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Abstract

We show that indistinguishability obfuscation (IO) for all circuits can be constructed solely from
secret-key functional encryption (SKFE). In the construction, SKFE need to be able to issue a-priori
unbounded number of functional keys, that is, collusion-resistant.

Our strategy is to replace public-key functional encryption (PKFE) in the construction of IO
proposed by Bitansky and Vaikuntanathan (FOCS 2015) with puncturable SKFE. Bitansky and
Vaikuntanathan introduced the notion of puncturable SKFE and observed that the strategy works.
However, it has not been clear whether we can construct puncturable SKFE without assuming PKFE.
In particular, it has not been known whether puncturable SKFE is constructed from ordinary SKFE.

In this work, we show that a relaxed variant of puncturable SKFE can be constructed from
collusion-resistant SKFE. Moreover, we show that the relaxed variant of puncturable SKFE is
sufficient for constructing IO.

Keywords: Indistinguishability obfuscation, Secret-key functional encryption, Puncturable
secret-key functional encryption

∗An extended abstract of this paper appears in the proceedings of Eurocrypto 2018 as the part of “Obfustopia Built on
Secret-Key Functional Encryption [KNT18b]”.
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1 Introduction

1.1 Backgrounds

Program obfuscation is now one of the central topics in cryptography. Program obfuscation aims
to turn programs “unintelligible” while preserving its functionality. The theoretical study of program
obfuscation was initiated by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01].
They introduced virtual-black-box obfuscation as a formal definition of obfuscation. The definition of
virtual black-box obfuscation is intuitive and naturally captures the requirement that obfuscators hide
information about programs. However, Barak et al. showed that it is impossible to achieve virtual
black-box obfuscation for all circuits. In order to avoid the impossibility result, they also defined an
weaker variant of obfuscation called indistinguishability obfuscation (IO). Impossibility of IO for all
circuits is not known.

Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13] proposed the first candidate construc-
tion of IO for all circuits. Subsequently, many works have shown that IO is powerful enough in the
sense that we can achieve a wide variety of cryptographic primitives based on IO though it is weaker
than virtual-black-box obfuscation [GGH+13, SW14, HSW14, BGMS15, KLW15, BGL+15, CHJV15,
BPW16, CHN+16, HJK+16].

While we know the usefulness of IO well, we know very little about how to achieve IO. Although
the first candidate construction was demonstrated, we are still at the embryonic stage for constructing
IO. All known constructions of IO are based on a little-studied cryptographic tool called multi-linear
maps [GGH+13, BGK+14, BR14, AGIS14, PST14, Zim15, AB15, BMSZ16, GMM+16, Lin16, LV16,
AS17, Lin17, FRS16]. Moreover, security flaws were discovered in some IO constructions [CGH+15,
MSZ16, ADGM17, CLLT17, CGH17].

Thus, constructing IO based on a standard assumption is still standing as a major open question
in the study of cryptography. As a stepping-stone for solving the question, it is important to find
a seemingly weaker primitive that implies IO. As such a cryptographic primitive, we already have
functional encryption.

Functional encryption is one of the most advanced cryptographic primitives which enable a system
having flexibility in controlling encrypted data [SW05, BSW11, O’N10]. In functional encryption, an
owner of a master secret key MSK can generate a functional decryption key skf for a function f belonging
to a function family F . By decrypting a ciphertext of a message m using skf , a holder of skf can learn
only a value f(m). No information about x except f(m) is revealed from the ciphertext of m. This
feature enables us to construct a cryptographic system with fine-grained access control. In addition, it is
known that functional encryption is a versatile building block to construct other cryptographic primitives.
In particular, we can construct IO for all circuits by using functional encryption that satisfies certain
security notions and efficiency requirements [AJ15, BV15, AJS15, BNPW16].

Bitansky and Vaikuntanathan [BV15] and Ananth and Jain [AJ15] independently showed that we can
construct IO based on public-key functional encryption (PKFE) which supports a single functional key
and whose encryption circuit size is sub-linear in the size of functions. A functional encryption scheme
that supports a single key is called a single-key scheme. A functional encryption scheme that satisfies
the efficiency property above is said to be weakly-succinct.

Bitansky, Nishimaki, Passelègue, and Wichs [BNPW16] subsequently showed that collusion-resistant
secret-key functional encryption (SKFE) is powerful enough to yield IO if we additionally assume
plain public key encryption. Collusion-resistant functional encryption is functional encryption that can
securely issue a-priori unbounded number of functional keys.

From these results, we see that the combination of functional encryption with some property and
a public-key cryptographic primitive is sufficient for achieving IO. This fact is a great progress as a
stepping-stone for achieving IO based on a standard assumption.
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However, one natural question arises for this situation. The question is whether we really need public-
key primitives to construct IO or not. In other words, we have the following fundamental question:

Is it possible to achieve IO for all circuits based solely on secret-key primitives?

SKFE is the best possible candidate for a secret-key cryptographic primitive that gives an affirmative
answer to this question. However, Asharov and Segev [AS15] gave a somewhat negative answer to the
question. Their result can be seen as a substantial evidence that SKFE is somewhat unlikely to imply
IO as long as we use black-box techniques.1 Although Komargodski and Segev [KS17] already showed
that we can construct IO for somewhat restricted class of circuits based on SKFE via non-black-box
construction, it is still open whether we can construct IO for all circuits from SKFE bypassing the barrier
with a non-black-box technique.

The real power of IO appears in the fact that it can transform secret-key primitives into public-key
ones. Therefore, solving the above problem is a key advancement to discover the exact requirements for
achieving IO.

1.2 Our Results

We give an affirmative answer to the question above. More precisely, we prove the following theorem.

Theorem 1.1 (Informal). Assuming there exists sub-exponentially secure collusion-resistant SKFE for
all circuits. Then, there exists IO for all circuits.

Since our construction of IO is non-black-box, we can circumvent the impossibility result shown by
Asharov and Segev [AS15].

The security loss of our construction of IO is exponential in the input length of circuits, but is
independent of the size of circuits. Thus, if the input length of circuits is poly-logarithmic in the security
parameter, our construction of IO incurs only quasi-polynomial security loss regardless of the size of
circuits. Therefore, we can obtain IO for circuits of polynomial size with input of poly-logarithmic
length from quasi-polynomially secure collusion-resistant SKFE for all circuits. This is an improvement
over the IO construction by Komargodski and Segev [KS17]. They showed that IO for circuits of sub-
polynomial size with input of poly-logarithmic length is constructed from quasi-polynomially secure
collusion-resistant SKFE for all circuits.

We show Theorem 1.1 by using puncturable SKFE. The notion of puncturable SKFE was introduced
by Bitansky and Vaikuntanathan [BV15]. They showed that in their construction of IO, the building
block PKFE can be replaced with puncturable SKFE. However, it has been an open issue whether we
can achieve puncturable SKFE without assuming the existence of PKFE.

We show how to construct puncturable SKFE that is sufficient for constructing IO, based solely on
SKFE. More precisely, we show the following theorem.

Theorem 1.2 (Informal). Assuming there exists collusion-resistant SKFE for all circuits. Then, there
exists single-key weakly-succinct puncturable SKFE for all circuits.

Note that our definition of puncturable SKFE is slightly different from that proposed by Bitansky
and Vaikuntanathan. Our requirement for puncturable SKFE looks weaker than that of Bitansky and
Vaikuntanathan. However, they are actually incomparable. In fact, we show that puncturable SKFE
defined in this paper is also sufficient for a building block of IO. See Section 2 for the details of
the notion of puncturable SKFE and the difference between our definition and that of Bitansky and
Vaikuntanathan.

1More precisely, Asharov and Segev [AS15] introduced an extended model for black-box reductions to include a limited
class of non-black-box reductions into their impossibility results.
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Our construction is a generic transformation and does not yield a new instantiation of IO. This
is because all known assumptions that imply SKFE also imply PKFE. However, SKFE is an weaker
primitive than PKFE, and thus the requirements for constructing IO looks to be relaxed than ever by our
result. We believe that our result makes easier to design IO based on other cryptographic primitives.
Moreover, our result makes a progress on the study of IO and functional encryption as we note in the
next paragraph.

Impacts on the hierarchy of cryptographic primitives. It is known that we can classify cryptographic
primitives into two hierarchies Minicrypt and Cryptomania since the beautiful work of Impagliazzo
and Rudich [IR89] showed that public-key encryption is not implied by one-way functions via black-box
reductions. The terminologies, Minicrypt and Cryptomania, were introduced by Impagliazzo [Imp95].
In Minicrypt, one-way functions exist, but public-key encryption does not. In Cryptomania, public-key
encryption also exists.

We have recently started to consider a new hierarchy called Obfustopia. Garg, Pandey, Srinivasan,
and Zhandry [GPSZ17] introduced the term Obfustopia, which seems to indicate the “world” where
there exists IO. Garg et al. did not give a formal definition of Obfustopia. In this paper, we explicitly
define Obfustopia as the “world” where there exists efficient IO for all circuits and one-way functions.2
It is known that we can construct almost all existing cryptographic primitives which are stronger than
public-key encryption by using IO. This is the reason why we consider the new hierarchy beyond
Cryptomania.3

The landscape of Obfustopia is not clear while those of Minicrypt and Cryptomania are. In
particular, we do not know how to construct IO based on standard assumptions. There has been significant
effort to find out cryptographic primitives that are in Obfustopia. That is, we have been asking what kind
of cryptographic primitive implies the existence of IO. We know that sub-exponentially-secure succinct
PKFE exists in Obfustopia [BV15, AJ15].

It is natural to ask whether SKFE is also in Obfustopia or not since SKFE seems to be a strong
primitive as PKFE. Asharov and Segev [AS15] gave a somewhat negative answer to this question. They
showed that SKFE is unlikely to imply IO as long as we use black-box techniques. They also showed
that SKFE does not imply any primitive in Cryptomania via black-box reductions. Moreover, it was
not known whether SKFE implies any primitive outside Minicrypt even if we use it in a non-black-box
manner before the work of Bitansky et al. [BNPW16].

Bitansky et al. showed that the combination of sub-exponentially secure collusion-resistant SKFE
and exponentially secure one-way functions implies quasi-polynomially secure public-key encryption.
This also implies that the above combination yields quasi-polynomially secure succinct PKFE from their
main result showing that the combination of collusion-resistant SKFE and public-key encryption implies
succinct PKFE.

Komargodski and Segev [KS17] showed that quasi-polynomially secure IO for circuits of sub-
polynomial size with input of poly-logarithmic length can be constructed from quasi-polynomially
secure collusion-resistant SKFE for all circuits. In addition, they showed that by combining quasi-
polynomially secure collusion-resistant SKFE and sub-exponentially secure one-way functions, we can
construct quasi-polynomially secure succinct PKFE. However, in this construction, the resulting PKFE
supports only circuits of sub-polynomial size with input of poly-logarithmic length though the building
block SKFE supports all polynomial size circuits.

2 Komargodski, Moran, Naor, Pass, Rosen, and Yogev [KMN+14] proved that IO implies one-way functions under a mild
complexity theoretic assumption. More specifically, the complexity assumption is NP ̸⊆ io-BPP, where io-BPP is the class
of languages that is decided by probabilistic polynomial-time algorithms for infinitely many input sizes. Therefore, under the
assumption, we say that Obfustopia is the complexity spectrum where efficient IO for all circuits exists.

3Strictly speaking, it was known that there are stronger primitives than public-key encryption before the candidate of
obfuscation appeared. For example, public-key encryption does not imply identity-based encryption [BPR+08].
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These two results surely demonstrated that SKFE is stronger than we thought. Nevertheless, we see
that both two results involves degradation of security level or functionality. Thus, it is still open whether
SKFE implies a cryptographic primitive other than those in Minicrypt without such degradation, and
especially SKFE is in Obfustopia or not.

We gives an affirmative answer to this question. More concretely, we can construct sub-exponentially
secure IO for all circuits from sub-exponentially secure collusion-resistant SKFE for all circuits through
our transformation by setting security parameter appropriately. This result means that sub-exponentially
secure collusion-resistant SKFE exists in Obfustopia. In addition, by combining this result and the
result by Garg et al. [GGH+13], we see that the existence of sub-exponentially secure collusion-resistant
PKFE for all circuits is equivalent to that of sub-exponentially secure collusion-resistant SKFE for all
circuits.

Organization. The rest of this paper consists of the following parts. In Section 2, we provide an
overview of our constructions and proofs. In Section 3, we provide notations and definitions of crypto-
graphic primitives. In Section 4, we present our definition of puncturable SKFE. In Section 5, we provide
the construction of single-key non-succinct puncturable SKFE and prove its security. In Section 6, we
provide transformation from a non-succinct puncturable SKFE scheme to an weakly succinct one and
prove its security. In Section 7, we provide our IO for all circuits based on single-key weakly succinct
puncturable SKFE and analyze its security and efficiency.

2 Overview of Our Technique

Before we introduce formal definitions and constructions, we give an overview of our construction of IO
based on SKFE in this section.

Our basic strategy is to replace PKFE in the construction of Bitansky and Vaikuntanathan [BV15]
with puncturable SKFE. Bitansky and Vaikuntanathan observed that this strategy works. However, it is
not known whether puncturable SKFE is constructed from cryptographic primitives other than PKFE or
IO.

In this work, we show that we can construct a relaxed variant of puncturable SKFE that is a single-
key scheme and weakly-succinct from collusion-resistant SKFE. Moreover, we show that such a relaxed
variant of puncturable SKFE is sufficient for constructing IO.

We give an overview of the construction of Bitansky and Vaikuntanathan [BV15] in Section 2.1 and
explain why SKFE must be “puncturable” when we replace PKFE with SKFE in their construction in
Section 2.2. Next, we give an overview of how to construct our puncturable SKFE scheme and IO in
Section 2.3 and Section 2.4, respectively.

2.1 Construction of IO based on PKFE

The main idea of Bitansky and Vaikuntanathan is to design an obfuscator iOi for circuits with i-bit
input from an obfuscator iOi−1 for circuits with (i− 1)-bit input. If we can design such a bit extension
construction, for any polynomial n, we can construct an obfuscator iOn for circuits with n-bit input since
we can easily achieve iO1 for circuits with 1-bit input by outputting an entire truth table of a circuit with
1-bit input. If you are familiar with the construction of Bitansky and Vaikuntanathan [BV15], then you
can skip this section.

When we construct IO based on the bit extension construction above, it is important to avoid a
circuit-size blow-up of circuits to be obfuscated at each recursive step. In fact, if we allow a circuit-size
blow-up, we can obtain the bit extension construction by defining

iOi(C(x1 · · ·xi)) := iOi−1(C(x1 · · ·xi−1∥0))∥iOi−1(C(x1 · · ·xi−1∥1)) .
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However, this construction obviously incurs an exponential blow-up and thus we cannot rely on this
solution. Bitansky and Vaikuntanathan showed how to achieve the bit extension construction without an
exponential blow-up using weakly-succinct PKFE.

In their construction, a functional key of PKFE should hide information about the corresponding
circuit. Such security notion is called function privacy. However, it is not known how to achieve function
private PKFE. Then, Bitansky and Vaikuntanathan explicitly accommodated the technique for function
private SKFE used by Brakerski and Segev [BS15] to their IO construction based on PKFE.

We review their construction based on PKFE. For simplicity, we ignore the issue of the randomness
for encryption algorithms. It is generated by puncturable pseudorandom function (PRF) in the actual
construction.

iOi based on iOi−1 and PKFE works as follows. The construction additionally uses plain secret key
encryption (SKE) to implement the technique used by Brakerski and Segev [BS15]. To obfuscate a circuit
C with i-bit input, it first generates a key pair (PKi, MSKi) of PKFE. Then, using MSKi, it generates a
functional key skC∗ tied to the following circuit C∗. C∗ has hardwired two SKE ciphertexts CTske

0 and
CTske

1 of plaintext C under independent keys K0 and K1, respectively. C∗ expects as an input not only
an i-bit string xi but also an SKE key Kb. On those inputs, C∗ first obtains C by decrypting CTske

b by Kb

and outputs U(C, xi) = C(xi), where U(·, ·) is an universal circuit. Finally, the construction obfuscates
the following encryption circuit Ei−1 by iOi−1. Ei−1 has hardwired PKi and Kb. On input (i − 1)-bit
string xi−1, it outputs ciphertexts Enc(PKi, (xi−1∥0, Kb)) and Enc(PKi, (xi−1∥1, Kb)), where Enc is
the encryption algorithm of PKFE. The resulting obfuscation of C is a tuple (skC∗ , iOi−1(Ei−1)). Note
that we always set the value of b as 0 in the actual construction. We set b as 1 only in the security proof.

// Description of (simplified) C∗

Hard-Coded Constants: CTske
0 , CTske

1 .
Input: xi, Kb

1. Compute C = D(Kb, CTske
b ).

2. Return U(C, xi).

// Description of (simplified) Ei−1
Hard-Coded Constants: PKi, Kb.
Input: xi−1 ∈ {0, 1}i−1

1. Compute CTi,xi

r←−
Enc(PKi, (xi−1∥xi, Kb)).

2. Output CTi,0 and CTi,1.

When evaluating the obfuscated C on input xi = x1 · · ·xi−1xi ∈ {0, 1}i, we first invoke iO(Ei−1)
on input xi−1 = x1 · · ·xi−1 and obtain Enc(PKi, (xi−1∥0, Kb)) and Enc(PKi, (xi−1∥1, Kb)). Then, by
decrypting Enc(PKi, (xi−1∥xi, Kb)) using skC∗ , we obtain C(xi).

Consequently, by using this bit extension construction, the obfuscation of a circuit C with n-bit
input consists of n functional keys sk1, · · · , skn each of which is generated under a different master
secret key MSKi, and pair of ciphertexts of 0 and 1 under PK1 corresponding to MSK1. For any
xn = x1 · · ·xn ∈ {0, 1}n, we can first compute a ciphertext of xn by repeatedly decrypting a ciphertext
of xi−1 = x1 · · ·xi−1 by ski−1 and obtaining a ciphertext of xi = x1 · · ·xi for every i ∈ {2, · · · , n}.
We can finally obtain C(xn) by decrypting the ciphertext of xn by skn.

In this construction, each instance of PKFE needs to issue only one functional key. This is a minimum
requirement for functional encryption. However, for efficiency, PKFE in the construction above should
satisfy a somewhat strong requirement, that is, weak-succinctness to avoid a circuit-size blow-up of
circuits to be obfuscated at each recursive step. Therefore, we need to use a single-key weakly-succinct
PKFE scheme in the IO construction above.

We can prove the security of the construction recursively. More precisely, we can prove the security
of iOi based on those of iOi−1, PKFE, and SKE. Note that it is sufficient that PKFE satisfies a mild
selective-security to complete the proof. Their security proof relies on the argument of probabilistic
IO formalized by Canneti, Lin, Tessaro, and Vaikuntanathan [CLTV15], and thus the security loss of
each recursive step is exponential in i, that is 2i. This is the reason their building block PKFE must be
sub-exponentially secure.
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2.2 Replacing PKFE with SKFE: Need of Puncturable SKFE

The security proof of Bitansky and Vaikuntanathan relies on the fact that we can use the security of
PKFE even when its encryption circuit is publicly available. Concretely, PKi is hardwired into obfuscated
encryption circuit iOi−1(Ei−1) and this encryption circuit is public when we use the security of PKFE
under the key pair (PKi, MSKi).

The above security argument might not work if ordinary SKFE is used instead of PKFE. This
intuition comes from the impossibility result shown by Barak et al. [BGI+01]. In fact, Bitansky and
Vaikuntanathan showed that it is impossible to instantiate their IO by using SKFE. More precisely, they
showed that there exists a secure SKFE scheme such that their transformation results in insecure IO if
the SKFE scheme is used as the building block. This is why they adopted PKFE as their building block.
Therefore, in order to replace PKFE with SKFE in the construction above, we need SKFE whose security
holds even when its encryption circuit is publicly available. As one of such primitives, Bitansky and
Vaikuntanathan proposed puncturable SKFE.

In puncturable SKFE defined by Bitansky and Vaikuntanathan, there are a puncturing algorithm
Punc and a punctured encryption algorithm PEnc in addition to algorithms of ordinary SKFE. We can
generate a punctured master secret key MSK∗{m0, m1} at two messages m0 and m1 from a master
secret key MSK by using Punc. Puncturable SKFE satisfies the following two properties: functionality
preserving under puncturing and semantic security at punctured point. Functionality preserving under
puncturing requires that

Enc(MSK, m; r) = PEnc(MSK∗{m0, m1}, m; r)

holds for any message m other than m0 and m1 and for any randomness r. Semantic security at punctured
point requires that

(MSK∗{m0, m1}, Enc(MSK, m0) c≈ (MSK∗{m0, m1}, Enc(MSK, m1))

holds for all adversaries, where
c≈ denotes computational indistinguishability.

Bitansky and Vaikuntanathan showed that single-key weakly-succinct puncturable SKFE is also
a sufficient building block for their IO construction while ordinary SKFE is not. Note that weak-
succinctness of puncturable SKFE requires that not only the encryption circuit but also the punctured
encryption circuit should be weakly-succinct. However, as stated earlier, there was no instantiation of
puncturable SKFE other than regarding PKFE as puncturable SKFE at that point. In particular, it was
not clear whether we can construct puncturable SKFE based on ordinary SKFE.

2.3 Puncturable SKFE from SKFE

In this work, we show we can construct single-key weakly-succinct puncturable SKFE from collusion-
resistant SKFE. More specifically, we show the following two results. First, we show how to construct
single-key non-succinct puncturable SKFE based only on one-way functions. In addition, we show that we
can transform it into single-key weakly-succinct one using collusion-resistant SKFE. Our formalization
of puncturable SKFE is different from that of Bitansky and Vaikuntanathan [BV15] in several aspects.
Nevertheless, we show that our puncturable SKFE is also sufficient for constructing IO.

Below, we give the overview of these two constructions.

Single-Key Non-Succinct Puncturable SKFE based on One-Way Functions

Our starting point is the SKFE variant of the single-key non-succinct PKFE scheme proposed by Sahai
and Seyalioglu [SS10]. It is constructed from garbled circuit and SKE, which are implied by one-way
functions. Their construction is as follows.
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Setup: A master secret key consists of 2s secret keys {Kj,α}j∈[s],α∈{0,1} of SKE, where s is the length
of a binary representation of functions supported by the resulting SKFE scheme.

Enc: When we encrypt a message m, we first generates a garbled circuit Ũm with labels {Lj,α}j∈[s],α∈{0,1}
by garbling an universal circuit U(·, m) into which m is hardwired. Then, we encrypt Lj,α under
Kj,α and obtain an SKE ciphertext cj,α for every j ∈ [s] and α ∈ {0, 1}. The resulting ciphertext
of the scheme is (Ũm, {cj,α}j∈[s],α∈{0,1}).

KeyGen: A functional key skf for a function f consists of {Kj,f [j]}j∈[s], where f [1] · · · f [s] is the
binary representation of f and each f [j] is a single bit.

Dec: A decryptor who has a ciphertext (Ũm, {cj,α}j∈[s],α∈{0,1}) and a functional key {Kj,f [j]}j∈[s]
can compute {Lj,f [j]}j∈[s] by decrypting each cj,f [j] by Kj,f [j] and obtain Ũm({Lj,f [j]}j∈[s]) =
U(f, m) = f(m).

In the construction above, we observe that if we use puncturable PRF instead of SKE, the resulting
scheme is puncturable in some sense. More specifically, a master secret key now consists of 2s puncturable
PRF keys {Sj,α}j∈[s],α∈{0,1}. When we encrypt a message m, we first generate (Ũm, {Lj,α}j∈[s],α∈{0,1})
and encrypt each label by using a puncturable PRF value. That is, cj,α ← Lj,α ⊕ FSj,α(tag), where F is
puncturable PRF and tag is a public tag chosen in some way.

In this case, we can generate a punctured master secret key MSK∗{tag} at a tag tag. Thus, we
define an encryption algorithm in a tag-based manner. The encryption algorithm Enc, given MSK,
tag, and m, outputs a ciphertext of m under the tag tag. That is, Enc(MSK, tag, m) = (Ũm, {Lj,α ⊕
FSj,α(tag)}j∈[s],α∈{0,1}). A punctured master secret key MSK∗{tag} consists of 2s puncturable PRF
keys {S∗

j,α{tag}}j∈[s],α∈{0,1} all of which are punctured at tag.
By using MSK∗{tag}, we can generate a ciphertext of any message m under a tag tag′ different from

tag, that is, PEnc(MSK∗{tag}, tag′, m) = (Ũm, {Lj,α ⊕ FS∗
j,α{tag}(tag′)}j∈[s],α∈{0,1}). Then, we have

Enc(MSK, tag′, m; r) = PEnc(MSK∗{tag}, tag′, m; r)

for any tag tag and tag′ such that tag ̸= tag′, message m, and randomness r due to the functionality
preserving property of puncturable PRF. Namely, this scheme satisfies functionality preserving under
puncturing.

In addition, we can prove that Enc(MSK, tag, m0) and Enc(MSK, tag, m1) are indistinguishable for
adversaries that have MSK∗{tag} based on the security of puncturable PRF. In other words, it satisfies
semantic security at punctured tag.

This formalization is different from that proposed by Bitansky and Vaikuntanathan. Nevertheless,
our formalization of puncturable SKFE is sufficient for constructing IO. In fact, when we construct IO, we
set the tag same as the message to be encrypted itself. Then, our formalization is conceptually the same
as that of Bitansky and Vaikuntanathan. Our tag-based definition is well-suited for our constructions.

Achieving Weak-Succinctness via Collusion-Succinctness

We cannot directly use the puncturable SKFE scheme above as a building block of IO since it is
non-succinct. We need to transform it into an weakly-succinct scheme while preserving security and
functionality.

We extend the work by Kitagawa, Nishimaki, and Tanaka [KNT18a] that showed how to transform
non-succinct PKFE into weakly-succinct one using collusion-resistant SKFE. They accomplished the
transformation via a collusion-succinct scheme. We try to accommodate their transformation techniques
into the context of puncturable SKFE.
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Collusion-succinctness requires that each size of the encryption circuit and punctured encryption
circuit is sub-linear in the number of functional keys that the scheme can issue. Note that when we
consider collusion-succinctness, the size of these circuits can be polynomial of the size of functions.

We first show that we can construct collusion-succinct puncturable SKFE based on single-key non-
succinct puncturable SKFE and collusion-resistant SKFE. Then, we transform the collusion-succinct
scheme into an weakly-succinct scheme via a transformation based on decomposable randomized encod-
ing. The latter transformation based on decomposable randomized encoding is similar to that proposed
by Bitansky and Vaikuntanathan [BV15] and that proposed by Ananth, Jain, and Sahai [AJS15]. We
give an illustration of our construction path in Figure 1.

The general picture is similar to that of Kitagawa et al. [KNT18a] and we can accomplish the latter
transformation based on a known technique, but there is a technical hurdle in the former transformation.
The most biggest issue is how to define punctured master secret keys and the punctured encryption
algorithm. We show the overview of the former transformation and explain the technical hurdle below.

SXIO

OWF

SKFE

non-succinct
1-key pSKFE

collusion-succinct
q-key pSKFE

weakly succinct
1-key pSKFE

IO

+

[BNPW16]

Sec. 5 Sec. 6.1 Sec. 6.2

Sec. 7

Figure 1: Illustration of our construction path. pSKFE denotes puncturable SKFE. Dashed lines denote known
or trivial implications. White boxes denote our ingredients or goal. Purple boxes denote our core schemes.
A transformation from an object in a rectangle to one in a rectangle incurs only polynomial security loss. A
transformation from an object in a rectangle to one in a circle incurs super-polynomial security loss.

Construction of collusion-succinct scheme. Our goal of this step is to construct a collusion-succinct
scheme, that is, a scheme which supports q functional keys and the size of whose encryption and punctured
encryption circuits are sub-linear in q, where q is an a-priori fixed polynomial. The key tool for achieving
this goal is strong exponentially-efficient IO (SXIO) proposed by Lin, Pass, Seth, and Telang [LPST16].

SXIO is a relaxed variant of IO. SXIO is required that, given a circuit C with n-bit input, it runs
in 2γn · poly(λ, |C|)-time, where γ is a constant smaller than 1, poly is some polynomial, and λ is the
security parameter. We call γ the compression factor since it represents how SXIO can compress the
truth table of the circuit to be obfuscated. SXIO with arbitrarily small constant compression factor can
be constructed from collusion-resistant SKFE [BNPW16].

We show how to construct collusion-succinct puncturable SKFE from single-key non-succinct one
and SXIO. To achieve a collusion-succinct scheme, we need to increase the number of functional keys
to some polynomial q while compressing the size of its encryption circuits into sub-linear in q.

The most naive way to increase the number of functional keys is to run multiple instances of the
single-key scheme. If we have q master secret keys MSK1, · · · , MSKq, we can generate q functional keys
since we can generate one functional key under each master secret key. In this case, to ensure that we
can decrypt a ciphertext using every functional key under different master secret keys MSKi for every
i ∈ [q], a ciphertext should be composed of q ciphertexts each of which is generated under MSKi for
every i ∈ [q]. In addition, when we generate a punctured master secret key punctured at tag, we generate
q punctured master secret keys MSK∗

i {tag} for every i ∈ [q] all of which are punctured at tag.
In the naive construction above, we see that if the single-key scheme satisfies functionality preserving

under puncturing and semantic security at punctured tag, then so does the resulting scheme since a
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ciphertext of the resulting scheme consists of only those of the single-key scheme. However, if a
ciphertext of the resulting scheme consists of q ciphertexts of the single-key scheme, the encryption time
is obviously at least linear in q. Therefore, we cannot construct a collusion-succinct scheme based on
this naive idea.

We then consider to compress the encryption time by using SXIO. We extend the technique used in
some previous results [LPST16, BNPW16, KNT18a]. Let sxiO be SXIO. We set a ciphertext as a circuit
computing q ciphertexts obfuscated by sxiO instead of setting it as q ciphertexts themselves. Concretely,
we obfuscate the following circuit E1Key using sxiO. E1Key has hardwired message m, tag tag, and
puncturable PRF key S, and on input i ∈ [q], it first generates MSKi pseudorandomly from S and i, and
then outputs a ciphertext of m under MSKi and tag. Note that the master secret key of this scheme is now

Hard-Coded Constants: S, tag, m. // Description of (simplified) E1Key
Input: i ∈ [q]

1. Compute ri
Setup ← FS(i).

2. Compute MSKi ← Setup(1λ; ri
Setup).

3. Return CTi ← Enc(MSKi, tag, m).

one puncturable PRF key S. In other words, the scheme generates q master secret keys of the single-key
scheme from one puncturable PRF key. For the formal description of E1Key, see Figure 2 in Section 6.1.

The size of E1Key is independent of q since E1Key consists of one PRF evaluation and setup and
encryption procedure of the single-key scheme.4 Therefore, the time needed to compute sxiO(E1Key) is
bounded by 2γ log q · poly(λ, |m|) = qγ · poly(λ, |m|) for some constant γ < 1 and polynomial poly,
that is, sub-linear in q. Namely, we succeeds in reducing the encryption time from linear to sub-linear in
q.

However, we need more complicated structure to compress the running-time of a punctured encryption
algorithm into sub-linear in q. The main reason is that we cannot give master secret key S in the clear in
the punctured encryption circuit to reduce the security to that of the building block single-key scheme.

We first argue how to set a punctured master secret key. We cannot rely on the trivial way that sets q
punctured master secret keys of the single-key scheme as a punctured master secret key since the size of
the punctured encryption circuit becomes linear in q in this trivial way.

Our solution is to set a punctured master secret key as also an obfuscated circuit under SXIO. More
precisely, we obfuscate the following circuit P1Key. P1Key has hardwired tag tag and puncturable PRF
key S. Note that S is the master secret key thus is the same puncturable PRF key as that hardwired into
E1Key. On input i ∈ [q], P1Key first generates MSKi pseudorandomly from S and i, and then outputs a
punctured master secret key MSK∗

i {tag} of the single-key scheme. For the formal description of P1Key,
see Figure 3 in Section 6.1.

// Description of (simplified) P1Key
Hard-Coded Constants: S, tag.
Input: i ∈ [q]

1. Compute ri
Setup ← FS(i).

2. Compute MSKi ← Setup(1λ; ri
Setup).

3. Return MSK∗
i {tag} ← Punc(MSKi, tag).

// Description of (simplified) PE1Key
Hard-Coded Constants: MSK∗{tag}, tag′, m.
Input: i ∈ [q]

1. Parse sxiO(P1Key)← MSK∗{tag}.
2. Compute MSK∗

i {tag} ← sxiO(P1Key)(i).
3. Return CTi ← PEnc(MSK∗

i {tag}, tag′, m).

In addition, we define the punctured encryption algorithm as follows. On input MSK∗{tag} that
is sxiO(P1Key), tag tag′, and message m, the punctured encryption algorithm obfuscates the following

4Strictly speaking, the domain of PRF is [q], and thus the size of E1Key depends on q in logarithmic. However, it does not
matter since logarithmic factor is absorbed by sub-linear factor. We ignore this issue here for simplicity.
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circuit PE1Key using sxiO and outputs the obfuscated circuit. PE1Key has hardwired MSK∗{tag}, tag′,
and m, and on input i ∈ [q], it first generates the i-th punctured key MSK∗

i {tag} by feeding i into
MSK∗{tag} = sxiO(PE1Key), and then outputs a ciphertext of m under MSK∗

i {tag} and tag′ using the
punctured encryption algorithm of the single-key scheme. If the compression factor of sxiO is sufficiently
small, we ensure that the running time of this punctured encryption algorithm is sub-linear in q. For the
formal description of PE1Key, see Figure 4 in Section 6.1.

We can prove the semantic security at punctured tag by the punctured programming technique
proposed by Sahai and Waters [SW14]. However, the construction above does not satisfy functionality
preserving under puncturing. This is because ciphertexts output by the encryption and punctured
encryption algorithms are different. The ciphertexts are obfuscation of different circuits E1Key and
PE1Key, respectively.

In fact, it seems difficult to avoid this problem as long as we use SXIO to gain succinctness. To the
best of our knowledge, how to achieve succinctness in a generic way without using SXIO is not known.

Indistinguishability of functionality under puncturing. To overcome the problem above, we intro-
duce a relaxed variant functionality preserving property that is compatible with the construction based
on SXIO. We call it indistinguishability of functionality under puncturing. Informally speaking, the
property requires that

(MSK, MSK∗{tag}, Enc(MSK, tag′, m)) c≈ (MSK, MSK∗{tag}, PEnc(MSK∗{tag}, tag′, m))

holds for any tag tag and tag′ such that tag ̸= tag′, and message m, where
c≈ denotes computational

indistinguishability. In other words, it requires that no distinguisher can distinguish ciphertexts output
by Enc and PEnc even given both the master secret key and punctured master secret key.

We see that the collusion-succinct construction based on SXIO above satisfies indistinguishability of
functionality under puncturing. This comes from the security guarantee of SXIO and the fact that E1Key
and PE1Key are functionally equivalent as long as the above tag and tag′ are different.

Overall, we can construct collusion-succinct puncturable SKFE with indistinguishability of func-
tionality under puncturing from a single-key non-succinct scheme and SXIO.

Transforming into an weakly-succinct scheme. As stated earlier, we can in turn transform a collusion-
succinct scheme into an weakly-succinct one using decomposable randomized encoding. This transfor-
mation is based on those proposed by Bitansky and Vaikuntanathan [BV15] and Ananth et al. [AJS15].

In this transformation, a ciphertext of the weakly-succinct scheme is a ciphertext of the collusion-
succinct scheme itself. Thus, if the collusion-succinct scheme satisfies semantic security at punctured
tag and indistinguishability of functionality under puncturing, then so does the weakly-succinct scheme.
Therefore, we can construct a single-key weakly-succinct puncturable SKFE with indistinguishability of
functionality under puncturing.

Indistinguishability of functionality under puncturing looks to be insufficient for constructing IO.
Nevertheless, we show that we can replace PKFE in the construction of IO proposed by Bitansky and
Vaikuntanathan with our puncturable SKFE that satisfies only indistinguishability of functionality under
puncturing if we allow more but asymptotically the same security loss.

2.4 IO from Puncturable SKFE

Finally, we give an overview of our IO construction below.
The construction of IO based on puncturable SKFE is almost the same as that based on PKFE

proposed by Bitansky and Vaikuntanathan [BV15]. It does not depend on which functionality preserving
property puncturable SKFE satisfies. Recall that, in their construction, a key pair (PKi, MSKi) of PKFE
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is generated and the circuit Ei−1 that has hardwired PKi is obfuscated at every recursive step. In our
construction based on puncturable SKFE, a master secret key MSKi of puncturable SKFE is generated
and Ei−1 that has hardwired MSKi is obfuscated at each recursive step. Concretely, we construct Ei−1 as
a circuit that has hardwired MSKi and an SKE key K, and on (i−1)-bit input xi−1, it outputs a ciphertext
of (xi−1∥xi, K) for xi ∈ {0, 1} under MSKi and a tag xi−1, that is, Enc (MSKi, xi−1, (xi−1∥xi, K))
for xi ∈ {0, 1}. In the proof, we replace MSKi hardwired into Ei−1 with the tuple of a punctured master
secret key MSK∗

i {j} punctured at j ∈ {0, 1}i−1 and a ciphertext of (j∥xi, K) for xi ∈ {0, 1}, where j
is a string in {0, 1}i−1 that we focus on at that time.

Outline of Security Proof

We give an overview of the security proof of IO based on puncturable SKFE. If the building block
puncturable SKFE satisfies functionality preserving under puncturing, the security proof is almost
the same as that of Bitansky and Vaikuntanathan. However, our puncturable SKFE satisfies only
indistinguishability of functionality under puncturing, and thus we need more complicated arguments.
The first half of the following overview is similar to that of Bitansky and Vaikuntanathan. The rest is an
overview of proofs that we additionally need due to indistinguishability of functionality under puncturing.

Analogous to IO based on PKFE, we can accomplish this proof recursively. More precisely, we can
prove the security of iOi based on those of iOi−1, puncturable SKFE, and plain SKE. We proceed the
proof as follows. Note again that, we ignore the issue of the randomness for the encryption algorithm
and punctured encryption algorithm for simplicity. It is generated by puncturable PRF in the actual
construction.

Suppose that we have two functionally equivalent circuits C0 and C1 both of which expect an i-bit
input. We show that no efficient distinguisher D can distinguish iOi(C0) and iOi(C1). We consider
the following sequence of hybrid experiments. Below, for two hybrids H and H′, we write H ∼ H′ to
denote that the behavior of D does not change betweenH andH′.

In the first hybrid H0, D is given iOi(C0). Recall that iOi(C0) consists of skC∗ and iOi−1(Ei−1).
C∗ has hardwired two SKE ciphertexts CTske

0 and CTske
1 of C0 under independent keys K0 and K1. On

i-bit input xi and SKE key Kb, C∗ first obtains C by decrypting CTske
b by Kb and outputs C(xi).

In the next hybridH1, we change how CTske
1 hardwired in C∗ is generated. Concretely, we generate

CTske
1 as a ciphertext of C1 under the key K1. It holds that H0 ∼ H1 due to the security of SKE. Then,

in the next hybridH2, we change the circuit Ei−1 so that, on (i−1)-bit input xi−1, it outputs a ciphertext
of (xi−1∥xi, K1) instead of (xi−1∥xi, K0) for xi ∈ {0, 1} under MSKi and a tag xi−1.

If we prove H1 ∼ H2, we also prove H0 ∼ H2 and almost complete the security proof. This is
because we can argue that the behavior of D does not change between H2 and the hybrid where D is
given iOi(C1) by a similar argument forH0 ∼ H2.

Therefore, the main part of the proof is how we change the circuit Ei−1 from encrypting K0 in H1
to encrypting K1 in H2. As mentioned earlier, we accomplish this task by relying on the argument of
probabilistic IO formalized by Canneti et al. [CLTV15].

Concretely, we consider 2i−1 + 1 intermediate hybrid experiments H1,j for j ∈ {0, · · · , 2i−1}
betweenH1 andH2. BetweenH1,j andH1,j+1, we change Ei−1 so that on input j ∈ {0, 1}i−1, it outputs
ciphertexts of (j∥xi, K1) instead of (j∥xi, K0) for xi ∈ {0, 1}, where j is the binary representation of
j. More precisely, we construct Ei−1 in H1,j as follows. Ei−1 has hardwired MSKi, K0, and K1. On
(i− 1)-bit input xi−1,

• if xi−1 < j, it outputs a ciphertext of (xi−1∥xi, K1) for xi ∈ {0, 1} under MSKi and a tag xi−1.

• Otherwise, it outputs a ciphertext of (xi−1∥xi, K0) for xi ∈ {0, 1} under MSKi and a tag xi−1.

We see that Ei−1 inH1 has the same functionality as Ei−1 inH1,0. In addition, Ei−1 inH2 has the same
functionality as Ei−1 in H1,2i−1 . Therefore, we have H1 ∼ H1,0 and H2 ∼ H1,2i−1 from the security

11



guarantee of iOi−1.
We show how to proveH1,j ∼ H1,j+1. For simplicity, we first assume that puncturable SKFE satisfies

functionality preserving under puncturing. In this case, we show H1,j ∼ H1,j+1 by the following three
steps.

(1) In the first step, we hardwire ciphertexts of (j∥xi, K0) under MSKi and a tag j for xi ∈ {0, 1} in
Ei−1. In addition, we replace hardwired MSKi in Ei−1 with MSK∗

i {j} that is a master secret key
punctured at a tag j. On (i− 1)-bit input xi−1,

• if xi−1 = j, Ei−1 outputs hardwired ciphertexts of (j∥xi, K0) for xi ∈ {0, 1}.
• if xi−1 ̸= j, it generates ciphertexts of (xi−1∥xi, Kβ) under MSK∗

i {j} and a tag xi−1 and
outputs them, where β = 1 if xi−1 < j and β = 0 otherwise.

We see that this change does not affect the functionality of Ei−1 if puncturable SKFE satisfies
functionality preserving under puncturing. Thus, this step is done by the security of iOi−1.

(2) In the second step, we change the hardwired ciphertexts to ciphertexts of (j∥xi, K1) for xi ∈ {0, 1}.
This is done by the semantic security at punctured tag of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have hardwired ciphertexts of (j∥xi, K1) for
xi ∈ {0, 1}. Moreover, we change Ei−1 so that Ei−1 has hardwired MSKi and use it to generate
the output ciphertexts. This change also does not affect the functionality of Ei−1, and thus we can
accomplish this step by relying on the security of iOi−1 again.

From the above, if puncturable SKFE satisfies functionality preserving under puncturing, we have
H1,j ∼ H1,j+1 for every j ∈ {0, · · · , 2i−1 − 1}. By combining H1 ∼ H1,0 and H1,2i−1 ∼ H2, we
obtainH1 ∼ H2.

Therefore, we complete the entire proof. In fact, in this case, the proof is essentially the same as that
for the case where PKFE is used as a building block shown by Bitansky and Vaikuntanathan.

Additional hybrids for the case of indistinguishability of functionality under puncturing. Recall
that our puncturable SKFE satisfies only indistinguishability of functionality under puncturing. Thus,
the above argument for steps 1 and 3 do not work straightforwardly. This is because if puncturable
SKFE satisfies only indistinguishability of functionality under puncturing, the functionality of Ei−1
might change at each step of 1 and 3. Therefore, we cannot directly use the security of iOi−1.

Nevertheless, even if puncturable SKFE satisfies only indistinguishability of functionality under
puncturing, we can proceed steps 1 and 3 by introducing more additional hybrids. Since steps 1 and 3
are symmetric, we focus on proceeding the step 1. We can apply the following argument for the step 3.
Below, we letH0

1,j denote the hybrid experiment after applying the step 1 toH1,j .
To accomplish the step 1, we introduce the additional intermediate hybrids H1,j,k for every k ∈

{0, · · · , 2i−1} \ {j} between H1,j and H0
1,j . Between H1,j,k and H1,j,k+1, we change Ei−1 so that, on

input k ∈ {0, 1}i−1, it outputs ciphertexts under MSK∗
i {j} instead of ciphertexts under MSKi, where

k is the binary representation of k. More precisely, we construct Ei−1 in H1,j,k as follows. Ei−1 has
hardwired MSK∗

i {j} in addition to MSKi, K0, and K1. On (i− 1)-bit input xi−1, it runs as follows.

• If xi−1 < j, it sets β = 1 and β = 0 otherwise.

• If xi−1 < k and xi−1 ̸= j, it outputs a ciphertext of (xi−1∥xi, Kβ) under MSK∗
i {j} and a tag

xi−1, that is, PEnc (MSK∗
i {j}, xi−1, (xi−1∥xi, Kβ)) for xi ∈ {0, 1}.

• Otherwise (xi−1 ≥ k or xi−1 = j), it outputs a ciphertext of (xi−1∥xi, Kβ) under MSKi and a
tag xi−1, that is, Enc (MSKi, xi−1, (xi−1∥xi, Kβ)) for xi ∈ {0, 1}.
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We see that Ei−1 inH1,j andH0
1,j have the same functionality as that inH1,j,0 andH1,j,2i−1 , respectively.

In addition, Ei−1 in H1,j,j has the same functionality as that in H1,j,j+1. Therefore, we have H1,j ∼
H1,j,0,H0

1,j ∼ H1,j,2i−1 , andH1,j,j ∼ H1,j,j+1 from the security guarantee of iOi−1.
We can prove H1,j,k ∼ H1,j,k+1 for every k ∈ {0, · · · , 2i−1} \ {j} by three steps again based on

indistinguishability of functionality under puncturing.

(1) We hardwire ciphertexts of (k∥xi, Kβ) under MSKi and a tag k, that is, Enc(MSKi, k, (k∥xi, Kβ))
for xi ∈ {0, 1} in Ei−1 in the first step. In addition, we change Ei−1 so that it outputs the hardwired
ciphertext of (k∥xi, K0) for xi ∈ {0, 1} if the input is k. We see that this change does not affect
the functionality of Ei−1. Thus, this step is done by the security of iOi−1.

(2) In the second step, we change the hardwired ciphertexts to a ciphertext of (k∥xi, Kβ) under
MSK∗

i {j}, that is PEnc(MSK∗
i {j}, k, (k∥xi, Kβ)) for xi ∈ {0, 1}. This is done by the in-

distinguishability of functionality under puncturing of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have hardwired ciphertexts of (k∥xi, K1) for
xi ∈ {0, 1}. Namely, we change Ei−1 so that on input k, Ei−1 generates ciphertexts of k under
MSK∗

i {j} and outputs them. This change does not affect the functionality of Ei−1, and thus we
can accomplish this step by relying on the security of iOi−1 again.

From these,H1,j,k ∼ H1,j,k+1 holds for every k ∈ {0, · · · , 2i−1}\{j}. By combiningH1,j ∼ H1,j,0,
H0

1,j ∼ H1,j,2i−1 , andH1,j,j ∼ H1,j,j+1, we obtainH1,j ∼ H0
1,j .

Therefore, we obtain H1,j ∼ H0
1,j even if puncturable SKFE satisfies only indistinguishability of

functionality under puncturing. Overall, we can complete the entire security proof.
We note that our security proof incurs more security loss than those of Bitansky and Vaikuntanathan

[BV15] and the case where puncturable SKFE satisfies functionality preserving under puncturing. Our
security proof incurs roughly 22·i security loss while the latter proofs incurs 2i security loss when we
prove the security of iOi based on that of iOi−1. Nevertheless, this difference is not an issue in the
sense that if the building block primitives are roughly 2Ω(n2)-secure, we can prove the security of our
indistinguishability obfuscator, where n is the input length of circuits to be obfuscated. This requirement
is the same as that of Bitansky and Vaikuntanathan.

3 Preliminaries

We define some notations and cryptographic primitives.

3.1 Notations

We write x
r←− X to denote that an element x is chosen from a finite set X uniformly at random and

y ← A(x; r) to denote that the output of an algorithm A on an input x and a randomness r is assigned to
y. When there is no need to write the randomness explicitly, we omit it and simply write y ← A(x). For
strings x and y, x∥y denotes the concatenation of x and y. Throughout this paper, λ denotes a security
parameter. poly denotes an unspecified polynomial. A function f(λ) is a negligible function if f(λ)
tends to 0 faster than 1

λc for every constant c > 0. We write f(λ) = negl(λ) to denote that f(λ) is
a negligible function. PPT stands for probabilistic polynomial time. Let [ℓ] denote the set of integers
{1, · · · , ℓ}.

3.2 Standard Cryptographic Tools

In this section, we review standard cryptographic tools, pseudorandom function (PRF), puncturable PRF,
secret-key encryption (SKE), garbling scheme, and decomposable randomized encoding.
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Definition 3.1 (Pseudorandom functions). For sets D and R, let {FS(·) : D → R|S ∈ {0, 1}λ} be a
family of polynomially computable functions. We say that F is pseudorandom if for any PPT adversary
A, it holds that

Advprf
F,A(λ) = |Pr[AFS(·)(1λ) = 1 : S

r←− {0, 1}λ]

− Pr[AR(·)(1λ) = 1 : R r←− U ]| = negl(λ) ,

where U is the set of all functions from D toR. Moreover, for some concrete negligible function ϵ(·), we
say that F is ϵ-secure if for any PPT A the above indistinguishability gap is smaller than ϵ(λ)Ω(1).

Theorem 3.2 ([GGM86]). If one-way functions exist, then for all efficiently computable functions n(λ)
and m(λ), there exists a pseudorandom function that maps n(λ) bits to m(λ) bits (i.e., D := {0, 1}n(λ)

andR := {0, 1}m(λ)).

Definition 3.3 (Puncturable pseudorandom function). For setsD andR, a puncturable pseudorandom
function PPRF consists of a tuple of algorithms (F, Punc) that satisfies the following two conditions.

Functionality preserving under puncturing: For all polynomial size subset {xi}i∈[k] ofD, and for all
x ∈ D \ {xi}i∈[k], we have Pr[FS(x) = FS∗(x) : S ← {0, 1}λ, S∗ ← Punc(S, {xi}i∈[k])] = 1.

Pseudorandomness at punctured points: For all polynomial size subset {xi}i∈[k] of D, and any PPT
adversary A, it holds that

Pr[A(S∗, {FS(xi)}i∈[k]) = 1]− Pr[A(S∗, Uk) = 1] = negl(λ) ,

where S
r←− {0, 1}λ, S∗ ← Punc(S, {xi}i∈[k]), and U denotes the uniform distribution overR.

Moreover, for some concrete negligible function ϵ(·), we say that PPRF is ϵ-secure if for any A
the above indistinguishability gap is smaller than ϵ(λ)Ω(1).

Theorem 3.4 ([GGM86, BW13, BGI14, KPTZ13]). If one-way functions exist, then for all efficiently
computable functions n(λ) and m(λ), there exists a puncturable pseudorandom function that maps n(λ)
bits to m(λ) bits (i.e., D := {0, 1}n(λ) andR := {0, 1}m(λ)).

Definition 3.5 (Secret key encryption). An SKE scheme SKE is a two tuple (E, D) of PPT algorithms.

• The encryption algorithm E, given a key K ∈ {0, 1}λ and a message m ∈M, outputs a ciphertext
c, whereM is the plaintext space of SKE.

• The decryption algorithm D, given a key K and a ciphertext c, outputs a message m̃ ∈ {⊥}∪M.
This algorithm is deterministic.

Correctness: We require D(K, E(K, m)) = m for every m ∈M and key K ∈ {0, 1}λ.

CPA security: We define the security game between a challenger and an adversary A as follows.

1. The challenger generates K
r←− {0, 1}λ and chooses the challenge bit b

r←− {0, 1}. Then, the
challenger sends 1λ to A.

2. Amay make polynomially many encryption queries adaptively. A sends (m0, m1) ∈M×M
to the challenger. Then, the challenger returns c← E(K, mb).

3. A outputs b′ ∈ {0, 1}.
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In this game, we define the advantage of the adversary A as

Advcpa
SKE,A(λ) = 2|Pr[b = b′]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

For a negligible function ϵ(·), We say that SKE is ϵ-secure if for any PPTA, we have Advcpa
SKE,A(λ) <

ϵ(λ)Ω(1).

Theorem 3.6 ([LR88]). If there exist one-way functions, there exists CPA-secure SKE.

Definition 3.7 (Garbling scheme). Let {Cn}n∈N be a family of circuits where each circuit in Cn takes
an n-bit input. A circuit garbling scheme GC is a two tuple (Grbl, Eval) of PPT algorithms.

• The garbling algorithm Grbl, given a security parameter 1λ and a circuit C ∈ Cn, outputs a
garbled circuit C̃, together with 2n labels {Lj,α}j∈[n],α∈{0,1}.

• The evaluation algorithm, given a garbled circuit C̃ and n labels {Lj}j∈[n], outputs y.

Correctness: We require Eval(C̃, {Lj,xj}j∈[n]) = C(x) for every n ∈ N, C ∈ Cn, and x ∈ {0, 1}n,
where (C̃, {Lj,α}j∈[n],α∈{0,1})← Grbl(1λ, C) and xj is the j-th bit of x for every j ∈ [n].

Security: Let Sim be a PPT simulator. We define the following game between a challenger and an
adversary A as follows.

1. The challenger chooses the challenge bit b
r←− {0, 1} and sends security parameter 1λ to A.

2. A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n for the challenger.
3. If b = 0, the challenger computes (C̃, {Lj,α}j∈[n],α∈{0,1}) ← Grbl(1λ, C) and returns

(C̃, {Lj,xj}j∈[n]) toA. Otherwise, the challenger returns (C̃, {Lj}j∈[n])← Sim(1λ, |C|, C(x)).
4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advgc
GC,A,Sim(λ) = 2|Pr[b = b′]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

For a concrete negligible function ϵ(·), We say that GC is ϵ-secure if there exists a PPT Sim such
that for any PPT A, we have Advgc

GC,A,Sim(λ) < ϵ(λ)Ω(1).

Theorem 3.8 ([Yao86, BHR12, LP09]). If there exist one-way functions, there exists secure garbling
scheme for any polynomial size circuits.

Definition 3.9 (Decomposable randomized encoding). Let c ≥ 1 be an integer constant. A c-local
decomposable randomized encoding RE, given security parameter 1λ and a function f of size s and n-bit
input, outputs a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}µ with the following properties. ρ and µ are
polynomials bounded by s · polyRE(λ, n), where polyRE is a fixed polynomial.

Correctness: There is a polynomial time decoder that, given f̂(x; r), outputs f(x) for any x ∈ {0, 1}n
and r ∈ {0, 1}ρ.

Decomposability: Computation of f̂ can be decomposed into computation of µ functions. That is, there
exist µ functions f̂1, · · · , f̂µ such that f̂(x; r) = (f̂1(x; r), · · · , f̂µ(x; r)). Each f̂i depends on a
single bit of x at most and c bits of r. We write f̂(x; r) = (f̂1(x; rS1), · · · , f̂µ(x; rSµ)), where Si

denotes the subset of bits of r that f̂i depends on.
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Security: Let Sim be a PPT simulator. We define the following game between a challenger and an
adversary A as follows.

1. The challenger chooses a bit b
r←− {0, 1} and sends security parameter 1λ to A.

2. A sends a function f of size s and n-bit input and an input x ∈ {0, 1}n to the challenger.
3. If b = 0, the challenger computes f̂ ← RE(1λ, f), generates r ← {0, 1}ρ, and returns

f̂(x; r) to A. Otherwise, the challenger returns Sim(1λ, s, f(x)).
4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advre
RE,Sim,A(λ) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

For a negligible function ϵ(·), we say that RE is ϵ-secure if there exists a PPT Sim such that for
any PPT A, we have Advre

RE,Sim,A(λ) < ϵ(λ)Ω(1).

It is known that a decomposable randomized encoding can be based on one-way functions.

Theorem 3.10 ([Yao86, AIK06]). If there exist one-way functions, there exists secure decomposable
randomized encoding for all polynomial size functions.

3.3 Secret-Key Functional Encryption

We review the definition of ordinary secret-key functional encryption (SKFE).

Definition 3.11 (Secret-key functional encryption). An SKFE scheme SKFE is a four tuple of PPT
algorithms (Setup, KG, Enc, Dec). Below, let M and F be the message space and function space of
SKFE, respectively.

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK and a function f ∈ F , outputs
a functional decryption key skf .

• The encryption algorithm Enc, given a master secret key MSK and a message m ∈ M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a functional decryption key skf and a ciphertext CT, outputs
a message m̃ ∈ {⊥} ∪M.

Correctness: We require Dec(KG(MSK, f), Enc(MSK, m)) = f(m) for every m ∈ M, f ∈ F , and
MSK← Setup(1λ).

Next, we introduce selective-message message privacy for SKFE schemes.

Definition 3.12 (Selective-message message privacy). Let SKFE be an SKFE scheme whose message
space and function space are M and F , respectively. Let q be a polynomial of λ. We define the
selective-message message privacy game between a challenger and an adversary A as follows.

1. The challenger generates a master secret key MSK ← Setup(1λ) and chooses the challenge bit
b

r←− {0, 1}. Then, the challenger sends security parameter 1λ to A.

2. A sends {(mℓ
0, mℓ

1)}ℓ∈[p] to the challenger, where p is an a-priori unbounded polynomial of λ.
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3. The challenger generates ciphertexts CT(ℓ) ← Enc(MSK, mℓ
b)(ℓ ∈ [p]) and sends them to A.

4. Amay adaptively make key queries q times at most. For a key query f ∈ F fromA, the challenger
generates skf ← KG(MSK, f), and returns skf to A. Here, f needs to satisfy f(mℓ

0) = f(mℓ
1)

for all ℓ ∈ [p].

5. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advsm-mp
SKFE,A(λ) = 2|Pr[b = b′]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

A is said to be valid if each function query f made by A satisfies that f(mℓ
0) = f(mℓ

1) for all ℓ ∈ [p]
in the above game. For a negligible function ϵ(·), We say that SKFE is (q, ϵ)-selective-message message
private if for any valid PPT A, we have Advsm-mp

SKFE,A(λ) < ϵ(λ)Ω(1).

We further say that an SKFE scheme is ϵ-secure collusion-resistant SKFE if it is (q, ϵ)-selective-
message message private for any polynomial q.

3.4 Indistinguishability Obfuscation

We review the definition of indistinguishability obfuscation (IO).

Definition 3.13 (Indistinguishability obfuscation). A PPT algorithm iO is an indistinguishability ob-
fuscator (IO) for a circuit class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1 .

Indistinguishability: for any poly-size distinguisher D, there exists a negligible function negl(·) such
that the following holds: for all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ

of the same size and such that C0(x) = C1(x) for all inputs x, then

|Pr
[
D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]
| = negl(λ) .

We further say that iO is ϵ-secure, for some concrete negligible function ϵ(·), if for any PPT
distinguisher the above advantage is smaller than ϵ(λ)Ω(1).

3.5 Strong Exponentially-Efficient Indistinguishability Obfuscation

We next define strong exponentially-efficient IO (SXIO).

Definition 3.14 (Strong exponentially-efficient indistinguishability obfuscation). Let γ < 1 be a
constant. A PPT algorithm sxiO is a γ-compressing strong exponentially-efficient indistinguishability
obfuscator (SXIO) for a circuit class {C}λ∈N if it satisfies the functionality and indistinguishability in
Definition 3.13 and the following efficiency requirement:

Non-trivial time efficiency We require that the running time of sxiO on input (1λ, C) is at most 2nγ ·
poly(λ, |C|) for every λ ∈ N and circuit C ∈ {Cλ}λ∈N with input length n.

We have the following theorem.

Theorem 3.15 ([BNPW16]). Assuming there exists ϵ-secure collusion-resistant SKFE for all circuits,
where ϵ(·) is a negligible function. Then, for any constant γ < 1, there exists ϵ-secure γ-compressing
SXIO for polynomial-size circuits with logarithmic size input.
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4 Puncturable Secret-Key Functional Encryption

We introduce puncturable secret-key functional encryption (puncturable SKFE).
The notion of puncturable SKFE was introduced by Bitansky and Vaikuntanathan [BV15]. They

showed that in their construction of IO, the building block PKFE can be replaced with puncturable SKFE.
However, it has been open whether we can achieve puncturable SKFE without assuming PKFE.

In this work, we answer the question affirmatively. We show how to construct a relaxed variant
of puncturable SKFE scheme that is single-key weakly-succinct. Our relaxed variant is sufficient for
constructing IO. Our construction consists of two steps.

1. We prove that a single-key non-succinct puncturable SKFE scheme is constructed only from
one-way functions.

2. We prove that we can transform the non-succinct scheme into an weakly-succinct one by using
SXIO.

We can construct SXIO based on standard (i.e., not puncturable) SKFE by Theorem 3.15. Thus, we
can construct our puncturable SKFE from standard SKFE.

4.1 Syntax

Our definition of puncturable SKFE introduced below is slightly different from that proposed by Bitansky
and Vaikuntanathan [BV15]. However, we show that puncturable SKFE defined in this paper is also a
sufficient building block of IO. We state differences between our definition and theirs after describing
the syntax and security of our puncturable SKFE.

Definition 4.1 (Puncturable secret-key functional encryption). A puncturable SKFE scheme pSKFE
is a tuple (Setup, KG, Enc, Dec, Punc, PEnc) of six PPT algorithms. Below, letM, F , and T be the
message space, function space, and tag space of pSKFE, respectively. In addition, let q be a polynomial
denoting the upper bound of the number of issuable functional keys.

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK, function f ∈ F , and an index
i ∈ [q], outputs a functional key skf .

• The encryption algorithm Enc, given a master secret key MSK, a tag tag, and a message m ∈M,
outputs a ciphertext CT.

• The decryption algorithm Dec, given a functional key skf , a tag tag, and a ciphertext CT, outputs
a message m̃ ∈ {⊥} ∪M.

• The puncturing algorithm Punc, given a master secret key MSK and a tag tag, outputs a punctured
master secret key MSK∗{tag}

• The punctured encryption algorithm PEnc, given a punctured master secret key MSK∗, a tag tag′,
and a message m, outputs a ciphertext CT.

Correctness: For every m ∈M, f ∈ F , i ∈ [q], tag ∈ T , and MSK← Setup(1λ), we require that

Dec(KG(MSK, f, i), tag, Enc(MSK, tag, m)) = f(m) .
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4.2 Security

In this section, we introduce two variants of security. Their difference is the functionality of punctured
encryption algorithms.

Definition 4.2 (Secure puncturable SKFE). Let pSKFE = (Setup, KG, Enc, Dec, Punc, PEnc) be punc-
turable SKFE. Below, letM, F , and T be the message space, function space, and tag space of pSKFE,
respectively. In addition, let q be a polynomial denoting the upper bound of the number of issuable
functional keys. We say that pSKFE is secure puncturable SKFE if it satisfies the following properties.

Functionality preserving under puncturing: For every m ∈ M, (tag, tag′) ∈ T × T such that
tag ̸= tag′, randomness r, MSK ← Setup(1λ), and MSK∗{tag} ← Punc(MSK, tag), it holds
that

PEnc(MSK∗{tag}, tag′, m; r) = Enc(MSK, tag′, m; r) .

Semantic security at punctured tag: We define punctured semantic security game between a chal-
lenger and an adversary A as follows.

1. The challenger generates a master secret key MSK ← Setup(1λ) and chooses a challenge
bit b

r←− {0, 1}. The challenger sends security parameter 1λ to A.
2. A sends (m0, m1) ∈ M×M, tag ∈ T , and {fi}i∈[q] ∈ Fq to the challenger. We require

that for every i ∈ [q] it holds that fi(m0) = fi(m1).
3. The challenger computes CT ← Enc(MSK, tag, mb), skfi

← KG(MSK, fi, i) for every
i ∈ [q], and MSK∗{tag} ← Punc(MSK, tag).
Then, the challenger returns (MSK∗{tag}, CT, {skfi

}i∈[q]) to A.
4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advss
pSKFE,A(λ) = 2|Pr[b = b′]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

A is said to be valid if fi(m0) = fi(m1) holds for every i ∈ [q] in the above game.
We say that pSKFE satisfies semantic security at punctured tag if for any valid PPT A, we have
Advss

pSKFE,A(λ) = negl(λ).
We further say that pSKFE satisfies ϵ-semantic security at punctured tag, for some concrete
negligible function ϵ(·), if for any valid PPT A the above advantage Advss

pSKFE,A(λ) is smaller
than ϵ(λ)Ω(1).

In addition, we say that pSKFE is ϵ-secure puncturable SKFE if it satisfies functionality preserving under
puncturing and ϵ-semantic security at punctured tag.

Instead of functionality preserving under puncturing, we can consider a relaxed variant which we call
indistinguishability of functionality under puncturing. This property requires that any PPT distinguisher
cannot distinguish ciphertexts output by Enc and PEnc even given both master secret key and punctured
master secret key. The formal definition is as follows.

Definition 4.3 (Indistinguishability of functionality under puncturing). Let pSKFE = (Setup, KG, Enc, Dec,
Punc, PEnc) be puncturable SKFE whose message space and tag space areM and T , respectively. We
define indistinguishability of functionality game between a challenger and an adversary A as follows.

1. The challenger generates a master secret key MSK ← Setup(1λ) and chooses a challenge bit
b

r←− {0, 1}. The challenger sends security parameter 1λ to A.
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2. A sends m ∈M and (tag, tag′) ∈ T × T such that tag ̸= tag′ to the challenger.

3. The challenger first computes MSK∗{tag} ← Punc(MSK, tag). Then, the challenger computes
CT← Enc(MSK, tag′, m) if b = 0, and otherwise CT← PEnc(MSK∗{tag}, tag′, m).
Then, the challenger returns (MSK, MSK∗{tag}, CT) to A.

4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advif
pSKFE,A(λ) = 2|Pr[b = b′]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

We say that pSKFE satisfies indistinguishability of functionality under puncturing if for any PPT A,
we have Advif

pSKFE,A(λ) = negl(λ).
We further say that pSKFE satisfies ϵ-indistinguishability of functionality under puncturing, for some

concrete negligible function ϵ(·), if for any PPT A the above advantage Advif
pSKFE,A(λ) is smaller than

ϵ(λ)Ω(1).

Definition 4.4 (Secure puncturable SKFE with indistinguishability of functionality). Let pSKFE be
puncturable SKFE. Let ϵ1(·) and ϵ2(·) be some negligible functions. If pSKFE satisfies ϵ1-semantic
security at punctured tag and ϵ2-indistinguishability of functionality under puncturing, then we say that
pSKFE is (ϵ1, ϵ2)-secure puncturable SKFE with indistinguishability of functionality.

4.3 Efficiency

We introduce the notion of succinctness for puncturable SKFE.

Definition 4.5 (Succinctness). Let n be the input length of circuits in F , and s the maximum size of
circuits contained in F .

Weakly-succinct: Puncturable SKFE is said to be weakly-succinct if the size of both the encryption
circuit and punctured encryption circuit are bounded by sγ · poly(λ, n), where γ < 1 is a fixed
constant. We call γ the compression factor.

Collusion-succinct: Puncturable SKFE is said to be collusion-succinct if the size of both the encryption
circuit and punctured encryption circuit are bounded by qγ · poly(n, λ, s), where q is the upper
bound of issuable functional decryption keys and γ < 1 is a fixed constant. We call γ the
compression factor.

4.4 Difference from Definition of Bitansky and Vaikuntanathan

There are three main differences between our definition of puncturable SKFE and that of Bitansky and
Vaikuntanathan [BV15]. Two are about syntax. The other is about security.

Syntactical differences are as follows.

Tag-based encryption and decryption: In the definition of Bitansky and Vaikuntanathan, a master
secret key is punctured at two messages. Their semantic security requires that no PPT adversary
can distinguish ciphertexts of these two messages given the punctured master secret key.
We adopt the tag based syntax for the encryption and decryption algorithms while Bitansky and
Vaikuntanathan do not. A tag-based definition is well-suited for our non-succinct puncturable
SKFE scheme. When our non-succinct scheme encrypts a message, it generates a garbled circuit
of an universal circuit into which the message is hardwired, and then masks labels of the garbled
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circuit by a string generated by puncturable PRF. A tag fed to the encryption algorithm is used as
an input to puncturable PRF. See Section 5 for details.
In our construction of IO in Section 7, we use an input to an obfuscated circuit as a tag for
ciphertexts of puncturable SKFE. Therefore, our IO construction is not significantly different
from the IO construction based on puncturable SKFE by Bitansky and Vaikuntanathan from the
syntactical point of view though ours is based on tag-based puncturable SKFE.

Index based key generation: We define the key generation algorithm as a stateful algorithm. In other
words, for the i-th invocation, we need to feed an index i to the key generation algorithm in addition
to a master secret key and a function. This is because we transform a non-succinct scheme into an
weakly-succinct one via a collusion-succinct scheme whose key generation algorithm is stateful in
Section 6.
We note that our stateful collusion-succinct scheme is just an intermediate scheme to achieve IO.
We also emphasize the fact that the index-based key generation is not an issue to construct IO
because our main building block is a single-key weakly-succinct puncturable SKFE scheme. For a
single-key scheme, we do not need any state for key generation because it can issue only a single
functional key.
Below, we omit the index of single-key schemes in the syntax for simplicity.

Functionality under puncturing. In addition to the syntactic differences above, there is a difference
about security. We defined indistinguishability of functionality under puncturing in Definition 4.3. The
reason why we introduce the relaxed notion of functionality preserving property is that our weakly-
succinct scheme does not satisfy functionality preserving under puncturing in Definition 4.2 but the
relaxed one. Our non-succinct scheme satisfies functionality preserving under puncturing.

One might think that puncturable SKFE satisfying indistinguishability of functionality under punc-
turing is not sufficient to construct IO. This is not the case. We show that indistinguishability of
functionality under puncturing suffices for constructing IO and our weakly-succinct scheme satisfies the
property.

5 Single-Key Non-Succinct Puncturable SKFE

We show we can construct a single-key (non-succinct) puncturable SKFE scheme assuming only one-way
functions. This construction is similar to that of single-key non-succinct PKFE proposed by Sahai and
Seyalioglu [SS10]. Their construction is based on garbling scheme and public-key encryption. In our
construction, we use puncturable PRF instead of public-key encryption, and, as a result, achieve the
puncturable property. We recall that we can realize both garbling scheme and puncturable PRF assuming
only one-way functions. We give the construction below.

Let GC = (Grbl, Eval) be garbling scheme, and PPRF = (F, PuncF) be puncturable PRF. Us-
ing GC and PPRF, we construct puncturable SKFE OneKey = (1Key.Setup, 1Key.KG, 1Key.Enc,
1Key.Dec, 1Key.Punc, 1Key.PEnc) supporting only one functional key as follows. Note that the tag
space of OneKey is the same as the domain of PPRF. In addition, the index space of OneKey is [1],
and thus we omit the index from the description by assuming the index is always fixed to 1. Below, we
assume that we can represent every function f by an s-bit string (f [1], · · · , f [s]).

Construction. The scheme consists of the following algorithms.

1Key.Setup(1λ) :

• Generate Sj,α
r←− {0, 1}λ for every j ∈ [s] and α ∈ {0, 1}.
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• Return MSK← {Sj,α}j∈[s],α∈{0,1}.

1Key.KG(MSK, f) :

• Parse {Sj,α}j∈[s],α∈{0,1} ← MSK and (f [1], · · · , f [s])← f .
• Return skf ← (f, {Sj,f [j]}j∈[s]).

1Key.Enc(MSK, tag, m) :

• Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.

• Compute (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, m)).
• For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← F(Sj,α, tag) and cj,α ← Lj,α ⊕Rj,α.
• Return CT← (Ũ , {cj,α}j∈[s],α∈{0,1}).

1Key.Dec(skf , tag, CT) :

• Parse (f, {Sj}j∈[s])← skf and (Ũ , {cj,α}j∈[s],α∈{0,1})← CT.
• For every j ∈ [s], compute Rj ← F(Sj , tag) and Lj ← cj,f [j] ⊕Rj .

• Return y ← Eval(Ũ , {Lj}j∈[s]).

1Key.Punc(MSK, tag) :

• Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.
• For every j ∈ [s] and α ∈ {0, 1}, compute S∗

j,α{tag} ← PuncF(Sj,α, tag).
• Return MSK∗{tag} ← {S∗

j,α{tag}}j∈[s],α∈{0,1}.

1Key.PEnc(MSK∗, tag′, m)

• Parse {S∗
j,α}j∈[s],α∈{0,1} ← MSK∗.

• Compute (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, m)).
• For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← FS∗

j,α
(tag′) and cj,α ← Lj,α ⊕Rj,α.

• Return CT← (Ũ , {cj,α}j∈[s],α∈{0,1}).

Then, we have the following theorem.

Theorem 5.1. Let GC be δ-secure garbling scheme, and PPRF δ-secure puncturable PRF, where δ(·) is
some negligible function. Then, OneKey is δ-secure single-key puncturable SKFE.

Proof of Theorem 5.1. The correctness follows from those of GC and PPRF. We first prove the
functionality preserving under puncturing of OneKey. Then, we show that OneKey satisfies semantic
security at punctured tag.

Functionality preserving under puncturing. We have 1Key.PEnc(MSK∗{tag}, tag′, m; r) =
1Key.Enc(MSK, tag′, m; r) for every m ∈M, (tag, tag′) ∈ T ×T such that tag ̸= tag′, randomness r,
MSK← 1Key.Setup(1λ), and MSK∗{tag} ← 1Key.Punc(MSK, tag), since the underlying PPRF satis-
fies functionality preserving under puncturing property. This implies that OneKey satisfies functionality
preserving under puncturing property.
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Semantic security at punctured tag. LetA be a valid adversary that attacks the semantic security
at punctured tag of OneKey. We proceed the proof via a sequence of games. Below, for every
ℓ ∈ {0, · · · , 3}, let SUCℓ be the event that A succeeds in guessing the challenge bit b in Game ℓ.

Game 0: This is the original security game regarding OneKey. Then, we have Advss
pSKFE,A(λ) =

2|Pr[SUC0]− 1
2 |. The detailed description is as follows.

1. The challenger generates Sj,α
r←− {0, 1}λ for every j ∈ [s] and α ∈ {0, 1}, and sets

MSK ← {Sj,α}j∈[s],α∈{0,1}. The challenger also chooses a challenge bit b
r←− {0, 1}. The

challenger sends security parameter 1λ to A.
2. A sends (m0, m1) ∈M×M, tag ∈ T , and a function f to the challenger.
3. The challenger computes (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, mb)) and Rj,α ← F(Sj,α, tag)

and cj,α ← Lj,α⊕Rj,α for every j ∈ [s] and α ∈ {0, 1}, and sets CT← (Ũ , {cj,α}j∈[s],α∈{0,1}).
Next, the challenger sets skf ← (f, {Sj,f [j]}j∈[s]).
Then, the challenger computes S∗

j,α{tag} ← PuncF(Sj,α, tag) for every j ∈ [s] and α ∈
{0, 1}, and sets MSK∗{tag} ← {S∗

j,α{tag}}j∈[s],α∈{0,1}.
The challenger returns (MSK∗{tag}, CT, skf ) to A.

4. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 1 except that the challenger generates {Rj,1−f [j]}j∈[n] as truly random strings.
From the pseudorandomness of punctured point of PPRF, we see that |Pr[SUC0] − Pr[SUC1]| ≤
δΩ(1).

Game 2: Same as Game 2 except that for every j ∈ [n], the challenger generates cj,1−f [j] ← Rj,f [j].
In Game 1, cj,1−j[j] is generated as cj,1−f [j] ← Lj,1−f [j]⊕Rj,1−f [j] for every j ∈ [n]. However, in
Game 1, Rj,1−f [j] is generated as a truly random string for every j ∈ [n], and thus the distribution
of c[j, 1− f [j] is uniformly random. Therefore, In Game 1 and 2, the distribution of cj,1−f [j] for
every j ∈ [n] is the same and we have |Pr[SUC1]− Pr[SUC2]| = 0.

Game 3: Same as Game 2 except that the challenger computes (Ũ , {Lj}j∈[n]) ← Sim(1λ, y) and
cj,f [j] ← Rj,f [j] ⊕ Lj , where y = f(m0) = f(m1).
In both Game 2 and 3,A is not given any information of labels {Lj,1−f [j}j∈[n]. Therefore, we can
use the security guarantee of GC, and obtain |Pr[SUC2]− Pr[SUC3]| ≤ δΩ(1).

In Game 3, the choice of the challenge bit b is information theoretically hidden from the view of A,
and thus we have |Pr[SUC3]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2

Advss
OneKey,A(λ) = |Pr[SUC0]− 1

2
|

≤ |Pr[SUC0]− Pr[SUC3]|

≤
2∑

ℓ=0
|Pr[SUCℓ]− Pr[SUCℓ+1]| . (1)

From the above argument, each term of the right side of inequality 1 is bounded by δΩ(1). Therefore,
we see that Advss

OneKey,A(λ) ≤ δΩ(1). Since the choice of A is arbitrary, OneKey satisfies δ-semantic
security at punctured tag. □ (Theorem 5.1)
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6 From Non-Succinct to Weakly-Succinct

In this section, we show how to transform single-key non-succinct puncturable SKFE into single-key
weakly-succinct one using SXIO. Note that the resulting scheme satisfies only indistinguishability of
functionality under puncturing property even if we start the transformation with a non-succinct scheme
satisfying functionality preserving under puncturing property.

The transformation consists of 2 steps. First, we show how to construct collusion-succinct puncturable
SKFE from single-key non-succinct puncturable SKFE and SXIO. Then, we give the transformation from
collusion-succinct puncturable SKFE to weakly-succinct one.

In fact, the intermediate collusion-succinct scheme satisfies only indistinguishability of functionality
under puncturing property. This is because we adopt a construction technique similar to that proposed
by Lin et al. [LPST16] (and extended by Bitansky et al. [BNPW16] and Kitagawa et al. [KNT18a]),
and thus we use an obfuscated encryption circuit of the building block scheme by SXIO as a ciphertext
of the resulting scheme. This fact is the reason the resulting weakly-succinct scheme satisfies only
indistinguishability of functionality under puncturing property.

Below, we start with the first step.

6.1 From Non-Succinct to Collusion-Succinct by Using SXIO

For any q which is a fixed polynomial of λ, we show how to construct a puncturable SKFE scheme
whose index space is [q] based on a single-key puncturable SKFE scheme. The resulting scheme
is collusion-succinct, that is, the running time of both the encryption algorithm and the punctured
encryption algorithm are sub-linear in q. We show the construction below.

Let OneKey = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec, 1Key.Punc, 1Key.PEnc) be punc-
turable SKFE that we constructed in Section 5. Let sxiO be SXIO and PPRF = (F, PuncF) puncturable
PRF. Using OneKey, sxiO, and PPRF, we construct puncturable SKFE CollSuc = (CS.Setup, CS.KG,
CS.Enc, CS.Dec, CS.Punc, CS.PEnc) as follows. We again note that q is a fixed polynomial of λ. Let
the tag space of CollSuc be T . Then, the tag space of OneKey is also T .

Construction. The scheme consists of the following algorithms.

CS.Setup(1λ) :

• Generate S
r←− {0, 1}λ and return MSK← S.

CS.KG(MSK, f, i) :

• Parse S ← MSK.
• Compute ri

Setup ← FS(i) and MSKi ← 1Key.Setup(1λ; ri
Setup).

• Compute 1Key.skf ← 1Key.KG(MSKi, f) and return skf ← (i, 1Key.skf ).

CS.Enc(MSK, tag, m) :

• Parse S ← MSK.
• Generate SEnc

r←− {0, 1}λ and return CT← sxiO(E1Key[S, SEnc, tag, m]). The circuit E1Key
is defined in Figure 2.

CS.Dec(skf , tag, CT) :

• Parse (i, 1Key.skf )← skf .
• Compute CTi ← CT(i) and return y ← 1Key.Dec(1Key.skf , tag, CTi).
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CS.Punc(MSK, tag) :

• Parse S ← MSK.
• Generate SPunc

r←− {0, 1}λ and compute P̃← sxiO(P1Key[S, SPunc, tag]). The circuit P1Key
is defined in Figure 3.

• Return MSK∗{tag} ← P̃.

CS.PEnc(MSK∗, tag′, m) :

• Parse P̃← MSK∗.
• Generate SEnc

r←− {0, 1}λ and return CT ← sxiO(PE1Key[P̃, SEnc, tag′, m]). The circuit
PE1Key is defined in Figure 4.

Encryption circuit E1Key[S, SEnc, tag, m](i) :
Hardwired: Two PRF keys S and SEnc, a tag tag, and a message m.
Input: An index i ∈ [q].
Padding: This circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. Compute ri
Setup ← FS(i) and rEnc ← FSEnc (i).

2. Compute MSKi ← 1Key.Setup(1λ; ri
Setup).

3. Return CTi ← 1Key.Enc(MSKi, tag, m; rEnc).

Figure 2: The description of E1Key.

Punctured key generation circuit P1Key[S, SPunc, tag](i) :
Hardwired: Two PRF keys S and SPunc, and a tag tag.
Input: An index i ∈ [q].
Padding: This circuit is padded to size padP := padP(λ, n, s), which is determined in analysis.

1. Compute ri
Setup ← FS(i) and rPunc ← FSPunc (i).

2. Compute MSKi ← 1Key.Setup(1λ; ri
Setup).

3. Return MSK∗
i {tag} ← 1Key.Punc(MSKi, tag; rPunc).

Figure 3: The description of P1Key.

Punctured encryption circuit PE1Key[P̃, SEnc, tag, m](i) :

Hardwired: A circuit P̃, a PRF key SEnc, a tag tag, and a message m.
Input: An index i ∈ [q].
Padding: This circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. Compute MSK∗
i ← P̃(i) and rEnc ← FSEnc (i).

2. Return CTi ← 1Key.PEnc(MSK∗
i , tag, m; rEnc).

Figure 4: The description of PE1Key.

Then, we have the following theorem.

25



Theorem 6.1. Let δ(·) be some negligible function. Let OneKey be δ-secure single-key puncturable
SKFE constructed in Section 5. Let sxiO be δ-secure γ-compressing SXIO, where γ is a sufficiently
small constant such that γ < 1. Let PPRF be δ-secure puncturable PRF. Then, CollSuc is (δ, δ)-secure
puncturable SKFE with indistinguishability of functionality that is collusion-succinct with compression
factor γ̂, which is a constant smaller than 1.

The concrete value of γ̂ is determined in the efficiency analysis in the following proof of Theorem
6.1. As we will see, we can make γ̂ smaller than 1 by using SXIO with sufficiently small compression
factor as a the building block. Such SXIO is constructed from collusion-resistant SKFE [BNPW16].

Proof of Theorem 6.1. We first determine the size of padding parameters. Then, we analyze the
efficiency. Finally, we complete the security proof.

Below, let s and n be the upper bound of size and input length of functions supported by CollSuc.

Encryption circuit Ei∗
1Key[S∗, S∗

Enc, tag, m0, m1, CTi∗ ](i) :
Hardwired: Two punctured PRF keys S∗ and S∗

Enc, a tag tag, two messages m0 and m1, and a ciphertext CTi∗ .
Input: An index i ∈ [q].
Padding: This circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. If i = i∗ and CTi∗ ̸= ⊥, return CTi∗ .

2. Else, compute as follows:

• Compute ri
Setup ← FS∗ (i) and rEnc ← FS∗

Enc
(i).

• Compute MSKi ← 1Key.Setup(1λ; ri
Setup).

• If i ≤ i∗, compute CTi ← 1Key.Enc(MSKi, tag, m1; rEnc), and otherwise compute CTi ←
1Key.Enc(MSKi, tag, m0; rEnc).

• Return CTi.

Figure 5: The description of Ei∗

1Key. The circuit is defined for every i∗ ∈ [q].

Punctured key generation circuit Pi∗
1Key[S∗, S∗

Punc, tag, MSK∗
i∗ ](i) :

Hardwired: Two PRF keys S and SPunc, a tag tag, and a punctured master secret key MSK∗
i∗ .

Input: An index i ∈ [q].
Padding: This circuit is padded to size padP := padP(λ, n, s), which is determined in analysis.

1. If i = i∗, return MSK∗
i∗ .

2. Else, compute as follows:

• Compute ri
Setup ← FS∗ (i) and rPunc ← FS∗

Punc
(i).

• Compute MSKi ← 1Key.Setup(1λ; ri
Setup).

• Return MSK∗
i {tag} ← 1Key.Punc(MSKi, tag; rPunc).

Figure 6: The description of Pi∗

1Key. The circuit is defined for every i∗ ∈ [q].

Padding Parameter. In order to complete this proof, we ensure that the encryption circuits E1Key,
PE1Key, and Ei∗

1Key for every i∗ ∈ [q] are indistinguishable when we obfuscate them by SXIO. Moreover,
the obfuscated P1Key and Pi∗

1Key also need to be indistinguishable. For this reason, we need appropriate
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size padding for these circuits. Below, we first analyze the size of padding for P1Key and Pi∗
1Key because

the description of PE1Key includes obfuscated P1Key.
To guarantee the indistinguishability of P1Key and Pi∗

1Key when we obfuscate them, we need to set

padP := max(|P1Key|, |Pi∗
1Key|) .

Both P1Key and Pi∗
1Key includes two PRF evaluation over the domain [q], and the key generation and punc-

turing procedure of OneKey. Since OneKey is a single-key scheme, and q is determined independently
of OneKey, the running time of each algorithm of OneKey is independent of q. Therefore, we have

padP ≤ poly(λ, log q) + poly(λ, n, s)
≤ polyP(λ, n, s, log q) ,

where polyP is some fixed polynomial.
Then, we move on to the analysis of the padding parameter for encryption algorithms.
We need to set padE as

padE := max(|E1Key|, |PE1Key|, |Ei∗
1Key|) .

E1Key and Ei∗
1Key for every i∗ ∈ [q] consists of two PRF evaluation over the domain [q], and the key

generation and encryption procedure of OneKey. Therefore, we have

max(|E1Key|, |Ei∗
1Key|) ≤ poly(λ, n, s, log q) . (2)

In addition, PE1Key includes one PRF evaluation over the domain [q], the execution of P̃ that is
obfuscated P by sxiO, and the punctured encryption procedure of OneKey. Then, since the non-trivial
efficiency of sxiO, when we obfuscate a circuit C with input space [N ] by sxiO, we can bound the size
of obfuscated C by Nγ · |C|c · polysxiO(λ), where γ < 1 and c are constants. Thus, we have

|P̃| ≤ qγ · |P|c · polysxiO(λ)
= qγ · |polyP(λ, n, s, log q)|c · polysxiO(λ)
≤ qγ1 · poly(λ, n, s) ,

where γ1 is an arbitrary constant such that γ < γ1 < 1. Hence, we obtain

|PE1Key| ≤ poly(λ, log q) + qγ1 · poly(λ, n, s) + poly(λ, n, s)
≤ qγ1 · poly(λ, n, s) . (3)

Therefore, from inequalities 2 and 3, we have

padE ≤ qγ1 · polyE(λ, n, s) , (4)

where polyE is some fixed polynomial.

Efficiency. To simplify the efficiency analysis, we assume that we use two different SXIO sxiO and
sxiO′. We use sxiO to obfuscate P1Key. We use sxiO′ to obfuscate E1Key and PE1Key.

We assume that when we obfuscate a circuit C with input space [N ] by sxiO and sxiO′, we can bound
the size of sxiO(C) and sxiO′(C) by

Nγ · |C|c · polysxiO(λ) and Nγ′ · |C|c′ · polysxiO′(λ) ,

respectively, where γ and γ′ are constants strictly smaller than 1, and c and c′ are constants.
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Then, from inequality 4, we can bound the running time of both CS.Enc and CS.PEnc by

qγ′ · (padE)c′
· polysxiO(λ) ≤ qγ′ · (qγ1 · polyE(λ, n, s))c′

· polysxiO(λ)

≤ qγ′+c′γ1 · poly(λ, n, s) ,

where γ1 is an arbitrary constant such that γ < γ1 < 1.
Therefore, if we have γ′ + c′γ1 < 1, we can conclude that CollSuc is collusion-succinct. From

Theorem 3.15, using a collusion-resistant SKFE scheme, we can construct SXIO with arbitrary constant
compression factor. Thus, we can use SXIO with compression factor smaller than 1−γ′

c′ as sxiO, and
ensure that γ̂ := γ′ + c′γ1 < 1 in our construction by assuming a collusion-resistant SKFE scheme.

This completes the efficiency analysis.

Indistinguishability of functionality under puncturing. A ciphertext output by the standard
encryption algorithm is an obfuscated circuit of E1Key. A ciphertext output by the punctured encryption
algorithm is an obfuscated circuit of PE1Key. Thus, if we prove that E1Key and PE1Key are functionally
equivalent, δ-indistinguishability of functionality under puncturing of CollSuc holds due to the δ-security
of sxiO.

Note that P̃ in PE1Key has the exactly same functionality as P1Key due to the functionality preserving
property of sxiO. Thus, on input i ∈ [q], E1Key and PE1Key basically compute the followings:

1. Compute ri
Setup ← FS(i) and rEnc ← FSEnc(i).

2. Compute MSKi ← 1Key.Setup(1λ; ri
Setup).

3. E1Key and PE1Key respectively computes CTi as follows:

• E1Key computes CTi ← 1Key.Enc(MSKi, tag′, m; rEnc)
• PE1Key computes CTi ← 1Key.PEnc(MSK∗

i {tag}, tag′, m; rEnc) by using MSK∗
i {tag} ←

1Key.Punc(MSKi, tag; rPunc) and rPunc ← FSPunc(i).

4. Return CTi.

Recall that OneKey satisfies functionality preserving under puncturing property defined in Definition 4.2.
Thus, both E1Key and PE1Key compute the same CTi as long as tag′ ̸= tag holds and the same SEnc is
used in both circuits.

Thus, we can conclude that CollSuc satisfies δ-indistinguishability of functionality under puncturing
by the δ-security of sxiO.

Semantic security at punctured tag. LetA be a valid adversary that attacks the semantic security
at punctured tag of CollSuc. We proof it via a sequence of games. Let SUCj denote the event that A
succeeds in guessing the challenge bit b in Game j.

Game 0 This is the punctured semantic security game regarding CollSuc. Then, we have Advss
CollSuc,A(λ) =

2|Pr[SUC0]− 1
2 |. The detailed description is as follows.

1. The challenger generates S
r←− {0, 1}λ and sets MSK ← S. The challenger also chooses a

challenge bit b
r←− {0, 1}. The challenger sends security parameter 1λ to A.

2. A sends (m0, m1) ∈M×M, tag ∈ T , and {fi}i∈[q] to the challenger.
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3. The challenger generates SEnc
r←− {0, 1}λ and computes CT← sxiO(E1Key[S, SEnc, tag, m]).

Next, for every i ∈ [q], the challenger computes as follows. The challenger computes
ri

Setup ← FS(i), MSKi ← 1Key.Setup(1λ; ri
Setup), and 1Key.skfi

← 1Key.KG(MSKi, fi).
The challenger sets skfi

← (i, 1Key.skfi
).

Then, the challenger generates SPunc
r←− {0, 1}λ and computes P̃← sxiO(P1Key[S, SPunc, tag]).

Then, the challenger sets MSK∗{tag} ← P̃.
The challenger returns (MSK∗{tag}, CT, {skfi

}i∈[q]) to A.
4. A outputs b′ ∈ {0, 1}.

Then, for every i∗ ∈ [q], we define the following games. We define Game (6, 0) as the same game
as Game 0. Let SUC(ℓ,i∗) denote the event thatA succeeds in guessing the challenge bit b in Game
(ℓ, i∗) for every ℓ ∈ {1, · · · , 6} and i∗ ∈ [q].

Game (1, i∗) Same as Game (6, i∗ − 1) except the followings. The challenger generates CT ←
sxiO(Ei∗

1Key[S∗{i∗}, S∗
Enc{i∗}, tag, mb, m1, CTi∗ ]), where CTi∗ ← 1Key.Enc(MSKi∗ , tag, mb; ri∗

Enc),
MSKi∗ ← 1Key.Setup(1λ; ri∗

Setup), ri∗
Setup ← FS(i∗), and ri∗

Enc ← FSEnc(i∗).
The only difference between Game (6, i∗ − 1) and (1, i∗) is how CT is generated. In Game
(6, i∗ − 1), CT is generated by CT ← sxiO(Ei∗−1

1Key[S, SEnc, tag, mb, m1,⊥]). However, we
see that Ei∗−1

1Key[S, SEnc, tag, mb, m1,⊥] and Ei∗
1Key[S∗{i∗}, S∗

Enc{i∗}, tag, mb, m1, CTi∗ ] have ex-
actly the same functionality. Therefore, by the indistinguishability guarantee of sxiO, we have
|Pr[SUC(6,i∗−1)]− Pr[SUC(1,i∗)]| ≤ δΩ(1) for every i∗ ∈ [q].

Game (2, i∗) Same as Game (1, i∗) except the followings. The challenger generates P̃← sxiO(Pi∗
1Key[S∗{i∗},

S∗
Punc{i∗}, tag, MSK∗

i∗{tag}]), where MSK∗
i∗{tag} ← 1Key.Punc(MSKi∗ , tag; ri∗

Punc).
Similarly to the analysis between Game (6, i∗−1) and (1, i∗), due to the indistinguishability guaran-
tee of sxiO and the fact that P1Key[S, SPunc, tag] and Pi∗

1Key[S∗{i∗}, S∗
Punc{i∗}, tag, MSK∗

i∗{tag}]
have the same functionality, we have |Pr[SUC(1,i∗)]− Pr[SUC(2,i∗)]| ≤ δΩ(1) for every i∗ ∈ [q].

Game (3, i∗) Same as Game (2, i∗) except that the challenger generates ri∗
Setup, ri∗

Enc, and ri∗
Punc as truly

random strings.
From the pseudorandomness of PPRF, |Pr[SUC(2,i∗)] − Pr[SUC(3,i∗)]| ≤ δΩ(1) holds for every
i∗ ∈ [q].

Game (4, i∗) Same as Game (3, i∗) except that the challenger generates CTi∗ ← 1Key.Enc(MSKi∗ , tag, m1).
In both Game (3, i∗) and (4, i∗), all of MSKi∗ , MSK∗

i∗{tag}, and CTi∗ are generated under truly
random strings. In addition, since A is a valid adversary, it holds that fi∗(m0) = fi∗(m1).
Therefore, from the semantic security at punctured tag of OneKey, we obtain |Pr[SUC(3,i∗)] −
Pr[SUC(4,i∗)]| ≤ δΩ(1) for every i∗ ∈ [q].

Game (5, i∗) Same as Game (4, i∗) except that the challenger generates ri∗
Setup, ri∗

Enc, and ri∗
Punc using

PPRF.
From the pseudorandomness of PPRF, |Pr[SUC(4,i∗)] − Pr[SUC(5,i∗)]| ≤ δΩ(1) holds for every
i∗ ∈ [q].

Game (6, i∗) Same as Game (5, i∗) except that the challenger generates CT← sxiO(Ei∗
1Key[S, SEnc, tag, mb, m1,⊥])

and P̃← sxiO(P1Key[S, SPunc, tag]).
Similarly to the analysis between Game (6, i∗−1) and (1, i∗), due to the indistinguishability guaran-
tee of sxiO and the fact that Ei∗

1Key[S∗{i∗}, S∗
Enc{i∗}, tag, mb, m1, CTi∗ ] and Ei∗

1Key[S, SEnc, tag, mb, m1,⊥]
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have exactly the same functionality, we have |Pr[SUC(5,i∗)] − Pr[SUC(6,i∗)]| ≤ δΩ(1) for every
i∗ ∈ [q].
We define one additional game.

Game 7 Same as Game (6, q) except the followings. The challenger generates CT ← sxiO(E1Key[S,
SEnc, tag, m1]).
In Game (6, q), CT is generated by CT← sxiO(Eq

1Key[S, SEnc, tag, mb, m1,⊥]). Eq
1Key[S, SEnc, tag, mb, m1,⊥]

always ignores mb and outputs a ciphertext of m1. Therefore, Eq
1Key[S, SEnc, tag, mb, m1,⊥] and

E1Key[S, SEnc, tag, m1] have the same functionality. Therefore, from the indistinguishability guar-
antee of sxiO, we have |Pr[SUC(6,q)]− Pr[SUC7]| ≤ δΩ(1).

In Game 7, the choice of the challenge bit b is information theoretically hidden from the view of A,
and thus we have |Pr[SUC7]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2

Advss
CollSuc,A(λ) = |Pr[SUC0]− 1

2
|

≤ |Pr[SUC0]− Pr[SUC7]|

≤ |Pr[SUC0]− Pr[SUC(1,1)]|+
∑

i∗∈[q]

5∑
ℓ=1
|Pr[SUC(ℓ,i∗)]− Pr[SUC(ℓ+1,i∗)]|

+ |Pr[SUC(6,q)]− Pr[SUC7]| . (5)

From the above argument, each term of the right side of inequality 5 is bounded by δΩ(1). Therefore,
we see that Advss

CollSuc,A(λ) ≤ δΩ(1). Since the choice of A is arbitrary, CollSuc satisfies δ-semantic
security at punctured tag. □ (Theorem 6.1)

6.2 From Collusion-Succinct to Weakly-Succinct

In this section, we show how to construct a single-key weakly-succinct puncturable SKFE scheme from
a collusion-succinct one.

This transformation is based on those proposed by Bitansky and Vaikuntanathan [BV15] and
Ananth et al. [AJS15], and thus utilizes a decomposable randomized encoding. The difference is
that we must consider puncturing and punctured encryption algorithms since we construct a puncturable
SKFE scheme. In fact, we show their construction works for puncturable SKFE schemes. In addition,
we consider semantic security defined in the weakly selective security manner while they considered
selective security. Below, we give the construction.

We construct single-key puncturable SKFE WeakSuc = (WS.Setup, WS.KG, WS.Enc, WS.Dec,
WS.Punc, WS.PEnc). Let s and n be the maximum size and input length of functions supported
by WeakSuc. Let RE be c-local decomposable randomized encoding, where c is a constant. We
suppose that the number of decomposed encodings of RE for a function of size s is µ. Then, µ is a
polynomial bounded by s · polyRE(λ, n), where polyRE(λ, n) is a fixed polynomial. We also suppose
that the randomness space of RE is {0, 1}ρ, where ρ is a polynomial bounded by s · polyRE(λ, n). Let
CollSuc = (CS.Setup, CS.KG, CS.Enc, CS.Dec, CS.Punc, CS.PEnc) be puncturable SKFE whose index
space and tag space are [µ] and T , respectively. Let SKE = (E, D) be SKE and PRF PRF. In the scheme,
we use PRF : {0, 1}λ × ({0, 1}λ × [ρ]) → {0, 1}. Using CollSuc, RE, SKE, and PRF, we construct
WeakSuc as follows. The tag space of WeakSuc is T .

WS.Setup(1λ) :

• Return MSK← CS.Setup(1λ).
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WS.KG(MSK, f) :

• Generate K
r←− {0, 1}λ and t← {0, 1}λ.

• Compute f̂ ← RE(1λ, f) and decomposed encodings f̂1, · · · f̂µ together with sets of integers
(R1, · · · , Rµ). Ri indicates which bit of a randomness f̂i depends on for every i ∈ [µ]. Note
that Ri ⊆ [ρ] and |Ri| = c for every i ∈ [µ].

• Generate CTske
i ← E(K, 0|f̂i(·,·)|), and compute skEni

← CS.KG(MSK, Endre[f̂i, Ri, t, CTske
i ], i)

for every i ∈ [µ]. Endre defined in Figure 7.
• Return skf ← (skEn1 , · · · , skEnµ).

WS.Enc(MSK, tag, m) :

• Generate Sencd ← {0, 1}λ.
• Return CT← CS.Enc(MSK, tag, (m, Sencd,⊥)).

WS.Dec(skf , tag, CT) :

• Parse (skEn1 , · · · , skEnµ)← skf .
• For every i ∈ [µ], compute ei ← CS.Dec(skEni

, tag, CT).
• Decode y from (e1, · · · , eµ).
• Return y.

WS.Punc(MSK, tag) :

• Return MSK∗{tag} ← CS.Punc(MSK, tag).

WS.PEnc(MSK∗, tag′, m) :

• Generate Sencd ← {0, 1}λ.
• Return CT← CS.PEnc(MSK∗, tag′, (m, Sencd,⊥)).

Decomposable Randomized Encoding Circuit Endre[f̂i, Ri, t, CTske
i ](m, Sencd, K)

Hardwired: A randomized encoding f̂i, a set Ri, a string t, and a ciphertext CTske
i .

Input: A message m, a PRF key Sencd, and an SKE secret key K.

1. If m = ⊥, return ei ← D(K, CTske
i ).

2. Else, compute as follows:

• For j ∈ Ri, compute rj ← PRF(Sencd, t∥j), set rRi ← {rj}j∈Ri .

• Return ei ← f̂i(m; rRi ).

Figure 7: The description of Endre.

Theorem 6.2. Let δ(·) be negligible function. Let CollSuc be (δ, δ)-secure puncturable SKFE with indis-
tinguishability of functionality that can issue µ functional keys and is collusion-succinct with compression
factor γ, where γ < 1 is a constant. Let RE, SKE, and PRF be δ-secure decomposable randomized
encoding, SKE, and PRF, respectively. Then, WeakSuc be (δ, δ)-secure single-key puncturable SKFE
with indistinguishability of functionality that is weakly-succinct with compression factor γ′, where γ′ is
a constant such that γ < γ′ < 1.
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Proof of Theorem 6.2. We start with analyzing the weak succinctness of WeakSuc, and then move on
to the security proof.

Efficiency. Let Eni
dre denote the circuit Endre[f̂i, Ri, t, CTske

i ]. In order to issue one functional key,
the construction needs to issue 1 · µ ≤ s · polyRE(λ, n) keys of CollSuc since we consider functions
of size s and n-bit input. Thus, we choose µ as the number of issuable keys of CollSuc. The size of
Eni

dre is bounded by polyEn(λ, n, log s) since the size of f̂i, Ri, and CTske
i are independent of s from

the decomposability of RE, t is a λ-bit string, and the running time of the PRF evaluation in Eni
dre is

logarithmic in s, where polyEn is a polynomial. Since CollSuc is collusion-succinct, the encryption time
of WeakSuc is bounded by

µγ · poly(λ, n, |Eni
dre|) ≤ (s · polyRE(λ, n))γ · poly(λ, n, polyEn(λ, n, log s))

≤ sγ′ · poly(λ, n) ,

where γ and γ′ are constants such that 0 < γ < γ′ < 1. This implies that WeakSuc is weakly-succinct.

Indistinguishability of functionality under puncturing. WS.Enc and WS.PEnc just outputs a
ciphertext output by CS.Enc and CS.PEnc, respectively. Therefore, we can see that if CollSuc satisfies
δ-indistinguishability of functionality under puncturing, then so does WeakSuc.

Semantic security at punctured tag. Let A be an adversary that attacks the semantic security at
punctured tag of WeakSuc. We prove it via sequence of games. Below, for every ℓ ∈ {0, · · · , 4}, let
SUCℓ be the event that A succeeds in guessing the challenge bit b in Game ℓ.

Game 0: This is the punctured semantic security game regarding WeakSuc. Then, we have Advss
WeakSuc,A(λ) =

2|Pr[SUC0]− 1
2 |. The detailed description is as follows.

1. The challenger generate Sencd ← {0, 1}λ and computes CT← CS.Enc(MSK, tag, (mb, Sencd,⊥)).
The challenger sends security parameter 1λ to A.

2. A sends (m0, m1) ∈M×M, tag ∈ T , and a function f to the challenger.
3. The challenger generates MSK ← CS.Setup(1λ). The challenger also chooses a challenge

bit b
r←− {0, 1}.

Next, the challenger generates K
r←− {0, 1}λ and t← {0, 1}λ, and computes f̂ ← RE(1λ, f)

and decomposed encodings f̂1 · · · f̂µ together with sets (R1, · · · , Rµ). Then, the challenger
generates CTske

i ← E(K, 0|f̂i(·,·)|), and computes skEni
← CS.KG(MSK, Endre[f̂i, Ri, t, CTske

i ], i)
for every i ∈ [µ]. Moreover, the challenger sets skf ← (skEn1 , · · · , skEnµ).
Then, the challenger computes MSK∗{tag} ← CS.Punc(MSK, tag).
The challenger returns (MSK∗{tag}, CT, skf ) to A.

4. A outputs b′ ∈ {0, 1}.

Game 1 Same as Game 0 except that the challenger generates CTske
i ← E(K, ei) for every i ∈ [µ],

where ei ← f̂i(mb; rRi).
In Game 0 and 1, A is not given any information of secret key K of SKE. Therefore, from the
security guarantee of SKE, we have |Pr[SUC0]− Pr[SUC1]| ≤ δΩ(1).

Game 2 Same as Game 1 except that the challenger generates CT← CS.Enc(MSK, tag, (⊥,⊥, K)).
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We can see that for every i ∈ [µ], we have

Endre[f̂i, Ri, t, CTske
i ](mb, Sencd,⊥) = f̂i(mb; rRi) = Endre[f̂i, Ri, t, CTske

i ](⊥,⊥, K).

Therefore, from the semantic security at punctured tag of CollSuc, it holds that |Pr[SUC1] −
Pr[SUC2]| ≤ δΩ(1).

Game 3 Same as Game 2 except that the challenger generates rj as a truly random string for every
j ∈ [ρ].
From the pseudorandomness of PRF, we have |Pr[SUC2]− Pr[SUC3]| ≤ δΩ(1).

Game 4 Same as Game 3 except that the challenger generates {ei}i∈[µ] ← Sim(1λ, s, y), where Sim is
a simulator for RE and y = f(m0) = f(m1).
In Game 3 and 4, for every i ∈ [µ], ei hardwired into Endre after encrypted is generated with a truly
random string. Therefore, from the security guarantee of RE, we have |Pr[SUC3] − Pr[SUC4]| ≤
δΩ(1).

In Game 4, the choice of the challenge bit b is information theoretically hidden from the view of A,
and thus we have |Pr[SUC4]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2

Advss
WeakSuc,A(λ) = |Pr[SUC0]− 1

2
|

≤ |Pr[SUC0]− Pr[SUC4]|

≤
3∑

ℓ=0
|Pr[SUCℓ]− Pr[SUCℓ+1]| . (6)

From the above argument, each term of the right side of inequality 6 is bounded by δΩ(1). Therefore,
we see that Advss

WeakSuc,A(λ) ≤ δΩ(1). Since the choice of A is arbitrary, WeakSuc satisfies δ-semantic
security at punctured tag. □ (Theorem 6.2)

7 Indistinguishability Obfuscation from Puncturable SKFE

We show how to construct IO from puncturable SKFE satisfying only indistinguishability of functionality
under puncturing. Formally, we have the following theorem.

Theorem 7.1. Let δ(λ) = 2−λϵ , where ϵ < 1 is a constant. Assuming there exists (δ, δ)-secure single-key
weakly-succinct puncturable SKFE with indistinguishability of functionality for all circuits. Then, there
exists secure IO for all circuits.

In addition, by combining Theorems 3.15, 5.1, 6.1, and 6.2, we also obtain the following theorem.

Theorem 7.2. Assuming there exists δ-secure collusion-resistant SKFE for all circuits, where δ(·) is a
negligible function. Then, there exists (δ, δ)-secure single-key weakly-succinct puncturable SKFE with
indistinguishability of functionality for all circuits.

In order to obtain Theorem 7.2, we also use δ-secure PRF, puncturable PRF, plain SKE, garbling
scheme, and decomposable randomized encoding as building blocks. From Theorems 3.2, 3.4, 3.6, 3.8,
and 3.10, all of these primitives are implied by δ-secure one-way functions thus implied by δ-secure
collusion-resistant SKFE for all circuits.

By combining Theorems 7.1 and 7.2, we obtain the following main theorem.
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Theorem 7.3. Let δ(λ) = 2−λϵ , where ϵ < 1 is a constant. Assuming there exists δ-secure collusion-
resistant SKFE for all circuits. Then, there exists secure IO for all circuits.

Remark 7.4 (IO for circuits with input of poly-logarithmic length). The security loss of our IO construction
is exponential in the input length of circuits, but is independent of the size of circuits. Thus, if the input
length of circuits is poly-logarithmic in the security parameter, our IO construction incurs only quasi-
polynomial security loss regardless of the size of circuits. Therefore, we can obtain IO for circuits
of polynomial size with input of poly-logarithmic length from quasi-polynomially secure collusion-
resistant SKFE for all circuits. This is an improvement over the IO construction by Komargodski and
Segev [KS17]. They showed that IO for circuits of sub-polynomial size with input of poly-logarithmic
length is constructed from quasi-polynomially secure collusion-resistant SKFE for all circuits.

Komargodski and Segev also showed that the combination of their IO and sub-exponentially secure
one-way functions yields succinct and collusion-resistant PKFE for circuits of sub-polynomial size with
input of poly-logarithmic length. We observe that our IO for circuits of polynomial size with input of
poly-logarithmic length leads to succinct and collusion-resistant PKFE for circuits of polynomial size
with input of poly-logarithmic length by combining sub-exponentially secure one-way functions from
the result of Komargodski and Segev.

To prove Theorem 7.1, we first give the construction of IO based on puncturable SKFE. Then, we
analyze its security and efficiency.

7.1 Construction

Our construction of IO is almost the same as that of Bitansky and Vaikuntanathan [BV15]. The notable
difference is that we use the relaxed variant of puncturable SKFE in Definition 4.4 instead of PKFE or
their puncturable SKFE. Thus, the security analysis of our IO is different from and more complex than
that of Bitansky and Vaikuntanathan.

Let pSKFE = (Setup, KG, Enc, Dec, Punc, PEnc) be a single-key weakly-succinct puncturable
SKFE scheme. Let SKE = (E, D) be an SKE scheme and PPRF = (F, PuncF) a puncturable PRF. Be-
low, let λ̃ denote the security parameter given to these building block schemes. Let δ(λ̃) = 2−λ̃ϵ , where
ϵ < 1 is a constant. We assume that pSKFE is a (δ, δ)-secure puncturable SKFE with indistinguishability
of functionality under puncturing. In addition, we assume that SKE and PPRF are δ-secure. Note that
the existence of such SKE and PPRF are implied by that of pSKFE. Using pSKFE, SKE, and PPRF, we
construct an indistinguishability obfuscation iO as follows.

Given a circuit C : {0, 1}n → {0, 1}m and a security parameter λ, the obfuscator iO first sets the
security parameter λ̃ for building block schemes as λ̃ = ω((n2 + log λ)1/ϵ). iO uses pSKFE whose tag
space and message space is {0, 1}n and {0, 1}n × {0, 1}λ̃ × {0, 1}, respectively. iO also uses PPRF
whose domain is {0, 1}n. When a shorter string than expected is used as an input to these schemes, we
always consider that it is fed after padded to the appropriate length. iO invokes the following recursive
obfuscation procedure riO(1λ̃, n, C) in order to obfuscate C.

riO(1λ̃, i, Ci) :

• If i = 1, return C̃i ← (Ci(0), Ci(1)).
• Else, runs as follows:

– Generate Ki,0, Ki,1
r←− {0, 1}λ̃ and compute CTske

i,0 ← E(Ki,0, Ci) and CTske
i,1 ←

E(Ki,1, Ci).
– Generate MSKi ← Setup(1λ̃) and compute skEvi

← KG(MSKi, Evi[CTske
i,0 , CTske

i,1 ]).
The circuit Evi is defined in Figure 8.
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– Generate Si
r←− {0, 1}λ̃ and compute Ẽi−1 ← riO(1λ̃, i − 1, Ei−1,0[MSKi, Ki,0, Si]).

The circuit Ei−1,0 is defined in Figure 9.
– Return C̃i ← (skEvi

, Ẽi−1).

The corresponding recursive evaluation procedure is as follows. We can evaluate C(xn) by
invoking rEval(n, C̃, xn), where C̃ ← riO(1λ̃, n, C) and xn ∈ {0, 1}n.

rEval(i, C̃i, xi) :

• If i = 1, parse (CT1,0, CT1,1)← C̃i and return CT1,xi .
• Else, runs as follows:

– Parse (skEvi
, Ẽi−1)← C̃i and xi−1∥xi ← xi.

– Compute (CTi,0, CTi,1)← rEval(i− 1, Ẽi−1, xi−1).
– Return y ← Dec(skEvi

, xi−1, CTi,xi).

Evaluation Circuit Evi[CTske
i,0, CTske

i,1](xi, K, α)
Hardwired: Two ciphertexts CTske

i,0 and CTske
i,1.

Input: A string xi ∈ {0, 1}i, a SKE key K, and a bit α ∈ {0, 1}.

1. Compute Ci ← D(K, CTske
i,α).

2. Return U(Ci, xi).

Figure 8: The description of Evi for every i ∈ {2, · · · , n}. In the description, U(·, ·) is an universal circuit.

Encryption Circuit Ei−1,α[MSKi, Ki, Si](xi−1)
Hardwired: A master secret key MSKi, a SKE key Ki, and a PRF key Si.
Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. For xi ∈ {0, 1}, compute as follows:

• Compute r
xi−1∥xi

Enc ← FSi (xi−1∥xi).

• Compute CTi,xi ← Enc(MSKi, xi−1, (xi−1∥xi, Ki, α); r
xi−1∥xi

Enc ).

2. Return (CTi,0, CTi,1).

Figure 9: The description of Ei−1,α for every i ∈ {3, · · · , n} and α ∈ {0, 1}.

Remark 7.5 (On the parameter setting of λ̃). In the construction we set the security parameter λ̃ for
building blocks as λ̃ = ω

(
(n2 + log λ)1/ϵ

)
. In fact, this setting is the same as that of Bitansky and

Vaikuntanathan [BV15]. However, the security loss is different between this work and the work by
Bitansky and Vaikuntanathan. In our construction, 2O(n2) security loss occurs while the construction
of Bitansky and Vaikuntanathan incurs 2O(n2/2) loss. The difference occurs due to our additional
exponential hybrids that we need to complete the security proof while the building block puncturable
SKFE scheme satisfies only indistinguishability of functionality under puncturing property. For the
detailed security analysis, see Section 7.2.

35



Note that the size of padding for the encryption circuit Ei−1,α is determined in the security analysis
of our indistinguishability obfuscator iO. We need to know the size of padding in order to analyze the
efficiency of iO. Therefore, we first analyze the security of iO in Section 7.2. Then, we analyze the
efficiency of iO in Section 7.3. We complete the proof of Theorem 7.1 by completing the analysis of
security and efficiency.

7.2 Security Analysis

Our goal is to prove that for any PPT distinguisher D and circuits C0 and C1 of the same functionality,
we have

|Pr
[
D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]
|

= |Pr
[
D(riO(1λ̃, n, C0)) = 1

]
− Pr

[
D(riO(1λ̃, n, C1)) = 1

]
| = negl(λ) .

In order to prove this, for every i ∈ [n], we define

δi := max
Ci,0,Ci,1

|Pr
[
Di(riO(1λ̃, i, Ci,0)) = 1

]
− Pr

[
Di(riO(1λ̃, i, Ci,1)) = 1

]
| ,

where Di is a PPT distinguisher and Ci,0 and Ci,1 are pair of any circuits with i-bit input that are the
same functionality. Then, our goal is restated to show that δn ≤ 2−ω(log λ) holds.

Note that we have δ1 = 0. This is because circuits with 1-bit input C1,0 and C1,1 of the same
functionality are both obfuscated to the same truth table. Our goal is to prove the following lemma.

Lemma 7.6. Let δ(λ̃) = 2−λ̃ϵ . Assuming that SKE and PPRF are δ-secure and pSKFE is a (δ, δ)-secure
puncturable SKFE with indistinguishability of functionality. It holds that

δi ≤ 22(i−1) ·O(δi−1 + 2−Ω(λ̃ϵ)) (7)

for every i ∈ {2, · · · , n}.

By this lemma, we can estimate δn as

δn ≤ 22(n−1) ·O(δn−1 + 2−Ω(λ̃ϵ))

≤ 22(n−1) ·O(δn−1) + 22(n−1) ·O(2−Ω(λ̃ϵ))

≤ · · · ≤

 n∑
i=1

i∏
j=1

22(n−j)

 ·O(2−Ω(λ̃ϵ)) ≤ n · 2n2 ·O(2−ω(n2+log λ)) ≤ 2−ω(log λ) .

This inequality shows that we complete the proof of Theorem 7.3.
Therefore, if we prove that inequality 7 holds for every i ∈ {2, · · · , n}, that is Lemma 7.6, we can

conclude that our iO is a secure indistinguishability obfuscator. In the rest of this section, we prove that
inequality 7 holds for every i ∈ {2, · · · , n}.

Let i ∈ {2, · · · , n}. Let Di be any PPT distinguisher again. In addition, let Ci,0 and Ci,1 be circuits
with i-bit input of the same functionality that maximize the value of δi. First, we consider the following
sequence of hybrid experiments.

H0 : In this experiment, Di is given an obfuscation of the circuit Ci,0, that is riO(1λ̃, i, Ci,0).

H1 : Same as H0 except that CTske
i,1 is generated as CTske

i,1 ← E(Ki,1, Ci,1). Note that in H0, CTske
i,1 is

generated as CTske
i,1 ← E(Ki,1, Ci,0).
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H2 : Same asH1 except that Ẽi−1 is generated as Ẽi−1 ← riO(1λ̃, i− 1, Ei−1,1[MSKi, Ki,1, Si]). Note
that inH1, Ẽi−1 is generated as Ẽi−1 ← riO(1λ̃, i− 1, Ei−1,0[MSKi, Ki,0, Si]).

H3 : Same as H2 except that CTske
i,0 is generated as CTske

i,0 ← E(Ki,0, Ci,1). Note that in H2, CTske
i,0 is

generated as CTske
i,0 ← E(Ki,1, Ci,0).

H4 : Same asH3 except that Ẽi−1 is generated as Ẽi−1 ← riO(1λ̃, i− 1, Ei−1,0[MSKi, Ki,0, Si]). Note
that in this experiment, the distribution of the input to Di is exactly the same as an obfuscation of
the circuit Ci,1, that is riO(1λ̃, i, Ci,1).

For an experiment H, we let Di(H) denote the event that Di outputs 1 in H. Then, we can estimate
δi as

δi ≤
3∑

ℓ=0
|Pr[Di(Hℓ)]− Pr[Di(Hℓ+1)]| . (8)

In the following, by estimating each term of the right hand side of inequality 8, we prove that
inequality 7 holds for every i ∈ {2, · · · , n}. We give relations of hybrid experiments in Figure 10 and 14
in order to see easily the dependences of hybrid experiments.

H0
∼

Lemma 7.7

H1 H2
∼

Lemma 7.7

H3 H4

Reverse ofH1 toH2

∼

H1,0 H1,2i−1

∼

Lemma 7.8

∼

Lemma 7.8

H1,j H1,j+1
∼∼ · · · · · · ∼∼

H0
1,j H1

1,j

Lemma 7.9

∼

∼ Lemma 7.10 ∼ Reverse ofH1,j toH0
1,j

Figure 10: Relations of the hybrid experiments from H0 to H4 for the security of riO. Solid lines denote that
the indistinguihability is proven by one step. Dashed lines denote that we use a few hybrid experiments to prove
the indistinguishability. Dotted lines denote that we use many hybrid experiments to prove the indistinguishability
(Figure 14 illustrates those of hybrid experiments for Lemma 7.10).

FromH0 toH1 and FromH2 toH3

First, we estimate |Pr[Di(H0)]− Pr[Di(H1)]| and |Pr[Di(H2)]− Pr[Di(H3)]|. In fact, we can easily
bound these values by the security of SKE. Formally, we have the following lemma.
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Lemma 7.7. Let SKE be δ-secure, where δ(λ̃) = 2−λ̃ϵ . Then, |Pr[Di(H0)] − Pr[Di(H1)]| ≤ 2−Ω(λ̃ϵ)

and |Pr[Di(H2)]− Pr[Di(H3)]| ≤ 2−Ω(λ̃ϵ).

The proof of this lemma is straightforward and thus we omit it.

FromH1 toH2 and FromH3 toH4

Next, we estimate |Pr[Di(H1)] − Pr[Di(H2)]| and |Pr[Di(H3)] − Pr[Di(H4)]|. Since the differ-
ence between H1 and H2, and that of H3 and H4 are almost symmetric, we focus on estimat-
ing |Pr[Di(H1)] − Pr[Di(H2)]| here. We can apply the following arguments for the estimation of
|Pr[Di(H3)]− Pr[Di(H4)]|.

In order to accomplish the estimation of |Pr[Di(H1)]−Pr[Di(H2)]|, we first introduce intermediate
hybrid experiments H1,j between H1 and H2, where j ∈ {0, · · · , 2i−1}. In the following, let j ∈
{0, 1}i−1 ∪ {1∥0i−1} be the binary representation of j.

H1,j : In this experiment, Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i− 1, Ej
i−1[MSKi, Ki,0, Ki,1, Si]). The

circuit Ej
i−1 is defined in Figure 11.

Encryption Circuit Ej
i−1[MSKi, Ki,0, Ki,1, Si](xi−1)

Hardwired: A master secret key MSKi, two SKE keys Ki,0 and Ki,1, and a PRF key Si.
Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. If xi−1 < j, set α← 1, and otherwise, set α← 0.
2. For xi ∈ {0, 1}, compute as follows:

• Compute r
xi−1∥xi

Enc ← FSi (xi−1∥xi).

• Compute CTi,xi ← Enc(MSK, xi−1, (xi−1∥xi, Ki,α, α); r
xi−1∥xi

Enc ).

3. Return (CTi,0, CTi,1).

Figure 11: The description of Ej
i−1. The red underline is the difference from Ei−1,α.

Then, we have

|Pr[Di(H1)]− Pr[Di(H2)]| ≤ |Pr[Di(H1)]− Pr[Di(H1,0)]|+
2i−1−1∑

j=1
|Pr[Di(H1,j)]− Pr[Di(H1,j+1)]|

+ |Pr[Di(H1,2i−1)]− Pr[Di(H2)]| .

If we use a PKFE scheme instead of our puncturable SKFE scheme, we can directly prove the indistin-
guishability betweenH1,j andH1,j+1. However, to estimate each term of the right hand size of the above
inequality, we need introduce the following additional hybrid experiments for every j ∈ {1, · · · , 2i−1}
since we use a puncturable SKFE scheme.

H0
1,j : Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i−1, PEj

i−1[MSK∗
i {j}, Ki,0, Ki,1, Si{j∥0, j∥1}, ui,0, ui,1])

in this experiment, where ui,b ← Enc(MSKi, j, (j∥b, Ki,0, 0); r
j∥b
Enc) and r

j∥b
Enc ← FSi(j∥b) for ev-

ery b ∈ {0, 1}. The circuit PEj
i−1 is defined in Figure 12. The other part of this experiment is

same asH1,j .

38



H1
1,j : Same as H0

1,j except that ui,b is computed by ui,b ← Enc(MSK, j, (j∥b, Ki,1, 1); r
j∥b
Enc) and

r
j∥b
Enc ← FSi(j∥b) for every b ∈ {0, 1}.

Punctured Encryption Circuit PEj
i−1[MSK∗

i {j}, Ki,0, Ki,1, S∗
i {j∥0, j∥1|}, ui,0, ui,1](xi−1)

Hardwired: A punctured master secret key MSK∗
i {j}, two SKE keys Ki,0 and Ki,1, a punctured PRF key

S∗
i {j∥0, j∥1}, and two ciphertexts ui,0 and ui,1.

Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. If xi−1 = j, return (ui,0, ui,1).
2. Else, set α← 1 if xi−1 < j and α← 0 otherwise.
3. For xi ∈ {0, 1}, compute as follows:

• Compute r
xi−1∥xi

Enc ← FS∗
i

{j∥0,j∥1|}(xi−1∥xi).

• Compute CTi,xi ← PEnc(MSK∗
i {j}, xi−1, (xi−1∥xi, Ki,α, α); r

xi−1∥xi

Enc ).

4. Return (CTi,0, CTi,1).

Figure 12: The description of PEj
i−1. Red underlines are differences from Ej

i−1.

Then, we can estimate |Pr[Di(H1)]− Pr[Di(H2)]| in more detail and obtain

|Pr[Di(H1)]− Pr[Di(H2)]| ≤ |Pr[Di(H1)]− Pr[Di(H1,0)]|

+
2i−1−1∑

j=0
|Pr[Di(H1,j)]− Pr[Di(H0

1,j)]|

+
2i−1−1∑

j=0
|Pr[Di(H0

1,j)]− Pr[Di(H1
1,j)]|

+
2i−1−1∑

j=0
|Pr[Di(H1

1,j)]− Pr[Di(H1,j+1)]|

+ |Pr[Di(H1,2i−1)]− Pr[Di(H2)]| . (9)

In the rest of this section, we estimate each term of the right side of inequality 9 by Lemma 7.8, 7.9,
and 7.10.

FromH1 toH1,0 and fromH1,2i−1 toH2. We have the following lemma.

Lemma 7.8. |Pr[Di(H1)]− Pr[Di(H1,0)]| ≤ δi−1 and |Pr[Di(H1,2i−1)]− Pr[Di(H2)]| ≤ δi−1 hold.

Proof of Lemma 7.8. We focus on proving |Pr[Di(H1)]− Pr[Di(H1,0)]| ≤ δi−1 here.
The only difference between H1 and H1,0 is how Ẽi−1 is generated. In H1, Ẽi−1 is generated

by Ẽi−1 ← riO(1λ̃, i − 1, Ei−1,0[MSKi, Ki,0, Si]). On the other hand, in H1,0, Ẽi−1 is generated
by Ẽi−1 ← riO(1λ̃, i − 1, E0

i−1[MSKi, Ki,0, Ki,1, Si]). We can see that circuits obfuscated in each
experiment have the same functionality. Moreover, both circuits are padded to the same size padi−1

E .
Therefore, we have |Pr[Di(H1)]− Pr[Di(H1,0)]| ≤ δi−1.

By analyzing similarly, we also obtain |Pr[Di(H1,2i−1)]− Pr[Di(H2)]| ≤ δi−1. □ (Lemma 7.8)
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FromH0
1,j toH1

1,j . Next, we estimate |Pr[Di(H0
1,j)]−Pr[Di(H1

1,j)]| for every j ∈ {0, · · · , 2i−1−1}.
We can estimate |Pr[Di(H0

1,j)]−Pr[Di(H1
1,j)]| by the semantic security at punctured tag of pSKFE

and the security of PPRF. Formally, we have the following lemma.

Lemma 7.9. Let δ(λ̃) = 2−λ̃ϵ . Let pSKFE satisfy δ-semantic security at punctured tag. Let PPRF be
δ-secure. Then, |Pr[Di(H0

1,j)]− Pr[Di(H1
1,j)]| ≤ 2−Ω(λ̃ϵ) holds for every i ∈ {0, · · · , 2i−1 − 1}.

Proof of Lemma 7.9. In order to use the semantic security at punctured tag of pSKFE, we change the
randomness r

j∥b
Enc used in ui,b into truly random for every b ∈ {0, 1}. Thus, we introduce the following

intermediate hybrid experimentsH0,rnd
1,j andH1,rnd

1,j betweenH0
1,j andH1

1,j .

H0,rnd
1,j : Same asH0

1,j except that r
j∥b
Enc is generated as a truly random string for every b ∈ {0, 1}.

By the pseudorandomness of PPRF, we have |Pr[Di(H0
1,j)]− Pr[Di(H0,rnd

1,j )]| ≤ 2−λ̃ϵ .

H1,rnd
1,j : Same asH1

1,j except that r
j∥b
Enc is generated as a truly random string for every b ∈ {0, 1}.

Note that the only difference betweenH0,rnd
1,j andH1,rnd

1,j is how ui,b is generated for every b ∈ {0, 1}.
In H0,rnd

1,j , ui,b is generated by ui,b ← Enc(MSKi, j, (j∥b, Ki,0, 0)). On the other hand, in H1,rnd
1,j ,

ui,b is generated by ui,b ← Enc(MSKi, j, (j∥b, Ki,1, 1)). Now, in both experiments, the ciphertext
ui,b is generated using a truly random string for every b ∈ {0, 1}. In addition, in both experiments,
CTske

i,α is a ciphertext of Ci,α under the SKE key Ki,α for every α ∈ {0, 1}. Hence, we have

Evi[CTske
i,0 , CTske

i,1 ](j∥b, Ki,0, 0) = Ci,0(j∥b) = Ci,1(j∥b) = Evi[CTske
i,0 , CTske

i,1 ](j∥b, Ki,1, 1),

since Ci,0 and Ci,1 are functionally equivalent.

Therefore, from the semantic security at punctured tag of pSKFE, we obtain |Pr[Di(H0,rnd
1,j )] −

Pr[Di(H1,rnd
1,j )]| ≤ 2−λ̃ϵ .

By the pseudorandomness of PPRF, we have |Pr[Di(H1,rnd
1,j )]− Pr[Di(H1

1,j)]| ≤ 2−λ̃ϵ .
From these, we see that |Pr[Di(H0

1,j)]− Pr[Di(H1
1,j)]| ≤ 2−Ω(λ̃ϵ). □ (Lemma 7.9)

From H1,j to H0
1,j and from H1

1,j to H1,j+1. In the rest of this proof, we estimate |Pr[Di(H1,j)] −
Pr[Di(H0

1,j)]| and |Pr[Di(H1
1,j)] − Pr[Di(H1,j+1)]| for every j ∈ {0, · · · , 2i−1 − 1}. Since the

difference between H1,j and H0
1,j , and that of H1

1,j and H1,j+1 are almost symmetric, we focus on
evaluating |Pr[Di(H1,j)]− Pr[Di(H0

1,j)]| here. More precisely, we prove the following lemma.

Lemma 7.10. Let δ(λ̃) = 2−λ̃ϵ . Let pSKFE satisfy δ-indistinguishability of functionality under punctur-
ing. Let PPRF be δ-secure. Then, for every {0, · · · , 2i−1 − 1}, we have

|Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ϵ)) .

We can apply the following arguments for the evaluation of |Pr[Di(H1
1,j)]− Pr[Di(H1,j+1)]|.

Proof of Lemma 7.10. If the underlying puncturable SKFE satisfies functionality preserving under
puncturing property, we can directly estimate |Pr[Di(H1,j)]−Pr[Di(H0

1,j)]| for every j ∈ {0, · · · , 2i−1−
1} by using the property. However, our pSKFE satisfies only indistinguishability of functionality under
puncturing property. Thus, we need more hybrid experiments between H1,j and H0

1,j defined for every
k ∈ {0, · · · , 2i−1} as follows. Below, let k ∈ {0, 1}i−1 ∪ {1∥0i−1} be the binary representation of k.
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H1,j,k : Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i − 1, HEj,k
i−1[MSKi, MSK∗

i {j}, Ki,0, Ki,1, Si,⊥,⊥]) in
this experiment. The circuit HEj,k

i−1 is defined in Figure 13.

Figure 14 illustrates an overview of hybrid experiments fromH1,j−1 toH0
1,j .

Hybrid Encryption Circuit HEj,k
i−1[MSKi, MSK∗

i {j}, Ki,0, Ki,1, Si, vk,0, vk,1](xi−1)
Hardwired: A master secret key MSKi, punctured master secret key MSK∗

i {j}, two SKE keys Ki,0 and Ki,1, PRF
key Si, and two ciphertexts vk,0 and vk,1.

Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. If (vi,0, vi,1) ̸= (⊥,⊥) and xi−1 = k, return (vk,0, vk,1).
2. Else, compute as follows:

• If xi−1 < j, set α← 1, and otherwise, set α← 0.

• For xi ∈ {0, 1}, compute as follows:

– Compute r
xi−1∥xi

Enc ← FSi (xi−1∥xi).
– If xi−1 < k and xi−1 ̸= j,

then compute CTi,xi ← PEnc(MSK∗
i {j}, xi−1, (xi−1∥xi, Ki,α, α); r

xi−1∥xi

Enc ).
Otherwise, compute CTi,xi ← Enc(MSKi, xi−1, (xi−1∥xi, Ki,α, α); r

xi−1∥xi

Enc ).
• Return (CTi,0, CTi,1).

Figure 13: The description of HEj,k
i−1. Red underlines are differences from Ej

i−1.

Then, we have

|Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| ≤ |Pr[Di(H1,j)]− Pr[Di(H1,j,0)]|

+
2i−1−1∑

k=0
|Pr[Di(H1,j,k)]− Pr[Di(H1,j,k+1)]|

+ |Pr[Di(H1,j,2i−1)]− Pr[Di(H0
1,j)]| .

To estimate each term of the right hand size of the above inequality, we introduce the following
hybrid experiments for k ∈ {0, · · · , 2i−1 − 1} \ {j}.

Henc
1,j,k : Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i−1, HEj,k

i−1[MSKi, MSK∗
i {j}, Ki,0, Ki,1, S∗

i {k∥0, k∥1},
vk,0, vk,1]) in this experiment, where vk,b ← Enc(MSKi, k, (k∥b, Ki,α, α); r

k∥b
Enc) for every b ∈

{0, 1}.

Hpenc
1,j,k : In this experiment, vk,b is computed by vk,b ← PEnc(MSK∗

i {j}, k, (k∥b, Ki,α, α); r
k∥b
Enc) for

every b ∈ {0, 1}.
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H1,j H0
1,j

∼ Lemma 7.11 ∼ Lemma 7.11

H1,j,0 H1,j,2i−1H1,j,k H1,j,k+1

Lemma 7.11
only for k = j

∼∼ · · · · · · ∼∼

Henc
1,j,k Hpenc

1,j,k
∼

Lemma 7.13
(k ̸= j)

∼ Lemma 7.12
(k ̸= j)

∼ Lemma 7.12
(k ̸= j)

Figure 14: Relations of the hybrid experiments fromH1,j−1 toH0
1,j for Lemma 7.10. Solid lines denote that the

indistinguihability is proven by one step. Dashed lines denote that we use for loop with variable k. Note that, only
for k = j, we do not needHenc

1,j,k andHpenc
1,j,k (Hpenc

1,j,j is not well-defined).

Then, we can estimate |Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| in more detail and obtain

|Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| ≤ |Pr[Di(H1,j)]− Pr[Di(H1,j,0)]|

+
∑

k∈{0,··· ,2i−1−1}\{j}
|Pr[Di(H1,j,k)]− Pr[Di(Henc

1,j,k)]|

+
∑

k∈{0,··· ,2i−1−1}\{j}
|Pr[Di(Henc

1,j,k)]− Pr[Di(Hpenc
1,j,k)]|

+
∑

k∈{0,··· ,2i−1−1}\{j}
|Pr[Di(Hpenc

1,j,k)]− Pr[Di(H1,j,k+1)]|

+ |Pr[Di(H1,j,j)]− Pr[Di(H1,j,j+1)]|
+ |Pr[Di(H1,j,2i−1)]− Pr[Di(H0

1,j)]| . (10)

To bound the right hand side of inequality 10, we prove Lemma 7.11, 7.12, and 7.13.

Lemma 7.11. It holds that

|Pr[Di(H1,j)]− Pr[Di(H1,j,0)]| ≤ δi−1 ,

|Pr[Di(H1,j,j)]− Pr[Di(H1,j,j+1)]| ≤ δi−1 ,

|Pr[Di(H1,j,2i−1)]− Pr[Di(H0
1,j)]| ≤ δi−1 .

Lemma 7.12. For k ∈ {0, · · · , 2i−1 − 1} \ {j}, it holds that

|Pr[Di(H1,j,k)]− Pr[Di(Henc
1,j,k)]| ≤ δi−1 ,

|Pr[Di(Hpenc
1,j,k)]− Pr[Di(H1,j,k+1)]| ≤ δi−1 .

Proof of Lemma 7.11. The only difference between two experiments in each inequality is how Ẽi−1
is generated. Thus, we verify that circuits of the same functionality are obfuscated to generate Ẽi−1 in
those two experiments related to each inequality.
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For the first inequality, it is easy to verify that Ej
i−1 in H1,j is equivalent to HEj,0

i−1 in H1,j,0 since
HEj,0

i−1 does not compute PEnc. Thus, the first inequality holds due to the security of riO.
We next show the second inequality. For xi−1 ≤ j − 1 and xi−1 ≥ j + 1, the behavior of HEj,j

i−1
and HEj,j+1

i−1 are the same. On input xi−1 = j, HEj,k
i−1 always computes output ciphertexts by using Enc

with MSKi regardless of the value of k, and thus HEj,j
i−1 and HEj,j+1

i−1 behave in exactly the same way on
input xi−1 = j. Thus, HEj,j

i−1 and HEj,j+1
i−1 are functionally equivalent and the second inequality holds

due to the security of riO.
We finally show the third inequality. On input xi−1, if xi−1 = j, PEj

i−1 in H0
1,j outputs hardwired

ui,0 and ui,1 that are ciphertexts of j generated by using Enc with MSKi. Otherwise, it generates
ciphertexts of xi−1 using PEnc and MSK∗

i {j}, and outputs them. On input xi−1, HEj,2i−1

i−1 in H0
1,j,2i−1

computes output ciphertexts by using Enc with MSKi if xi−1 = j, and by using PEnc with MSK∗
i {j}

otherwise. From this fact, we see that HEj,2i−1

i−1 in H1,j,2i−1 is functionally equivalent to PEj
i−1 in H0

1,j .
Thus, the third inequality holds due to the security of riO. □ (Lemma 7.11)

Proof of Lemma 7.12. We first show the first inequality. On input xi−1 ̸= k, HEj,k
i−1 in H1,j,k runs in

exactly the same way as HEj,k
i−1 inHenc

1,j,k. On input xi−1 = k, HEj,k
i−1 inH1,j,k generate ciphertexts of k

by using Enc with MSKi, and outputs them. On input xi−1 = k, HEj,k
i−1 inHenc

1,j,k outputs hardwired vk,0
and vk,1 that are ciphertexts of k generated by using Enc with MSKi. Thus, these circuits are functionally
equivalent and the inequality holds due to the security of riO.

We next show the second inequality. In Hpenc
1,j,k, Ẽi−1 is generated by obfuscating HEj,k

i−1 that has
hardwired ciphertexts of k, that is vk,0 and vk,1 generated by using PEnc with MSK∗

i {j}. In H1,j,k+1,
Ẽi−1 is generated by obfuscating HEj,k+1

i−1 that does not have hardwired ciphertexts. On input xi−1 ̸= k,
these two circuits runs in exactly the same way. On input xi−1 = k, HEj,k

i−1 in Hpenc
1,j,k outputs hardwired

vk,0 and vk,1. On input xi−1 = k, HEj,k+1
i−1 in H1,j,k+1 generates ciphertexts of k by using PEnc with

MSK∗
i {j}, and outputs them. Thus, two circuits are functionally equivalent and the second inequality

holds due to the security of riO. □ (Lemma 7.12)

Finally, we estimate the term |Pr[Di(Henc
1,j,k)]−Pr[Di(Hpenc

1,j,k)]| for every k ∈ {0, · · · , 2i−1−1}\{j}.
We can bound this term by using the indistinguishability of functionality under puncturing of pSKFE.
Formally, we have the following lemma.

Lemma 7.13. Let δ(λ̃) = 2−λ̃ϵ . Let pSKFE satisfy δ-indistinguishability of functionality under punc-
turing. Let PPRF be δ-secure. Then, we have |Pr[Di(Henc

1,j,k)] − Pr[Di(Hpenc
1,j,k)]| ≤ 2−Ω(λ̃ϵ) for every

j ∈ {0, · · · , 2i−1 − 1} \ {j}.

Proof of Lemma 7.13. Let k be any integer in {0, · · · , 2i−1 − 1} \ {j}. In order to use the indistin-
guishability of functionality under puncturing of pSKFE, we change the randomness r

k∥b
Enc used in vk,b into

truly random for every b ∈ {0, 1}. Thus, we introduce the following intermediate hybrid experiments
Henc,rnd

1,j,k andHpenc,rnd
1,j,k betweenHenc

1,j,k andHpenc
1,j,k.

Henc,rnd
1,j,k : Same asHenc

1,j,k except that r
k∥b
Enc is generated as a truly random string for every b ∈ {0, 1}.

By the pseudorandomness of PPRF, we have |Pr[Di(Henc
1,j,k)]− Pr[Di(Henc,rnd

1,j,k )]| ≤ 2−λ̃ϵ .

Hpenc,rnd
1,j,k : Same asHpenc

1,j,k except that r
k∥b
Enc is generated as a truly random string for every b ∈ {0, 1}.

Note that the only difference between Henc,rnd
1,j,k and Hpenc,rnd

1,j,k is how vk,b is generated for every
b ∈ {0, 1}. In Henc,rnd

1,j,k , vk,b is generated by vk,b ← Enc(MSKi, k, (k∥b, Ki,α, α)). On the other
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hand, in Hpenc,rnd
1,j,k , vk,b is generated by vk,b ← PEnc(MSK∗

i {j}, k, (k∥b, Ki,α, α)). Now, in both
experiments, the ciphertext vk,b is generated using a truly random string for every b ∈ {0, 1}.
Therefore, from the indistinguishability of functionality under puncturing of pSKFE, we obtain
|Pr[Di(Henc,rnd

1,j,k )]− Pr[Di(Hpenc,rnd
1,j,k )]| ≤ 2−λ̃ϵ .

We have |Pr[Di(Hpenc,rnd
1,j,k )]− Pr[Di(Hpenc

1,j,k)]| ≤ 2−λ̃ϵ by the pseudorandomness of PPRF.
From these, we obtain |Pr[Di(Henc

1,j,k)] − Pr[Di(Hpenc
1,j,k)]| ≤ 2−Ω(λ̃ϵ) for every k ∈ {0, · · · , 2i−1 −

1} \ {j}. □ (Lemma 7.13)

From inequality 10, and Lemma 7.11, 7.12, and 7.13, it holds that

|Pr[Di(H1,j)]− Pr[Di(H0
1,j)]| ≤ 3 · δi−1 + 2(2i−1 − 1) · δi−1 + (2i−1 − 1) · 2−Ω(λ̃ϵ)

≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ϵ)) . (11)

This completes the estimation of |Pr[Di(H1,j)] − Pr[Di(H0
1,j)]| for every j ∈ {0, · · · , 2i−1 − 1},

that is, completes the proof of Lemma 7.10. □ (Lemma 7.10)
From the symmetry of the difference of H1,j and H0

1,j , and that of H1
1,j and H1,j+1, by analyzing

similarly, we obtain

|Pr[Di(H1
1,j)]− Pr[Di(H1,j+1)]| ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ϵ)) (12)

for every j ∈ {0, · · · , 2i−1 − 1}.

From inequality 11 and 12, inequality 9, and Lemma 7.8 and 7.9, we have

|Pr[Di(H1)]− Pr[Di(H2)]| ≤ 2 · δi−1 + 2 · 2i−1 · 2i−1 ·O(δi−1 + 2−Ω(λ̃ϵ)) + 2i−1 · 2−Ω(λ̃ϵ)

≤ 22(i−1) ·O(δi−1 + 2−Ω(λ̃ϵ)) . (13)

From the symmetry of the difference of H1 and H2, and that of H3 and H4, by analyzing similarly,
we also have

|Pr[Di(H3)]− Pr[Di(H4)]| ≤ 22(i−1) ·O(δi−1 + 2−Ω(λ̃ϵ)) . (14)

This completes the estimation of |Pr[Di(H1)]− Pr[Di(H2)]| and |Pr[Di(H3)]− Pr[Di(H4)]|.

By combining inequality 13 and 14, Lemma 7.7, and inequality 8, we obtain inequality 7 in
Lemma 7.6.

This completes the security analysis for iO(1λ, C) = riO(1λ̃, n, C) in Section 7.1.

7.3 Efficiency Analysis

In this section, we prove that iO(1λ, C) = riO(1λ̃, n, C) runs in polynomial time. In this analysis,
let s and n be the upper bound of the size and input length of circuits supported by iO. When we
invoke riO(1λ̃, n, C) for some circuit C with n-bit input, iO generates total n − 1 master secret keys
MSK2, · · · , MSKn. In other words, iO includes n−1 instances of pSKFE. If all of these n−1 instances
runs in polynomial of λ̃, n and s, then so does iO. Below, we show it.

In order to accomplish the above task, we clearly distinguish each of these instances. Below, let
pSKFEi denote the instance of pSKFE with respect to MSKi. Especially, let Enci denote the encryption
circuit Enc corresponding to MSKi, that is Enc(MSKi, ·). Moreover, let PEnci denote the punctured
encryption circuit PEnc with respect to MSK∗

i , that is PEnc(MSK∗
i , ·), where MSK∗

i is the punctured
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master secret key generated by puncturing MSKi. Note that which tag is punctured does not affect the
running time of PEnc, and thus we omit to write the tag.

We start with the estimation of the size of padding padi−1
E of encryption circuits for every i ∈

{3, · · · , n}. Then, using the bound of padi−1
E , we complete the efficiency analysis of iO.

In the above security analysis, in addition to the encryption circuits Ei−1,α, we introduce encryption
circuits PEj

i−1, Ej
i−1, and HEj,k

i−1, where j, k ∈ {0, · · · , 2i−1}. We need to ensure that all of them have
the same size, and thus we set

padi−1
E := max(|Ei−1,α|, |PEj

i−1|, |E
j
i−1|, |HEj,k

i−1|) .

All of above circuits evaluates a puncturable PRF over the domain {0, 1}n, and then computes either
Enci or PEnci. Without loss of generality, we assume that Enci and PEnci have the same size for every
i ∈ {2, · · · , n}. This can be done by appropriate size padding. In this case, for every i ∈ {3, · · · , n},
we can bound padi−1

E as

padi−1
E ≤ |Enci| · polypad(λ̃, n) , (15)

where polypad is a fixed polynomial.
We move on to the analysis of the running time of iO. Especially, as stated earlier, we show that

|Enci| is polynomial of λ̃, n and s for every i ∈ {2, · · · , n}.
First, for every i ∈ {2, · · · , n}, we specify the upper bound of the size si of circuits that pSKFEi has

to support.
Before analysis, we introduce some notations. For every i ∈ {2, · · · , n} and circuit Ci with i-bit

input, let Evi[Ci] denote the evaluation circuit Evi defined in Figure 8 into which Ci is hardwired
after encrypted by SKE. In addition, for every i ∈ {2, · · · , n}, let Ei−1 denote the encryption circuit
Ei−1,0[MSKi, Ki, Si] defined in Figure 9.

Using this notation, we see that pSKFEi has to support Evi[Ei] for every i ∈ {2, · · · , n − 1}. In
addition, pSKFEn has to support Evn[C]. Below, we bound the size of these circuits.

From inequality 15, for every i ∈ {3, · · · , n}, we have

|Ei−1| ≤ |Enci| · polypad(λ̃, n) . (16)

In addition, we can analyze the size of Evi[Ci] as follows. Evi[Ci] includes a decryption procedure of
encrypted Ci by SKE, and evaluation of an universal circuit U(Ci, xi), where xi ∈ {0, 1}i. Decryption
procedure of SKE is done in linear time in |Ci|. In addition, we can perform the evaluation of an universal
circuit in quasi-linear time in |Ci| [Val76]. Thus, for every i ∈ {2, · · · , n}, we have

|Evi[Ci]| ≤ |Ci| · log |Ci| · polyEv(λ̃, n) ≤ |Ci|1+γ1 · polyEv(λ̃, n) , (17)

where polyEv is a fixed polynomial and γ1 < 1 is an arbitrary constant. By combining inequalities 16
and 17, for every i ∈ {3, · · · , n}, we obtain

|Evi−1[Ei−1]| ≤ |Ei−1|1+γ1 · polyEv(λ̃, n)

≤
(
|Enci| · polypad(λ̃, n)

)1+γ1 · polyEv(λ̃, n)

≤ |Enci|1+γ1 · poly1(λ̃, n) , (18)

where poly1 is some fixed polynomial.
Therefore, for every i ∈ {3, · · · , n}, we have

si−1 ≤ |Enci|1+γ1 · poly1(λ̃, n) . (19)
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Moreover, from inequality 17, we have

sn ≤ |C|1+γ1 · polyEv(λ̃, n) = s1+γ1 · polyEv(λ̃, n) . (20)

Using the bound of si, we complete the efficiency analysis by estimating |Enci| for every i ∈
{2, · · · , n}.

Recall that the building block pSKFE is weakly succinct, and for every i ∈ {2, · · · , n}, pSKFEi

encrypts n + λ̃ + 1 bit plaintexts in the construction. Therefore, for every i ∈ {2, · · · , n}, we have

|Enci| ≤ sγ
i · poly(λ̃, n + λ̃ + 1)

≤ sγ
i · polyE(λ̃, n) , (21)

where γ < 1 is some constant and polyE denotes some fixed polynomial. By substituting inequality 19
into 21, for every i ∈ {3, · · · , n}, we obtain

|Enci−1| ≤
(
|Enci|1+γ1 · poly1(λ̃, n)

)γ
· polyE(λ̃, n)

≤ |Enci|γ2 · poly2(λ̃, n) , (22)

where γ is a constant such that (1 + γ1)γ < γ2 < 1 and poly2 is some fixed polynomial. Note that since
we can choose γ1 as an arbitrary small constant and γ < 1, by setting γ1 < 1−γ

γ , γ2 satisfying the above
condition exists. In addition, from inequality 20, we also have

|Encn| ≤
(
s1+γ1 · polyEv(λ̃, n)

)γ
· polyE(λ̃, n)

≤ sγ2 · poly3(λ̃, n) , (23)

where poly3 is some fixed polynomial.
Then, from inequalities 22 and 23, for every i ∈ {2, · · · , n}, it holds that

|Enci| ≤ |Encn|γ
n−i
2 ·

n−i∏
j=1

poly2(λ̃, n)γj−1
2

≤
(
sγ2 · poly3(λ̃, n)

)γn−i
2 ·

n−i∏
j=1

poly2(λ̃, n)γj−1
2

≤ sγ2 · poly3(λ̃, n) · poly2(λ̃, n)
1

1−γ2 .

The third inequality follows from the fact that γ2 < 1. The above inequality means that the encryption
algorithm of pSKFEi runs in polynomial time of λ̃, n and s for every i ∈ {2, · · · , n}.

In that case, all of the algorithms of pSKFEi runs in polynomial of λ̃, n and s for every i ∈ {2, · · · , n}.
Thus, we conclude that iO runs in polynomial of λ̃, n and s.

We completed the analysis of security and efficiency. Thus, we completed the proof of Theorem 7.1
and proved that we can construct IO for all circuits solely from SKFE for all circuits.
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