
LMS vs XMSS: Comparion of two Hash-Based
Signature Standards

Panos Kampanakis, Scott Fluhrer

Cisco Systems, USA
{panosk, sfluhrer}@cisco.com

Abstract. Quantum computing poses challenges to public key signatures
as we know them today. LMS and XMSS are two hash based signature
schemes that have been proposed in the IETF as quantum secure. Both
schemes are based on well-studied hash trees, but their similarities and
differences have not yet been discussed. In this work, we attempt to
compare the two standards. We compare their security assumptions
and quantify their signature and public key sizes. We also address the
computation overhead they introduce. Our goal is to provide a clear
understanding of the schemes’ similarities and differences for implementers
and protocol designers to be able to make a decision as to which standard
to chose.

1 Introduction

1.1 HBS

Recent interest in quantum computer research has increased concerns about the
challenges quantum computers would pose, were they developed in practice, to
public key crypto algorithms. More specifically Shor’s algorithm [1, 2] would
break signature algorithms (RSA, DSA, ECDSA) in polynomial time and thus
render today’s digital signatures useless. To address this concern, Hash Based
Signatures (HBS) are schemes [3–9] that have been studied for a long time and
proven to be secure against quantum algorithms.

One method of implementing an HBS would be to use Merkle trees [10] along
with a One Time Signature (OTS) scheme. An OTS is a signature scheme with
a private key used to sign a message and the corresponding public key is used
to verify the OTS signature. The caveat is that a private key can be used only
once to sign a message. An HBS tree is a binary Merkle tree whose leafs are
the OTS public keys, and each internal node in the tree consists of the hash of
its two children. The root of the tree (Fig. 1) is the public key of the Merkle
construction.

The HBS signature consists of the OTS signature, the corresponding public
key leaf and the nodes that form the path from the leaf to the root of the tree.
For a verifier to verify an HBS signature, he first computes what the OTS public
key would be if the signature was valid; then, he takes that putative value, and
tries to authenticate it via the Merkle tree by using the tree path included in the

2 Panos Kampanakis, Scott Fluhrer

signature. If the final hash is equal to the Merkle public key, that is, the expected
value of the root node, then he knows that the computed OTS public key really
was the right one, and that the Merkle part of the signature validates. Fig.1 gives
an example of a Merkle tree. In this example we sign the actual message with
the OTS private key corresponding to the public key leaf L3. Along with the
OTS signature, we also include the values of the public key L2, and the values of
the internal nodes N4 and N3. The verifier would reconstruct (based on the OTS
signature of the message) the value of L3, combine that with the value of L2 to
reconstruct N5, combine that with N4 to form N2, and finally combine that with
N3, to reconstruct the expected root value. If that’s the same as the public key,
then the signature was generated by the legitimate signer.

Public
Key

N2

N5 N6

L0 L1 L2 L3 L4 L5 L6 L7

Current
OTS

N3

N4 N7

Fig. 1: HBS tree with the OTS public key leaves and the trusted root, with the
authentication path for L3 highlighted

The maximum number of messages an HBS tree can sign is 2Htree , where
Htree is the height of the tree. For a tree of height Htree = 40 or more, key
generation would be completely impractical, as the entire tree would need to be
generated in order to form the root. To keep the key generation time practical,
while allowing for a large number of signatures, the tree can be broken into a
multi-level tree. Fig. 2 shows a multi-level HBS tree where the bottom level trees
sign the messages and the tree at the level above signs the root of the tree below.
In other words, the root of of each tree is signed by the OTS of the tree at the
level above. The maximum number of signed messages of the multi-level tree
is 2Htree1+Htree2+...+HtreeZ , where Htree1, Htree2, ..., HtreeZ are the heights of the
subtrees at level 1, 2, ..., Z. With a multi-level tree the height of each tree remains
reasonable. Key generation can be done in time O(2tree1 + 2tree2 + ... + 2treeZ),
which is considerably smaller than the number of signatures that can be generated.
Signing and verifying can also be done with a relatively small cost increase. On
the other hand, multi-level trees do increase the length of the signature.signature
consists of the OTS signature, and now we include an OTS signature for each
tree level.

LMS vs XMSS: Comparion of two Hash-Based Signature Standards 3

...

...

...

...

......

Fig. 2: Multi-level HBS tre where the root of a tree is signed by the OTS of the
tree above.

The security of a Merkle-tree hash based signature (including multi-level
trees) is based on the strength of the hash function it uses. To forge a signature,
someone must either generate a hash preimage, or a second preimage (assuming
you use randomized hashing for the initial message, which both LMS and XMSS
do).

One Proposed Standard: LMS [11] is a quantum secure HBS scheme
proposed in the IETF. As a component it uses a scheme proposed by Leighton
and Michali in which an LMS public key is used to sign a second LMS public
key, which is then distributed along with the signatures generated with the
second public key [4]. LMS uses the Winternitz one-time signature (WOTS)
as its OTS (LM-OTS). HSS, the multi-level version of LMS, supports up to
eight independent levels of trees (each configurable to be a different height
and Winternitz parameter). LMS currently supports only SHA-256 as its hash
function, with other hash functions likely to be added later.

LMS uses a distinct prefix and suffix for every hash it performs. This is
to avoid multi-collision attacks. These are situations where the attacker has a
number of hash targets (such a values from the Merkle tree of valid signatures it
has seen), and ’wins’ if he is able to find a preimage for any one of them. The
idea is that the attacker selects an image, hashes it, and checks to see if the hash
value happens to be any of the values he’s looking for. However, such a preimage
would actually allow the attacker to generate a forgery only if it is a plausible
image in the context of the signature scheme. By ensuring that an image would
be a plausible image only in one place in one signature tree (by assigning different
prefixes and suffixes for each use), this means that any image he generates could
be a plausible preimage for only one place in the signature scheme; hence any
such attack is effectively limited to only one hash target.

A Second Proposed Standard: XMSS [12] is a second draft proposed in
the IETF. XMSS leverages an HBS tree and an OTS to sign messages. The OTS
it uses is a variant of WOTS (WOTS+ [13]) that eliminates the requirement for a

4 Panos Kampanakis, Scott Fluhrer

collision resistant hash function. Additionally, XMSS uses an L-tree structure [8]
to shrink the OTS public key. Moreover, it uses blinding masks for the WOTS+
Winternitz chains and every node calculation in the HBS and L-trees. The
blinding keys are generated pseudo-randomly for every tree node while generating
or verifying a signature. The multi-level version of XMSS is defined as XMSSMT .
Both schemes can sign arbitrary messages by using a target collision resistant
hash function [14]. XMSS supports SHA-256, SHA-512 and SHAKE as hash
functions. The hash functions could be extended later.

1.2 Notation
LMS and XMSS use different notation to specify the same parameters. For this
work, we will use a common notation for various parameters which is summarized
in Table 1. Table 1 also gives the corresponding notations from the LMS and
XMSS drafts.

Symbols Meaning

w
The Winternitz parameter, which is the base that the initial hash is
interpreted. In XMSS, this is the value w. In LMS, this is the value 2w.

n
The length of the hash (in bytes). In XMSS, this is the value n. In LMS,
both n and m stand for this.

p
The number of Winternitz chains used in a single OTS operation. In
XMSS, this is the value len. In LMS, this is the value p.

h
The height of a single Merkle tree. Both LMS and XMSS notate this as
h when dealing with a single level tree.

Σ p
This is the total number of Winternitz chains used in all levels of a
multilevel tree. In XMSSMT , this is the value d · len. In HSS, this is the
sum of all the p values across all the levels.

Σ h
This is the total height of all the Merkle trees. In XMSSMT , this is the
value h. In HSS, this is the sum of all the h values across all the levels.

d
This is the number of Merkle trees in the multi-level tree. In XMSSMT ,
this is the value d. In HSS, this is L.

Table 1: Meanings for parameters used in this paper.

In the rest of this paper, Section 2 presents the differences of XMSS and
LMS in terms of security proofs and assumptions, public key, signature size
and processing. Section 3 offers a discussion on the applicability of each scheme
and how the comparisons presented should weigh in choosing LMS or XMSS to
provide quantum secure signatures.

2 Comparison
Full disclosure This paper has been co-written by the designers of the LMS
system. We have tried to be impartial; however we would note that we have

LMS vs XMSS: Comparion of two Hash-Based Signature Standards 5

opinions on what is important in a hash based signature algorithm, and (not
surprisingly) LMS was designed to function well according to the criteria that
were considered important.

As published, the two schemes have different restrictions on the parameter
sets that they allow. With LMS, you are limited to the SHA-256 hash function.
With XMSS, you are limited to Winternitz parameter w = 16 (the draft claims
support for w = 4 as well, however no defined parameter set allows it), and
in the multi-level version of XMSS, each Merkle tree is required to have the
same height, hash function and Winternitz parameter. In both cases, it would be
simple to extend the allowable parameters to cover the parameter sets allowed by
the other. In the comparison of the two schemes below, we will restrict ourselves
to parameter sets that are supported by both.

2.1 Security model

Even though the two schemes share many similarities, it is important to identify
differences related to their assumptions and security proofs which will help us
distinguish the usecases that make them more favorable.

LMS has been proven [15] secure in the Random Oracle Model (ROM) by
modeling the hash function as a Random Oracle (RO). As hash functions cannot
be considered truly random, [16] proves LMS secure in the ROM when the Merkle-
Damgård hash compression function is modeled as the RO. [17] also proves it
secure in the Quantum Random Oracle Model (QROM). The original XMSS
scheme is proven secure in the standard model [7]. The IETF version of multi-level
XMSSMT [12] has been proven forward secure and existentially unforgeable under
chosen message attacks (EU-CMA) in the standard model [18] and post-quantum
existentially unforgeable under adaptive chosen message attacks with respect to
the QROM [9].

The assumption that LMS makes is that the hash compression functions
of the hashes used in LM-OTS and the tree node calculations are a RO. The
assumptions that XMSS makes is that the hash function used for the OTS and
the tree node calculations are post-quantum multi-function multi-target second-
preimage resistant. The current IETF draft version of XMSS [12] uses a PRF to
generate the pseudorandom values for randomized hashing and the bitmasks used
as blinding keys. This PRF is assumed to be a pseudorandom function modeled
as a RO when used to generate bitmasks. Moreover, XMSS’ message compression
hash is assumed to be a multi-target extended target collision resistant keyed
hash [9]. The message compression function in LMS is again a hash with a
compression function modeled as a RO for Merkle-Damgard hashes (i.e. SHA2).
Clearly LMS has stronger security assumptions than XMSS, but readers should
not ignore that the XMSS IETF draft introduces a ROM for the PRF function.

2.2 Sizes

One important disadvantage of post-quantum signatures is their size. Stateful
hash based signatures schemes have large signatures that make them impractical

6 Panos Kampanakis, Scott Fluhrer

in some scenarios. Stateless signature methods have even larger signature sizes.
It is important to evaluate the practical signature sizes of LMS and XMSS to
see how they compare at the same security level. The public key size is also
important for the verifier.

Public Key The public key sizes for LMS and XMSS and their corresponding
multi-level version are shown in Table 2. Currently, the size of the public keys
depends on only the hash function. If we consider the SHA-256 version of LMS
and XMSS (n = 32), we see that XMSSMTpublic keys are slightly bigger but of
very similar length as the HSS public keys.

Signature The signature key sizes for LMS and XMSS and their corresponding
multi-level version are shown in Table 2. Even though it is not obvious at first,
the signature sizes of LMS are slightly bigger that XMSS, but not significantly.

Public Key Signature
LMS 24 + n 12 + n(p+ h+ 1)
XMSS 4 + 2n 4 + n(p+ h+ 1)
HSS 28 + n (36d+ 2nd− n− 20) + n(Σp+Σh)
XMSSMT 4 + 2n dΣh/8e+ n(Σp+Σh+ 1)

Table 2: Sizes (in bytes) of HBS schemes based on scheme parameters.

To quantify the public key and signature sizes differences between LMS
and XMSS, we use Table 3. The table summarizes sizes for the two schemes
that can sign the same amount of total messages, at the same security level
with the same OTS signature length. Table 3a includes the sizes for LMS with
LMS_SHA256_M32_H10 and LMOTS_SHA256_N32_W4. The equivalent
XMSS parameter sets are XMSS_SHA2-256_W16_H10 and XMSSMT_SHA2-
256_W16_H20_D2. Both schemes can sign 210 messages and their multi-level
version can sign 220 messages. Table 3b shows the sizes for LMS parameters
LMS_SHA256_M32_H20 and LMOTS_SHA256_N32_W4 and XMSS parame-
ters XMSS_SHA2-256_W16_H20 and XMSSMT_SHA2-256_W16_H40_D2.
Similarly, Tables 3c, 3d provide the public key and signature sizes for more
(260) total multi-level signed messages and a tree height of h = 20 and 10
respectively (XMSS parameter set XMSSMT_SHA2-256_W16_H60_3 and
XMSSMT_SHA2-256_W16_H60_6). As we can see, for comparable security
parameters, LMS has only 8 more bytes of signature size. In terms of their
multi-level tree versions HSS has 2%-5% larger signatures (depending on the
number of tree levels). Regarding public key sizes, LMS has slightly smaller than
XMSS public keys, but both remain relatively small.

If we examine the reasons for the difference in sizes, it turns out the largest
difference is due to the HSS approach of explicitly embedding the internal Merkle

LMS vs XMSS: Comparion of two Hash-Based Signature Standards 7

Public Key Signature
LMS 56 2508
XMSS 68 2500
HSS 60 5076
XMSSMT 68 4963

(a) w = 16, p = 67, 210 LMS / XMSS
and 220 HSS / XMSSMT total mes-
sages (2 levels)

Public Key Signature
LMS 56 2828
XMSS 68 2820
HSS 60 5716
XMSSMT 68 5605

(b) w = 16, p = 67, 220 LMS / XMSS
and 240 HSS / XMSSMT total mes-
sages (2 levels)

Public Key Signature
HSS 60 8600
XMSSMT 68 8392

(c) w = 16, p = 67, 260 HSS /
XMSSMT total messages (3 levels)

Public Key Signature
HSS 60 15533
XMSSMT 68 14824

(d) w = 16, p = 67, 260 HSS /
XMSSMT total messages (6 levels)

Table 3: Sizes (in B) of HBS scheme for various parameters and n = m = 32.

public keys within the signature. The HSS choice does make it simpler and
potentially more extensible, but at the cost of having h− 1 public keys within
each signature. On the other hand, LMS currently supports w = 256 (w = 8 in
the notation that LMS uses); this setting would reduce the size of the signature
at the cost of computational overhead (that is still less than the XMSS equivalent
parameter set).

2.3 Performance - Experimental Results

HBS signatures require multiple hash function calculations by both the signer
and verifier. Similarly, generating the OTS public key involves calculating the
Winternitz chain multiple times. It turns out that the majority of the computation
by both the signer and the verifiier is spent performing the hash computations
during the Winternitz one-time signature. To verify this, we instrumented im-
plementations of both XMSS and LMS. The LMS implementation is written
in C by the LMS authors [19]. It supports all the parameter sets listed in the
LMS draft. It also supports multi-threading to accelerate operations. For the
test, multi-threading was disabled. The XMSS implementation is a C imple-
mentation written by Andreas Hülsing and Joost Rijneveld. We modified the
implementation to support the hash pre-computation optimization of the PRF
function which gave a noticeable speedup. Additionally, both implementations
use OpenSSL to perform the hash computations, hence the quality of that part
of the implementation was equivalent. Both implementations allow time/memory
trade-offs that affected the signature operations; these trade-offs modified the
number of OTS public key generations required during a signature operation.

8 Panos Kampanakis, Scott Fluhrer

We tried to select trade-offs that resulted in similar number of OTS public key
operations.

We first measured how much time was spent performing the hash compression
operation for the OTS computations for each scheme. For this measurement,
we include the hash computations required for compressing the OTS public key
into an n-byte value. The results of this measurement are given in Table 4. In
all cases, at least 85% of the time was spent performing the hash compression
computation. Because the schemes can be implemented to perform the same
number and types of OTS operations and the hash compressions in each OTS
operation are identical, we can perform a realistic comparison by comparing the
number of hash compression operations for each scheme1.

Operation Hash Compression
for OTS Other Operations

LMS Key Gen 94.4% 5.6%
XMSS Key Gen 88.1% 11.9%
LMS Sig Gen 93.6% 6.4%
XMS Sig Gen 88.0% 12.0%
LMS Sig Ver 90.1% 9.9%
XMSS Sig Ver 85.8% 14.2%

Table 4: Percentage of time spent doing hash compression operations during an
OTS computation.

To evaluate the number of hash compressions, we can break the OTS operation
itself into three types of sub-operations; namely:

– Generate a secret value at the beginning of the Winternitz chain. Our model
will be that it can be done with 1 hash compression operation.

– Iterate to the next value of the Winternitz chain. LM-OTS can perform this
with 1 hash compression operation. WOTS+ requires 4.

– Combine the final values of the Winternitz chain into a single n-byte sized
value. LM-OTS takes all the final values, and hashes them together as a
single message. This requires dp

2e hash compression operations. WOTS+
uses an L-tree construction. An L-tree has p − 1 internal nodes, and each
node requires 6 hash compression operations giving a total of 6(p− 1) hash
compression operations.

An OTS public key generation, generates p secrets, performs p(w − 1) Win-
ternitz iterations, and then combines those final values. Thus, from the OTS
sub-operation breakdown we understand that the OTS public generation of
1 These numbers indicate that the XMSS implementation tested has significantly
more overhead than the LMS implementation; however it appears to be a difference
between the implementations, rather than the schemes themselves.

LMS vs XMSS: Comparion of two Hash-Based Signature Standards 9

XMSS includes 4 times more hash compressions than LMS. As LMS/XMSS
key generation requires OTS public key generation almost exclusively, we would
expect an XMSS key generation to perform approximately 4 times slower than
an LMS key generation.

An OTS signature operation generates p secret values, and then performs an
expected2 p(w− 1)/2 Winternitz iterations. As LMS/XMSS signature generation
typically performs 1 OTS signature operation, and (for multilevel schemes)
several OTS public key generation operations, by using the OTS sub-operation
breakdown we would expect the XMSS signature operation to be between 3.5 to
4 times slower than the corresponding LMS operation.

An OTS signature verification also iterates an expected p(w−1)/2 times, and
then combines those values. As LMS/XMSS signature verification performs only
OTS verification operations, by using the OTS sub-operation breakdown we would
expect that an XMSS signature verification to perform approximately 5 times
slower than an LMS signature verification of equivalent parameters. If we sum up
the analysis for LMS and XMSS, using the SHA-256 hash function (n = 32) and
Winternitz value w = 16, p = 67, we obtain the total hash compression operations
given in Table 5. As we can see the LMS OTS operations are 3-5 times less than
XMSS. Thus, since the majority of key generation, signature and verification is
spent on the OTS operations as explained above, we expect that XMSS will be
performing 3-5 times slower than LMS.

Operation LMS XMSS XMSS / LMS
ratio

OTS PK Gen 603.5 2473 4.10
OTS Sign 318.25 1072 3.37
OTS Verify 285.25 1401 4.91

Table 5: Number of hash compression operations expected for various OTS
operations SHA-256, w = 16.

To experimentally confirm our performance analysis, we measured the over-
all performance on the LMS and XMSS implementations mentioned previ-
ously. We ran the tests using the equivalent of the XMSSMTparameter sets
XMSSMT_SHA2-256_W16_H20_D2 and XMSSMT_SHA2-256_W16_H40_D2.
For each test, we generated a public key, signed 4096 short (100 byte messages),
and then verified the 4096 signatures generated3. As we can see in Table 6
2 This is not precisely accurate, as the checksum digits cannot be expected to average

(w − 1)/2; however it is close.
3 Both implementations allow time/memory trade-offs in the signature algorithm
(where one could increase the amount of memory used to reduce the number of OTS
computations required); because the two different implementations used different
algorithms, we could not come up with trade-offs with the same number of expected

10 Panos Kampanakis, Scott Fluhrer

the ratios measured are mostly in line with our analysis. The XMSS signature
operations are somewhat more expensive than expected, but well within the
range we would expect from implementation details.

Operation LMS XMSS XMSS / LMS ratio
XMSSMT_SHA2-256_W16_H20_D2

PK Gen 0.89 s 3.26 s 3.66
Sign 1.21 ms 4.72 ms 3.90
Verify 0.339 ms 1.76 ms 5.19

XMSSMT_SHA2-256_W16_H40_D2
PK Gen 720 s 3340 s 4.64
Sign 1.91 ms 7.70 ms 4.03
Verify 0.350 ms 1.75 ms 5.00

Table 6: Measured time per operation for LMS and XMSS

3 Discussion

The LMS and XMSS standards are similar. They address the same issues and
provide post-quantum secure digital signatures that could find different applica-
tions in practice. Thus, various protocols and implementers might find it hard
to decide between the two in order to pick the more suitable scheme for their
usecase. When phased with that question a security practitioner should take into
consideration the analysis presented above.

Both XMSS and LMS make similar assumptions on their hash function; for
both LMS and XMSS, a second preimage attack on the hash function would
allow a single forgery, and a preimage attack that allowed the attacker to specify
all but n bits would allow the attacker to generate his own Merkle tree based on
a public key, allowing him to sign as many messages as he wished.

Where they differ is that XMSS strives to provide the hash function with
random independent inputs for every hash evaluation; while LMS has inputs with
predictable changes. This difference allows a tighter proof model for XMSS’ tree
hierarchy (because the attacker has to find a preimage of a hash of random inputs).
On the other hand, both systems achieve the same security level during the
initial message hashing (with both LMS and XMSS providing an unpredictable
prefix); as this requires a stronger assumption of the hash function (second
preimage resistance), it’s debatable whether XMSS’ tighter proof model for the
tree hierarchy is important.

public key generations per signature, so we selected trade-offs slightly in favor of
XMSS.

LMS vs XMSS: Comparion of two Hash-Based Signature Standards 11

Other factors to consider when making a decision between XMSS and LMS
are the signature and public key sizes, and the computation time. As we have seen
above, only XMSSMT has slightly smaller signature sizes than HSS, while LMS
performs significantly faster. In addition, while we have studied them in isolation,
they need to be considered together. There are parameter sets that reduce the
signature size at the cost of computation; LMS (with its cheaper computation)
may make such a trade-off more acceptable, and such a reduction in signature
size might more than make up the slightly larger LMS signature encoding. To
give a concrete example, we use two similar parameter sets. For XMSS we have
XMSSMT_SHA2-256_W16_H20_D2 (which we benchmarked above). For LMS,
we select a level 2 HSS, with each level being LMS_SHA256_N32_H10 and
LMOTS_SHA256_N32_W8, that is, using w = 256 in the XMSS context. The
results of this comparison are in Table 7. This table shows that LMS (with these
settings) is measured to perform moderately slower than XMSS; however the
LMS signature size is almost half of the XMSS signature. One could define an
equivalent XMSS parameter set with w = 256; however that would drastically
increase the amount of computation required.

Operation HSS XMSSMT

PK Gen 5.44 sec 3.26 sec
Sign Gen 6.49 msec 4.72 msec
Sig Ver 2.66 msec 1.76 msec
Size Public Key 60 byte 68 byte
Size Signature 2964 byte 5605 byte

Table 7: Comparison of LMS (w = 256) and XMSS (w = 16).

In summary, XMSS with equivalent multilevel parameter sets has slightly
smaller signature sizes than LMS. However, LMS performs significantly better,
which allows us more options when selecting parameter sets that fit within the
application constraints.

References

1. Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. on Computing, 26(5):1484–1509,
1997.

2. John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves. Quantum Info. Comput., 3(4):317–344, July 2003.

3. C. Dods, Nigel P. Smart, and Martijn Stam. Hash Based Digital Signature Schemes.
In Nigel P. Smart, editor, Cryptography and Coding, 10th IMA International
Conference, volume 3796 of Lecture Notes in Computer Science, pages 96–115.
Springer, 2005.

12 Panos Kampanakis, Scott Fluhrer

4. T. Leighton and S. Micali. Large provably fast and secure digital signature schemes
from secure hash functions. U.S. Patent 5,432,852, 1995.

5. Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya, and
Camille Vuillaume. Merkle Signatures with Virtually Unlimited Signature Capacity.
In Jonathan Katz and Moti Yung, editors, Applied Cryptography and Network
Security, 5th International Conference, ACNS 2007, volume 4521 of Lecture Notes
in Computer Science, pages 31–45. Springer, 2007.

6. Johannes Buchmann, Luis Carlos Coronado García, Erik Dahmen, Martin Döring,
and Elena Klintsevich. CMSS — An Improved Merkle Signature Scheme. In Rana
Barua and Tanja Lange, editors, Progress in Cryptology — INDOCRYPT 2006,
7th International Conference on Cryptology in India, volume 4329 of Lecture Notes
in Computer Science, pages 349–363. Springer, 2006.

7. Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS — A Practical
Forward Secure Signature Scheme Based on Minimal Security Assumptions. In
Bo-Yin Yang, editor, Post-Quantum Cryptography — 4th International Workshop,
PQCrypto 2011, volume 7071 of Lecture Notes in Computer Science, pages 117–129.
Springer, 2011.

8. Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Nieder-
hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko
Wilcox-O’Hearn. SPHINCS: Practical Stateless Hash-Based Signatures. In Elisa-
beth Oswald and Marc Fischlin, editors, Advances in Cryptology — EUROCRYPT
2015 — 34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, volume 9056 of Lecture Notes in Computer Science,
pages 368–397. Springer, 2015.

9. Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating Multi-target Attacks
in Hash-Based Signatures, pages 387–416. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016.

10. Ralph C. Merkle. A Certified Digital Signature. In Gilles Brassard, editor, Advances
in Cryptology — CRYPTO ’89, 9th Annual International Cryptology Conference,
volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer, 1989.

11. David McGrew and Michael Curcio. Hash-Based Signatures. https://datatracker.
ietf.org/doc/draft-mcgrew-hash-sigs/, 2016. Internet-Draft. Accessed 2016-
06-06.

12. Andreas Hülsing, Denis Butin, Stefan Gazdag, and Aziz Mohaisen. XMSS:
Extended Hash-Based Signatures. https://datatracker.ietf.org/doc/
draft-irtf-cfrg-xmss-hash-based-signatures/, 2016. Internet-Draft. Accessed
2016-06-06.

13. Andreas Hülsing. W-OTS+ — Shorter Signatures for Hash-Based Signature Schemes.
In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien, editors, Progress in
Cryptology — AFRICACRYPT 2013, 6th International Conference on Cryptology in
Africa, volume 7918 of Lecture Notes in Computer Science, pages 173–188. Springer,
2013.

14. Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuillaume. Digi-
tal Signatures Out of Second-Preimage Resistant Hash Functions, pages 109–123.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

15. Jonathan Katz. Analysis of a Proposed Hash-Based Signature Standard. https:
//www.cs.umd.edu/~jkatz/papers/HashBasedSigs-04.pdf, 2016. Accessed 2016-
11-14.

16. Scott Fluhrer. Further analysis of a proposed hash-based signature standard.
Cryptology ePrint Archive, Report 2017/553, 2017. http://eprint.iacr.org/
2017/553.

https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/
https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://www.cs.umd.edu/~jkatz/papers/HashBasedSigs-04.pdf
https://www.cs.umd.edu/~jkatz/papers/HashBasedSigs-04.pdf
http://eprint.iacr.org/2017/553
http://eprint.iacr.org/2017/553

LMS vs XMSS: Comparion of two Hash-Based Signature Standards 13

17. Edward Eaton. Leighton-micali hash-based signatures in the quantum random-
oracle model. Cryptology ePrint Archive, Report 2017/607, 2017. http://eprint.
iacr.org/2017/607.

18. Tal Malkin, Daniele Micciancio, and Sara Miner. Efficient Generic Forward-Secure
Signatures with an Unbounded Number of Time Periods, pages 400–417. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002.

19. Scott Fluhrer. LMS implementation. https://github.com/cisco/hash-sigs, 2017.
Accessed 2017-13-07.

http://eprint.iacr.org/2017/607
http://eprint.iacr.org/2017/607
https://github.com/cisco/hash-sigs

	LMS vs XMSS: Comparion of two Hash-Based Signature Standards

