(
P1

D1(x)
)
· · ·
)
.

Correctness in multiple executions. To prove correctness in multiple executions, we need to
show that

Pr

[
D̂ec

D̃
(sid)
1 ,··· ,D̃(sid)

n
(

x secret(sid), ct(sid)n

)
= P (sid)

n

D
(sid)
n

(
· · ·

(
P

(sid)
1

D
(sid)
1

(x(sid))

)
· · ·

)]
= 1,

where D̃
(sid)
i is the resulting garbled database after executing sid-1 homomorphic evaluations,

(ct
(sid)
0 , x secret(sid))← ̂InpEnc(x(sid)), ct(sid)i ← Êval(i, {pkj}nj=i+1, ct

(sid)
i−1 , sk, P

(sid)
i , t

(sid)
i , digest

(sid)
i).

Recall that for correctness of the UMA-secure multi-hop RAM scheme we proved that the after

every execution, the resulting garbled database D̃
(sid)
i corresponds to the output of Hash(crs, D

(sid)
i),

where D
(sid)
i is the correct D∗i resulting after previous sid−1 executions in the clear (see Property 2,

Section 7.3.2). By correctness of ORAM and the underlying UMA-secure multi-hop RAM scheme,
we conclude the correctness in multiple executions.

Security for a single client in a single execution. Server privacy is follows by receiver
privacy of oblivious transfer. Now we prove client privacy for a single honest client Qi in a single
execution. More precisely, we prove that there exists a PPT simulator ihopSim such that, for any
set of databases {Dj}j∈[n], any sequence of compatible programs P1, · · · , Pn running time t1, · · · , tn
and input x, the outputs of the following two experiments are computational indistinguishable:
Real experiment

• (pkj , skj)← KeyGen(1λ) for ∀j ∈ [n].

• D̃j = (digestj , D̂j)← EncData(crs, Dj) for ∀j ∈ [n].

• (ct0, x secret)← InpEnc(x).

• ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for ∀j ∈ [n].

• Output ct0, {D̃j , ctj}j∈[n].

Simulated experiment

• (pki, ski)← ihopSim(1λ, i).

• (pkj , skj)← KeyGen(1λ; rj) for ∀j ∈ [n] \ {i}. Here, rj are uniform random coins.

68

•
(
ct0, {D̃j , ctj}j∈[n]

)
← ihopSim

(
crs, x, {pkj , skj , tj}j∈[n], {Dj , Pj , rj}j∈[n]\{i}, 1Mi , yi

)
, where

yi = Pi
Di
(
· · ·
(
P1

D1(x)
)
· · ·
)
.

• Output ct0, {D̃j , ctj}j∈[n].

We let OSim be the ORAM simulator, and USim be the simulator for the UMA-secure multi-
hop RAM scheme. We describe the two phases of ihopSim. In the first phase, ihopSim generates
the keys of honest client Qi as (pki, ski) ← KeyGen(1λ). In the second phase, ihopSim proceeds as
follows.

1. Compute (D∗i ,MemAccessi)← OSim(1λ, 1Mi , 1ti , yi).

2. Compute (D∗j , s
∗
j) from ̂EncData and P ∗j from Êval for every j ∈ [n] \ {i}.

3. Compute
(
ct0, {D̃j , ctj}j∈[n]

)
← USim(crs, x, {pkj , skj , t∗j}j∈[n], {D∗j , P ∗j [s∗j], rj}j∈[n]\{i}, D∗i ,MemAccessi,

yi).

4. Output
(
ct0, {D̃j , ctj}j∈[n]

)
.

We now prove the output of the simulator is computationally indistinguishable from the real
distribution.

• H0: Output of the real experiment.

• H1: Compute (D∗j , s
∗
j) from ̂EncData and P ∗j from Êval for every j ∈ [n]\{i}. Use the honestly

generated (D∗i , s
∗
i) from ̂EncData and P ∗i from Êval to execute the program P ∗i [s∗i]

D∗i
(
· · ·
(
P ∗1 [s∗1]

D∗1 (x)
)
· · ·
)

and obtain yi and a sequence of memory accesses MemAccessi. Run
(
ct0, {D̃j , ctj}j∈[n]

)
←

USim(crs, x, {pkj , skj , t∗j}j∈[n], {D∗j , P ∗j [s∗j], rj}j∈[n]\{i}, D∗i ,MemAccessi, yi) and output.

Since (D∗i ,MemAccessi) is the same as the real execution, the indistinguishability of this
hybrid and H0 follows from UMA-security of the underlying multi-hop RAM scheme.

• H2: Output of the simulated experiment. The only thing that differs in H1 and H2 is how we
generate D∗i and MemAccessi. In H1 they are generated honestly and in H2 they are generated

by OSim. H1
c
≈ H2 follows from the security of ORAM.

Security for multiple clients and multiple executions. Similar as in the proof of UMA
security, the above proof can be naturally extended to provide security for multiple clients and
many executions. For example in the case of two clients Qi1 and Qi2 , ihopSim first computes(
ct0, {D̃j}j∈[n], {ctj}j∈[i1−1]

)
honestly, then simulates cti1 same as above as if there were only one

honest client Qi1 . It then computes {ctj}j∈[i1+1,i2−1] from cti1 by Êval, and simulates cti2 same
as above as if there were only one honest client Qi2 . Notice that when simulating cti2 , similar
as in the UMA-secure scenario, ihopSim cannot generate (D∗i1 , s

∗
i1
, P ∗i1) honestly. Instead it will

use the simulated (D∗i1 ,MemAccessi1) generated from OSim, and that is enough for the simulation.

Finally it computes {ctj}j∈[i2+1,n] from cti2 by Êval. To show this is indistinguishable from the real
execution, we consider the following hybrids:

69

• H0: Output in the real experiment.

• H1: First compute
(
ct0, {D̃j}j∈[n], {ctj}j∈[i2−1]

)
honestly, and then compute cti2 same as

above as if there were only one honest client Qi2 . Finally it computes {ctj}j∈[i2+1,n] from cti2
honestly by Êval.

• H2: Output in the simulated experiment.

The above hybrids are indistinguishable because an honestly generated cti1 or cti2 is indistinguish-
able from a simulated one, as we have shown in the single-client case.

To simulate multiple executions, ihopSim should first use OSim to simulate (D∗i ,MemAccessi) for
every honest client Qi in all executions, and then repeat the above procedure for every execution.
In the hybrids, we start from the real execution and first replace the honestly generated ct’s by
simulated ones while using honestly generated (D∗i ,MemAccessi), and this step follows from the
UMA-security of the underlying multi-hop RAM scheme. Afterwards we replace the honestly
generated (D∗i ,MemAccessi) by the output of OSim, and this step follows from the security of
ORAM supporting multiple executions.

Acknowledgement

We thank the anonymous reviewers of CRYPTO 2017 for their helpful suggestions in improving
this paper. We also thank Yuval Ishai for useful discussions.

References

[ADT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters: Size-
hiding private set intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, PKC 2011: 14th International Conference on Theory
and Practice of Public Key Cryptography, volume 6571 of Lecture Notes in Computer
Science, pages 156–173, Taormina, Italy, March 6–9, 2011. Springer, Heidelberg, Ger-
many.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding func-
tions with constant online rate or how to compress garbled circuits keys. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part
II, volume 8043 of Lecture Notes in Computer Science, pages 166–184, Santa Barbara,
CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 119–135,
Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference

70

on Computer and Communications Security, pages 535–548, Berlin, Germany, Novem-
ber 4–8, 2013. ACM Press.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations in Theoretical Computer
Science, pages 326–349, Cambridge, MA, USA, January 8–10, 2012. Association for
Computing Machinery.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private compu-
tations. In 28th Annual ACM Symposium on Theory of Computing, pages 479–488,
Philadephia, PA, USA, May 22–24, 1996. ACM Press.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Rocco A. Servedio and Ronitt Rubin-
feld, editors, 47th Annual ACM Symposium on Theory of Computing, pages 439–448,
Portland, OR, USA, June 14–17, 2015. ACM Press.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision Diffie-Hellman. In David Wagner, editor, Advances in Cryp-
tology – CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages
108–125, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Ger-
many.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled cir-
cuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12: 19th
Conference on Computer and Communications Security, pages 784–796, Raleigh, NC,
USA, October 16–18, 2012. ACM Press.

[BPMW16] Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee. FHE circuit
privacy almost for free. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer
Science, pages 62–89, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Hei-
delberg, Germany.

[BSCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part
II, volume 8043 of Lecture Notes in Computer Science, pages 90–108, Santa Barbara,
CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foun-
dations of Computer Science, pages 97–106, Palm Springs, CA, USA, October 22–25,
2011. IEEE Computer Society Press.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,

71

pages 505–524, Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg,
Germany.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on Theory of Computing,
pages 429–437, Portland, OR, USA, June 14–17, 2015. ACM Press.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Sci-
ence, pages 207–222, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg,
Germany.

[COV15] Melissa Chase, Rafail Ostrovsky, and Ivan Visconti. Executable proofs, input-size
hiding secure computation and a new ideal world. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057
of Lecture Notes in Computer Science, pages 532–560, Sofia, Bulgaria, April 26–30,
2015. Springer, Heidelberg, Germany.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances
in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science,
pages 13–25, Santa Barbara, CA, USA, August 23–27, 1998. Springer, Heidelberg,
Germany.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, Advances
in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Sci-
ence, pages 45–64, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer,
Heidelberg, Germany.

[CV12] Melissa Chase and Ivan Visconti. Secure database commitments and universal ar-
guments of quasi knowledge. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 236–254, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Hei-
delberg, Germany.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie hellman
assumption. CRYPTO 2017 (to appear), 2017.

[DS16] Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I,
volume 9665 of Lecture Notes in Computer Science, pages 294–310, Vienna, Austria,
May 8–12, 2016. Springer, Heidelberg, Germany.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Symposium

72

on Foundations of Computer Science, pages 308–317, St. Louis, Missouri, October 22–
24, 1990. IEEE Computer Society Press.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178,
Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
– EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–17,
Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual Symposium on Foundations of Computer Science, pages 40–
49, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press.

[GGMP16] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure multiparty
RAM computation in constant rounds. In Theory of Cryptography - 14th International
Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceed-
ings, Part I, pages 491–520, 2016.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto,
CA, USA, June 1–4, 2013. ACM Press.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, edi-
tors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in
Computer Science, pages 405–422, Copenhagen, Denmark, May 11–15, 2014. Springer,
Heidelberg, Germany.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In 55th Annual Symposium on Foundations of Computer Science,
pages 404–413, Philadelphia, PA, USA, October 18–21, 2014. IEEE Computer Society
Press.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-Hop homomorphic encryption
and rerandomizable Yao circuits. In Tal Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 155–172,
Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM
CCS 12: 19th Conference on Computer and Communications Security, pages 513–524,
Raleigh, NC, USA, October 16–18, 2012. ACM Press.

73

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume
8043 of Lecture Notes in Computer Science, pages 536–553, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In Venkatesan
Guruswami, editor, 56th Annual Symposium on Foundations of Computer Science,
pages 210–229, Berkeley, CA, USA, October 17–20, 2015. IEEE Computer Society
Press.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
Annual ACM Symposium on Theory of Computing, pages 449–458, Portland, OR,
USA, June 14–17, 2015. ACM Press.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City,
NY, USA, May 25–27, 1987. ACM Press.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing,
pages 182–194, New York City, NY, USA, May 25–27, 1987. ACM Press.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new tech-
niques for NIZK. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006,
volume 4117 of Lecture Notes in Computer Science, pages 97–111, Santa Barbara, CA,
USA, August 20–24, 2006. Springer, Heidelberg, Germany.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I,
volume 8042 of Lecture Notes in Computer Science, pages 75–92, Santa Barbara, CA,
USA, August 18–22, 2013. Springer, Heidelberg, Germany.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. Journal of Cryptology, 25(1):158–193, January 2012.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015: 6th Innovations
in Theoretical Computer Science, pages 163–172, Rehovot, Israel, January 11–13, 2015.
Association for Computing Machinery.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume

74

2729 of Lecture Notes in Computer Science, pages 145–161, Santa Barbara, CA, USA,
August 17–21, 2003. Springer, Heidelberg, Germany.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sa-
hai. Efficient non-interactive secure computation. In Kenneth G. Paterson, editor,
Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-
puter Science, pages 406–425, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg,
Germany.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference, volume
4392 of Lecture Notes in Computer Science, pages 575–594, Amsterdam, The Nether-
lands, February 21–24, 2007. Springer, Heidelberg, Germany.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - efficiently. In David Wagner, editor, Advances in Cryptology –
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 572–591,
Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM Sympo-
sium on Theory of Computing, pages 20–31, Chicago, IL, USA, May 2–4, 1988. ACM
Press.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring
short secrets. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages
54–70, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on Theory of Computing,
pages 419–428, Portland, OR, USA, June 14–17, 2015. ACM Press.

[LNO13] Yehuda Lindell, Kobbi Nissim, and Claudio Orlandi. Hiding the input-size in se-
cure two-party computation. In Kazue Sako and Palash Sarkar, editors, Advances in
Cryptology – ASIACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer
Science, pages 421–440, Bengalore, India, December 1–5, 2013. Springer, Heidelberg,
Germany.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 719–734, Athens, Greece, May 26–
30, 2013. Springer, Heidelberg, Germany.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

[MRK03] Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In 44th Annual
Symposium on Foundations of Computer Science, pages 80–91, Cambridge, MA, USA,
October 11–14, 2003. IEEE Computer Society Press.

75

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao
Kosaraju, editor, 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
448–457, Washington, DC, USA, January 7–9, 2001. ACM-SIAM.

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Mali-
ciously circuit-private FHE. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer
Science, pages 536–553, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Hei-
delberg, Germany.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realiza-
tions of somewhere statistically binding hashing and positional accumulators. In Tetsu
Iwata and Jung Hee Cheon, editors, Advances in Cryptology – ASIACRYPT 2015, Part
I, volume 9452 of Lecture Notes in Computer Science, pages 121–145, Auckland, New
Zealand, November 30 – December 3, 2015. Springer, Heidelberg, Germany.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract).
In 29th Annual ACM Symposium on Theory of Computing, pages 294–303, El Paso,
TX, USA, May 4–6, 1997. ACM Press.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In 22nd Annual ACM
Symposium on Theory of Computing, pages 514–523, Baltimore, MD, USA, May 14–
16, 1990. ACM Press.

[Ost92] Rafail Ostrovsky. Software Protection and Simulation On Oblivious RAMs. PhD thesis,
Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer
Science, 1992.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer, 1981.

[Vil12] Jorge Luis Villar. Optimal reductions of some decisional problems to the rank prob-
lem. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASI-
ACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 80–97,
Beijing, China, December 2–6, 2012. Springer, Heidelberg, Germany.

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi.
SCORAM: Oblivious RAM for secure computation. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 14: 21st Conference on Computer and Communications
Security, pages 191–202, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago,
Illinois, November 3–5, 1982. IEEE Computer Society Press.

76

	Introduction
	Laconic OT
	Warm-Up Application: Non-Interactive Secure Computation on Large Inputs
	Main Application: Muti-Hop Homomorphic Encryption for RAM Programs
	Roadmap

	Technical Overview
	Laconic OT
	Laconic OT with Factor-2 Compression
	Bootstrapping Laconic OT

	Non-interactive Secure Computation on Large Inputs
	Multi-Hop Homomorphic Encryption for RAM Programs

	Laconic Oblivious Transfer
	Laconic OT
	Updatable Laconic OT

	Laconic Oblivious Transfer with Factor-2 Compression
	Somewhere Statistically Binding Hash Functions and Hash Proof Systems
	HPS-friendly SSB Hashing
	A Hash Proof System for Knowledge of Preimage Bits
	The Laconic OT Scheme

	Construction of Updatable Laconic OT
	Background
	Garbled Circuits
	Merkle Tree

	Construction
	Security

	Warm-Up Application: Non-Interactive Secure Computation (NISC) on Large Inputs in RAM Setting
	Background
	Random Access Machine (RAM) Model of Computation
	Oblivious Transfer

	Formal Model for NISC in RAM Setting
	Construction
	Correctness
	Security Proof
	Extension

	Main Application: Multi-Hop Homomorphic Encryption for RAM Programs
	Our Model
	Building Blocks Needed
	2-message Secure Function Evaluation based on Garbled Circuits
	Re-Randomizable Secure Function Evaluation based on Garbled Circuits

	Our Construction of Multi-hop RAM Scheme
	UMA Secure Construction
	Correctness
	Extending to Multiple Executions
	Security Proof
	UMA to Full Security for Multi-hop RAM Scheme

