Foundations for Actively Secure Card-based Cryptography

Alexander Koch and Stefan Walzer
Karlsruhe Institute of Technology (KIT), TU Ilmenau,
alexander.koch@kit.edu, stefan.walzer@tu-ilmenau.de

Abstract. Card-based cryptography allows to do secure multiparty computation in simple and elegant ways, using only a deck of playing cards, as first proposed by den Boer (EUROCRYPT 1989). Many protocols as of yet come with an “honest-but-curious” disclaimer. However, a central goal of modern cryptography is to provide security also in the presence of malicious attackers. At the few places where authors argue for the active security of their protocols, this is done ad-hoc and restricted to the concrete operations needed, often even using additional physical tools, such as envelopes or sliding cover boxes.

This paper provides the first systematic approach to active security in card-based protocols. We show how a large and natural class of shuffling operations, namely those which (opaquely) permute the cards according to a uniform distribution on a permutation group, can be implemented using only a linear number of helping cards. This ensures that any (information-theoretically) secure cryptographic protocol in the abstract model of Mizuki and Shizuya (Int. J. Inf. Secur., 2014), restricted to this natural class of shuffles, can be realized in an actively secure fashion. These shuffles already allow for securely computing any circuit (Mizuki and Sone, FAW 2009). In the process, we develop a more concrete model for card-based cryptographic protocols with two players, which we believe to be of independent interest.

Keywords: Card-based protocols · Card shuffling · Secure multiparty computation · Active security · Cryptography without computers

1 Introduction

The elegant “five-card trick” of den Boer [dBoe89] allows two players – here called Alice and Bob – to compute a logical AND of two private bits, using five playing cards. For instance, if the bit of a player encodes whether they have romantic interest for the other player, the protocol will result in a “yes”-output if and only if there is mutual interest, sparing a party with an unrequited crush the embarrassment of having this information revealed.

More generally, using a deck of playing cards (usually with symbols ♥, ♠), Alice and Bob can jointly compute an arbitrary boolean function on multiple secret inputs such that neither player learns anything (new) about the input, except, possibly, what can be learned from looking at the output. One distinctive
feature is that these protocols do not need a computer, which makes their security tangible with no need to rely on opaque hardware or malware-prone operating systems. This issue is long-known in the context of cryptographic voting which therefore often work with physical objects, such as special ballot papers or receipts, cf. e.g. \([PH10; BMR07; MN06b]\).

Card-based protocols are elegant and simple and have become popular for introducing secure multiparty computation in lectures and to non-experts.

The feasibility of general secure multiparty computation with cards was shown in \([dBoe89; CK93; NR98; Sti01]\). Since then, researchers proposed a wide range of protocols with different objectives and parameters. One line of research has been to minimize the number of cards used in protocols. In this regard, \([MS09; MKS12; KWH15; NNH^+15; KKW^+17]\) try to minimize the number of cards for AND, XOR or bit copy protocols, achieving, for instance, the minimum number of four cards for AND protocols both in committed\(^1\) and non-committed format. Moreover, \([NHMS15; Miz16; KWH15]\) are concerned with protocols for general circuits, using the least number of cards.

Besides these protocols, there have been nice, specialized protocols for tasks, such as cryptographic voting \([MAS13]\) and generating a private fixed-point-free permutation of a set of players, which can be used for names-in-the-hat-like games for the holiday season (“secret santa”) where the non-existence of fixed points ensures that nobody needs to give a present to themselves, cf. \([ICM15; CK93]\).

The key operations that introduce randomness in a controlled manner are shuffles. A shuffle operation causes a sequence of cards to be rearranged according to random permutation such that observers cannot tell which permutation was chosen. All early protocols relied solely on a uniform \textit{random cut}, which is a shuffle causing a cyclic shift on a pile of cards with uniformly random offset. Niemi and Renvall \([NR98, \text{Sect. 3}]\) and den Boer \([dBoe89]\) plausibly argue that random cuts can be performed by repeatedly cutting a pile of cards in quick succession, as players are unable to keep track of the offsets. Other shuffle operations were justified, including “dihedral group” shuffles \([NR98]\) and \([Sti01, \text{Sect. 7}]\), \textit{random bisection cuts} \([MS09; UNH^+16]\) and unequal division shuffles \([CHL13; NNH^+15; NHMS16]\).

In the formal computational model of Mizuki and Shizuya \([MS14a]\), a protocol specification may use any of the most general shuffling operations, namely applying a permutation from an \textit{arbitrary permutation set} chosen according to an arbitrary distribution. This computational model is very useful when showing impossibility results and \textit{lower bounds} on cards, cf. \([KWH15]\), but it seems unlikely that all shuffle operations permitted in the model have a convincing real world implementation. This spawned some formal protocols with apparently good

\(^1\) In a committed-format protocol, input and output bits are encoded by the order of two face-down cards (a “commitment”) that hides the value and hence, may be used as intermediary input to another protocol without looking at it, while those not in committed format usually leak the output result in the process and are hence unsuitable for larger circuits.
parameters, but unclear real-world implementations, especially if active security is a concern [KWH15, Sect. 7]. There is to this day still no positive account of what shuffles can be done with playing cards beyond the justification of individual protocols, and even then, most work with “honest-but-curious” assumptions, with no guarantees when one of the players deviates from the protocol.

Related Work. Other works have investigated the question of active attacks, albeit with a different focus. Mizuki and Shizuya [MS14b] address active security against adversaries who deviate from the input encoding, e.g. giving input (♥, ♦) instead of (♠, ♦). We sketch in Appendix C how our results subsume this, using a separate input phase. Moreover, they stress the necessity of non-symmetric backs to avoid marking cards by turning them upside down. Finally, using a secret sharing-like mechanism, they specify how to avoid security breaches by scuff marks on the backs of the cards. Shinagawa et al. [SMS+15] describe a method against injection attacks in their model using polarizing plates. Very recently and independently, Ueda et al. [UNH+16] give a nice and elaborate implementation of the special case of random bisection cuts, including experiments showing the real-world security of the shuffle.

Besides short ad-hoc discussions of the shuffle security, we believe that this is an exhaustive list of all investigations into active security so far. In particular, the issue of ensuring that only permutations allowed in the protocol description can be performed during a shuffling step has not been addressed for cases where this is non-trivial.

Our Contribution. At several places in the literature, e.g. [CHL13, Sect. 8] and [KWH15, Sect. 9], the open question of achieving actively secure shuffles and protocols is posed. In this paper, we answer a significant part of this question by explaining how any protocol in the model of [MS14a] that is restricted to uniform closed shuffles can be transformed into an actively secure protocol using only a linear number of helping cards.

Uniform closed shuffles, namely those that rearrange the cards according to a uniform distribution on a permutation group, have already been identified in [KWH15, Sect. 8] as a natural class of operations. Moreover, in [KKW+17] it is shown that protocols computing AND in committed format and finite runtime, when restricted to our actively-secure uniform closed shuffles need six cards, which is a tight bound due to the protocol of [MS09]. Note that compared to the setting without this restriction to the shuffles, we only need one additional card.

Furthermore, we define a new model for card-based cryptography, which we call two-player protocols. These, in turn, use permutation protocols that allow Alice to apply a \(\pi \in \Pi \) of her choosing to a sequence of face-down cards, such that Bob learns nothing about her choice. We believe this to be of independent interest, e.g. as an approach to formalize protocols such as the three-card AND protocol by Karun Singh as described in [MWS15, Sect. 3.2] that does not fit into the model of Mizuki and Shizuya.
The idea of using “private permutations” as base operations instead of shuffles was first mentioned in [KWH15, Sect. 8]. Independently from our work, these operations are used in [NTM+16] to more efficiently perform an instance of the millionaires problem with cards and in [NSIO17] for the case of a three-input voting protocol. The way they are used there causes the protocol to not be in committed format.

2 Preliminaries

Permutations. A permutation of a set \(X = \{1, \ldots, n\} \) for some \(n \in \mathbb{N} \), is a bijective map \(\pi : X \to X \). The set \(S_n \) of all permutations of \(\{1, \ldots, n\} \) is called symmetric group. It has group structure with the identity map \(\text{id} \) as neutral element and composition \(\circ \) as group operation. We can apply a permutation \(\pi \) of \(X \) to a set \(S \subseteq X \) writing \(\pi(S) := \{\pi(s) \mid s \in S\} \). We say that \(\pi \) respects \(S \) if \(\pi(S) = S \). In that case, \(\pi \) also respects the complement \(X \setminus S \) and we can define the restriction of \(\pi \) to \(S \) as the permutation \(\tau \) with domain \(S \) and \(\tau(s) = \pi(s) \) for all \(s \in S \). For elements \(x_1, \ldots, x_k \) the cycle \((x_1 \, x_2 \, \ldots \, x_k)\) denotes the cyclic permutation \(\pi \) with \(\pi(x_i) = x_{i+1} \) for \(1 \leq i < k \) and \(\pi(x_k) = x_1 \) and \(\pi(x) = x \) for all \(x \) not occurring in the cycle. The domain of \(\pi \) is not apparent from the cycle alone but can be any superset of the numbers occurring in the cycle. If several cycles act on pairwise disjoint sets, we write them next to one another to denote their composition. For instance \((1 \, 2)(3 \, 4 \, 5)\) denotes a permutation with mappings \(1 \mapsto 2, 2 \mapsto 1, 3 \mapsto 4, 4 \mapsto 5, 5 \mapsto 3 \). (We omit the composition operator \(\circ \).) Every permutation can be written in such a cycle decomposition.

By a conjugate of a permutation \(\pi \in S_n \) we mean any permutation of the form \(\pi' := \tau^{-1} \circ \pi \circ \tau \) where \(\tau \in S_n \). For a set \(\Pi \subseteq S_n \) of permutations and \(\tau \in S_n \) the set \(\tau^{-1} \circ \Pi \circ \tau := \{\tau^{-1} \circ \pi \circ \tau \mid \pi \in \Pi\} \) is a conjugate of \(\Pi \). Given an arbitrary sequence of objects \(\Gamma = (\Gamma[1], \ldots, \Gamma[n]) \) and a permutation \(\pi \in S_n \), then applying \(\pi \) to \(\Gamma \) yields the sequence \(\pi(\Gamma) = (\Gamma[\pi^{-1}(1)], \Gamma[\pi^{-1}(2)], \ldots, \Gamma[\pi^{-1}(n)]) \). Intuitively, the object in position \(i \) is transported to position \(\pi(i) \).

Sets and Groups. If \(g_1, g_2, \ldots, g_k \in G \) are group elements, \(\langle g_1, \ldots, g_k \rangle \) is the smallest subgroup of \(G \) containing \(g_1, \ldots, g_k \) and called the subgroup generated by \(\{g_1, \ldots, g_k\} \). For \(g \in G \) the order of \(g \) is \(\text{ord}(g) = |\langle g \rangle| = \min\{k \geq 1 \mid g^k = \text{id}\} \). In the following, a group is implicitly also the set of its elements.

Multisets and Decks. \([\diamond, \diamond, \diamond, \bullet, \bullet]\) is the multiset containing three copies of \(\diamond \) and two copies of \(\bullet \), also written as \([3 \cdot \diamond, 2 \cdot \bullet]\). If such a multiset represents cards, it is called a deck. All cards are implicitly assumed to have the same back, unless stated otherwise. Cards can lie face-up or face-down. When face-down, all cards are indistinguishable (unless they have different backs). When face-up, cards with the same symbol are indistinguishable. Throughout this paper, cards are always face-down with the exception of special operations that reveal the front of some card(s). To simplify the specification of protocols, such operations
A uniform cut rotates a pile of cards by a uniformly random value unknown to Alice and Bob. From this we build chosen cuts leaving a pile rotated by a value chosen by Alice but unknown to Bob. When generalized to chosen pile cuts and formalized, we obtain a chosen pile cut action that rotates a sequence of equally-sized piles by a value k chosen by Alice. Bob remains oblivious of that value but he can be sure that the cards are not rearranged in any other way. In particular he knows that each pile is rotated by the same amount, even if Alice is dishonest.

With the help of a permutation protocol this is extended to the case where piles may have different sizes. This yields chosen coupled rotations in the case of two piles and chosen generalized coupled rotations in the case of more than two piles. These are powerful enough to build arbitrary chosen permutations from a closed permutation set. In that setting, Alice may choose any permutation π from a group of permutations Π. Bob will not learn π but can be sure that no permutation outside the set Π is performed.

A two player protocol may make use of these chosen closed permutation actions as well as the other actions turn, perm and result.

Uniform closed Mizuki–Shizuya (MS) protocols are a large natural subset of protocols as formalized by Mizuki and Shizuya. Our main result is that for any such protocol there is a two player protocol computing the same function that is actively secure if the original protocol is secure. This security-respecting implementation replaces each uniform closed shuffle with two corresponding chosen closed permutations. Active security is bought with helping cards needed in several places; intuitively to prove the legitimacy of Alice’s actions to Bob.

Fig. 1: Overview of the content of this paper. The images of Alice of Bob are adapted from xkcd (by Randall Munroe), which is licensed as CC-BY-NC-2.5.
immediately turn the card(s) face-down again. Unions of multisets are denoted by \(\cup \), disjoint unions are denoted by \(+ \), e.g. \([\Diamond, \spadesuit, \spadesuit] \cup [\Diamond, \heartsuit, \spadesuit, \spadesuit] = [\Diamond, \heartsuit, \spadesuit, \spadesuit] \) whereas \([\Diamond, \spadesuit, \spadesuit] + [\Diamond, \heartsuit, \spadesuit, \spadesuit] = [\Diamond, \Diamond, \spadesuit, \spadesuit, \spadesuit, \spadesuit] \).

3 Implementing Cuts and Pile Cuts with Choice

A set \(\Pi \subseteq S_n \) of permutations has an *actively secure implementation with choice*, or *is implemented* for short, if there is a procedure that allows Alice to apply a \(\pi \in \Pi \) of her choosing to a sequence of face-down cards, such that Bob learns nothing about her choice, but is certain that Alice did not choose \(\pi \notin \Pi \). Also, no player learns anything about the face-down cards if the other player is honest.

Example: Bisection Cut with Envelopes. Mizuki and Sone [MS09] make use of the following procedure on six cards: The cards in positions 1, 2 and 3 are stacked and put in one envelope and the cards in position 4, 5 and 6 are put into another. Behind her back, Alice then swaps the envelopes or leaves them as they are – her choice. Unpacking yields either the original sequence or the sequence 4, 5, 6, 1, 2, 3. The bisection cut \(\Pi = \{ \text{id}, (1\,4)(2\,5)(3\,6) \} \) is therefore implemented (with active security and choice) using two indistinguishable envelopes.

The role of the envelopes is to ensure that the two groups of cards stay together and the ordering within a group is preserved. The idea is that opening the envelopes behind her back would be impractical and noisy, so even if Alice is malicious, she is limited to the intended options. For a model of secure envelopes, cf. [MN06a; MN10].

Example: Unequal division shuffle. A bisection cut on \(n \) cards can be interpreted as “either do nothing or rotate the sequence by \(n/2 \) positions”. Generalizing this, we now want to “either do nothing or rotate the sequence by \(l \) positions” for some \(0 < l < n \), i.e. implement \(\Pi_l = \{ \text{id}, (1 \, 2 \, \ldots \, n)^l \} \). Nishimura et al. [NNH*15; NNH*17] describe a corresponding mechanism using two card cases with sliding covers. The card cases behave like envelopes but are heavy enough to mask inequalities in weight caused by different numbers of cards, and support joining the content of two card cases – for details refer to their paper (or Appendix B).

While we are very fond of creative ideas such as these, we shall make it our mission to implement card based protocols using only one tool: additional cards.

3.1 Cutting the Cards

By the *cut on \(n \) cards* we mean the permutation set \(\Pi = \langle (1 \ldots n) \rangle \) and, ordinarily, Alice would *cut* a pile of \(n \) cards by taking the top-most \(k \) cards (for some \(0 \leq k < n \)) from the top of the pile and setting them aside and then placing the remaining \(n - k \) cards on top. In this form, Alice can only approximately pick \(k \) while allowing Bob to approximately observe \(k \). Implementing \(\Pi \) requires fixing both problems.
Uniform Cut. As an intermediate goal we implement a uniform cut on n cards, i.e. we perform a permutation $(1\ 2\ \ldots\ n)^k$ for $0 \leq k < n$ chosen uniformly at random and unknown to the players. As proposed in [dBoe89], this is done by repeatedly cutting the pile in quick succession until both players lost track of what happened. More formally, under reasonable assumptions, the state of the pile is described by a Markov chain that converges quickly to the uniform stable distribution, yielding an almost uniform distribution after a finite number of steps.

Arguably, if the pile is too small, say two cards, the number of cards taken during each cut is perfectly observable. In that case, we put a sufficiently large number c of cards with different backs behind each card, repeatedly cut this larger pile and remove the auxiliary cards afterwards. Note that [UNH+16] found it to work well in practice even for $n = 2$ and $c = 3$. We shall not explore this further and use uniform cuts as a primitive in our protocols.

Uniform Cut with alternating backs. Later we apply the uniform cut procedure to piles of $n \cdot (\ell + 1)$ cards with n cards of red back, each preceded by ℓ cards of blue back. From a “uniform cut” on such a pile, we expect a cut by $0 \leq k < n \cdot (\ell + 1)$ where $\lfloor k/(\ell + 1) \rfloor$ is uniformly distributed in $\{0, \ldots, n - 1\}$ and independent of the observable part $k \mod (\ell + 1)$. We leave it to the reader to verify that the iterated cuts still work under the same assumptions.

Chosen Cut. We now show how to implement $\Pi = \langle (1\ \ldots\ n) \rangle$ with active security and choice. Say Alice wants to rotate the pile of n cards by exactly k positions for a secret $0 \leq k < n$. We propose the process illustrated in Fig. 2.

Alice is handed the helping deck $[\spadesuit, (n-1)\cdot\diamondsuit]$ with red backs and secretly rearranges these cards in her hand (unobserved by Bob), putting \spadesuit in position k. The helping cards are put face-down on the table and interleaved with the pile to be cut (each blue card followed by a red card). The \spadesuit is now to the right of the card that was the k-th card in the beginning. To obscure Alice’s choice of k, we perform a uniform cut on all cards as described previously. The red helping cards are then turned over. Rotating the sequence so as to put \spadesuit in front, and removing the helping cards afterward leaves the cards in the desired configuration. Bob is clueless about k since he can merely observe the position of \spadesuit after the cut, which is independent of the position of \spadesuit before the cut (which encodes k).

Chosen Pile Cut. Chosen cuts can be generalized in an interesting way. Given n piles of ℓ cards each and $0 \leq k < n$, Alice wants to rotate the sequence of piles by exactly k positions, meaning the i-th pile will end up where pile $i + k$ has been (modulo n). Again, k must remain hidden from Bob and he, on the other hand, wants to be certain that Alice does not tamper with the piles in any other

\footnote{If not satisfied, the reader may be more inclined to accept some variant of Berry’s turntable as described by Verhoeff [Ver14, Sect. 3]. There, cards are attached to a wheel-of-fortune-esque device.}
Example $(n = 5, k = 4)$

<table>
<thead>
<tr>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice inserts helping cards, puts ♠ right of c_k.</td>
</tr>
<tr>
<td>A uniform cut is performed.</td>
</tr>
<tr>
<td>The helping cards are revealed.</td>
</tr>
<tr>
<td>The ♠ is rotated to the front.</td>
</tr>
<tr>
<td>The helping cards are discarded.</td>
</tr>
</tbody>
</table>

Figure 2: Alice cuts a pile of n cards, here (c_1, \ldots, c_5), with back ♠ at position k with a helping deck of n helping cards $[\spadesuit, 4 \cdot \heartsuit]$ with back ♠. In this illustration we annotated face-down cards with the symbol they contain.

Figure 3: Rotating a sequence of four piles of three cards each by one position (left) is described by a permutation π with three cycles of length 4. Alternatively, we can think of π as $\pi = \tau^3$ where τ is the cyclic permutation of length 12 (right).

than the stated way. Note that this is equivalent to cutting a pile of $n \ell$ cards where only cutting by multiples of ℓ is allowed, see Fig. 3. In that interpretation, the i-th pile is made up of the cards in positions $(i - 1)\ell + 1, \ldots, i\ell$.

We apply the same procedure as before with n helping cards, except this time, instead of a single blue card we have ℓ blue cards (a pile) before each of the n gaps that Alice may fill with her red deck $[\spadesuit, (n-1) \cdot \heartsuit]$. Now the special ♠-card marks the end of the k-th pile and is (after a uniform cut) rotated to the beginning of the sequence, ensuring that after removing the helping cards again we end up having rotated the $n \cdot \ell$ cards by a multiple of ℓ as desired. Note that, uniform (non-chosen) pile cuts have been proposed in [ICM15] as “pile-scramble shuffles”, with an implementation using rubber bands, clips or envelopes.

Summary. If $\Pi = \langle (1 \ 2 \ \ldots \ n \cdot \ell) \ell \rangle$ for $n, \ell \in \mathbb{N}$, then Π is implemented with active security and choice using the helping deck $[\spadesuit, (n-1) \cdot \heartsuit]$. For $\ell = 1$ it is called a cut, for $\ell > 1$ a pile cut. We use the same name for conjugates of Π, i.e. if cards are relabeled. Any subset $\emptyset \neq \Pi' \subset \Pi$ of a (pile) cut is also implemented:
In that case, let Alice place the ♠ only in some positions, the others are publicly filled with ♦.

4 Permutation Protocols for Arbitrary Groups

We introduce a formal concept that allows to compose simple procedures in order to implement more complicated permutation sets.

Definition 1. A permutation protocol \(\mathcal{P} = (n, \mathcal{H}, \Gamma, A) \) is given by a number \(n \) of object cards, a deck of helping cards \(\mathcal{H} \) with initial arrangement \(\Gamma : \{n + 1, \ldots, n + |\mathcal{H}|\} \rightarrow \mathcal{H} \), and a sequence \(A \) of actions where each action can be either

- \(\text{(privatePerm, } \Pi) \) for \(\Pi \subseteq S_{n+|\mathcal{H}|} \) implemented with active security and choice, and respecting \(\{1, \ldots, n\} \) (i.e. \(\forall \pi \in \Pi : \pi(\{1, \ldots, n\}) = \{1, \ldots, n\} \)), or
- \(\text{(check, } p, s) \) for a position \(p \) of a helping card (i.e. \(n < p \leq n + |\mathcal{H}| \)) and an expected outcome \(s \in \mathcal{H} \).

We are interested in the set \(\text{comp}(\mathcal{P}) \subseteq S_{n+|\mathcal{H}|} \) of permutations compatible with \(\mathcal{P} \). If there are \(k \) privatePerm actions with permutations sets \(\Pi_1, \ldots, \Pi_k \) and \(\pi_i \in \Pi_i \), then \(\pi_k \circ \ldots \circ \pi_1 \) is compatible with \(\mathcal{P} \) if each check succeeds, meaning if \(\text{(check, } p, s) \) happens after the \(i \)-th privatePerm action (and before the \(i + 1 \)-st), if \(i < k \) then \(\Gamma[(\pi_i \circ \ldots \circ \pi_1)^{-1}(p)] = s \). We argue that this implements \(\Pi' = \text{comp}(\mathcal{P})|_{\{1, \ldots, n\}} \) using \(\mathcal{H} \) (and, possibly, helping cards to implement \(\Pi_i \)).

Indeed, consider the following procedure: We start with \(n \) object cards lying on a table (positions \(1, \ldots, n \)). We place the sequence \(\Gamma \) next to it, at positions \(n + 1, \ldots, n + |\mathcal{H}| \), and go through the actions of \(\mathcal{P} \). Whenever the action \(\text{(privatePerm, } \Pi) \) is encountered, we use the procedure \(\mathcal{P}_i \) implementing \(\Pi_i \) to let Alice apply a permutation on the current sequence. When an action \(\text{(check, } p, s) \) is encountered, the \(p \)-th card is revealed. If its symbol is \(s \), Bob continues, otherwise he aborts, declaring Alice as dishonest. In the end, the helping cards are removed, yielding a permuted sequence of object cards. (All permutations respect \(\{1, \ldots, n\} \), hence, the helping and the object cards remain separated).

Alice can freely pick any \(\pi' \in \Pi' \): using an appropriate decomposition, all checks will succeed. In this case, Bob knows that the performed permutation is from \(\Pi' \). No player learns anything about the object cards (only helping cards are turned) and conditioned on Alice being honest, the outcome of the checks is determined, so Bob learns nothing about \(\pi' \).

Coupled Rotations. Let \(\varphi = (1 2 \ldots s) \) and \(\psi = (s+1 \ s+2 \ldots s+t) \), assume \(s < t \). For \(\pi = \psi \circ \varphi = \varphi \circ \psi \) we call \(\Pi = \{\pi^k \mid 0 \leq k < s\} \) the coupled rotation with parameters \(s \) and \(t \). Note that \(\Pi \) is not a group since \(\pi^t \notin \Pi \). We aim to implement \(\Pi \). We make use of a helping deck \(\text{[♠, } (t-1) \cdot ♦] \) available in positions \(H = \{h_0, h_1, \ldots, h_{t-1}\} \) with ♠ at position \(h_0 \). Then define \(\hat{\varphi} := \varphi \circ (h_0 \ldots h_{s-1}) \) and \(\hat{\psi} := \psi \circ (h_0 \ldots h_{t-1})^{-1} \) and consider the permutation protocol \(\mathcal{P} \) in Fig. 5(a), and Fig. 4 for illustration. The idea here is that Alice may choose \(k \) and \(k' \) and perform \(\hat{\varphi}^k \) and \(\hat{\psi}^{k'} \) to the sequence. However, \(k \) is “recorded” in the
Example \((s = 3, t = 8, k = k' = 2)\)

| A: | a₁ a₂ a₃ |
| --- | --- | --- |
| H: | ♠ ♦ ♦ ♦ ♦ ♦ ♦ ♦ |
| B: | b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈ |

General Description

The sequences \(A\) and \(H\) (first \(s\) cards) are rotated to the right by the same value \(k \in \{0, 1, \ldots, s - 1\}\) chosen by Alice.
(This is a pile cut.)

\[\begin{align*}
A: & \ a₂ a₃ a₁ \\
H: & \ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ \\
B: & \ b₇ b₈ b₁ b₂ b₃ b₄ b₅ b₆
\end{align*}\]

\(H\) is rearranged so as to represent \(-k \pmod{t}\).
(This is a pile cut.)

\[\begin{align*}
A: & \ a₂ a₃ a₁ \\
H: & \ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ \\
B: & \ b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈
\end{align*}\]

\(H\) and \(B\) are rotated to the right by \(k' \in \{0, 1, \ldots, t - 1\}\) chosen by Alice. If Alice is honest she must choose \(k = k'\).
(This is a pile cut.)

\[\begin{align*}
A: & \ a₂ a₃ a₁ \\
H: & \ ♠ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ \\
B: & \ b₇ b₈ b₁ b₂ b₃ b₄ b₅ b₆
\end{align*}\]

The first card of \(H\) is revealed. A ♠occurs iff Alice was honest.

Example (\(s = 3, t = 8, k = k' = 2\))

Fig. 4: The sequence \(A\) of length \(s\) and \(B\) of length \(t\) are to be rotated by the same value \(k\) chosen privately by Alice. A helping sequence ensures that the same value is used. All cards are face-down, except for the highlighted card in the last step. The dotted lines indicate that cards are belonging to the same pile in a pile cut, i.e. they maintain their relative position during the cut. The rearrangement of the helping cards is useful in this visualization (so that \(H\) and \(B\) can be rotated in the same direction) but is not reflected in the formal description.

Configuration of a helping sequence and \(-k'\) is “added” on top. A check ensures that the helping sequence is in its original configuration, implying \(k = k'\) as required. Note that \(\langle \hat{\phi} \rangle\) and \(\langle \hat{\psi} \rangle\) are pile cuts, which we already know how to implement. In total, we implemented

\[
\operatorname{comp}(P) = \{\hat{\psi}^{k'} \circ \hat{\phi}^k \mid 0 \leq k < s, 0 \leq k' < t, \Gamma[(\hat{\psi}^{k'} \circ \hat{\phi}^k)^{-1}(h₀)] = ♠\}_{\{1, \ldots, n\}}
\]

\[
= \{\hat{\psi}^{k'} \circ \hat{\phi}^k \mid 0 \leq k < s, 0 \leq k' < t, k' = k\}_{\{1, \ldots, n\}}
\]

\[
= \{\psi^k \circ \phi^k \mid 0 \leq k < s\}_{\{1, \ldots, n\}} = \Pi.
\]

Products, conjugates and syntactic sugar. The protocol in Fig. 5(b) implements \(\Pi_2 \circ \Pi_1\) using \(\Pi_1\) and \(\Pi_2\), showing that if \(\Pi_1\) is implemented using \(H_1\) and \(\Pi_2\) is implemented using \(H_2\), then \(\Pi_2 \circ \Pi_1\) is implemented using
Fig. 5: Protocols implementing a coupled rotation (a), the product of two permutation sets (b) and the conjugation of a permutation set (c).

$\mathcal{H}_1 \cup \mathcal{H}_2$. As a corollary, if Π is implemented using \mathcal{H} then so is any conjugate $\Pi' = \{\pi^{-1}\} \odot \Pi \odot \{\pi\}$. Figure 5(c) uses (perm, π) instead of $(\text{privatePerm}, \{\pi\})$ to emphasize that such deterministic actions can be carried out publicly.

Generalized Coupled Rotations. We generalize the idea of a coupled rotation to more than two sequences. Let $\pi \in S_n$ with cycle decomposition $\pi = \varphi_0 \circ \ldots \circ \varphi_\ell$ for $\ell \geq 2$ and increasingly ordered cycle lengths $t_0 \leq t_1 \leq \ldots \leq t_\ell$. We aim to implement $\Pi = \{\pi^k \mid 0 \leq k < t_0\}$ using $t_\ell + 2 \cdot t_0$ helping cards, originally available in the following positions which we label as shown.

We think of the three areas as “registers” containing values indicated by the position of \spadesuit (initially 0). The registers have associated rotations:

$$
\psi_{\text{temp}} := (x_0 \ldots x_{t_0-1}), \quad \psi_{\text{store}} := (s_0 \ldots s_{t_0-1}), \quad \psi_i := (m_0 \ldots m_{t_i-1}).
$$

The idea behind the protocol is that Alice performs $\varphi_0^{k_0} \circ \ldots \circ \varphi_\ell^{k_\ell}$ where checks will ensure $k_1 = k_2 = \ldots = k_\ell$. To this end, k_0 is recorded in the store register (we use $\langle \varphi_0 \circ \psi_{\text{store}} \rangle$). Then, for each round $i \in \{1, 2, \ldots, \ell - 1\}$ the value k_0 is cloned into the main register by first swapping it to the temp register and then moving it to the store and main register using $\psi_{\text{copy}} := \psi_{\text{temp}}^{-1} \circ \psi_{\text{store}} \circ \psi_0$. The cloned copy of k_0 in main is consumed when forcing Alice to do $\hat{\varphi}_i^{k_i}$ where $\hat{\varphi}_i := \varphi_i \circ \psi_i^{-1}$. The last round is similar. Using the following two swappings, the protocol is formally given in Fig. 6.

$$
\pi_{\text{store}\leftrightarrow\text{temp}} := (s_0 \ x_0) \ldots (s_{t_0-1} \ x_{t_0-1}), \pi_{\text{store}\leftrightarrow\text{main}} := (s_0 \ m_0) \ldots (s_{t_0-1} \ m_{t_0-1}).
$$

We now check that this implements the generalized coupled rotation Π using the helping cards $[3 \ \spadesuit, (t_\ell + 2t_0 - 3) \ \heartsuit]$. The main ingredient is the loop invariant:
If $\pi \in S_{n+2t_0+t_1}$ is compatible with the actions until after the i-th execution of the loop and S is the starting sequence then there exists $k \in \{0, \ldots, t_0 - 1\}$ such that:
- $\pi|_{\{1, \ldots, n\}} = \varphi_i^k \circ \ldots \circ \varphi_1^k \circ \varphi_0^k$,
- in $\pi(S)$ all registers contain 0 except for store, which contains k.

This invariant can be proved by induction:

$i = 0$. The protocol starts with all registers containing the value 0. In the first action, Alice picks $0 \leq k < t_0$ and performs $\pi = \varphi_0^k \circ \psi_{\text{store}}^k$. Clearly, $\pi|_{\{1, \ldots, n\}} = \varphi_0^k$ and in $\pi(S)$ the store register contains k with both other registers containing 0. This establishes the invariant for $i = 0$, i.e. before the first execution of the loop.

$i \rightarrow i + 1$. Assume the loop invariant holds for i. In the beginning of the $i+1$st loop, the contents of store and temp are swapped, which leads to temp containing k, while the other registers contain 0. The permutation ψ_{copy} decrements the value of the temp register while simultaneously incrementing the value of store and main (each modulo t_0). Since the operation $(\text{check, } x_0, \spadesuit)$ expects the value of temp to be 0, the only power of ψ_{copy} that will allow the check to pass is k. Assuming this happens, temp and main both contain k, while temp contains 0. Similar to before, $\hat{\varphi}_i$ decrements main modulo t_i and since the operation $(\text{check, } x_0, \spadesuit)$ expects main to contain 0, the only power of $\hat{\varphi}_i$
that allows the check to succeed is k. Afterwards, the current iteration of the loop permuted the object cards by φ^k_i and left store containing k while the other registers contain 0. This establishes the loop invariant.

The three actions following the loop are essentially the ℓ-th iteration of the loop without the copying step so it is straightforward to verify that $\pi \in S_n$ is compatible with the protocol, iff $\pi|_{\{1,\ldots,n\}} = \varphi^k_{\ell} \circ \ldots \circ \varphi^0_0$ for some $0 \leq k < t_0$.

We remark that by introducing additional check-operations, any subset of a generalized coupled rotation can be implemented as well.

Subgroups of S_n. Generalized coupled rotations are sufficient to show:

Proposition 1. Any subgroup Π of S_n can be implemented with active security and choice using only the helping deck $[3\cdot\spadesuit, (n-3)\cdot\clubsuit]$ for (generalized) coupled rotations and the helping deck $[\spadesuit, (n-1)\cdot\heartsuit]$ for (pile) cuts.

Proof. Note that $\Pi = \prod_{\pi \in \Pi} \langle \pi \rangle$, i.e. Π can be written as the product of cyclic subgroups. Moreover, any cyclic subgroup can be written as $\langle \pi \rangle = \{\pi^0, \ldots, \pi^{k-1}\}^\ell$, where k is the length of the shortest cycle in the cycle decomposition of π and $\ell = \text{ord}(\pi)/k$. Hence, Π can be written as the product of rotations and (generalized) coupled rotations, each of which are implemented with the required helping decks. Using the implementation of products (see page 10), we are done. \qed

A simple decomposition of Π into products of previously implemented permutation sets is desirable to keep the resulting permutation protocol simple. We do not deal with this here and merely state that $|\Pi|$ is an upper bound on the number of terms required.

5 Computational Model with Two Players

In the following, two players jointly manipulate a sequence of cards to compute a randomized function, i.e. they transform an input sequence into an output sequence. Both have incomplete information about the execution and the goal is to compute with no player learning anything about input or output.

Two player protocols. A *two player protocol* is a tuple (D, U, Q, A) where D is a deck, U is a set of input sequences, Q is a (possibly infinite, computable) rooted tree with labels on some edges, and $A: V(Q) \to \text{Action}$ is an action function that assigns to each vertex an action which can be *perm*, *turn*, *result*, and *privatePerm*, with parameters as explained below. All input sequences have the same length n and are formed by cards from D.

Vertices with a *perm* or *privatePerm* action have exactly one child, vertices with a *result* action have no children, and those with a *turn* action have one child.

3 An explanation of our security notions follows in Section 6.
for each possible sequence of symbols the turned cards might conceal, and the edge to that child is annotated with that sequence.

When a protocol is executed on an input sequence \(I \in U \), we start with the face-down sequence \(\Gamma = I \) at the root of \(Q \) and empty permutation traces \(T_1 \) and \(T_2 \). Execution proceeds along a descending path in \(Q \) and for each vertex \(v \) that is encountered, the action \(A(v) \) is executed on the current sequence of cards:

- \((\text{perm}, \pi)\) for a permutation \(\pi \in S_n \). This replaces the current sequence \(\Gamma \) by the permuted sequence \(\pi(\Gamma) \). Execution proceeds at the unique child of \(v \).
- \((\text{turn}, T)\) for some set \(T \subseteq \{1, \ldots, n\} \). If \(T = \{t_1 < t_2 < \ldots < t_k\} \), the cards \(\Gamma[t_1], \ldots, \Gamma[t_k] \) are turned face-up, revealing their symbols. The vertex \(v \) must have an outgoing edge labeled \((\Gamma[t_1], \ldots, \Gamma[t_k])\). Execution proceeds at the corresponding child after the cards are all turned face-down again.
- \((\text{privatePerm}, p, \Pi, \mathcal{F}(\cdot))\) for a player \(p \in \{1, 2\} \), a permutation set \(\Pi \subseteq S_n \) and \(\mathcal{F} \) being a parameterized distribution on \(\Pi \). Formally, \(\mathcal{F} \) is a function that maps the current permutation trace \(T_p \) of player \(p \) to a distribution \(\mathcal{F}(T_p) \) on \(\Pi \). If \(\mathcal{F}(T_p) \) is the uniform distribution on \(\Pi \) for each \(T_p \) we denote this as \(U(\cdot) \). Player \(p \) picks a permutation \(\pi \in \Pi \). The current sequence \(\Gamma \) is replaced by the permuted sequence \(\pi(\Gamma) \) and \(\pi \) is appended to the player’s permutation trace \(T_p \). If player \(p \) is honest she picks \(\pi \) according to \(\mathcal{F}(T_p) \).

Execution proceeds at the unique child of \(v \).
- \((\text{result}, p_1, \ldots, p_k)\) for distinct positions \(p_1, \ldots, p_k \in \{1, \ldots, n\} \). Execution terminates with the output \(O = (\Gamma[p_1], \ldots, \Gamma[p_k]) \) encoded by face-down cards.

The execution yields an execution trace \((I, O, T_1, T_2, W)\), containing the input, output, permutation traces of the players and the descending path \(W \) in \(Q \) that was taken, see Fig. 7 for an example. The output of non-terminating protocols is \(O = \bot \).

Note that we will use permutation protocols from Section 4 in the privatePerm steps, however we use them as black boxes. In particular, the actions specific to permutation protocols (e.g. check) are not part of two player protocols. We say
\(\mathcal{P} \) is implemented using a helping deck \(\mathcal{H} \) if each permutation set occurring in a privatePerm action is implemented using \(\mathcal{H} \) (in the sense of Section 3).

The way we define it, existence, implementability and security of a protocol are separate issues. Security is discussed next.

6 Passive and Active Security

Intuitively, an implemented protocol is (information-theoretically) secure if no player can derive any statistical information about input or output from the choices and observations they make during the execution of the protocol. So the first question is, what information does a player obtain, say Alice, that could potentially be relevant? At first we consider the setting where both players are honest.

Surely, Alice knows the public information \(W \), i.e. the execution path of the protocol run, in which the sequence of encountered actions and their parameters are implicit. For each action along \(W \) she may have obtained additional information during its execution. To get a complete picture, we carefully go through all types of actions.

- turn actions reveal the symbol of some cards. However, as each outcome corresponds to a unique child vertex where execution continues, this information is already implicit in \(W \).
- perm actions are deterministic and reveal no information. The same is true for result actions. Note that they only indicate the position of the output, not reveal it.
- For privatePerm actions, the observations that can be made depend on the implementation. If the protocols are implemented in our sense (see Section 3) and Alice is the active player then Alice learns nothing of relevance except her own choice of permutation (which is recorded in her permutation trace) and, since Alice is honest, Bob learns nothing at all.

So the only potentially relevant information player \(p \) has with regards to input and output is \(W \) and \(T_p \). Therefore it is adequate to define:

Definition 2 (Passive Security). A two player protocol \(\mathcal{P} = (D, U, Q, A) \) is secure against passive attackers if for any random variable \(I \in U \) the following holds. If \((I, O, T_1, T_2, W) \) is the execution trace when executing \(\mathcal{P} \) with honest players on input \(I \), then \((I, O) \) is independent of \((T_p, W) \) for both \(p \in \{1, 2\} \).

Delegated Computation. Passive security implies that if a player has no prior knowledge about input or output, executing the protocol leaves her in this oblivious state. In particular, by following the protocol the players implement what can be called an oblivious delegated computation where the computation is performed on secret data provided by a third party, and the output is not revealed afterwards to the executers.
Note that this setting differs from the *standard MPC setting*, where players provide part of the input and usually the output is sent to the players in non-committed (non-hiding) form, i.e., learned by the players. In this case, security then means that the players learn nothing except what can be deduced from the facts they are permitted to know. It is important to understand that our definition is still adequate for such cases, in the sense that *any protocol that is secure in the delegated computation setting is also secure if players have (partial) information about input and output*. The formal reason is the basic fact that for any event E relating only to (I, O), i.e., E is independent of (T_p, W), conditioning the probability space on E will retain the independence of (I, O) and (T_p, W).

The converse is clearly not true, i.e., there are protocols that are not secure in the delegated computation setting but become secure when both players have prior knowledge about input or output, as this just means that some aspects of (I, O) do not actually constitute sensitive information for one or both players.

Hence, we choose to protect the output, because it is the natural setting for card-based cryptography, as all committed-format protocols in the literature achieve this notion, it ensures that the protocols can be used in larger protocols, and it is stronger than the other notions, because we are in the information-theoretic setting.

The above definition of passive security is sufficient if players can be trusted to properly execute the protocol. In that case any playerPerm action can directly be performed by the specified player while the other player looks away. Of course, our main concern in this paper is the situation where looking away is not an option.

Permutation security and active security. To argue about security in the presence of a malicious player, we must first discuss what such a player may do. Doing this rigorously would require to closely model the physical world, which allows for different threats than in the usual cryptographic settings. We certainly have to assume physical restrictions, as otherwise we cannot achieve anything. For example, as our security relies on the possibility of keeping face-down cards, we must assume that an attacker does not resort to certain radical means that immediately and unambiguously identify her as an attacker. She does not interfere with the correct execution of perm and turn actions, nor does she, in open violation of the protocol, spontaneously seize or turn over some of the cards or mark them in any way.

On the other hand we can plausibly argue that certain mechanisms are sufficient to counter attacks other than those that our paper is concerned with. We may argue that the cards could be put into envelopes, and any attempt to reveal its contents contrary to the protocol will be countered by the cautious other players jumping in to physically abort the protocol in that case.

4 We do not get ultimately strong guarantees for the physical actions such as in quantum cryptography, where, if (a subset of) quantum theory is true, no adversary can predict a randomness source, no matter what she does physically.
Concerning an operation \((\text{privatePerm}, \text{Alice}, \Pi, \mathcal{F}(\cdot))\) with implemented \(\Pi\), there is by definition of implemented permutation set no possibility for Alice to perform a permutation \(\pi \notin \Pi\). If she causes a permutation protocol to fail, Bob can abort execution before any sensitive information is revealed. Otherwise, Alice is limited to disrespecting \(\mathcal{F}(\cdot)\). This is captured in the following definition:

Definition 3. Let \(\mathcal{P} = (\text{D}, \text{U}, \text{Q}, \text{A})\) be a two player protocol.

(i) A permutation attack \(\xi\) on \(\mathcal{P}\) as player \(p \in \{1, 2\}\) specifies for each vertex \(v \in V(\text{Q})\) with an action of the form \(A(v) = (\text{privatePerm}, p, \Pi, \mathcal{F}(\cdot))\), a permutation \(\xi(v) \in \Pi\). Replacing such \(\mathcal{F}(\cdot)\) with the (point) distributions that always choose \(\xi(v)\), yields the attacked protocol \(\mathcal{P}^{\xi}\).

(ii) An attack \(\xi\) is unsuccessful if the following holds. Whenever \(I \in \text{U}\) is a random variable denoting an input and \((I, O, T_1, T_2, W)\) and \((I, O^{\xi}, T_1^{\xi}, T_2^{\xi}, W^{\xi})\) are the resulting execution traces of \(\mathcal{P}\) and \(\mathcal{P}^{\xi}\), then for any values \(i, o, w\):

\[
\Pr[W^{\xi}=w] > 0 \implies \Pr[(I, O^{\xi})=(i, o) \mid W^{\xi}=w] = \Pr[(I, O)=(i, o)]. \quad (\star)
\]

(iii) We say \(\mathcal{P}\) is secure against permutation attacks if each permutation attack on \(\mathcal{P}\) is unsuccessful.

In light of our discussion above we finally define:

Definition 4. A two player protocol \(\mathcal{P} = (\text{D}, \text{U}, \text{Q}, \text{A})\) has an actively secure implementation if each permutation set \(\Pi\) occurring in a \text{privatePerm} action is implemented and \(\mathcal{P}\) is secure against permutation attacks.

Intuitively, a protocol has permutation security if: No matter what permutations a player chooses \((\forall \xi)\), and no matter what the turn actions end up revealing \((\forall W^{\xi})\), the best guess for the in- and output (distribution of \((I, O^{\xi})\), given \(W^{\xi}\)) is no different from what he would have said, had he not been involved in the computation at all (distribution of \((I, O)\)). We make a few remarks.

- Passively secure protocols terminate almost surely, otherwise \(O = \bot\) can be recognized from an infinite path \(W\). For similar reasons, a permutation attacker can never cause a protocol with permutation security to run forever.\(^5\)
- In our definition, permutation attackers are deterministic without loss of generality. Intuitively, if an attacker learns nothing no matter what \(\xi\) she chooses, then choosing \(\xi\) randomly is just a fancy way of determining in what way she is going to learn nothing.
- For similar reasons, permutation security implies passive security, since playing honestly is just a weighted mixture of “pure” permutation attacks.
- We cannot say anything if both players are dishonest or if they share their execution traces with one another. We also cannot guarantee that player \(p\) learns nothing if player \(3 - p\) is dishonest.

\(^5\) Protocols that almost surely output \(\bot\) are a pathological exception.
Permutation security from passive security. There is an important special case in which the powers of a permutation attacker turn out to be ineffective, namely if the distributions $F(T_p)$ never assign zero probability to a permutation.

Proposition 2. Let $\mathcal{P} = (D, U, Q, A)$ be a passively secure protocol where for each action of the form $(\text{privatePerm}, p, \Pi, F(\cdot))$ and each permutation trace T_p of player p, $F(T_p)$ has support Π^6. If for each attack ξ the attacked protocol \mathcal{P}^ξ terminates with probability 1^7, then \mathcal{P} is secure against permutation attacks.

Proof. Consider an attack ξ on \mathcal{P} as player $p \in \{1, 2\}$, let $I \in U$ be any random variable denoting an input and (I, O, T_1, T_2, W) and $(I, O^\xi, T_1^\xi, T_2^\xi, W^\xi)$ be the execution traces of \mathcal{P} and \mathcal{P}^ξ.

Let w be any path in Q with $\Pr[W^\xi = w] > 0$ and t the permutation trace that ξ prescribes for player p along w (whenever $W^\xi = w$, then $T_p^\xi = t$). For any i, o we have:

$$\Pr[(I, O^\xi) = (i, o) \mid W^\xi = w] = \Pr[(I, O) = (i, o) \mid (T_p^\xi, W^\xi) = (t, w)]$$

$$= \Pr[(I, O) = (i, o) \mid (T_p, W) = (t, w)]$$

$$= \Pr[(I, O) = (i, o)].$$

From the first to the second line, note that firstly, since w is finite, the sequence t of choices is finite as well, so, using the assumption that $\text{supp}(F(T_p)) = \Pi$ in all cases, there is some positive probability that an honest player behaves exactly like the attacker with respect to this finite sequence of choices. Therefore, the conditional probability in the second line is well defined. Secondly, the attacked protocol and the original protocol behave alike once we fix the behavior of player p so we have the stated equality. From the second to the third line we use the passive security of \mathcal{P}. \(\square\)

In \mathcal{P} a permutation attacker can only choose permutations that an honest player may have chosen randomly, so non-trivial information she obtains about input and output is also available to a passive attacker with positive probability. The protocol from Fig. 7 has active security precisely for this reason.

7 Implementing Restricted Mizuki–Shizuya Protocols

In [MS14a], Mizuki and Shizuya’s self-proclaimed goal was to define a “computational model which captures what can possibly be done with playing cards”. Hence, any secure real-world procedure to compute something with playing cards can be formalized as a secure protocol in their model.\(^8\) The other direction is not

6 Otherwise, active attackers may pick $\pi \in \Pi$ which honest players never choose.

7 this excludes a pathological case

8 Excluding the use case of non-committed input protocols from [MWS15] and [NTM+16], where the input is provided by a choice of privatePerm operations by a player, requiring input awareness/knowledge.
so clear. Given a secure protocol in the model, can it be implemented in the real world? We believe the answer is probably “no” (or, at least, not clearly “yes”). However, our work of identifying implementable actions in the two player model implies that a very natural subset of actions in Mizuki and Shizuya’s model is implementable, even in an actively secure fashion: uniform closed shuffles (defined below). Note that these shuffles already allow for securely computing any circuit [MS09].

Mizuki–Shizuya Protocols. We will state a modified version of Mizuki and Shizuya’s model, in that instead of state machine semantics we stick to a tree of actions as in the two player model. This is an equivalent way of defining protocols, cf. [KKW+17, Sections 3 and 4].

A Mizuki–Shizuya protocol is a tuple \(P = (D, U, Q, A) \) similar to a two player protocol. The actions \(\text{perm}, \text{result} \) and \(\text{turn} \) are available as before, but instead of \(\text{privatePerm} \) actions there are \(\text{shuffle} \) actions of the form \((\text{shuffle}, \Pi, \mathcal{F})\) where \(\Pi \) is a set of permutations and \(\mathcal{F} \) is a probability distribution on \(\Pi \). Executing a protocol works as before, but there are no separate permutation traces for players (there are no players at all), instead there is a single permutation trace \(T \). The actions \(\text{perm}, \text{turn} \) and \(\text{result} \) work as before. When an operation \((\text{shuffle}, \Pi, \mathcal{F})\) is encountered, a permutation \(\pi \in \Pi \) is chosen according to \(\mathcal{F} \) (independent from any previous choices). This permutation \(\pi \) is applied to the current sequence of cards without anyone learning \(\pi \) and appended to the permutation trace \(T \).

For any input \(I \in U \), an execution is described by the execution trace \((I, O, T, W)\) where \(O \) is the output (\(O = \perp \) if the protocol did not terminate), \(T \) the resulting permutation trace and \(W \) the path of the execution in \(Q \). It is assumed that only \(W \) can be observed, suggesting the following security notion:

Definition 5 (Security of Mizuki–Shizuya Protocols). A Mizuki–Shizuya protocol \(P \) is secure if for each random variable \(I \in U \) and resulting execution trace \((I, O, T, W)\) of the protocol, \((I, O)\) is independent from \(W \).

Implementing Uniform Closed Mizuki–Shizuya Protocols. A shuffle \((\text{shuffle}, \Pi, \mathcal{F})\) is uniform if \(\mathcal{F} \) is the uniform distribution on \(\Pi \), and it is closed if \(\Pi \) is a group. We call a Mizuki–Shizuya protocol uniform closed if each of its shuffle actions is uniform and closed. We are ready to state our main theorem.

Main Theorem. Let \(P = (D, U, Q, A) \) be a secure uniform closed Mizuki–Shizuya protocol. Then there is a two player protocol \(\hat{\mathcal{P}} = (\hat{D}, U, \hat{Q}, \hat{A}) \) with actively secure implementation computing the same function as \(\mathcal{P} \).

Moreover, the implementation of \(\hat{\mathcal{P}} \) uses as helping deck only \([3\cdot\spadesuit, (n-3)\cdot\heartsuit]\) for (generalized) coupled rotations and \([\spadesuit, (n-1)\cdot\heartsuit]\) for chosen (pile) cuts. Here, \(n \) is the length of the input sequences.

We sketch the proof here and give the formal proof below. Each uniform closed shuffle \((\text{shuffle}, \Pi, \mathcal{U})\) of \(P \) is replaced by two actions \((\text{privatePerm}, p, \Pi, \mathcal{U})\) for \(p \in \{1, 2\} \). For \(\pi_2 \circ \pi_1 \) to be uniformly random in \(\Pi \), it suffices if \(\pi_1 \) or \(\pi_2 \) is
chosen uniformly random in Π (while the other is fixed/known). Therefore, the joint permutation applied to the sequence after both privatePerm actions looks uniformly random to both players. Hence, they learn nothing from the execution of $\tilde{\mathcal{P}}$ that they would not have also learned from executing \mathcal{P}. Since \mathcal{P} is secure, $\tilde{\mathcal{P}}$ is passively secure and by Proposition 2 also secure against permutation attacks. Moreover, by Proposition 1 all Π are implemented using the stated decks of helping cards so $\tilde{\mathcal{P}}$ has an actively secure implementation.

Proof (Main Theorem). As already mentioned, we obtain $\tilde{\mathcal{P}}$ by replacing each shuffle action in \mathcal{P} by two privatePerm actions. More precisely, let (v_1, v_2, \ldots) be the sequence of those vertices in Q with shuffle actions. Then for each i we have $A(v_i) = (\text{shuffle}, \Pi_i, \mathcal{U}_i)$, where Π_i is some group and \mathcal{U}_i the uniform distribution on Π_i. The tree \tilde{Q} is obtained from Q by replacing each v_i with two vertices $v_i^{(1)}$ and $v_i^{(2)}$ with $\tilde{A}(v_i^{(p)}) = (\text{privatePerm}, p, \Pi_i, \mathcal{U}_i)$, where $v_i^{(2)}$ is the child of $v_i^{(1)}$ and $p \in \{1, 2\}$. All other vertices remain unchanged.

Permutation schemes. To simplify the following argument we shall pick all relevant permutations a priori instead of producing them on-demand: A *permutation scheme* is a sequence (π_1, π_2, \ldots) of permutations with $\pi_i \in \Pi_i$. We shall imagine that \mathcal{P} is executed by first choosing a permutation scheme $\mathcal{T} = (\pi_1, \pi_2, \ldots)$ uniformly at random (each π_i uniformly at random from Π_i and independent of the rest) and then executing the protocol as usual, except that we are already determined in our choice of permutations. When reaching a shuffle action in vertex v_i we are already determined to use π_i.

Clearly, this does not affect the execution of \mathcal{P} in the following sense. If I is a random input then the tuple (I, O, W, \mathcal{T}^W) of input, output, execution path and permutation trace, resulting from this new way of executing \mathcal{P} has the same distribution as the ordinary execution trace of \mathcal{P}. By \mathcal{T}^W we mean the projection of the scheme \mathcal{T} to those components used in the execution, i.e. those on vertices occurring in W (in descending order).

In the same way we think of the execution of $\tilde{\mathcal{P}}$, having players 1 and 2 pick permutation schemes $\mathcal{T}_1 = (\pi_1, \pi_2, \ldots)$ and $\mathcal{T}_2 = (\tau_1, \tau_2, \ldots)$ in advance and having player 1 use π_i if vertex $v_i^{(1)}$ is encountered and player 2 use τ_i if vertex $v_i^{(2)}$ is encountered. Then the tuple $(I, \hat{O}, \hat{W}, \mathcal{T}_1^W, \mathcal{T}_2^W)$ of input, output, execution path and permutation traces obtained from this new way of executing $\tilde{\mathcal{P}}$ has the same distribution as the ordinary execution trace of $\tilde{\mathcal{P}}$. We use these modified execution traces in the following.

Computing the same function. In the following we shall make heavy use of the fact that $X \perp Y$ implies $f(X) \perp g(Y)$ whenever X and Y are (vectors of) random variables, f and g deterministic functions and \perp denotes independence of random variables.

Note that \hat{O} is determined by (I, \mathcal{T}), meaning there is a deterministic function f with $\hat{O} = f(I, \mathcal{T})$. By construction, any permutation done by player 1 in $\tilde{\mathcal{P}}$ is immediately followed by a corresponding permutation done by player 2 and we see $\tilde{O} = f(I, \mathcal{T}_2 \circ \mathcal{T}_1)$. Clearly, the folded permutation scheme $\mathcal{T}_2 \circ \mathcal{T}_1$ has the same distribution as \mathcal{T}, so \tilde{O} has the same distribution as O. Since
we made no assumptions on \(I \), we conclude that \(\mathcal{P} \) and \(\hat{\mathcal{P}} \) compute the same randomized function.

Passive Security. Note that \(W \) is determined by \((I,T)\), meaning there is a deterministic function \(g \) with \(W = g(I,T) \). If \(\text{ext} \) is the function acting on paths by replacing occurrences \(v_i \) with the two vertices \(v_i^{(1)} \) and \(v_i^{(2)} \) then we have by construction \(\hat{W} = (\text{ext} \circ g)(I,T_2 \circ T_1) \). We now see that \((I,O,W) = (I,f(I,T),g(I,T))\) has exactly the same distribution as

\[
(I,\hat{O},\text{ext}^{-1}(\hat{W})) = (I,f(I,T_2 \circ T_1),g(I,T_2 \circ T_1)).
\]

Therefore, the passive security of \(P \) reflected in \((I,O) \perp W\) translates into \((I,\hat{O}) \perp \text{ext}^{-1}(\hat{W})\) which implies \((I,\hat{O}) \perp \hat{W}\). This is the crucial step in the following chain of reasoning:

\[
\begin{align*}
T_p \perp T_2 \circ T_1 & \quad \text{Players choice masked by other players choice} \\
\Rightarrow T_p \perp (I,T_2 \circ T_1) & \quad \text{Schemes are chosen a priori, independent of } I \\
\Rightarrow T_p \perp (I,T_2 \circ T_1,\hat{O},\hat{W}) & \quad \text{Since } \hat{O} = f(I,T_2 \circ T_1), \hat{W} = (\text{ext} \circ g)(I,T_2 \circ T_1) \\
\Rightarrow T_p \perp (I,\hat{O},\hat{W}) & \quad \text{Projection} \\
\Rightarrow (T_p,\hat{W}) \perp (I,\hat{O}) & \quad \text{Using } \hat{W} \perp (I,\hat{O}) \\
\Rightarrow (T_p^W,\hat{W}) \perp (I,\hat{O}) & \quad T_p^W \text{ is a function of } T_p \text{ and } \hat{W}.
\end{align*}
\]

This also shows the corresponding independence for the ordinary execution trace, proving passive security of \(\hat{\mathcal{P}} \).

Permutation Security. This follows immediately from passive security and Proposition 2.

Implementation. By Proposition 1, each group \(\Pi_i \) is implemented with active security and choice using the stated helping decks.

Active Security. The last two points constitute an actively secure implementation by Definition 4. \(\square \)

8 Conclusion

Central to our notion of active security is the concept of a *permutation set implemented with active security and choice*, indicating that a player Alice can choose to perform a permutation from the set while Bob can know that Alice did not cheat, but nothing else. We argued that cuts and pile cuts have such an implementation and we used permutation protocols to build more sophisticated procedures handling any group of permutations.

Moreover, we defined security for Mizuki–Shizuya protocols, active and passive security for our own two player protocols and showed how secure Mizuki–Shizuya protocols using only uniform closed shuffles can be transformed into actively secure two player protocols. This is a solid foundation for actively secure card-based cryptography.
Open Problems. The current card-minimal committed format protocols, namely the four- and five-card AND protocols and the general k-ary boolean function protocol of [KWH15] and the copy protocol of [NNH$^+$15], use non-closed or non-uniform shuffles. As we have determined that uniform closed shuffles are a natural class of actions which can be done actively secure, it is interesting to find card-minimal protocols for these functions using only uniform closed shuffles. This has only partially been answered in [KKW$^+$17].

Another natural problem is to implement more general shuffles, and even to characterize the shuffles which are possible with (a linear number of) helping cards, and the assumption of the security of a uniform random cut. To give one non-trivial example, we show in Appendix B how any subset of a cut can be implemented as a shuffle.

Moreover, it is interesting which functionalities are realizable – at all or more efficiently – in the two player setting compared to the computational model of [MS14a], possibly by composing privatePerm operations in more sophisticated ways than done in Section 7. For example, the three-card AND protocol in [MWS15, Sect. 3.2], which is not in committed format, is naturally formalized in our two player model.

References

A The Issue of Reusing Helping Cards

Assume we already implemented some permutation protocols P_1 and P_2 for permutation sets Π_1 and Π_2 using some helping decks H_1 and H_2. Now we design another permutation protocol P_3 implementing Π_3 and using its own deck of helping cards H_3. Assume some privatePerm actions of P_3 involve Π_1 and Π_2 and we intend use P_1 and P_2 as “subroutines”. It is hence interesting to ask, what helping deck do we need for P_3 in total.

Within P_3 the deck H_3 is in use, potentially encoding important information, so unless we make further assumptions, subroutines must treat those cards as object cards. If, however, the subroutines P_1 and P_2 are used sequentially, they may share resources. So all in all, we need $(H_1 \cup H_2) + H_3$.

This assumes that the required helping cards from H_1 can be re-used in P_2 after they were used in P_1. In particular, they need to be turned, which assumes that the arrangement of H_1 after use does not contain sensitive information any more. This is reasonable: Not only do all of our own protocols end with the helping cards in canonical order, it would also be easy to destroy any information encoded in them by shuffling them after use, e.g. by using repeated uniform cuts.

B Implementing a Non-closed Shuffle Operation

Our focus on uniform closed shuffle operations has its reasons, but this should not distract from the fact that many other shuffle operations are both important and implementable. Let us take a special case of $(\text{shuffle, }\{\text{id, (1 2 3 4 5)^3}\}, \mathcal{U})$. It was for instance put to use in [CHL13], albeit without further elaboration on its security or implementation.

Note that Π has an implementation with active security and choice (by virtue of being the subset of a cut), but performing $(\text{playerPerm, }p, \Pi, \mathcal{U}(\cdot))$ for $p \in \{1, 2\}$ one after the other as we do for closed permutation sets could result in the permutation $(1 2 3 4 5)^6$. However, we can use a similar idea as we did when implementing cuts. We propose the procedure shown in Fig. 8 which is a “protocol implementing a shuffle”.

![Diagram](attachment:image.png)

Fig. 8: Protocol implementing $(\text{shuffle, }\Pi = \{\text{id, (1 2 3 4 5)^3}\}, \mathcal{U})$ with five helping cards (details explained in the text).
We assume that we initially have five object cards in positions 1 through 5 and a helping deck $H = [\spadesuit, 4 \diamondsuit]$ originally lying in positions h_0 through h_4 (say $h_i = i + 6$). The \spadesuit starts at position h_0, but after the first shuffle operation will end up at a position h_s, where s can be 0 or 2 with equal probability. We now perform some power of $\phi = (1 \ 2 \ 3 \ 4 \ 5) \circ (h_0 \ h_1 \ h_2 \ h_3 \ h_4)$ which rotates both the helping sequence and the object cards by some uniformly random $0 \leq k < 5$, leaving \spadesuit in position $h_{s+k \pmod{5}}$.

The turn step reveals the helping cards and thereby $s+k \pmod{5}$. Now $\phi^{-s-k \pmod{5}}$ is performed, leaving the helping sequence in its original state and the object cards rotated by $k - s - k = -s$. Since $-s$ is with equal probability 0 or 3 (mod 5) a uniformly random permutation from Π happened as desired. The only information that was revealed is $s+k$ which is independent of $-s$. Note that the two involved shuffle operations are uniform closed and may therefore be implemented as in Section 7. With this, we implement the non-closed shuffle with more basic shuffle operations.

We are confident that a clean formalization and generalization of this concept is possible and excited about future research that explores what other shuffle operations can be implemented in this sense.

C Achieving Input Integrity

Mizuki and Shizuya [MS14b] consider malicious players disrespecting the input format, in their case by giving $||$ or $\heartsuit \heartsuit$ as an input, even though only $\heartsuit |$ and $| \heartsuit$ are permitted. Note that we leave this problem aside when assuming that inputs are already lying on the table when the protocol starts.

It is beneficial for composability/modularity to not assume knowledge about the inputs from the players running the protocol, as they might work with hidden intermediate results of the surrounding protocol.

We can think of two strategies to integrate a player input procedure into our model, encompassing input security. In both approaches sketched below, we assume a unique starting sequence s, which does not yet encode any inputs, and both players $p \in \{1, 2\}$ have their input I_p in mind. Distributions in playerPerm actions may depend on I_p.

Strategy 1. Introduce a separate input phase before the computation phase of the protocol. In this phase, the sequence s is transformed into a sequence that reflects the input of both players. We require that no player learns anything about the input of the other player and after this phase, the sequence of cards is an admissible input sequence reflecting the honest player’s choices accurately, even when one player is malicious. In the case of committed format protocols where both players independently provide a sequence of input bits, it is easy to see that privatePerm-actions, where players perform chosen transpositions, are sufficient.

Strategy 2. The input phase and the computation phase are arbitrarily interleaved. This may allow to save cards if not all bits are needed at the same time. However, the notions of passive and active security would need to be
updated, since now the output of the protocol is not necessarily independent of the permutation trace of a player. In the case of passive security we would want only that the input of the other player and the output \textit{conditioned on} I_p are protected. For active security the notion is more tricky still.