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Abstract

In this work we consider the problem of oblivious linear function evaluation (OLE). OLE is
a special case of oblivious polynomial evaluation (OPE) and deals with the oblivious evaluation
of a linear function f(x) = ax + b. This problem is non-trivial in the sense that the sender
chooses a, b and the receiver x, but the receiver may only learn f(x). We present a highly
efficient and UC-secure construction of OLE in the OT-hybrid model that requires only O(1)
OTs per OLE. The construction is based on noisy encodings introduced by Naor and Pinkas
(STOC’99). Our main technical contribution solves a problem left open in their work, namely
we show in a generic way how to achieve full simulation-based security from noisy encodings. All
previous constructions using noisy encodings achieve only passive security. Our result requires
novel techniques that might be of independent interest.

Using our highly efficient OLE as a black box, we obtain a direct construction of an OPE
protocol that simultaneously achieves UC-security and requires only O(d) OTs, where d is the
degree of the polynomial that shall be evaluated.

1 Introduction

The oblivious evaluation of functions is an essential building block in cryptographic protocols. The
first and arguably most famous result in the area is oblivious transfer (OT), which was introduced
in the seminal work of Rabin [27]. Here, a sender can specify two bits s0, s1, and a receiver can
learn one of the bits sc depending on his choice bit c. It is guaranteed that the sender does not
learn c, while the receiver learns nothing about s1−c. Kilian [23] subsequently showed that OT
is in fact already complete, i.e. it allows the (oblivious) evaluation of any function. The work on
OT spawned the field of multiparty computation (MPC), which considers the generalized case of
several parties obliviously evaluating generic circuits.

While there has been tremendous progress in the area of generic MPC over the last three decades,
there are certain classes of functions that can be evaluated more efficiently by direct constructions
instead of taking the detour via MPC. In this context, Naor and Pinkas [25] introduced oblivious
polynomial evaluation (OPE) as an useful primitive. OPE deals with the problem of evaluating a
polynomial P on an input α obliviously, i.e. in such a way that the sender specifies the polynomial
P but does not learn α, while the receiver learns P (α) but nothing else about P . OPE has
many applications, ranging from secure set intersection [26, 16] over RSA key generation [14] to
oblivious keyword search [12]. Due to its versatility OPE has received considerable interest in
recent years [24, 13, 6, 32, 22, 17, 16, 30].
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A special case of OPE, called oblivious linear function evaluation (OLE, sometimes also referred
to as OLFE, or OAFE for affine functions) has been considered, in particular due to potential
applications in (the preprocessing of) MPC protocols for arithmetic circuits. Instead of evaluating
an arbitrary polynomial P , the receiver wants to evaluate a linear or affine function f(x) = ax+ b.
Ishai et al. [19] propose a passively secure protocol for oblivious multiplication which uses a similar
approach as [25], and can be easily modified to give a passively secure OLE. Based on stateful
tamper-proof hardware [20] as a setup assumption, [9] build an unconditionally UC-secure protocol
for OAFE.

Currently, all of the above mentioned actively secure realizations of OPE or OLE require rather
expensive computations or strong setup assumptions. In contrast, the most efficient passively secure
constructions built from noisy encodings and OT require only simple field operations. However,
to date a direct construction of a maliciously secure protocol in this setting has been elusive. One
approach to achieve this would be to apply a compiler like [18] to the passively secure protocols,
which can result in an actively secure protocol with a constant overhead compared to the passively
secure protocol. But such a transformation typically incurs a large constant, resulting in efficiency
only in an asymptotic sense. Thus, the most efficient realizations possibly follow from applying the
techniques used for the precomputation of multiplied values in arithmetic MPC protocols such as
SPDZ [7] or MASCOT [21].

1.1 Our Contribution

Our main result is a UC-secure protocol for oblivious linear function evaluation in the OT-hybrid
model, based on noisy encodings. The protocol has a constant overhead (namely 4) compared to
the semi-honest secure implementation of OLE by [19]. The construction is based on the efficient
semi-honestly secure multiplication protocol of Ishai et al. [19], which is the most efficient protocol
for passively secure OLE that we are aware of. One nice property of [19] and the main reason for
its efficiency is that it directly allows to multiply a batch of values. This property is preserved in
our construction, i.e., we can simultaneously evaluate several linear functions.

In order to achieve our result we solve the long standing open problem of finding an actively
secure OLE/OPE protocol which can directly be reduced to the security of noisy encodings (and
OT). This problem was not solved in [25] and has been touched upon in follow-up work [19]. The
key technical contribution of the paper is a reduction which shows that noisy encodings are robust
against leakage in a strong sense, which allows their application in a malicious setting. As a matter
of fact, our robustness results are more general and extend to other noisy coding-based assumptions
as well.

An immediate application of our UC-secure batch-OLE construction is a UC-secure OPE con-
struction. The construction is very simple and has basically no overhead over the OLE construction.
We follow the approach taken in [26], i.e. we use the fact that a polynomial of degree d can be de-
composed into d linear functions. Such a decomposed polynomial is evaluated with the batch-OLE
and then put back together. UC-security against the sender directly follows from the UC-security
of the batch-OLE. In order to make the protocol secure against a cheating receiver, we only have
to add one additional check that ensures that the receiver choses the same input for each linear
function. Table 1 compares the efficiency of our result with existing solutions in the literature.
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Assumption OTs/Expon. Security
[6] OT O(dκ) passive
[26] OT & Noisy Encodings O(dκ logm) passive
[19] OT & Noisy Encodings O(d) passive
[17] CRS & DCRP O(ds) UC
[16] DDH O(d) active

This work OT & Noisy Encodings O(d) UC

Table 1: Overview of OPE realizations, where d is the degree of the polynomial. We compare the
number of OTs and exponentiations in the respective protocols. Also note that [16] only realizes
OPE in the exponent.

1.2 Technical Overview

At the heart of our constructions are noisy encodings. These were introduced by Naor and
Pinkas [25] in their paper on OPE and provide a very efficient means to obliviously compute
multiplications. A noisy encoding is basically an encoding of a message via a linear code that is
mixed with random values in such a way that the resulting vector hides which elements belong
to the codeword and which elements are random, thereby hiding the initial message. In a little
more detail, the input x ∈ Ft is used as t sampling points on locations αi of an otherwise random
polynomial P of some degree d > t. Then the polynomial is evaluated at e.g. 4d positions βi, and
half of these positions are replaced by uniformly random values, resulting in the encoding v. It is
assumed that this encoding is indistinguishable from a uniformly random vector.1

Robustness of noisy encodings The main problem of using noisy encodings in maliciously
secure protocols is that the encoding is typically used in a non-black-box way. On one hand this
allows for very efficient protocols, but on the other hand a malicious party obtains knowledge that
renders the assumption that is made on the indistinguishability of noisy encodings useless. In a
little more detail, consider a situation where the adversary obtains the encoding and manipulates it
in a way that is not specified by the protocol. The honest party only obtains part of the encoding
(this is usually necessary even in the passively secure case). In order to achieve active security,
a check is performed which is supposed to catch a deviating adversary. But since the check is
dependent on which part of the encoding the honest party learned, this check actually leaks some
non-trivial information to the adversary, typically noisy positions of the codeword.

We show that noisy encodings as defined by [26, 19] are very robust with respect to leakage. In
particular, we show the following theorem that is basically a stronger version of a result previously
obtained by Kiayias and Yung [22].

Theorem 1. (informal) For appropriate choices of parameters, noisy encodings are resilient against
non-adaptive leakage of O(log κ) noisy positions.

In a little more detail, we show that a noisy encoding generated as described above remains
indistinguishable from a random vector of field elements, even for an adversary that is allowed to

1
The problem is related to efficient polynomial reconstruction, i.e. decoding Reed-Solomon codes. The parameters

have to be chosen in such a way that all known decoding algorithms fail.
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fix the position of f noisy positions. Fixing f positions is of course stronger than being able to
leak f positions. The security loss incurred by the fixing of f positions is 3f .

We then show that an adversary which is given a noisy encoding cannot identify a super-
logarithmic sized set consisting of only noisy positions.

Theorem 2. (informal) For appropriate choices of parameters, an adversary cannot identify more
than O(log κ) noisy positions in a noisy encoding.

These theorems together show that we can tolerate the leakage of any number of noisy positions
that might be guessed. This is the basis for the security of our protocol. Note that tolerance to
leakage of a set of noisy positions that might be guessed is not trivial, as we are working with an
indistinguishability notion. Hence leakage of a single bit might a priori break the assumption.

We describe the main idea behind our reduction proving the first theorem. Assume that there
are a total of ρ noisy positions. Consider an adversary that is allowed to submit a set F . Then
we generate a noisy encoding as above, except that all positions i ∈ F are fixed to be noisy. The
remaining ρ − |F | noisy positions are picked at random. Denote the distribution by ~vρ,F . Let

~vρ = ~vρ,∅. Let ~v$ denote a vector with all positions being uniformly random. We start from the
assumption that ~vρ ≈ ~v$. Let n be the total number of positions. Then clearly ~vn,F = ~v$ for all F .

We want to prove that ~vρ,F ≈ ~v$ for small F . Let F be a set of size f . Assume that we managed

to prove that ~vρ,F
′
≈ ~v$ for all sets of size f − 1. Assume also that we have managed to prove that

~vρ+1,F ≈ ~v$.
For a set F let i be the smallest index in F and let F = F ′ ∪· {i}. Consider the reduction which

is given ~v from ~vρ,F
′

or ~v$ and which adds noise to position i in ~v and outputs the result ~v′. If

~v ∼ ~v$, then ~v′ ∼ ~v$. If ~v ∼ ~vρ,F
′
, then ~v′ ∼ α~vρ+1,F + (1 − α)~vρ,F , where α is the probability

that i is not already a noisy position. Putting these together we get that ~vρ,F
′
≈ ~v$ implies that

α~vρ+1,F + (1 − α)~vρ,F ≈ ~v$. We then use that ~vρ+1,F ≈ ~v$ to get that α~v$ + (1 − α)~vρ,F ≈ ~v$,

which implies that ~vρ,F ≈ ~v$, when α is not too large.

We are then left with proving that ~vρ,F
′
≈ ~v$ and ~vρ+1,F ≈ ~v$. These are proven by induction.

The basis for ~vρ,F
′
≈ ~v$ is ~vρ,∅ ≈ ~v$. The basis for ~vρ+1,F ≈ ~v$ is ~vn,F = ~v$. Controlling the

security loss in these polynomially deep and nested inductions is tricky. We give the full details
later.

We now give the intuition behind the proof of the second theorem. Assume that some adversary
can guess a set S of s noisy positions with polynomial probability p1 given an encoding ~vρ = ~v$

and assume that s is super-logarithmic and that ρ/n is a non-zero constant. We prove the theorem

for noisy level ρ but have to start with the assumption that ~vρ−cκ ≈ ~v$ for an appropriate constant
c ∈ (0, 1) and where κ is the security parameter.

Consider the reduction which is given a sample ~v from ~vρ−cκ or ~v$. It starts by adding κ random
positions R to ~v to get ~v′. Then it feeds ~v′ to A to get a set S. Then it uses its knowledge of R
to sample the size of the intersection between S and the noisy positions in ~v′. If it is ”large” we
guess that ~v ∼ ~vρ−cκ. Otherwise we guess that ~v ∼ ~v$. We pick c such that the total number of
random positions in ~v′ is ρ with polynomial probability when ~v ∼ ~vρ−cκ, in which case S is a subset
of the noisy positions with probability p1, which will give a large intersection. If ~v ∼ ~v$, then R
is uniformly hidden to the adversary, and the expected size of the intersection will be smaller by a
constant factor depending on ρ and c. The calibration of c and ”small” is done as to allow a formal
proof using a Chernoff bound. The details are given in the following.
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Efficient OLE from noisy encodings. We build a UC-secure OLE protocol inspired by the
passively secure multiplication protocol of Ishai et al. [19]. Let us briefly recall the construction on
an intuitive level. One party, let us call it the sender, has as input t values a1, . . . , at ∈ F, while
the receiver has an input b1, . . . , bt ∈ F. The high-level idea is as follows: both sender and receiver
interpolate a degree n

4 − 1 polynomial through the points (αi, ai) and (αi, bi), obtaining A(x) and
B(x), respectively. They also agree on n points β1, . . . , βn. Now the receiver replaces half of the
points B(βi) with uniformly random values (actually he creates a noisy encoding) and sends these
n values B̄(βi) to the sender. The sender draws an additional random polynomial R of degree
2(n4 − 1) to mask the output. He then computes Y (βi) = A(βi) · B̄(βi) + R(β1) and uses these
points as input into a 2(n4 − 1)-out-of-n OT, from which the receiver chooses the n

4 − 1 values in L.
He can then interpolate the obtained points of Y (βi) to reconstruct Y and learn ai · bi + ri in the
positions αi.

The passive security for the sender follows from the fact that the receiver obtains only n
4 − 1

values and thus R completely masks the inputs a1, . . . , at. Passive security of the receiver follows
from the noisy encoding, i.e. the sender cannot learn B from the noisy encoding.

In order to achieve active security of the above protocol, we have to ensure several things: first
of all, we need to use an actively secure k-out-of-n OT. But instead of using a black-box realization,
which incurs an overhead of n log n on the number of OTs, we use n OTs and ensure that the right
number of messages was picked via a secret sharing, which the receiver has to reconstruct. This
protocol first appeared in [29]. It does not have active security against the sender, who can guess
some choice bits. A less efficient but active secure version was later given in [8], using verifiable
secret sharing. We can, however, use the more efficient but less secure original variant as we can
tolerate leakage of a few choice bits in the overall protocol.

Secondly, we also need to make sure that the parties used the right inputs in the computation,
i.e. valid polynomials A,B and R. In order to catch deviations, we add two checks—one in each
direction—to ensure this. The check is fairly simple: one party selects a random point z and the
other party sends a pair A(z), R(z), or B(z), Y (z) respectively. Each party can now locally verify
that the values satisfy the equation A(z) ·B(z) +R(z) = Y (z).

As it turns out, both of these additions to the protocol, while ensuring protocol compliance
w.r.t. the inputs, are dependent on the encoding. But this also means that a malicious sender
can do selective failure attacks, e.g., it inputs incorrect shares for the secret sharing, and gets
some leakage on the “secret key” of the encoding. This problem does not occur when considering
semi-honest security

2 Preliminaries

We use the standard notions of probabilistic polynomial time (PPT) algorithms, negligible and
overwhelming functions. Further, we denote by x ∈ Fn a vector of length n and xi as the ith element
of x. Unless noted otherwise, P (x) denotes a polynomial in F[X], and X denotes a distribution.

We will typically denote a value x̂ chosen or extracted by the simulator, while x∗ is chosen by
the adversary A.
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2.1 Universal Composability Framework

We state and prove our results in the Universal Composability (UC) framework of Canetti [4].
Security is defined via the comparison of an ideal model and a real model. In the real model, a
protocol Π between the protocol participants is executed, while in the ideal model the parties only
communicate with an ideal functionality F that is supposed to model the ideal security guarantees
of the protocol. For an adversaryA in the real protocol who coordinates the behavior of all malicious
parties, there has to exist a simulator S for A in the ideal protocol. An environment Z, which is
plugged to both the real and the ideal protocol, provides the inputs to the parties and can read the
outputs. The simulator S has to ensure that Z is not able to distinguish these models. Thus, even
with concurrently executed protocols (running in the environment) the security holds. Usually, we
assume that A is a dummy adversary controlled by Z, which means that Z can adaptively choose
its inputs depending on protocol messages it received and send messages on behalf of a (corrupted)
protocol party.

More formally, let RealAΠ(Z) denote the random variable describing the output of Z when
interacting with the real model, and let IdealSF (Z) denote the random variable describing the output
of Z when interacting with the ideal model. A protocol Π is said to UC-realize a functionality F if
for any (PPT) adversary A, there exists a PPT simulator S such that for any (PPT) environment
Z, RealAΠ(Z) ≈ IdealSF (Z).

For our constructions we assume active adversaries and static corruption. We prove security
in the hybrid model access to oblivious transfer (OT). For completeness the ideal functionality for
OT is given in Section 2.3.

2.2 Commitment Scheme

A commitment scheme COM consists of two algorithms (COM.Commit,COM.Open). It is a two
party protocol between a sender and a receiver. In the commit phase of the protocol, when the
sender wants to commit to some secret value m, it runs COM.Commit(m) and gets back two values
(com, unv). It sends com to the receiver. Later on in the unveil phase, the sender sends the unveil
information unv to the receiver, who can use COM.Open to verify that the commitment com contains
the actual secret m.

A commitment scheme must satisfy two security properties; 1)Hiding : The receiver cannot
learn any information about the committed secret before the unveil phase, and 2)Binding : The
sender must not be able to change the committed secret after the commit phase. For our purpose
we need efficient UC-secure commitment schemes that can be realized in FOT-hybrid model and in
FOLE-hybrid model.

In [5] the authors proposed an UC-secure commitment scheme in the FOT-hybrid model. Their
protocol gives the first UC commitment scheme with ”optimal properties” of rate approaching 1
and linear time complexity, in a ”amortized sense”. In our UC-secure OLE protocol also we need
to commit to many values at a time, so we can use their UC commitment scheme in our protocol.

2.3 UC Oblivious Transfer

1-out-of-2 oblivious transfer protocol involves two parties, a sender who inputs x0 and x1 and a
receiver whose input is a single bit b ∈ {0, 1}. At the end of the protocol the receiver learns only
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xb and the sender remains oblivious about the choice bit b. The ideal functionality is described
in Figure 1.

Functionality FOT

1. Upon receiving a message (inputS,x0,x1) from S, where each xi ∈ {0, 1}
λ, verify that there is no

stored tuple, else ignore that message. Store (inputS,x0,x1) and send a message (input) to A.

2. Upon receiving a message (inputR, b) from R with b ∈ {0, 1}, verify that there is no stored tuple,
else ignore that message. Store (inputR, b) and send a message (input) to A.

3. Upon receiving a message (deliver,S) from A, check if both (inputS,x0,x1) and (inputR, b) are
stored, else ignore that message. Send (delivered) to S.

4. Upon receiving a message (deliver,R) from A, check if both (inputS,x0,x1) and (inputR, b) are
stored, else ignore that message. Send (output,xb) to R.

Figure 1: Ideal functionality for 1-out-of-2 Oblivious Transfer.

2.4 Perfectly Private Secret Sharing Scheme

In a secret sharing scheme a secret is being distributed by a dealer among n parties, such that only
authorized subset of parties can reconstruct the secret. It consists of two algorithms SS.Share()
and SS.Reconstruct. Secret sharing schemes were first proposed by Blakley [1] and Shamir [28].
In a perfectly private secret sharing scheme every unauthorized set cannot learn anything about
the secret in the information theoretic sense. Shamir’s scheme is an example of a perfectly private
threshold linear secret sharing scheme.

Shamir’s Threshold Secret-Sharing Scheme. In Shamir secret sharing scheme the secret k
and the shares are the elements from a finite field Fq for some prime power q > n. To share a

secret k ∈ Fq, the dealer constructs d-degree polynomial P (x) = a0 +
∑d

i=1 aix
i, where a0 = k and

ai ∈r Fq, ∀i ∈ [1, d]. The dealer distributes {P (αj), αj} to the jth party, where αj ∈ Fq, ∀j ∈ [1, n].
Any d + 1 parties among n parties can reconstruct the d-degree polynomial P (x) using their

shares, by forming d+ 1 linearly independent linear equations with d+ 1 variables {a0, . . . , ad} and
solving the system of equations. Thus they can recover the secret P (0) = k; However, any d parties
(or less than d parties) will not be able to extract any information about P (0).

Packed Secret-Sharing. In [11] Franklin and Yung introduced the concept of packed secret-
sharing to reduce the communication complexity of secure multi-party computation. The packed-
secret sharing scheme used in [11] is similar to Shamir secret sharing, but here a block of l different
values {k1, . . . , kl} are shared using a d-degree random polynomial that evaluates to k1, . . . , kl in l
distinct points. To guarantee privacy in case of t corrupted parties, the random polynomial must
have degree d ≥ t+ l − 1. In order to reduce the overall overhead we use packed secret-sharing in
our OLE protocol.
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3 Noisy Encodings

The security of our protocols is based on a noisy encoding assumption. Very briefly, a noisy encoding
is an encoding of a message, e.g. via a linear code, that is mixed with random field elements. It is
assumed that such a codeword, and in particular the encoded message, cannot be recovered. This
assumption seems reasonable due to its close relationship to decoding random linear codes or the
efficient decoding of Reed-Solomon codes with a large fraction of random noise.

Noisy encodings were first introduced by Naor and Pinkas [25], specifically for the purpose of
realizing OPE. Their encoding algorithm basically generates a random polynomial P of degree
k− 1 with P (0) = x. The polynomial is evaluated at n > k locations, and then n− k positions are
randomized. Generalizing the approach of [26], Ishai et al. [19] proposed a more efficient encoding
procedure that allows to encode several field elements at once instead of a single element, using
techniques of [11]. Basically, they use Reed-Solomon codes and then artificially blind the codeword
with random errors in order to mask the location of the codeword elements in the resulting string.

The encoding procedure depicted in Figure 2 is nearly identical to the procedure given in [19],
apart from the fact that we do not fix the signal-to-noise ratio. We also allow to pass a set of points
P as an argument to Encode to simplify the description of our protocol later on. This change has
no impact on the assumption, since these points are made public anyway via G.

Encoden,ρ(x,P)

Generator G(n, ρ) for Reed-Solomon code: Let the output be (G,H,L).

• Let ` = n− ρ and k = `−1
2 + 1.

• Let α1, . . . , αk, β1, . . . , βn be the points in P. If P = ∅, pick these points randomly from F.

• Define the n× k matrix G such that for any u ∈ Fk, (Gu)i = P (βi) for i = 1, . . . , n, where P
is the unique degree k − 1 polynomial such that P (αi) = ui for i = 1, . . . , k.

• Pick L ⊂ [n] with |L| = ` uniformly at random.

• Let H be the k × 2k − 1 matrix such that (HvL)i = Q(αi), where Q is the unique degree
2(k − 1) polynomial such that Q(βj) = vj for all j ∈ L.

Encoding: Let the private output be (G,H,L,v) and the public output be (G,v).

• Let (G,H,L)← G(n, ρ).

• Pick a random u ∈ Fk conditioned on ui = xi for i = 1, . . . , t. Compute Gu ∈ Fn.

• Pick a random vector v ∈ Fn, conditioned on vi = (Gu)i for i ∈ L.

Figure 2: Encoding procedure for noisy encodings.

[25] propose two different encodings and related assumptions, tailored to their protocols. One
of these assumptions was later broken by [2] and [3], and a fixed version was presented in [26]. We
are only interested in the unbroken assumption. The same assumption was used by [19] and we
will adopt their notation in the following.

Assumption 1. Let κ be a security parameter and n, ρ ∈ poly(κ). Further let x, y ∈ Ft(κ). Then the
ensembles {Encoden,ρ(x)}κ and {Encoden,ρ(y)}κ are computationally indistinguishable, for t ≤ `

4 .

In order for this assumption to hold, [19] propose n = 4κ, ρ = 2κ + 1 as parameters, or
n = 8κ, ρ = 6κ+1 on the conservative side. As it is, our security reductions do not hold with respect
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to Assumption 1, but rather a variant of Assumption 1 which was already discussed in [25]. Instead
of requiring indistinguishability of two encodings, we require that an encoding is pseudorandom.

Assumption 2. Let κ be a security parameter and n, ρ ∈ poly(κ). Further let x ∈ Ft(κ). Then the
ensembles {Encoden,ρ(x)}κ and {G← G(n, ρ), v ← Fn}κ are computationally indistinguishable, for

t ≤ `
4 .

Clearly, Assumption 2 implies Assumption 1, while the other direction is unclear. Apart from
being a very natural assumption, Kiayias and Yung [22] provide additional evidence that Assump-
tion 2 is valid. They show that if an adversary cannot decide for a random position i of the encoding
whether it is part of the codeword or not, then the noisy codeword is indeed pseudorandom.

4 Noisy Encodings are Robust Against Leakage

In this section we show that a large class of computational assumptions can be extended to allow
some leakage without loss of asymptotic security. This is one of the main technical contributions
of the paper and we deem the reductions to be of independent interest. We first define the class of
assumptions we consider.

Definition 3. Let a finite field F be given. For a positive integer n we use Un to denote the uniform
distribution on Fn. Let n be the length of a codeword, ρ the number of randomised positions, G a
generator and F some fixed random positions with |F | ≤ ρ. The distribution Yn,ρ,G,F is sampled as
follows.

1. Sample (x1, . . . , xn)← G(1κ), where κ is the security parameter.

2. Sample uniform R ⊆ [n] under the restriction |R| = ρ and F ⊆ R.

3. Sample uniform (e1, . . . , en)← Un under the restriction ei = 0 for i 6∈ R.

4. Output y = x + e.

Clearly it holds that the above defined Encode algorithm falls under Definition 3, i.e. all of the
following results hold for noisy encodings as well.

We will mostly consider the case that n = Θ(κ) and ρ = Θ(κ). Typically n and G are fixed, in
which case we denote the distribution of y by Yρ,F . Note that Yn,F = Un.

We are going to assume that for sufficiently large ρ it holds that Yρ ≈ Yn, where ≈ means the
distributions are computationally indistinguishable. For example, this is given by Assumption 2
for noisy encodings with appropriate parameters. We will use this to prove that the same result
holds given limited leakage on R and that it is hard to compute a lot of elements of R given only
y.

When we prove the first result, we are going to do an argument with two nested recursive
reductions. To make it easier to track the security loss, we are going to shift to a concrete security
notation for a while and then switch back to asymptotic security when we have control over the
security loss.

Given two distributions A0 and A1 and a distinguisher D let AdvD(A0, A1) = Pr[A1 = 1] −
Pr[A0 = 0]. We use A0 ≈

t
ε A1 to denote that it holds for all distinguishers computable in time t

that AdvD(A0, A1) ≤ ε.
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Given two distributions A0 and A1 and 0 ≤ α0 ≤ 1 and α1 = 1−α0 we use B = α0A0 +α1A1 to
denote the distribution generated by the following procedure. Sample c ∈ {0, 1} with Pr[c = i] = αi.
Then sample b← Ac and output b.

We will use the following simple facts on out proofs. For completeness the proof is given in
Appendix A.

Lemma 4. Let A0, A1 and Z be distributions.

A0 ≈
t
ε A1 ⇒ α0A0 + α1Z ≈

t
α0ε

α0A1 + α1Z .

α0A0 + α1Z ≈
t
ε α0A1 + α1Z ⇒ A0 ≈

t
α
−1
0 ε

A1 .

In the following we will show that if Yρ ≈t+t
′

ε Yn and F is not too large, then Yρ,F ≈t
ε
′ Yn,F for

ε′ polynomially related to ε. Since the reduction will be recursive and will modify ε multiplicatively,
we will keep explicit track of ε to ensure the security loss is not too large. As for t, each reduction
will only add a small t′ to t, namely the time to sample a distribution. The time will therefore
clearly grow by at most a polynomial term. We therefore do not keep track of t, for notational
convenience.

Lemma 5. If ρ− |F | ≥ 2n/3 and Yj ≈ε Y
n for all j ≥ ρ, then Yρ,F ≈σρ Y

n,F for σρ = 3|F |ε.

Proof. We prove the claim by induction in the size of F . If |F | = 0 it follows by assumption.
Consider then the following randomised function f with inputs (y1, . . . , yn) and F . Let i be the

largest element in F and let F ′ = F \ {i}. Sample uniformly random y′i ∈ F. For j 6= i, let y′j = yj .

Output y′. Consider the distribution Yρ,F
′
. Let R denote the randomised positions. If i ∈ R, then

f(Yρ,F
′
) = Yρ,F . If i 6∈ R, then f(Yρ,F

′
) = Yρ+1,F , as we added one more random point. The point

i is a fixed point not in F ′. There are n− |F |+ 1 points not in F ′. There are ρ randomised points,
i.e., |R| = ρ. Of these |F | − 1 are the points of F ′. The other points are uniform outside F ′. So

there are ρ − |F | + 1 such points. Therefore the probability that i ∈ R is p = ρ−|F |+1
n−|F |+1 . It follows

that
f(Yn,F

′
) = Yn,F , f(Yρ,F

′
) = pYρ,F + (1− p)Yρ+1,F .

It then follows from Yn,F
′
≈ε′ Y

ρ,F
′

(where ε′ = 3|F
′|ε) that

Yn,F ≈ε′ pY
ρ,F + (1− p)Yρ+1,F .

We now claim that Yρ,F ≈3ε
′ Yn,F . The claim is trivially true for ρ = n, so we can assume that

ρ < n and assume the claim is true for all ρ′ > ρ. Using Lemma 4 and the induction hypothesis we
get that

pYρ,F + (1− p)Yρ+1,F ≈(1−p)3ε′ pY
ρ,F + (1− p)Yn,F .

Clearly
Yn,F ≈0 pY

n,F + (1− p)Yn,F .

Putting these together we get that

pYn,F + (1− p)Yn,F ≈ε′+(1−p)3ε′ pY
ρ,F + (1− p)Yn,F .
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Using Lemma 4 we get that
Yn,F ≈

p
−1

(ε
′
+(1−p)3ε′) Y

ρ,F .

We have that p ≥ 2/3 so

p−1(ε′ + (1− p)3ε′) ≤ 3

2
(ε′ +

1

3
3ε′) = 3ε′ = 3|F |ε .

In the rest of the section, assume that n and ρ are functions of a security parameter κ and
that n, ρ = Θ(κ). Also assume that ρ ≥ 2n/3 and that n − ρ = Θ(κ). We say that Yρ ≈ Yn if

Yρ
′
≈q(κ)

1/p(κ) Y
n(κ) for all polynomials p and q and all sufficiently large κ and all ρ′ ≥ ρ.

From 3O(log κ) being a polynomial in κ we get that

Corollary 6. If Yρ ≈ Yn and F ⊆ [n] has size O(log κ), then Yρ,F ≈ Yn.

Now assume that Yρ ≈ Yn. Let Yρ,F,¬ be defined as Yρ,F except that R is sampled according
to the restriction that F 6⊆ R, i.e., F has at least one element outside R. Let p(F ) be the
probability that F ⊆ R for a uniform R. Then by definition and the law of total probability
Yρ = pYρ,F + (1 − p)Yρ,F,¬. We have that Yρ ≈ Yn and that Yρ,F ≈

3
|F | Y

n,F = Yn. Putting

these together we have that Yn ≈
p3
|F | pY

n + (1 − p)Yρ,F,¬. We can assume wlog that (1 − p) is a

polynomial. We then get that Yn ≈
3
|F | Y

ρ,F,¬.

Corollary 7. If Yρ ≈ Yn and F ⊆ [n] has size O(log κ), then Yρ,F,¬ ≈ Yn.

We will now prove that given a small non-adaptive query on R does not break the security.

Definition 8. Let A be a PPT algorithm and Y as defined in Definition 3. The game Gleak is
defined as follows.

1. Run A to get a subset Q ⊆ [n].

2. Sample a uniformly random bit c.

• If c = 0, then sample y← Yρ and let R be the subset used in the sampling

• If c = 1, then sample y← Yn and let R ⊆ [n] be a uniformly random subset of size ρ.

3. Let r ∈ {0, 1} be 1 iff Q ⊆ R and input (r,y) to A.

4. Run A to get a guess g ∈ {0, 1}.

The advantage of A is AdvA = Pr[g = 1 | c = 1]− Pr[g = 1 | c = 0].

Theorem 1. Assume that n, ρ = Θ(κ) and that ρ ≥ 2
3n. If Yρ ≈ Yn, then AdvA ≈ 0.

Proof. Let p be the probability that Q ⊆ R. If p is negligible, then in item 3 of the game we could
send the constant r = 0 to A and it would only change the advantage by a negligible amount. But
in the thus modified game AdvA ≈ 0 because Yn ≈ Yρ. So assume that p is a polynomial.2 Let Y0

2
Formally we should consider the case where it is a polynomial for infinitely many κ, but the following argument

generalises easily to this case.
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be the distribution of (r, y) when c = 0. Let Y1 be the distribution of (r,y) when c = 1. If c = 0,
then (r,y) is distributed as follows

Y0 = p(1,Yρ,Q) + (1− p)(0,Yρ,Q,¬) .

When p is polynomial, then |F | = O(log κ) as n− ρ = Θ(κ). From this we get that

Y0 ≈ p(1,Y
n) + (1− p)(0,Yn) = Y1 ,

using the above asymptotic corollaries.

We will then prove that it is hard to compute a lot of elements of R.

Definition 9. Let A be a PPT algorithm and Y as defined in Definition 3. The game Gident is
defined as follows.

1. Sample y← Yρ and let R denote the randomized positions.

2. Input y to A.

3. Run A and denote the output by Q ⊆ [n]. We require that |Q| = s.

4. Let r ∈ {0, 1} be 1 iff Q ⊆ R.

5. Output r.

The advantage of A is Advρ,sA = Pr[r = 1].

Theorem 2. Let n = Θ(κ).

1. Let σ = n ρ−κn−κ and s = κ.

2. Let σ = nκ
n−ρ−κ and s ∈ ω(log κ).

If Yσ ≈ Yn, then Advρ,sA ≈ 0.

Proof. Let A be an adversary such that when Q ← A(Yρ), then Q ⊆ R with non-negligible
probability p. The argumentation is similar for both cases. For the first part of the theorem,
consider the following adversary B(y) receiving y ∈ Fn. It samples a uniform X ⊂ [n] of size κ.

For i ∈ X let y′i be uniformly random. For i 6∈ X let y′i = yi. Compute Q← A(y). If |Q∩X| ≥ κ
2

ρ ,
then output 1. Otherwise output 0.

We now prove that Pr[B(Yn) = 1] ≈ 0 and that Pr[B(Yσ) = 1] is non-negligible, which proves
the first statement of the theorem.

Let R be the positions that were randomised in y. Let R′ = R ∪X. Note that if y← Yσ, then

E[|R′|] = κ+ σ − E[|X ∩R|] = κ+ σ − κσ
n

= ρ .

It is straight forward to verify that Pr[|R′| = ρ] = 1/O(κ), which implies that Pr[Q ⊆ R] = p/O(κ),
which is non-negligible when p is non-negligible. Let E denote the event that Q ⊆ R. By a simple
application of linearity of expectation we have that

E[|Q ∩X| |E] =
κ2

ρ
,

12



as X is a uniformly random subset X ⊆ R given the view of A. From this it follows that Pr[B(Yσ) =
1] is non-negligible.

Then consider B(Yn). Note that now R = [n] and again X is a uniformly random subset of R
independent of the view of A. Therefore

E[|Q ∩X|] =
κ2

n
=: µ.

Then

Pr[|Q ∩X| ≥ s(ρ− κ)

ρ
] = Pr[|Q ∩X| ≥ n

ρ
µ] = Pr[|Q ∩X| ≥ (1 + δ)µ]

for δ ∈ (0, 1). It follows that

Pr[|Q ∩X| ≥ κ2

ρ
] ≤ e−

µδ
2

3 = e−Θ(µ) = e−Θ(κ) = negl(κ).

To see this let X = {x1, . . . , xκ} and let Xi be the indicator variable for the event that the
i’the element of X ends up in Q. Then Pr[Xi = 1] = κ

n and |X ∩Q| =
∑

iXi. Consider then the
modified experiment called Independent Sampling, where we sample the κ elements for X uniformly
at random from [n] and independently, i.e., it may happen that two of them are identical. In
that case the inequality is a simple Chernoff bound. It is easy to see that when we go back to
Dependent Sampling, where we sample xi uniformly at random except that they must be different
from x1, . . . , xi−1, then we only lower the variance of the sum

∑
iXi compared to Independent

Sampling, so Pr[|Q∩X| ≥ (1+δ)µ] will drop. Too see this, consider the sequence x,x1+x2, . . . ,
∑

i xi
as a random walk. In the Dependent Sampling case, when

∑
i xi is larger than the expectation, then

xi+1 is less likely to be in Q compared to the Independent Sampling case, as an above expectation
number of slots in Q is already taken. Similarly, when

∑
i xi is smaller than the expectation, then

xi+1 is more likely to be in Q compared to the Independent Sampling case, as a below expectation
number of slots in Q is already taken. Therefore the random walk in the Dependent Sampling case
will always tend closer to average compared to the Independent Sampling random walk.

The second statement of Theorem 2 follows by setting X to be a uniform subset of size ρ− κ.
As above, if A outputs Q such that |Q ∩X| ≥ s(ρ−κ)

ρ , then B(y) outputs 1. Otherwise it outputs

0. Let again R be the positions that were randomised in y. Let R′ = R ∪X. If y← Yσ, then

E[|R′|] = ρ− κ+ σ − E[|X ∩R|] = ρ− κ+ σ − (ρ− κ)
σ

n
= ρ .

Let E denote the event that Q ⊆ R. Following the above argumentation,

E[|Q ∩X| |E] =
s(ρ− κ)

ρ
.

From this it follows that Pr[B(Yσ) = 1] is non-negligible. Then consider B(Yn). Note that now
R = [n] and again X is a uniformly random subset of R independent of the view of A. Therefore

E[|Q ∩X|] =
s(ρ− κ)

n
=: µ.

It follows that

Pr[|Q ∩X| ≥ s(ρ− κ)

ρ
] ≤ e−

µδ
2

3 = e−Θ(µ) = e−ω(log κ) = negl(κ).
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5 Constant Overhead Oblivious Linear Function Evaluation

Oblivious linear function evaluation (OLE) is the task of computing a linear function f(x) = ax+ b
in the following setting. One party, lets call it the sender S, provides the function, namely the
values a and b. The other party, the receiver R, wants to evaluate this function on his input x. This
task becomes non-trivial if the parties want to evaluate the function in such a way that the sender
learns nothing about x, while the receiver learns only f(x), but not a and b. OLE can be seen as a
special case of oblivious polynomial evaluation (OPE) as proposed by Naor and Pinkas [25], where
instead of a linear function f , the sender provides a polynomial p.

5.1 Ideal Functionality

The efficiency of our protocol follows in part from the fact that we can directly perform a batch
of multiplications. This is reflected in the ideal UC-functionality for F t

OLE (cf. Figure 3), which
allows both sender and receiver to input vectors of size t.

Functionality F t
OLE

1. Upon receiving a message (inputS,a,b) from S with a,b ∈ Ft, verify that there is no stored tuple,
else ignore that message. Store a and b and send a message (input) to A.

2. Upon receiving a message (inputR,x) from R with x ∈ Ft, verify that there is no stored tuple, else
ignore that message. Store x and send a message (input) to A.

3. Upon receiving a message (deliver,S) from A, check if both a,b and x are stored, else ignore that
message. Send (delivered) to S.

4. Upon receiving a message (deliver,R) from A, check if both a,b and x are stored, else ignore that
message. Set yi = ai · xi + bi for i ∈ [t] and send (output,y) to R.

Figure 3: Ideal functionality for an oblivious linear function evaluation.

5.2 Our Protocol

Our starting point is the protocol of Ishai et al. [19] for passively secure batch multiplication. Their
protocol is based on noisy encodings, similar to our construction. We will now briefly sketch their
construction (with minor modifications) and then present the high-level ideas that are necessary to
make the construction actively secure.

In their protocol, the receiver first creates a noisy encoding (G,H,L,v) ← Encode(x) (as
described in Section 3, Figure 2) and sends (G,v) to the sender. At this point, the locations
i ∈ L of v hide a degree `−1

2 polynomial over the points β1, . . . , βn which evaluates to the input
x = x1, . . . , xt in the positions α1, . . . , αt. The sender picks two random polynomials A and B with
the restriction that A(αi) = ai and B(αi) = bi for i ∈ [t]. The degree of A is `−1

2 , and the degree of

B is `−1.3 This means that B completely hides A and therefore the inputs of the sender. Now the
sender simply computes wi = A(βi) · vi +B(βi). Sender and receiver engage in an `-out-of-n OTs,

3
The value ` is fixed by the encoding, but we require that ` is uneven due to the fact that we have to reconstruct

a polynomial of even degree `−1
2

+ `−1
2

= `− 1, which requires ` values.
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and the receiver picks the ` positions in L. He applies H to the obtained values and interpolates a
polynomial Y which evaluates in position αi to ai · xi + bi.

We keep the generic structure of the protocol of [19] in our protocol. In order to ensure
correct and consistent inputs, we have to add additional checks. The complete description is
given in Figure 4, and we give a high-level description of the ideas in the following paragraph.

First, we need to ensure that the receiver can only learn ` values, otherwise he could potentially
reconstruct part of the input. Instead of using an expensive `-out-of-n OT, we let the sender create
a (ρ, n)-secret sharing (remember that ρ+ ` = n) of a random value e and input a share si together
with a random value ti into the OT. Depending on his set L, the receiver chooses ti or the share si.
Then he uses the shares to reconstruct e and sends it to the sender. This in turn might leak some
information on L to the sender, if he can provide an inconsistent secret sharing. We thus force the
sender to commit to e and later provide an unveil. Here the sender can learn some information on
L, if he cheats but is not caught, but we can use our results from the previous section to show that
this leakage is tolerable. The receiver can proceed and provide the encoding v, which allows the
sender to compute w.

Second, we have to make sure that the sender computes the correct output. In order to catch
a cheating sender, we add a check to the end of the protocol. Recall that the receiver knows the
output Y . He can compute another polynomial X of his input and then pick a uniformly random
challenge zR. He sends it to the sender, who has to answer with A(zR), B(zR). Now the receiver can
verify that Y (zR) = A(zR)X(zR) + B(zR), i.e. the sender did not cheat in the noiseless positions.
Again this leaks some information to the sender, but with the correct choice of parameters this
leakage is inconsequential.

Security against a malicious receiver basically follows from the passively secure protocol. We
only have to make sure that the extraction of his input is correct and that no information about
the sender’s inputs is leaked if e is incorrect. We thus mask the wi by a one-time-pad and add the
following check. This time the sender chooses zS and the receiver has to answer with X(zS, Y (zS),
which enforces correct extraction.

Theorem 3. The protocol ΠOLE UC-realizes FOLE in the OT-hybrid model with computational
security.

Proof. Corrupted sender. In the following we present a simulator SS which provides a compu-
tationally indistinguishable simulation of ΠOLE to a malicious sender AS (cf. Figure 5).

The main idea behind the extraction is the following. Since SS learns all inputs into the OTs, it
can use the now available noisy elements v̂i with i /∈ L to learn the input a. The noiseless v̂i, i ∈ L
can be extrapolated to the noisy positions via a polynomial Ŷ (ŵi values imply a degree ` − 1
polynomial for i ∈ L, and the receiver always learns ` values).

Ignoring for the moment that AS might provide inconsistent inputs, the simulator now knows
two values for each position βi, i /∈ L: ŵi = ai · v̂i + bi and Ŷ (βi). Therefore, assuming that AS is
honest, by computing ŵi − Ŷ (βi) the simulator gets ai · v̂i + bi − ai · x̂i + bi = ai(v̂i − x̂i), where x̂i
is the value that his input x̂ ∈ Ft would imply according to the encoding v̂|L on position βi. Since

the simulator knows v̂i and x̂i, it can simply compute ai. From `−1
2 + 1 of these points it can then

compute the degree- `−1
2 polynomial A. From Y = AZ + B, it can then compute B and therefore

the bis. For this to work we only need `−1
2 + 1 points. Therefore, if the corrupted sender sends

incorrect values in at most κ positions i 6∈ L and `−1
2 + 2κ < n there are still enough points to at

least define a correct A and therefore also a correct B = Y −AX.
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Protocol ΠOLE

Let P = {α1, . . . , α `+1
2
, β1, . . . , βn} be a set of publicly known distinct points in F. Further, let SS be a

(ρ, n) secret sharing and COM be an OT-based commitment scheme. Set ρ = 7
8n and ` = n− ρ.

1. Sender (Input a,b ∈ Ft):

• Draw a random polynomial A of degree `−1
2 with A(αi) = ai and a random polynomial B of

degree `− 1 with B(αi) = bi ∀i ∈ {1, . . . , t}.
• Draw a uniformly random vector t ∈ Fn.

• Draw a random value e ∈ F and compute s ← SS.Share(e). Further compute (com, unv) ←
COM.Commit(e).

• Send com to the receiver and engage in n OT instances with input (ti, si) for instance i.

2. Receiver (Input x ∈ Ft):

• Start the encode procedure Encoden,ρ(x,P) and obtain (G,H,L,v). Interpolate a polynomial
X through the points (βi, vi) for i ∈ L.

• For each OT instance i, if i ∈ L, set choicei = 0, otherwise set choicei = 1.

• Obtain ` values ti and ρ values s̃i. Compute ẽ = SS.Reconstruct(s̃|¬L).

• Send ẽ to the sender.

3. Sender: Check if ẽ = e, if not abort. Send unv to the receiver.

4. Receiver: Check if COM.Open(com, unv, ẽ) = 1, abort if not. Send (G,v) to the sender.

5. Sender: Compute w̃i = A(βi) · vi + B(βi) + ti for i ∈ {1, . . . , n}. Send w̃ = (w̃1, . . . , w̃n) to the
receiver.

6. Receiver: Set wi = w̃i− ti for i ∈ L and interpolate the degree `−1 polynomial Y through the points
(βi, wi) for i ∈ L. Draw zR ∈ F \ P uniformly at random and send zR to the sender.

7. Sender: Draw zS ∈ F \ P uniformly at random and send
(
A(zR), B(zR), zS

)
to the receiver.

8. Receiver:

• Check if A(zR) ·X(zR) +B(zR) = Y (zR) and abort if not.

• Send (X(zS), Y (zS)) to the sender and output y = Hw|L.

9. Sender: Check if A(zS) ·X(zS) +B(zS) = Y (zS) and abort if not.

Figure 4: Actively secure realization of FOLE in the OT-hybrid model.

We now show that for every PPT environment Z, the two distributions Real
AS
ΠOLE

(Z) and

Ideal
SS
FOLE

(Z) are indistinguishable. Consider the following series of hybrid experiments.

Hybrid 0: This is the real protocol.

Hybrid 1: Identical to Hybrid 0, except that S1 extracts all inputs (si, ti) input into OT by AS.

Hybrid 2: Identical to Hybrid 1, except that S2 extracts the values ā as shown in Figure 5 and
aborts if the check in Step 8 is passed, but ā1, . . . , āρ has more than κ errors.

Hybrid 3: Identical to Hybrid 2, except that S3 encodes a random value x̂ as its input.
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Simulator SS

1. Let com∗ be the message from AS. Upon receiving input from F t
OLE, select a random value x̂ ∈ Ft

and compute (Ĝ, Ĥ, L̂, v̂) ← Encode(x̂). Further interpolate a polynomial X̂ such that X̂(βi) = v̂i
for i ∈ L̂.

2. Learn all of AS’s inputs (t∗1, . . . , t
∗
n) and s∗ = (s∗1, . . . , s

∗
n) sent to the n OT instances.

• Compute ê← SS.Reconstruct(s∗|¬L̂).

• Send ê to AS.

3. Upon receiving unv∗, check if COM.Open(com∗, unv∗, ê) = 1, if not abort. Send (Ĝ, v̂) to AS.

4. Upon receiving w̃∗, do the following:

• Compute ŵi = w̃∗i − ti for all i ∈ [n].

• Interpolate the degree `− 1 polynomial Ŷ such that Ŷ (βi) = ŵi for i ∈ L̂.

• Draw a random ẑR ∈ F \ P and send it to AS.

5. Upon receiving (A(ẑR)∗, B(ẑR)∗, z∗S), check if A(ẑR)∗ · X̂(ẑR) + B(ẑR)∗ = Ŷ (ẑR) and abort if not.
Proceed as follows:

• For all i /∈ L̂, set āi = Ŷ (βi)−ŵi

X̂(βi)−v̂i
.

• Interpret the ρ points āi as a Reed-Solomon encoded codeword. Decode (ā1, . . . , āρ) into
(ã1, . . . , ãρ) and abort if the codeword (ā1, . . . , āρ) contains more than κ errors. Interpolate a

polynomial Â such that Â(βi) = ãi. Obtain â1, . . . , ât by evaluating Â in α1, . . . , αt.

• Compute b̂i = Ŷ (βi)− X̂(βi)Â(βi) for i ∈ L̂. Interpolate a polynomial B̂ such that B̂(βi) = b̂i.

Obtain b̂1, . . . , b̂t by evaluating B̂ in α1, . . . , αt.

6. Set â = (â1, . . . , ât) and b̂ = (b̂1, . . . , b̂t). Send (inptS, â, b̂) to F t
OLE. Proceed with the simulation

according to protocol.

Figure 5: Simulator against a corrupted sender in ΠOLE.

The indistinguishability of Hybrids 0 and 1 is immediate. We show that Hybrid 1 and Hybrid 2
are computationally indistinguishable in Lemma 9.1, and then we prove indistinguishability of
Hybrid 2 and Hybrid 3 in Lemma 9.2.

Lemma 9.1. Hybrids 1 and 2 are computationally indistinguishable from Z’s view given that
Assumption 2 holds.

Proof. In order to prove the lemma, we have to show the following two statements.

1. S2 correctly extracts the input â, b̂, if there are less than κ errors in noisy positions.

2. The probability that S2 aborts due to more than κ errors in noisy positions is negligible in κ.

There are two ways in which AS can cheat and prevent the correct extraction: (1) it uses an
inconsistent input for a noiseless value v̂i, i ∈ L which leads to a wrong polynomial Ŷ (and also an
incorrect āi); (2) it uses an inconsistent input for a noisy value v̂i, i /∈ L, which leads to incorrectly
extracted values āi.
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In case (1), the honest party will abort due to the check in Step 8 with overwhelming probability.
It has to hold that A(z)∗ · X̂(z) + B(z)∗ = Ŷ (z) for a uniformly chosen z. From Assumption 2
it follows that X̂ (and thus Ŷ ) are unknown to Z, as they would be unconditionally hidden by a
completely random vector. By the fundamental theorem of algebra there are at most deg(Ŷ ) = `−1
possible values z for which A(z)∗ ·X̂(z)+B(z)∗ = Ŷ (z) for incorrect A(z)∗, B(z)∗. Since zR is chosen
uniformly at random from F, the probability that the check succeeds with incorrect A(z)∗, B(z)∗

is thus upper bounded by `−1
|F| , which is negligible in the security parameter. This means that the

check in Step 8 ensures that all the values ŵi for i ∈ L are correct.
For case (2), we first argue that the extraction also succeeds if AS adds less than κ errors in

noisy positions (the simulator will abort if more than κ errors occur). By the choice of parameters
it holds that ρ > 3κ = 6`, and the simulator learns ρ values ai that are supposed to represent a
degree `−1

2 polynomial. Applying a standard Reed-Solomon decoder then yields the correct values

ai, i.e. if less than κ errors occur, SS extracts the correct a ∈ Ft (and thus also the correct b ∈ Ft).
This shows that as long as there are less than κ errors in noisy positions, the extracted values

are correct.
We claim that a Z that places more than κ errors in noisy positions breaks Assumption 2. The

scenario of Z in the simulation is identical to the game Gident: Z gets an encoding v← Encoden,ρ(x)
with ρ noisy positions and has to output a set of positions Q ⊆ [n] such that Q ⊆ R and |Q| ≥ κ.

As discussed in Section 3, we can assume that Encoden,n/2 yields encodings that are indistin-
guishable from Encoden,n, i.e. truly random strings. In order to meet the requirements of Theorem 2,

it therefore has to hold that σ = n ρ−κn−κ ≥
n
2 . Thus, we get that ρ has to be larger than n+κ

2 , which
by our choice of parameters is the case. Thus the claim directly follows from Theorem 2.

Lemma 9.2. Hybrids 2 and 3 are computationally indistinguishable from Z’s view given that
Assumption 2 holds and COM is a UC commitment scheme.

Proof. Assume that there exists a PPT Z that distinguishes Hybrids 2 and 3 with non-negligible
probability ε. We will show that Z breaks Assumption 2 with non-negligible probability.

We have to consider all the messages that AS receives during a protocol run. First note
that SS (resp. R) outputs either e or aborts in Step 4. Assume for the sake of contradiction
that AS manages to create two secret sharings s1,1, . . . , s1,n and s2,1, . . . , s2,n for values e, e′ such

that R outputs both of e or e′ with non-negligible probability ε without aborting depending on
the set L and L′, respectively. Then we create an adversary B from Z that breaks the bind-
ing property of COM. B simulates the protocol and learns all values s∗i , then draws two uni-
formly random sets L,L′. B samples via L and L′ two subsets of secret sharings that recon-
struct to e and e′, respectively, with non-negligible probability. It must hold for both values that
COM.Open(com, unv, e) = COM.Open(com, unv, e′) = 1, otherwise B aborts as the real R would.
Since AS achieves that R outputs e or e′ with non-negligible probability, B outputs com, e, e′ with
non-negligible probability to the binding experiment and thereby breaks the binding property of
COM.

The next message he receives is the encoding. Recall that the choice bits into the OTs are
derived from the set L of the encoding, i.e. a cheating AS might try to use inconsistent inputs
(e.g. incorrect si values in positions that are supposedly not in L) in the OT such that R aborts
depending on the set L. However, AS has to cheat before knowing the encoding v and as shown
above always learns the same e, thus he can obtain at most 1 bit of leakage, namely whether the
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cheating was detected or not. We will now show that the leakage in Step 4 does not help Z to
distinguish. The situation for a malicious Z is identical to game Gleak. First, AS has to decide
on a set of values which he believes are not in L. Then he is informed (via a successful check)
that his guess was correct, and given the encoding. Now he has to decide whether he is given a
random encoding or not. We can directly apply Theorem 1, given that ρ ≥ 2

3n, and get that Z’s
distinguishing advantage is negligible.

After learning v, AS has to compute the values w, which are checked in Step 8. By cheating
in noisy positions, Step 8 will succeed, but AS learns some noisy positions by learning the bit
whether the check succeeded. This case is more involved than the above step, since now AS can
decide on the set Q after seeing the encoding v. We argue that the distinguishing advantage of Z
remains negligible. It is obvious that AS can always find O(log κ) noisy positions with polynomial
probability simply by guessing. However, Theorem 2 guarantees that in this scenario AS cannot
find more than O(log κ) noisy positions, if Yσ ≈ Yn for σ = nκ

n−ρ−κ . From Theorem 1 we know that

if Q = O(log κ) and σ > 2
3n, then Yσ ≈ Yn. Combined, we have that for ρ = n − κ

2 , AS cannot
find more than O(log n) noisy positions and the distinguishing advantage of Z is negligible. This
concludes the proof.

Corrupted receiver. In the following we present a simulator SR which provides a statistically
indistinguishable simulation of ΠOLE to a malicious receiver AR (cf. Figure 6). Conceptually the
simulation is straight forward. The simulator learns all choice bits and thus can reconstruct the
set L, which is sufficient to decode the codeword v. Knowing X, SR can easily derive consistent
inputs A,B. Care has to be taken since AR obtains one additional pair of values related to the
polynomials A and B, thus he can tamper with the extraction. In a little more detail, he obtains
one more value than necessary to reconstruct Y and can therefore play both with the degree of
his input as well as with the correctness of L and v. We describe and analyze a subtle attack
in Lemma 9.4, which makes the analysis a bit more complex.

We now show the indistinguishability of the simulation in a series of hybrid experiments. For
every PPT environment Z, the two distributions Real

AS
ΠOLE

(Z) and Ideal
SS
FOLE

(Z) are indistinguish-
able.

Hybrid 0: This is the real protocol.

Hybrid 1: Identical to Hybrid 0, except that S1 extracts all inputs choicei input into OT by AR.

Hybrid 2: Identical to Hybrid 1, except that S2 aborts if AR passes the check in Step 3, although
he selects less than ρ values si.

Hybrid 3: Identical to Hybrid 2, except that S3 reconstructs X̂ as shown in Figure 6 and aborts
if Ŷ (ẑS) 6= Y ∗(ẑS), X̂(ẑS) 6= X∗(ẑS) or Ŷ = R.

Indistinguishability of Hybrids 0 and 1 is trivial. We show the indistinguishability of Hybrids 1
and 2 in Lemma 9.3, based on the privacy of the secret sharing and the hiding property of the
commitment. In Lemma 9.4 we show that we can always extract the correct input of AR and thus
Hybrid 2 and Hybrid 3 are statistically indistinguishable.

Lemma 9.3. Hybrids 1 and 2 are statistically indistinguishable from Z’s view given that SS is a
perfectly private secret sharing and COM is a statistically hiding commitment scheme.
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Simulator SR

1. Upon receiving a message input from F t
OLE, simulate the first part of ΠOLE with random inputs.

• Draw a uniformly random vector t̂ ∈ Fn and a random value ê ∈ F.

• Compute ŝ← SS.Share(ê) and (ĉom, ûnv)← COM.Commit(ê).

• Send ˆcom to AR and engage in n OT instances with input (t̂i, ŝi) for instance i.

2. Learn all choice bits (choice∗1, . . . , choice
∗
n) of AR from the n OT instances. Reconstruct L̂ as

follows: for each i ∈ [n], if choice∗i = 0 then i ∈ L̂.

3. Upon receiving e∗, check if ê = e∗, otherwise abort. Send ˆunv to AR.

4. Upon receiving (G∗,v∗) from AR, proceed as follows.

(a) Let deg(PL̂) denote the degree of the polynomial defined by v|L̂.

• If |L̂| = ` − 1, interpolate the polynomial PL̂ defined over v|L̂. If deg(PL̂) ≤ `−1
2 , set

X̂ = PL̂.

• If |L̂| = `, interpolate the polynomial PL̂ defined over v|L̂. If deg(PL̂) ≤ `−1
2 , set X̂ = PL̂.

If deg(PL̂) > `+1
2 , try for all î ∈ L̂ if it holds that for L̂′ = L̂ \ î, deg(PL̂′) ≤

`−1
2 . If such

an î exists, set X̂ = PL̂′ and L̂ = L̂′.

(b) Compute x̂i = X̂(αi), i ∈ [t] and send (inputR, x̂) to F t
OLE. Let (output, ŷ) be the result. Pick

a random polynomial Ŷ such that deg(Ŷ ) = deg(X̂) + `−1
2 and Ŷ (αi) = ŷi, i ∈ [t]. If no X̂ was

extracted in Step 4a, set Ŷ to be a random degree `− 1 polynomial R.

(c) For i ∈ L̂, set ŵi = Ŷ (βi) + ti, otherwise pick a uniform ŵi and send ŵ to AR.

5. Upon receiving z∗R, draw ẑS ∈ F and proceed as follows:

• If Ŷ 6= R, compute X̂(z∗R), Ŷ (z∗R) and sample a random b̂ ∈ F. Set â = Ŷ (z
∗
R )−b̂

X̂(z
∗
R )

and send

(â, b̂, ẑS) to AR.

• If Ŷ = R, pick random â, b̂ ∈ F and send (â, b̂, ẑS) to AR.

6. Upon receiving (X∗(ẑS), Y ∗(ẑS)), proceed as follows:

• If Ŷ 6= R, check if Y ∗(zS) = Ŷ (zS) and X∗(zS) = X̂(zS) and abort if not.

• If Ŷ = R, abort.

Figure 6: Simulator against a corrupted receiver in ΠOLE.

Proof. Assume for the sake of contradiction that there exists an environment Z that distinguishes
the hybrids, i.e., Z has to make S2 abort with non-negligible probability ε. We will construct from Z
an adversary B that breaks the hiding property of COM with non-negligible probability. B simulates
the protocol exactly like S2, but creates a secret sharing of a random r and picks two random e, e′,
which he sends to the hiding experiment. The hiding experiment returns a commitment com on
one of these values. Then B integrates the commitment and secret sharing into the simulation and
checks whether Z inputs less than ρ values choicei = 1 into OT, otherwise B aborts. Since SS is a
perfectly private secret sharing and Z obtains less than ρ values si, these values leak nothing about
r and the simulation of B is indistinguishable from S2’s simulation. Let now e∗ be Z’s answer in
the simulated protocol. B simply forwards e∗ to the hiding experiment. Since it has to hold that
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e∗ = e or e∗ = e′ with non-negligible probability ε (otherwise the check in Step 3 fails), B breaks
the hiding property of COM with the same probability. From this contradiction it follows that AR

learns at most ` values ti through OT.

Lemma 9.4. Hybrids 2 and 3 are statistically indistinguishable from Z’s view.

Proof. In order to distinguish Hybrids 2 and 3, Z must pass the check in Step 9, even though it
holds that S3 picked a random polynomial R (allowing to distinguish the simulation from the real
protocol). First note that the result w always defines a polynomial of degree ` − 1 if AR’s input
polynomial has degree less than `−1

2 . As we know from Lemma 9.3, AR learns at most ` values
through the OTs and then one additional pair (a, b) via the check in Step 9.

Before we look at the details of the extraction, let us first describe an generic adversarial strategy
that we have to cover. The adversary gets 1 free query and might try to use this query to prevent
extraction. Say he picks a polynomial of degree `−1

2 , but only uses `− 1 values of L. In the choice
phase, he selects a random index i∗ /∈ L and sets choicei∗ = 0, i.e. S3 will assume this index
is also in L. Towards the same goal, AR can simply set the value vi for a random index i to a
random value. S will then extract a wrong polynomial (with degree greater than `+1

2 ), while AR

can still reconstruct Y via the additional values. However, since AR can only add exactly 1 random
element, S3 can identify the index by trying for each i ∈ L whether the set L′ = L \ i defines a
polynomial of degree `−1

2 over the vi. Here it is essential that there are no two sets L1, L2 with

|L1| = `− 1, |L2| = ` such that L1 ⊂ L2 and deg(PL1
) = `−1

2 ,deg(PL2
) = `+1

2 , i.e. there is only one
possible index i that can be removed. This follows from the fact that the polynomial P = PL2

−PL1

has only `+1
2 roots, but L1 and L2 have to agree on `− 1 positions. If that scenario were possible,

S3 would not be able to distinguish these cases.
Let in the following deg(PL̂) denote the degree of the polynomial that is defined by the points

vi for i ∈ L̂.

• |L̂| ≤ `−2: AR obtains at most `−2+1 points, but Y is of degree `−1 and thus underspecified.
Clearly AR’s probability of answering the check in Step 9 with a correct X∗(zS), Y ∗(zS) is
negligible in F. Since S3 aborts as well, Hybrids 2 and 3 are indistinguishable in this case.

• |L̂| = `− 1: In this case it holds that Ŷ = R only if deg(PL̂) ≥ `+1
2 .

– deg(PL̂) = `−1
2 : In this case AR can reconstruct Y and pass the check in Step 9, but S3

extracts the correct X̂. From the argument above, there cannot exist another polynomial
X ′ that fits with the set L̂ and thus Hybrids 2 and 3 are indistinguishable.

– deg(PL̂) = `+1
2 : In this case AR obtains `− 1 + 1 points, but the resulting Y is of degree

`−1
2 + `+1

2 = `, i.e. AR needs ` + 1 points to reconstruct Y . By the same argument as
above, Hybrids 2 and 3 are indistinguishable.

– deg(PL̂) > `+1
2 : In this case AR can behave as described above, i.e. add a random i to

the set L̂ and thereby artificially increase deg(PL̂). But since |L̂| = ` − 1, removing an

additional value from L̂ leads to the case |L̂| ≤ ` − 2 and thus indistinguishability of
Hybrids 2 and 3.

• |L̂| = `: In this case it holds that Ŷ = R only if deg(PL̂) > `+1
2 and no index i can be

identified to reduce deg(PL̂) to `−1
2 .
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– deg(PL̂) = `−1
2 : In this case AR can reconstruct Y and pass the check in Step 9, but S3

extracts the correct X̂.

– deg(PL̂) = `+1
2 : In this case AR obtains ` + 1 points, and the resulting Y is of degree

`−1
2 + `+1

2 = `. Thus AR can reconstruct Y and pass the check, but S3 extracts the

correct X̂.

– deg(PL̂) > `+1
2 : In this case AR can behave as described above, i.e. add a random i to

the set L̂ and thereby artificially increase deg(PL̂). Removing an additional value from

L̂ leads to the case |L̂| = `− 1, i.e. S3 will simulate correctly. Otherwise, S3 will abort,
but AR cannot reconstruct Y and thus fails the check in Step 9.

• |L̂| > `: S3 aborts, and from Lemma 9.3 it follows that Hybrids 2 and 3 are indistinguishable.

The correctness of the simulation follows from the fact that either S3 extracts the correct input
X̂, or the check in Step 9 fails with overwhelming probability, in which case X̂ = R. Thus, the
event that Z can provoke an abort is negligible, i.e. Hybrids 2 and 3 are indistinguishable.

This concludes the proof.

6 Efficient Oblivious Polynomial Evaluation

The ideal functionality FOPE for OPE is depicted in Figure 7. It allows the sender S to input a
polynomial P and the receiver R to input α ∈ F.

Functionality FOPE

1. Upon receiving a message (inputS, P ) from S where P ∈ F[X], verify that there is no stored tuple,
else ignore that message. Store P and send a message (input) to A.

2. Upon receiving a message (inputR, α) from R with α ∈ F, verify that there is no stored tuple, else
ignore that message. Store α and send a message (input) to A.

3. Upon receiving a message (deliver,S) from A, check if both P and α are stored, else ignore that
message. Send (delivered) to S.

4. Upon receiving a message (deliver,R) from A, check if both P and α are stored, else ignore that
message. Send (output, P (α)) to R.

Figure 7: Ideal functionality for an oblivious polynomial evaluation.

In the remainder of this section we will establish the following theorem.

Theorem 4. There exists a (constant-round) protocol ΠOPE that UC-realizes FOPE with uncondi-
tional security in the F t

OLE-hybrid model. In particular, for a polynomial P of degree d, t = d+ 2.

Our roadmap is as follows. We first show how to reduce FOPE to an intermediate OLE-based
functionality F t,1

OLE. After establishing this we present an efficient reduction of F t,1
OLE to F t

OLE (or
FOLE).

We follow the generic idea of Naor and Pinkas [26] of using the linearization technique from [15]
to construct an oblivious polynomial evaluation protocol. They decompose a polynomial P of
degree d into d linear functions. These functions can then be evaluated using our OLE with input
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α for each of the functions, and the receiver can reconstruct the value P (α). We state the lemma
here and defer the proof to Appendix B.

Lemma 10 ([15]). For every polynomial P of degree d, there exist d linear polynomials P1, . . . , Pd,
such that an OPE of P can be reduced to a parallel execution of an OLE of each of P1, . . . , Pd,
where all the linear polynomials are evaluated at the same point.

In the semi-honest case, this approach directly works with the F t
OLE for t = d. But unlike the

construction of [26], our batch-OLE does not enforce the receiver to use the same input α in all of
the OLEs. Therefore we cannot use the reduction of [26] that shows malicious security against a
receiver. In particular, a malicious receiver might learn some non-trivial linear combinations of the
coefficients of P .

Reducing FOPE to F t,1
OLE. As a first step we reduce OPE to a variant of OLE where the receiver

has only one input x ∈ F, while the sender inputs two vectors a,b. This is depicted in Figure 8.

Functionality F t,1
OLE

1. Upon receiving a message (inputS,a,b) from S with a,b ∈ Ft, verify that there is no stored tuple,
else ignore that message. Store a and b and send a message (input) to A.

2. Upon receiving a message (inputR, x) from R with x ∈ F, verify that there is no stored tuple, else
ignore that message. Store x and send a message (input) to A.

3. Upon receiving a message (deliver,S) from A, check if both a,b and x are stored, else ignore that
message. Send (delivered) to S.

4. Upon receiving a message (deliver,R) from A, check if both a,b and x are stored, else ignore that
message. Set yi = ai · x+ bi for i ∈ [t] and send (output,y) to R.

Figure 8: Ideal functionality for a (t, 1)-oblivious linear function evaluation.

The reduction of FOPE to F t,1
OLE is straightforward, given Lemma 10. The sender decomposes his

polynomial P into d linear functions f1, . . . , fd with coefficients (ai, bi) and inputs these into Fd,1
OLE.

The receiver chooses his input α and obtains d linear evaluations, from which he can reconstruct
P (α). The number of OLEs required is only dependent on the realization of Fd,1

OLE.

Lemma 11. The protocol ΠOPE UC-realizes FOPE in the Fd,1
OLE-hybrid model with unconditional

security.

Proof. The security of ΠOPE is immediate: the simulator simulates Fd,1
OLE and learns all inputs,

which it simply forwards to FOPE (and reconstructs if necessary). The correctness of the decom-
position of P follows from Lemma 10.

Note that by taking our approach, we also remove the need for the stronger assumption of [26],
while having a comparable efficiency in the resulting protocol.

Reducing F t,1
OLE to F t+2

OLE. As a second step, we need to realize F t,1
OLE from F t

OLE. Döttling et

al. [10] describe a black-box protocol that realizes F t,1
OLE from FOLE (or our batch variant) with

unconditional UC-security. The protocol has a constant multiplicative overhead of 2 + ε in the
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Protocol ΠOPE

1. Sender (Input P ∈ F[X] of degree d):

• Generate d linear polynomials of the form fi(x) = aix+ bi, ∀i ∈ [d], where ai, bi ∈ F according
to Lemma 10.

• Construct a,b ∈ Fd, such that a = {a1, . . . , ad} and b = {b1, . . . , bd}.

• Send (inputS, (a,b)) to Fd,1
OLE.

2. Receiver (Input α ∈ F):

• Send (inputR, α) into Fd,1
OLE.

• Obtain (output,y) from Fd,1
OLE.

• Compute P (α) from y = f1(α), . . . , fd(α). Output P (α).

Figure 9: Reduction of FOPE to Fd,1
OLE.

number of OLEs, and works for any field F. While this protocol basically solves our problem, we
propose a more efficient variant that makes essential use of the fact that we only consider a large
field F. Our new approach requires only two additional OLEs.

Our solution for F t,1
OLE is as follows. Let a,b ∈ Ft be given as input to the sender. It now needs to

choose one additional pair of inputs (at+1, bt+1) such that
∑t+1

i=1 ai = 0 and bt+1 is uniformly random

in F. The sender inputs a′,b′ ∈ Ft+1 into F t+1
OLE, while the receiver inputs x′ = (x, . . . , x) ∈ Ft+1.

Now the receiver locally computes c =
∑t+1

i=1 yi =
∑t+1

i=1 aix +
∑t+1

i=1 bi =
∑t+1

i=1 bi and sends a
commitment to c to the sender. This commitment can also be based on OLE, even in such a
way that we can use F t+2

OLE by precomputing the commitment (a detailed description is given
in Appendix C). The sender answers with c′ =

∑t+1
i=1 bi, which the receiver can verify. This makes

sure that the sender chose a′ correctly, while c′ itself does not give the receiver any new information.
Now the receiver unveils, which shows the sender whether the receiver used the same x in each
invocation. There is one small problem left: if the receiver cheated, he will be caught, be he might
still learn some information about the senders inputs that cannot be simulated. In order to solve
this issue, we let a′ and b′ be uniformly random and then replace these with the inputs after the
check succeeded. A detailed description of the protocol is given in Figure 10.

Lemma 12. The protocol Πt,1
OLE UC-realizes F t,1

OLE in the F t+2
OLE-hybrid model with unconditional

security.

Proof. Corrupted sender. The simulator SS simulates F t+2
OLE for the corrupted sender AS. It

extracts all the inputs, namely û and v̂. We do not need to extract the commitment, which also
uses F t+2

OLE. SS sends a commitment to ĉ =
∑t+1

i=1 v̂i to the receiver. If it holds that
∑t+1

i=1 ui 6= 0,

but the check in Step 4 succeeds, SS aborts. Otherwise, it computes â = û′∗ + û and b̂ = v̂′∗ + v̂
and inputs the first t elements of each into F t,1

OLE.

First note that if
∑t+1

i=1 ui 6= 0, the commitment ˆcom contains an incorrect value. As long as
the receiver always aborts in this case, the hiding property of COM guarantees indistinguishability
of the simulation. So the only way that a malicious environment Z can distinguish the simulation
from the real protocol is by forcing an abort. Note that if

∑t+1
i=1 ui = e 6= 0, then c depends on x
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Protocol Πt,1
OLE

Let COM be an OLE-based commitment scheme, e.g. Πpre
COM from Appendix C.

1. Sender (Input a,b ∈ Ft): Choose u,v ∈ Ft+2 uniformly random such that
∑t+1
i=1 ui = 0 and send

(inputS, (u,v)) to F t+2
OLE. Store (ut+2, vt+2) as the auxiliary receiver inputs for COM.

2. Receiver (Input x ∈ F):

• Set x = (x, . . . , x, w) ∈ Ft+2 with w random and send (inputR,x) into F t+2
OLE.

• Obtain (output, z) from F t+2
OLE. Let z̄ = (z1, . . . , zt).

• Let (w, zt+2) be the auxiliary sender input for COM. Compute c =
∑t+1
i=1 zi, (com, unv) ←

COM.Commit(c) and send com to the sender.

3. Sender: Send c′ =
∑t+1
i=1 vi to the receiver.

4. Receiver: Check if c′ = c and abort if not. Send unv to the sender.

5. Sender: Check if COM.Open(com, unv, c′) = 1 and abort if not. Send u′ = a− ū and v′ = b− v̄ to
the receiver, where ū, v̄ contain the first t values of u,v.

6. Receiver: Compute y = u′x+ v′ + z̄ = ax+ b and output y.

Figure 10: Reduction of F t,1
OLE to F t+2

OLE.

and is thus uniformly distributed, since

c =
t+1∑
i=1

zi =
t+1∑
i=1

uix+
t+1∑
i=1

vi = ex+ c′.

Thus, the probability that c′ = c is negligible.
Corrupted receiver. The simulator SR against the corrupted receiver AR simulates F t+2

OLE and
learns x̂. It chooses û, v̂ ∈ Ft+2 according to Πt,1

OLE, and computes ẑ ∈ Ft+2, where ẑi = ûix̂i + v̂i
∀i ∈ [1, t + 2]. SR sends ẑ to AR. After receiving the commitment, SR sends ĉ′ =

∑t+1
i=1 ẑi. It

aborts if the commitment unveils correctly, even though xi 6= xj for some i, j ∈ [t + 1]. If that is

not the case, it inputs x̂ into F t,1
OLE and obtains y. SR picks v̂′ ∈ Ft uniformly at random, sets

û′i = yi−ẑi−v̂
′
i

x ∀i ∈ [t]. It sends û′, v̂′ to AR.
For an honest receiver, the check in Step 5 always succeeds. A malicious Z can only distinguish

between the simulation and the real protocol by producing a correct commitment on c, even though
xi 6= xj for some i, j ∈ [t+ 1]. Since the commitment is binding, AR must commit to some value c

before seeing c′. Let w.l.o.g. xj = (x+ e) 6= x for some j. Then we have

c =

t+1∑
i=1

zi =

t+1∑
i=1
i 6=j

uix+ uj(x+ e) +

t+1∑
i=1

vi =

t+1∑
i=1

uix+ uje+

t+1∑
i=1

vi = c′ + uje.

But this means that c′ is uniformly distributed from AR’s point of view, because uj is chosen
uniformly and unknown to AR. As a consequence, the probability that Z can distinguish the
simulation from the real protocol is negligible.
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Combining the results from this section we get that FOPE for a polynomial P of degree d requires
Fd,1

OLE, which in turn can be based on Fd+2
OLE. This establishes Theorem 4.

Remark. It is possible to evaluate several polynomials in parallel with the batch-OLE functionality,
given that t is chosen of appropriate size. Then, for each polynomial the above described protocol
is carried out (including making sure that the receiver uses the same α in all OLEs relevant to the
respective polynomial).

References

[1] G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National Com-
puter Conference, 48:313–317, 1979.

[2] D. Bleichenbacher and P. Q. Nguyen. Noisy polynomial interpolation and noisy Chinese re-
maindering. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 53–69.
Springer, Heidelberg, May 2000.

[3] D. Boneh. Finding smooth integers in short intervals using CRT decoding. In 32nd ACM
STOC, pages 265–272. ACM Press, May 2000.

[4] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001.
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A Proof of Lemma 4

Proof. Let Bi = α0A0 + α1Z. We first prove the first implication. Consider a distinguisher D for
B0 and B1. Then

AdvD(B0, B1) = Pr[D(B1) = 1]− Pr[D(B0) = 1]

=
∑
i

αi Pr[D(B1) = 1 | c = i]−
∑
i

αi Pr[D(B0) = 1 | c = i]

= α0 Pr[D(B1) = 1 | c = 0]− α0 Pr[D(B0) = 1 | c = 0]

= α0 Pr[D(A1) = 1]− α0 Pr[D(A0) = 1]

= α0 Pr[D(A1) = 1]− α0 Pr[D(A0) = 1] ,

from which it follows that
AdvD(B0, B1) = α0AdvD(A0, A1) . (1)

From (1) it follows that AdvD(B0, B1) ≤ α0ε for all D, which proves the claim in the lemma.
Consider a distinguisher D for A0 and A1. It can also act as distinguisher for B0 and B1, so from
(1) we have that

AdvD(A0, A1) = α−1
0 AdvD(B0, B1) .

From this the second claim follows.

B Proof of Lemma 10

The full proof of Lemma 10 can be found in [26]. Here we reproduce the proof of first two claims,
which is sufficient for our purpose, from their proof.

Claim 1. For every polynomial P ∈ F[X] of degree d there exists d linear polynomials f1, . . . , fd ∈
F[X] such that given f1(α), . . . , fd(α), for any α ∈ F, it is possible to compute the value of f(α).

Proof. Let P (x) =
∑d

i=0 aix
i, where ai ∈ F ∀i ∈ [0, d]. In Horner representation the polynomial

can be rewritten as:

P (x) = (. . . (((adx+ ad−1)x+ ad−2)x+ ad−3) . . .)x+ a0.

Define the dth linear polynomial fd(x) = Qd(x) − rd, where rd ∈r F and Qd(x) is the inner-most
linear polynomial in the Horner representation. That implies fd(x) = adx+ad−1−rd. Now from the
inner-most 2-degree polynomial of the Horner representation we get, Qd−1(x) = Qd(x)x + ad−2 =

fd(x)x+rdx+ad−2. Now define the (d−1)th linear polynomial as fd−1(x) = rdx+ad−2−rd−1, where
rd−1 ∈r F. In the same manner we can define linear polynomials up to P2 as, fi(x) = ri+1x+ai−1−ri,
where ri ∈r F, ∀i ∈ [2, d]. Define f1(x) = r2x + a0. If the linear polynomials are defined in this
way, clearly:

P (x) = fd(x) · xd−1 + fd−1 · x
d−2 + . . .+ f2(x) · x+ f1(x). (2)

Hence given f1(α), . . . , fd(α), for any α ∈ F, it is possible to compute the value of P (α) using Equa-
tion (2).
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Claim 2. The computation of the d linear polynomials can be done by d OPEs that are executed
in parallel.

Proof. The linear polynomials f1, . . . , fd is independent of the value α. The sender can define
the linear polynomials by sampling random r2, . . . , rd beforehand; After that the sender and the
receiver can invoke d parallel OPEs to evaluate f1(α), . . . , fd(α). Then the receiver can evaluate
P (α) using Equation (2).

Note that here the sender and the receiver evaluate d parallel instance of OPEs with linear
polynomials. Hence, we use our protocol for batch-OLE (Πd

OLE) to evaluate all the d linear instances
at the same time.

C UC-secure Commitment Scheme in FOLE-Hybrid Model.

We describe the protocol from [9], which uses FOLE to construct a simple UC-secure commitment
scheme ΠCOM in Figure 11. Since OLE is symmetric [31], we do not need to make any assumption
on the direction of FOLE in the protocol. The hiding property of the scheme is immediate from
the fact that the random value b, chosen by the sender, acts as an one time pad for c · α. On the
other hand, in the unveil phase if the sender can successfully open to a different value (m′, b′), that
directly breaks the receiver’s privacy of FOLE.

Protocol ΠCOM

Commit Phase

1. Sender (Input m ∈ F): Choose a random k ∈ F. Input (inputS, (m, k)) into FOLE.

2. Receiver: Choose a random r ∈ F. Input (inputR, r) into FOLE to obtain q.

Unveil Phase

3. Sender: Send (m, k) to the receiver.

4. Receiver: Accept if m · r + k = q, abort otherwise.

Figure 11: ΠCOM in the FOLE-hybrid model.

Note that the commitment can be precomputed to a random value s. In order to fully commit to
m, the sender sendsm′ = m−s to the receiver. The receiver verifiesm′r+q = mr−sr+sr+b = m+b.
In the following protocol (cf. Figure 12) we show how to combine the inversion of OLE according
to [31] and the derandomization to commit using a precomputed OLE in the direction from receiver
to sender.

The security of this construction can be shown analogously to the security of ΠCOM above.
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Protocol Πpre
COM

Commit Phase The sender has two values s ∈ F and q = rs+ t as auxiliary input, while the receiver
has r, t ∈ F as auxiliary input.

1. Sender (Input m ∈ F): Draw a uniformly random k ∈ F, set q′ = q + k and m′ = m − s. Send
(q′,m′) to the receiver.

2. Receiver: Compute com = q′ − t+m′r = mr + k.

Unveil Phase

3. Sender: Send unv = (m, k) to the receiver.

4. Receiver: Accept if com = m · r + k, abort otherwise.

Figure 12: Πpre
COM provides a commitment based on a precomputed random OLE from receiver to

sender.
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