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Abstract. We consider the problem of privacy-preserving processing of outsourced data, where a
Cloud server stores data provided by one or multiple data providers and then is asked to compute
several functions over it. We propose an efficient methodology that solves this problem with the guar-
antee that a honest-but-curious Cloud learns no information about the data and the receiver learns
nothing more than the results. Our main contribution is the proposal and efficient instantiation of a
new cryptographic primitive called Labeled Homomorphic Encryption (labHE). The fundamental in-
sight underlying this new primitive is that homomorphic computation can be significantly accelerated
whenever the program that is being computed over the encrypted data is known to the decrypter and
is not secret—previous approaches to homomorphic encryption do not allow for such a trade-off. Our
realization and implementation of labHE targets computations that can be described by degree-two
multivariate polynomials, which capture an important range of statistical functions. As a specific appli-
cation, we consider the problem of privacy preserving Genetic Association Studies (GAS), which require
computing risk estimates for given traits from statistically relevant features in the human genome. Our
approach allows performing GAS efficiently, non interactively and without compromising neither the
privacy of patients nor potential intellectual property that test laboratories may want to protect.

1 Introduction

Privacy-preserving data processing techniques are crucial enablers for moving many security-critical
applications to the Cloud, and they may be the key to unlocking new socially-relevant applications
and business opportunities. As an example, consider the case of personalized medicine, where a
medical center offers highly specialized services that permit guiding the medical care of a Client
based on information encoded in the Genome. Such direct-to-consumer services are already a reality,
so we will not discuss whether or not they are desirable. Instead, we propose a new methodology
that can be used today to deploy such services in the Cloud (genomic studies may involve a huge
amount of data), whilst protecting the privacy of the Client, and intellectual property that may be
a concern for the medical center. Controlling who has access to individual data in these scenarios
will likely be mandatory for ethical and/or legal reasons, and this pattern arises in many other
real-world applications (e.g., analysis of taxpayers’ or consumers’ data, users’ geographic locations,
etc.) where our solution may be of use.

Fig. 1. The parties and workflow of our system.

We consider a scenario with three actors –
data providers, the Cloud, and a receiver – with
the following workflow (Fig. 1). Data providers
send data to the Cloud, and the receiver asks
the Cloud to execute certain queries on the out-
sourced data. For the applications we consider,
the key requirements are privacy and efficiency.
Privacy properties should guarantee that the



Cloud does not learn any information on the hosted data, and that the receiver learns nothing
more than the queries outcomes. Furthermore, it should be possible for many data providers to
contribute with inputs to the same computation, in such a way that data introduced by one provider
is protected from the others. The efficiency requirement involves two main aspects: computation and
communication. With respect to computation, the protocol should have minimal impact for data
providers. There is little point for them in delegating storage and/or computation to the Cloud if
this requires prohibitive costs; their only task should be to collect and send data and be minimally
involved in the rest of the protocol (e.g., they could go offline). Moreover, in several applications the
data providers can be resource-constrained devices (e.g., sensors) for which a lightweight protocol is
essential. In terms of computation, the protocol should also run efficiently at the Cloud. Although
Cloud providers have powerful resources, in an outsourcing setting one has to pay for them and thus
the lighter is the protocol’s burden the cheaper is the service’s cost. On the communication side,
one would like solutions with minimal bandwidth overhead both between data providers and the
Cloud, and between the Cloud and the receiver. For example, the communication with the receiver
should not depend on the amount of data hosted by the Cloud. Low bandwidth is particularly
relevant in the context of mobile networks and mobile devices: high bandwidth consumptions drain
batteries and cost a lot due to the price of mobile network connections (most of the times under a
pay-per-use model).

Our Contribution. We propose and efficiently instantiate a new cryptographic primitive called
Labeled Homomorphic Encryption (labHE) that gives a solution to the problem of privately process-
ing outsourced data outlined above. Our realization and implementation of labHE targets compu-
tations that can be described by degree-two multivariate polynomials, which capture a significant
fraction of statistical functions and, in particular, statistical computations used in genomic analysis.
As we detail later, our solution outperforms protocols based on previous somewhat homomorphic
encryption schemes in essentially all fronts: our communication costs are more than two orders of
magnitude smaller, computation is more than 80 times faster for data providers and up to 9000
times faster for the Cloud. The insight that unlocks such performance gains is that homomorphic
computation can be significantly accellerated whenever the program that is being computed over
the encrypted data is known to decrypter and is not secret—previous approaches to homomorphic
encryption do not allow for such a trade-off.

1.1 An Overview of Our Results

Labeled Homomorphic Encryption. Our new labHE notion combines the model of labeled
programs, put forward in the context of homomorphic authenticators (e.g. [20,10,12]), with the
concept of homomorphic encryption. Homomorphic encryption (HE) [36,21] is like ordinary en-
cryption with the additional capability of a (publicly executable) evaluation algorithm Eval. The
latter takes as input a program P and encrypted messages m1, . . . ,mn, and outputs an encryption
of P (m1, . . . ,mn).

labHE is similar to HE with the following additions. First, every piece of (encrypted) data is
associated with a unique label. A label could be the index of a database record or any other string
that can be used to identify the outsourced data item. Thus, when encrypting a message m, one
specifies a corresponding label τ (which does not need to be kept secret, though). To give an
example, think of a blood pressure sensor which collects measurements at regular time instants:
the pressure value is the actual data while the time instant is the label. Next, whenever a user Bob
wants to ask the cloud to compute f on some (previously outsourced) encrypted inputs, he makes
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the query by specifying the labels of these inputs. For instance, Bob may say “compute the mean
on messages with labels (Pressure, 1), . . . , (Pressure, 100)”. The combination of f and the labels
in the query is called a “labeled program” P , which is what is executed by the Cloud. Finally,
upon the receipt of the (encrypted) answer c from the Cloud, Bob runs the decryption algorithm
with his secret key, c, and labeled program P . Introducing labeled programs in HE formalizes the
intuition that Bob is decrypting the result of a known function (the labeled program, the query)
on the unknown outsourced data (the encrypted messages). We stress that in the outsourcing
setting labeling is always implicit, as some mechanism is always needed to specify the portion of
the outsourced data over which the Cloud has to compute. Moreover, although one may wonder
that labels leak additional information, it is not hard to see that this can be avoided by choosing
an appropriate labeling (e.g., simple indices) which reveals only trivial information.

For efficiency we require labHE ciphertexts to be succinct, i.e., of some fixed size, independent
of the computation possibly executed on it. We concede that the running time of labHE decryption
may depend on P : this is the most noticeable difference with standard HE. Interestingly, however,
in our realizations such dependence has almost negligible impact on efficiency in practice.

For security, we require labHE to meet the usual semantic security notion (i.e., one cannot tell
apart encryptions of known messages) and also to satisfy a property that we call context-hiding.
This essentially says that a ciphertext encrypting the result m = P (m1, . . . ,mn) reveals only m
and nothing more about the program inputs.

Basic and Multi-user labHE. The basic labHE notion requires the same secret key to encrypt and
decrypt. It can be used to perform privacy-preserving computations on outsourced data as follows.
A data provider, Alice, jointly executes the setup algorithm with Bob, the receiver, and gets a secret
encryption key that she can use to encrypt her data before outsourcing it to the Cloud. Bob can then
ask the Cloud to compute a labeled program P on Alice’s data, obtain an encryption of the result
and decrypt this with his secret decryption key. In terms of data privacy, labHE semantic security
ensures that, as long as the Cloud does not get to see the keys used for encryption/decryption, it
does not learn anything about Alice’s data or the result of the computation; context-hiding further
guarantees that, as long as the Cloud does not reveal the originally encrypted ciphertexts to Bob,
then Bob learns only the query results and no other information about Alice’s individual data.
We note that this trust model is particularly well suited to a scenario in which Alice (or more of
the senders in the multi-sender scenario below) controls the Cloud and uses it to offer a service to
Bob. Regarding efficiency, the only work of Alice is to encrypt and transmit the data, while the
succinctness of labHE yields short communication between the Cloud and Bob: answers received by
Bob do not depend on the size of the outsourced data.

In addition to basic labHE, we also provide a more powerful generalization to a multi-user setting,
which inherits all the performance features of the basic one. Here one can perform computations over
data encrypted by different providers, and these do not need to share any common secret. Indeed,
key generation in the basic labHE notion can be split between sender and receiver as follows. Bob
generates a master public key and a master secret key. Knowing Bob’s master public key, Alice can
unilaterally encrypt with her own generated encryption key, and create a public key that becomes
associated with her encrypted data. In this way, no trusted a priori set-up is required in addition to
a PKI. Moreover, multiple senders can do exactly the same as Alice to encrypt under their public
keys and Bob’s master public key, with the extra guarantee that the data encrypted by one sender
cannot be decrypted by a different sender. Decryption requires knowledge of the master secret along
with the public keys of all the users whose ciphertexts were involved in the computation.

3



On the usefulness of labeling programs. The essence of labHE is to take advantage of the fact
that, when delegating some computation P on outsourced data, P is typically provided explicitly
to the cloud. Interestingly, when using (standard) homomorphic encryption this inherent privacy
loss does not seem to be exploitable to gain efficiency. labHE, on the other hand, aims at trading
the (unavoidable!) leak of P to significantly reduce the cost of the computation.

Indeed, the main difference with respect to (standard) homomorphic encryption is in decryption:
decrypting in labHE requires Bob to do work that depends on the program P . More precisely, and
simplifying things a bit, Bob will basically need to recompute P on (values related to) the labels
corresponding to the original inputs. Interestingly we show that, as this computation is performed
on unencrypted and very succinct data (short pseudorandom fingerprints of the labels), it has very
low impact in practice. In fact, the cost of decryption is always orders of magnitude lower than
that of running the computation in the Cloud. Not only that, this can be done prior to receiving the
encrypted results from the Cloud! This becomes particularly interesting when considering that our
realizations of labHE are extremely efficient also for the Cloud (see below for more details about
this). Indeed, we show that, building on [11], labHE supporting computations expressible via degree-
2 polynomials can be realized from any encryption scheme that is only linearly homomorphic. Since
these are typically more efficient than their more expressive counterparts, the same holds for the
resulting labHE.

To the best of our knowledge, the idea of trading-off function privacy for efficiency has not
been previously applied in the field of (somewhat) homomorphic encryption; for this reason, and
while our work focuses on the specific case of computing degree two polynomials on ciphertexts,
we believe that this idea could be of independent interest and might find applications for settings
requiring more expressive computations as well.

An Overview of Our Techniques. We provide an intuitive description of our solution, discussing
some of the core ideas underlying it. We encrypt a message m ∈M via a two-component ciphertext
(m− b,Enc(b)), where Enc is a linearly homomorphic encryption scheme and b is random inM. In
[11], Catalano and Fiore show that ciphertexts of this form allow for the evaluation of degree-two
polynomials on encrypted data, at the cost of losing compactness. More precisely, Catalano and
Fiore argue that when applying a polynomial f on (m1 − b1,Enc(b1)), . . . , (mt − bt,Enc(bt)), there
may be the possibility (depending on the structure of f) to end up with a huge O(t)-components
ciphertext (Enc(f(m1, . . . ,mt)− f(b1, . . . , bt)),Enc(b1), . . . ,Enc(bt)).

Our key idea to solve the compactness issue in the context of labHE is to let every bi depend on
the corresponding label; in our construction we set bi as the output of FK(τi), where F is a pseudo-
random function and τi is the unique label associated with message mi. The crucial observation is
that, because the labels are known to the decryptor, the value f(b1, . . . , bt) can be reconstructed at
decryption time, and the components Enc(b1), . . . ,Enc(bt) dismissed from the above ciphertext. This
gives us a construction that supports all degree-two polynomials with constant-size ciphertexts!

Interestingly, this simple idea, when instantiated with fast cryptographic primitives (e.g., the
Sponge-based pseudorandom function from the Kekkac Code Package and the Joye-Libert cryp-
tosystem [28] as linearly-homomorphic encryption) yields an extremely efficient realization of the
primitive, that allows to outsource the computation of various useful functions (e.g. statistics,
genetic association studies) in a very efficient yet privacy preserving way.

Efficient labHE Realizations. We show how to construct expressive labHE schemes for quadratic
functions by using standard number theoretic (linearly-homomorphic) encryption schemes, such as
Paillier [34], Bresson et al. [9] and Joye-Libert [28]. We implemented one of these instantiations – the
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one based on the Joye-Libert cryptosystem that we call labHE(JL13) – and tested its performance
for the case of computing statistical functions on encrypted data. Our experiments demonstrate that
labHE(JL13) outperforms a solution based on state-of-the-art somewhat homomorphic encryption
(FV) [18,33] (optimized to support the same class of functions) on essentially all fronts. For example,
comparing labHE(JL13) against FV, we observed that in labHE(JL13) the communication costs are
400 times smaller, encrypting is more than 80 times faster, while computing the results is between
9000 and 50 times faster for the Cloud.

1.2 Applications

To further highlight the performance benefits of our solution in the real world, we looked at two
specific applications: i. computing relevant statistical functions over encrypted data outsourced to
the Cloud and ii. peforming Genetic Association Studies that preserve both the privacy of users
and the intellectual property of the laboratories performing the tests.

Outsourcing Privacy Preserving Statistics. We consider the case where a potentially large
dataset is stored on an (untrusted) Cloud. The latter is used both to store and to perform com-
putations on encrypted data on behalf of one (or more) Clients. More precisely we considered two
scenarios. One where the Client acts both as Data Provider and Receiver and a three party sce-
nario where these roles are played by different users/entities. Of course, a solution to the problem
of computing secure statistics in these scenarios can be obtained via somewhat homomorphic en-
cryption schemes supporting quadratic polynomials. labHE, however, achieves the same goal with
unprecedented efficiency both in terms of computation costs and in terms of bandwidth consump-
tion. In our experiments, we considered multidimensional datasets represented as (n× d) matrices
X = {xi,j}, where n are the dataset members and d the dimension (or number of variables). Uni-
variate statistics such as Mean and Variance are computed column-wise (e.g., the mean of the j-th
column is µj = 1

n

∑n
i=1 xi,j), whereas bivariate correlation ones such as Covariance act over pairs

of columns. In this setting, if we consider a dataset of over two million entries (n = 220 × d = 2),
the solution based on the FV somewhat homomorphic encryption requires over 249GB of storage
at the Cloud whereas labHE(JL13) only 560Mbytes. Moreover, for such large datasets the amount
of memory required to perform homomorphic computations using FV placed it out of reach of the
standard machines we used for benchmarking (scalability is bounded at around 30K elements for
16GB of RAM) while labHE(JL13) scaled up easily to two million entries. When considering the
more modest datasets (where FV could run) the cumulative time of computing a Covariance matrix
on the encrypted dataset and decrypting its result is 32 minutes using FV and 37 seconds with
labHE(JL13); computing and decrypting a Mean query takes about 9 seconds with FV and around
19 milliseconds with labHE(JL13).

Privacy Preserving GAS. Genetic Association Studies (GAS) look for statistically relevant
features across the human genome. The goal is to single out those that can be correlated to given
traits. Typically such studies are carried by performing series of tests. Each test targets a particular
trait and takes into consideration associated information that is encoded in specific positions of an
individual’s genome, the so-called Single Nucleotide Polymorphisms (SNP). Each test computes
a Genetic Risk Score: a weighted sum of the information collected for each SNP and the weights
correspond to risk estimates computed for a reference population. This SNP genotyping has already
several applications, ranging from personalized medicine to forensics.
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Access to such tests is, for the most part, controlled by the health services of different countries,
but a new trend of Direct-to-Consumer (DTC) genomic analysis is arising, where companies offer
a multitude of association tests to the public. Privacy is obviously a paramount concern in such
services. Our (multi-user) Labeled Homomorphic Encryption technology allows to perform GAS
securely and without compromising the privacy of the patient. Moreover, it offers a trade-off between
security and efficiency that makes it an ideal candidate for practical deployment. Our solution also
protects potential intellectual property (e.g., the weights above) that the laboratories carrying out
the tests may want to protect, and it may be used in a commodity cloud, since all computation is
carried out over encrypted data.

To evaluate the scalability of our solution we considered a Map-Reduce scenario where the
multiplicative part of the weighted sum is split by multiple servers in the Cloud. In this way many
partial sums can be computed in parallel and later combined to get the final result. Using this
strategy, a GAS computation including over 1 million SNPs can be completed in roughly 3 minutes
using 10 servers (excluding communication overhead). Using FV [18], as underlying building block
for a risk analysis involving only 30K SNPs the size of encrypted data processed by the Cloud
becomes, roughly, 14 GBytes, which is over 400 times more than the space required by our solution.
For the same task, FV-based solutions turn out to be around 100 times slower than our solution.
This comparison is for a modest number of SNPs since, for larger parameters, experiments became
highly unstable and eventually infeasible due to too large memory requirements that surpassed the
capabilities of our benchmarking platform.

Solutions based on Related Primitives. A solution to the problem considered in this paper
can also be obtained via the use of fully homomorphic encryption (FHE) [21]. Although fully fledged
constructions of FHE are too inefficient to be used in practice, less powerful variants (often referred
to as somewhat homomorphic encryption – SHE) are more efficient. Still, even when restricting to
very specific functionalities (e.g., degree-2 polynomials), known somewhat homomorphic encryption
schemes are less efficient than our solution, as we mentioned in the previous paragraphs. One
reason is that the most efficient SHE constructions are based on the hardness of lattice problems,
and to achieve meaningful security they require parameters that induce very large ciphertexts.
Another aspect to take into consideration is that lattice-based cryptosystems lack of standardized
parameters, and are harder to implement for the less expert practitioners (while there are some
libraries for lattice based homomorphic encryption [24,33], these are way less developed and popular
than existing ones for widely standardized number theoretic cryptography). Also, we remark that
FHE-based solutions would allow secure outsourcing in the same colluding model (i.e. security is
guaranteed only as long as the receiver and the Cloud do not collude).

Another solution to the outsourcing problem can come from the field of multiparty computation
(MPC). In particular, there is a category of MPC protocols (e.g., [5,16,15]) in which participants
can be divided into input parties, computing parties (e.g., several Cloud servers) and result parties.
These protocols (partially) fit the outsourcing scenario addressed in this paper: computing par-
ties who perform the actual computation are distributed across multiple (often interacting) Cloud
servers. Notably, these servers should be deployed by separate organizations that are assumed not
to collude. This is however an assumption which induces further complexities in practice, e.g., one
should make sure to use cloud companies in separate geographic locations under different legal
jurisdictions, deal with legal regulations in each of these countries, etc. In contrast, our solution
works in a much simpler setting where one relies on a single, untrusted, Cloud.
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Finally, we mention that a trivial solution for computing on outsourced encrypted data is the
following: a user Alice stores her data in encrypted format on the Cloud; whenever Bob wants to
perform computations on Alice’s data, he simply downloads (and decrypts) the relevant cipher-
texts locally, and performs the computation on his own. We call this solution “download&decrypt”
(D&D). “Download&decrypt” may fit applications where the same user uploads the data and later
decrypts the results (i.e., Alice and Bob are the same entity). However, D&D is not a solution for
our scenario because it does not fit our privacy requirements, since Bob learns everything about
Alice’s data. This is in contrast to our solution based on labHE where context-hiding guarantees
that, as long as Bob and the Cloud do not collude, Alice’s data remains private to Bob (except
for what he is intended to learn honestly from the queries outputs). On top of this consideration,
we mention an additional reason by which our solution compares favorably against D&D. In our
case Bob pays communication that depends only on the size of the results. In D&D, Bob should
either download and store the entire input, or request each input every time he needs it in the
computation. If Bob has limited storage space or he is paying for the consumed bandwidth, D&D
becomes unaffordable for large datasets.

2 Preliminaries
Notation. We denote with λ ∈ N a security parameter, and with poly(λ) any function bounded
by a polynomial in λ. We say that a function ε is negligible if it vanishes faster than the inverse
of any polynomial in λ. We use PPT for probabilistic polynomial time, i.e., poly(λ). If S is a set,

x
$← S denotes selecting x uniformly at random in S. If A is a probabilistic algorithm, x

$← A(·)
denotes the process of running A on some appropriate input and assigning its output to x. For a
positive integer n, we denote by [n] the set {1, . . . , n}.
Definition 1 (Statistical Distance). Let X,Y be two random variables over a finite set U . We
define the statistical distance between X and Y as

SD[X,Y ] =
1

2

∑
u∈U

∣∣Pr[X = u]− Pr[Y = u]
∣∣

2.1 Homomorphic Encryption

A homomorphic encryption scheme HE is a tuple of four PPT algorithms (KeyGen,Enc,Eval,Dec)
as follows:

KeyGen(1λ): takes as input the security parameter λ and outputs a key pair (sk, pk). The public
key pk includes a description of the message space M.

Enc(pk,m): takes as input pk and a message m ∈M, and it outputs a ciphertext C.
Eval(pk, f, C1, . . . , Ct): the evaluation algorithm takes as input pk, a circuit f :Mt →M in a class
F of “admissible” circuits, and t ciphertexts C1, . . . , Ct. It returns a ciphertext C.

Dec(sk, C): given sk and a ciphertext C, the decryption algorithm outputs a message m.

A HE scheme is required to satisfy correctness, compactness, security and circuit privacy.

Definition 2 (Correctness). A homomorphic encryption scheme HE = (KeyGen,Enc,Eval,Dec)

correctly evaluates a family of circuits F if for all honestly generated keys (pk, sk)
$← KeyGen(1λ),

for all f ∈ F and for all messages m1, . . . ,mt ∈M we have that if Ci ← Enc(pk,mi) ∀i ∈ [t], then
the following probability

Pr[Dec(sk,Eval(pk, f, (C1, . . . , Ct))) 6= f(m1, . . . ,mt)]

is negligible, where the probability is taken over all the algorithms’ random choices.
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Definition 3 (Compactness). A HE scheme HE = (KeyGen,Enc,Eval,Dec) compactly evaluates
a family of circuits F if the running time of the decryption algorithm Dec is bounded by a fixed
polynomial in λ.

The security of a HE scheme is defined using the notion of semantic security.

Definition 4 (Semantic Security). Let HE = (KeyGen,Enc,Eval,Dec) be a (homomorphic) en-
cryption scheme, and A be a PPT adversary. Consider the following experiment:

Experiment ExpSS
HE,A(λ)

b
$← {0, 1}; (pk, sk)

$← KeyGen(1λ)
(m0,m1)←A(pk)

c
$← Enc(pk,mb)

b′←A(c)
If b′ = b return 1. Else return 0.

and define A’s advantage as AdvSS
HE,A(λ) = Pr[ExpSS

HE,A(λ) = 1] − 1
2 . Then we say that HE is

semantically-secure if for any PPT algorithm A it holds AdvSS
HE,A(λ) = negl(λ).

Finally, an homomorphic encryption scheme should satisfy circuit privacy. Roughly speaking,
this property says that the ciphertexts output by Eval do not reveal any information about the
messages encrypted in the input ciphertexts. This property is formally defined as follows:

Definition 5 (Circuit Privacy). A homomorphic encryption scheme HE is circuit private for a
family of circuits F if there exists a PPT simulator Sim and a negligible function ε(λ) such that

the following holds. For any λ ∈ N, any pair of keys (pk, sk)
$← KeyGen(1λ), any circuit f ∈ F , any

tuple of messages m1, . . . ,mt ∈ M and m = f(m1, . . . ,mt), and ciphertexts C1, . . . , Ct such that

∀i ∈ [t]: Ci
$← Enc(pk,mi), then it holds

SD[Eval(pk, f, C1, . . . , Ct), Sim(1λ, pk,m)] ≤ ε(λ)

3 Labeled HE

In this section we introduce the notion of Labeled Homomorphic Encryption (labHE, for short).
This notion adapts the one of (symmetric-key) homomorphic encryption to the setting of labeled
programs. This is based on the following key ideas. First, each piece of (encrypted) data that is
outsourced is assigned a unique label which is used to identify the data. Second, whenever a client
wants to ask the cloud to compute a function f on a portion of the outsourced (encrypted) data, the
client specifies the inputs of f among the outsourced data. These inputs are identified by specifying
their labels. The combination of f with these labels is called a labeled program. In short, labels
allow clients to express queries on outsourced data.

In our homomorphic encryption notion, these ideas are introduced as follows. The encryption
algorithm takes as input also a label; this is to say that the encryptor assigns a unique index to
the encrypted data. Second, the decryption algorithm takes as additional input a labeled program;
this is to express that the decryptor recovers the result of a known query (the labeled program) on
the (unknown) outsourced data. In practice, the set of labels has concise representation (e.g. they
can be names or even indexes in [1, n]).

Labeled Programs. Here we recall the notion of labeled programs [20], adapted to the case of
arithmetic circuits as in [10]. The definition is taken almost verbatim from [10]. A labeled program
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P is a tuple (f, τ1, . . . , τn) such that f : Mn → M is a function on n variables (e.g., a circuit),
and τi ∈ {0, 1}∗ is the label of the i-th variable input of f . Composition of labeled programs works
as follows. Given the programs P1, . . . ,Pt and a function g :Mt →M, the composed program P∗
is obtained by evaluating g on the outputs of P1, . . . ,Pt. Such a program is compactly denoted as
P∗ = g(P1, . . . ,Pt). The (labeled) inputs of P∗ are the all distinct labeled inputs of P1, . . . ,Pt (we
assume that all inputs sharing the same label are grouped together in a single input of the new
program). Let fid : M → M be the canonical identity function and τ ∈ {0, 1}∗ be a label. Then
Iτ = (fid, τ) is the identity program for input label τ . With this notation in mind, notice that any
labeled program P = (f, τ1, . . . , τn) can be expressed as the composition of n identity programs
P = f(Iτ1 , . . . , Iτn).

Labeled Homomorphic Encryption A symmetric-key Labeled Homomorphic Encryption scheme
labHE consists of the following algorithms.

KeyGen(1λ). The key generation algorithm takes as input the security parameter λ. It outputs
a secret key sk and a public evaluation key epk. We assume that epk implicitly contains a
description of a message space M, a label space L, and a class F of “admissible” circuits.

Enc(sk, τ,m). The encryption algorithm takes as input the secret key sk, a label τ ∈ L and a
message m ∈M. It outputs a ciphertext C.

Eval(epk, f, C1, . . . , Ct). On input epk, an arithmetic circuit f :Mt →M in the class F of “allowed”
circuits, and t ciphertexts C1, . . . , Ct, the evaluation algorithm returns a ciphertext C.

Dec(sk,P, C). The decryption algorithm takes as input the secret key, a labeled program P, and a
ciphertext C, and it outputs a message m ∈M.

A labHE must satisfy correctness, succinctness, semantic security, and context-hiding.

Definition 6 (Correctness). A Labeled Homomorphic Encryption scheme labHE = (KeyGen,
Enc,Eval,Dec) is said to correctly evaluate a family of circuits F if for all honestly generated keys

(epk, sk)
$← KeyGen(1λ), for all f ∈ F , all labels τ1, . . . , τt ∈ L, all messages m1, . . . ,mt ∈ M, and

any Ci ← Enc(sk, τi,mi) ∀i ∈ [t],

Pr[Dec(sk,P,Eval(epk, f, C1, . . . , Ct)) = f(m1, . . . ,mt)]

is negligibly close to 1, where P = (f, τ1, . . . , τt). Probability is taken over the algorithms’ random
choices.

Informally succinctness means that the size of ciphertexts output by Eval is some fixed polyno-
mial in the security parameter, and does not depend on the size of the evaluated circuit. Formally,
this is defined as follows.

Definition 7 (Succinctness). A Labeled Homomorphic Encryption scheme labHE = (KeyGen,
Enc,Eval,Dec) is said to succinctly evaluate a family of circuits F if there is a fixed polynomial p(·)
such that every honestly generated ciphertext (output of either Enc or Eval) has size (in bits) p(λ).

We note that our notion of succinctness is weaker than the notion of compactness of standard
homomorphic encryption. Compactness dictates that the running time of the decryption algorithm
is bounded by some fixed polynomial in λ. Succinctness is weaker in the sense that a compact
scheme is also succinct whereas the converse might not be true (indeed our construction satisfies
succinctness but not compactness).

The security of a labHE scheme is defined via a notion of semantic security that adapts to our
setting the standard notion put forward by Goldwasser and Micali [23].
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Definition 8 (Semantic Security for labHE). Let
labHE = (KeyGen,Enc,Eval,Dec) be a Labeled Homomorphic Encryption scheme and A be a PPT
adversary. Consider the following experiment where A is given access to an oracle Enc(sk, ·, ·) that
on input a pair (τ,m) outputs Enc(sk, τ,m):

Experiment ExpSS
labHE,A(λ)

b
$← {0, 1}; (epk, sk)

$← KeyGen(1λ)

(m0, τ
∗
0 ,m1, τ

∗
1 )←AEnc(sk,·,·)(epk)

c
$← Enc(sk, τ∗b ,mb)

b′←AEnc(sk,·,·)(c)
If b′ = b return 1. Else return 0.

We say that A is a legitimate adversary if it queries the encryption oracle on distinct labels (i.e.,
each label τ is never queried more than once), and never on the two challenge labels τ∗0 , τ

∗
1 . We define

A’s advantage as AdvSS
labHE,A(λ) = Pr[ExpSS

labHE,A(λ) = 1] − 1
2 . Then we say that labHE provides

semantic-security if for any PPT legitimate algorithm A it holds AdvSS
labHE,A(λ) = negl(λ).

Finally we define another security property of Labeled Homomorphic Encryption that we call
context-hiding. In a nutshell, context-hiding says that a user running m = Dec(sk,P, C) learns
nothing about the input m′, except that m = f(m′), where f is the function in P.

Definition 9 (Context Hiding). We say that a Labeled Homomorphic Encryption scheme labHE
satisfies context-hiding for a family of circuits F if there exists a PPT simulator Sim and a negligible

function ε(λ) such that the following holds. For any λ ∈ N, any pair of keys (epk, sk)
$← KeyGen(1λ),

any circuit f ∈ F with t inputs, any tuple of messages m1, . . . ,mt ∈ M, labels τ1, . . . , τt ∈ L, and
corresponding ciphertexts Ci←Enc(sk, τi,mi) ∀i = 1, . . . , t, we have that

SD[Eval(epk, f, C1, . . . , Ct), Sim(1λ, sk,P,m)] ≤ ε(λ)

where P = (f, τ1, . . . , τt) and m = f(m1, . . . ,mt).

Labeled Homomorphic Encryption with Preprocessing. Here we define a special case of
Labeled Homomorphic Encryption where some of the algorithms allow for a preprocessing step that
enables to speed up online computations.

We say that a scheme labHE has offline/online encryption if it admits two algorithms Offline-Enc
and Online-Enc working as follows:

Offline-Enc(sk, τ). This algorithm takes as input a label and the secret key and produces an offline
ciphertext Coff for the label τ .

Online-Enc(Coff ,m). On input a message m and an offline ciphertext for the label τ the algorithm
produces a ciphertext C.

The two algorithms must be correct in the sense that Enc(sk, τ,m) equals the outcome of
Online-Enc(Offline-Enc(sk, τ),m). Informally, the first algorithm is the computationally more costly
procedure that can be run independently of the actual message one wishes to encrypt. Online-Enc,
on the other hand, is more efficient but can be executed only when m becomes available.

Second, we say that a scheme labHE has offline/online decryption if it admits two algorithms
Offline-Dec and Online-Dec working as follows:

10



Offline-Dec(sk,P). This algorithm takes as input the secret key and the labeled program and pro-
duces an offline secret key skoff for P. Notice that skoff does not depend on any specific ciphertext.

Online-Dec(skoff , C). On input skoff and C it outputs a message a message m.

Again, the two algorithms must be correct in the sense that Dec(sk,P, C) equals the outcome of
Online-Dec(Offline-Dec(sk,P), C). Informally, offline/online decryption allows to split the decryption
procedure into two parts: the offline one which is computationally more expensive and may depend
on the complexity of the program P; the online part that is much faster and whose running time
is a fixed polynomial in the security parameter.

4 A Construction of Labeled HE for Quadratic Polynomials

In this section we present a construction of Labeled Homomorphic Encryption that supports the
evaluation of degree-two polynomials. Our construction builds upon the technique of [11] for boost-
ing linearly homomorphic encryption schemes to evaluate degree-two polynomials on ciphertexts.
Interestingly, however, while the construction from [11] achieves succinctness only for the subclass
of degree-two polynomials where the number of degree-two monomials is bounded by a constant,
our realization achieves succinctness for all degree-two polynomials. Similarly to [11], our realiza-
tion builds upon any (linearly) homomorphic encryption scheme that is public space (e.g., [34]).
This property requires that the message spaceM is a (publicly known) commutative ring where it
is possible to sample random elements efficiently (see [11] for a more rigorous definition).

Let ĤE = ( ˆKeyGen, ˆEnc, ˆEval, D̂ec) be a public-space linearly-homomorphic encryption scheme
(see [21] for the details). Following [11] we denote with Ĉ the ciphertext space of ĤE, we use Greek
letters to denote elements of Ĉ and Roman letters for elements ofM. Without loss of generality we
assume that ˆEval consists of two procedures: one to perform (homomorphic) additions and another
to perform (homomorphic) multiplications by constants. We denote these operations with � and ·,
respectively and (abusing notation) we denote addition and multiplication in M as + and ·.

We propose a Labeled Homomorphic Encryption scheme labHE = (KeyGen,Enc,Eval,Dec) ca-
pable of evaluating multivariate polynomials of degree 2 over M, with respect to some (finite) set
of labels L ⊂ {0, 1}∗. We use a pseudorandom function F : {0, 1}k × {0, 1}∗ →M, with key space
{0, 1}k, for some k = poly(λ).

KeyGen(1λ): On input a security parameter λ ∈ N, run ˆKeyGen(1λ) to get (pk, sk′). Next, choose
a random seed K ∈ {0, 1}k for the PRF, and set L = {0, 1}∗. Output sk = (sk′,K) and
epk = (pk,L). The above assumes that pk already describes both ĤE’s message space M and
its ciphertext space Ĉ. The message space of labHE will be M.

Enc(sk, τ,m): We describe Enc directly in terms of its two components Offline-Enc and Online-Enc.
Offline-Enc(sk, τ): Given a label τ , compute b← F (K, τ) and outputs Coff = (b, ˆEnc(pk, b)).
Online-Enc(Coff) Parse Coff as (b, β) and output C = (a, β), where a ← m − b (in M). Notice

that the cost of online encryption is that of an addition in M.
Eval(epk, f, C1, . . . , Ct): Eval is composed of 3 different different procedures: Mult,Add, cMult. We

describe each such procedure separately. Informally, Mult allows to perform (homomorphic)
multiplications, Add deals with homomorphic additions and cMult takes care of (homomorphic)
multiplications by known constants.
Mult : On input two ciphertexts C ′1, C

′
2 ∈M×Ĉ where, for i = 1, 2, Ci = (ai, βi), the algorithm

computes a “multiplication” ciphertext C = α ∈ Ĉ as:

α = ˆEnc(pk, a1 · a2) � a1 · β2 � a2 · β1

11



Correctness follow from the fact that, if ai = (mi− bi) and βi ∈ ˆEnc(pk, bi) for some bi ∈M,
then

α ∈ ˆEnc (pk, (m1m2 − b1m2 − b2m1 + b1b2)+

(b2m1 − b1b2) + (b1m2 − b1b2)) = ˆEnc(pk,m1m2 − b1b2)

Add : We distinguish two cases depending on the format of the two input ciphertexts C1, C2.
If C1, C2 ∈ M × Ĉ where, for i = 1, 2, Ci = (ai, βi), then the algorithm produces a new
ciphertext C = (a, β) ∈M× Ĉ computed as

a = a1 + a2, β = β1 � β2

For correctness in this case note that if ai = (mi− bi) and βi ∈ ˆEnc(pk, bi) for some bi ∈M,
then a = (m1 +m2)− (b1 + b2) and β ∈ ˆEnc(pk, b1 + b2).

If, on the other hand, the received ciphertexts are C1, C2 ∈ Ĉ where, for i = 1, 2, Ci = αi,
the new ciphertext C = α ∈ Ĉ is computed as α = α1 � α2.

cMult : As before, on input a constant c ∈ M and a ciphertext C, we distinguish two cases
depending on the format of C.

If C = (a, β) ∈M× Ĉ, this algorithm returns a ciphertext C ′ = (a · c, c · β) ∈M× Ĉ.
If, on the other hand, C = α ∈ Ĉ, this algorithm returns a ciphertext C ′ = c · α ∈ Ĉ.
The correctness of the above operations is straightforward.

Dec(sk,P, C): As for the case of the encryption procedure, we describe the algorithm in terms of
its two components Offline-Dec and Online-Dec.

Offline-Dec(sk,P) Given sk and the labeled program P, parse P as (f, τ1, . . . , τt). For i = 1, . . . , t,
the algorithm computes bi ← F (K, τi), b = f(b1, . . . , bt) and outputs skP = (sk, b).

Online-Dec(skP , C) Parse skP as (sk, b), we distinguish two cases depending on whether C ∈
M× Ĉ or not.

If C = (a, β) ∈ M× Ĉ there are two decryption methods: (i) output m = a+ b; (ii) output
m = a+ D̂ec(sk, β).

If C ∈ Ĉ set m̂ = D̂ec(sk, C) and output m = m̂+ b.

Notice that the cost of online decryption solely depends on the cost of D̂ec and it is totally
independent of P. Moreover the decryption method (ii) does not require the offline phase.

Correctness. The overall correctness of labHE follows from the following facts:

– For every (τ,m), we have Enc(sk, τ,m) → C = (a, β) where a = m − fid(F (K, τ)). Therefore,
by construction and correctness of ĤE, we have m←Dec(sk, Iτ , C).

– For i = 1, 2, consider any two labeled programs Pi = (fi, τ
(i)
1 , . . . , τ

(i)
ti

) and ciphertexts Ci
such that mi←Dec(sk,Pi, Ci). Then for any gate g, we have that Eval(epk, g, C1, C2) outputs a
ciphertext C such that Dec(sk,P∗, C)→ g(m1,m2), where P∗ = g(P1,P2). To see this observe
that: (1) by construction a ciphertext Ci is either (mi − bi, ˆEnc(bi)) or ˆEnc(mi − bi) where

bi = fi(F (K, τ
(i)
1 ), . . . , F (K, τ

(i)
ti

)); (2) after every homomorphic evaluation of gate g we obtain

a ciphertext C that is either (g(m1,m2)−g(b1, b2), ˆEnc(g(b1, b2))) or ˆEnc(g(m1,m2)−g(b1, b2)).
By construction of Dec, clearly we have Dec(sk,P∗, C)→ g(m1,m2).
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To see the the above facts, recall from Section 3 the various properties of labeled programs, e.g., that
fid is the identity function, Iτ = (fid, τ) is the identity program with label τ , and P∗ = g(P1,P2)
is the composition of labeled programs.

Security. The following two theorems prove that our labHE scheme satisfies semantic security and
context hiding respectively.

Theorem 1. If ĤE is semantically-secure and F is pseudorandom then labHE is semantically se-
cure.

The proof is obtained via a simple hybrid argument. First, notice that if one modifies ExpSS
labHE,A(λ)

so that the b’s corresponding to τ0 and τ1 are taken at random (rather than using F ), then the re-
sulting experiment is computationally indistinguishable from the original one, under the assumption
that F is PRF. Afterwards, notice that

(m0 − b0, ˆEnc(pk, b)) ≈ (m0 − b0, ˆEnc(pk, 0))

≡ (m1 − b1, ˆEnc(pk, 0)) ≈ (m1 − b1, ˆEnc(pk, b1))

where ≈ denotes computational indistinguishability by the semantic security of ĤE and ≡ means
that the distributions are identical.

Theorem 2. If ĤE is circuit-private, then labHE is context-hiding.

Proof. We prove the theorem by showing the following simulator. Let ˆSim be the simulator for
the circuit privacy of ĤE. If f is a degree-1 polynomial the simulator Sim(1λ, sk, (f, τ1, . . . , τt),m)
computes b = f(F (K, τ1), . . . , F (K, τt)) and outputs C = (m− b, ˆSim(1λ, pk, b)). If f is of degree 2,
the simulator does the same except that it computes C = ˆSim(1λ, pk,m− b). It is straightforward
to see that by the circuit privacy of ĤE C is distributed identically to the ciphertext produced by
Eval.

5 Multi-User Labeled HE

In this section we introduce a multi-user variant of Labeled Homomorphic Encryption. The main
idea is that encryptors do not share a global common secret key. Rather, each user i employs his
own secret key uski to encrypt, yet it is possible to homomorphically compute over data encrypted
by different users. Decryption then requires knowledge of the master secret along with the public
keys of all the users whose ciphertexts were involved in the computation.

A Multi-User Labeled Homomorphic Encryption scheme consists of a tuple of algorithms mu-labHE =
(Setup,KeyGen,Enc,Eval,Dec) working as follows.

Setup(1λ). The setup algorithm takes as input the security parameter λ, and outputs a master secret
key msk and a master public key mpk. We assume that mpk implicitly contains a description of
a message space M, a label space L, and a class F of “admissible” circuits.

KeyGen(mpk). The key generation algorithm takes as input the master public key mpk and outputs
a user secret key usk and a user public key upk.

Enc(mpk, usk, τ,m). The encryption algorithm takes as input the master public key mpk, a user
secret key usk, a label τ ∈ L and a message m ∈M. It outputs a ciphertext C.

Eval(mpk, f, C1, . . . , Ct) On input mpk, an arithmetic circuit f : Mt → M in the class F of
“allowed” circuits, and t ciphertexts C1, . . . , Ct, the evaluation algorithm returns a ciphertext
C.

13



Dec(sk,upk,P, C) The decryption algorithm takes as input the secret key, a vector of user secret
keys upk = (upk1, . . . , upk`), a labeled program P, and a ciphertext C, and it outputs a message
m ∈M.

A Multi-User Labeled Homomorphic Encryption scheme is required to satisfy correctness, succinct-
ness, semantic security, and context-hiding as defined below.

Definition 10 (Correctness). A Multi-User Labeled Homomorphic Encryption scheme mu-labHE =
(Setup,KeyGen,Enc,Eval,Dec) correctly evaluates a family of circuits F if for all honestly generated

keys (mpk,msk)
$← Setup(1λ), all user keys (upk1, usk1), . . . , (upk`, usk`)

$← KeyGen(mpk), for all
f ∈ F , all labels τ1, . . . , τt ∈ L, messages m1, . . . ,mt ∈ M, and any Ci ← Enc(mpk, uskji , τi,mi)
∀i ∈ [t], ji ∈ [`]:

Pr[Dec(sk,upk,P,Eval(pk, f, C1, . . . , Ct)) = f(m1, . . . ,mt)]

is negligibly close to 1, where P = (f, τ1, . . . , τt). Probability is taken over the algorithms’ random
choices.

The notion of succinctness for multi-user Labeled Homomorphic Encryption is identical to that
given in Definition 7. Security of Multi-User Labeled Homomorphic Encryption is defined similarly
to that of labHE.

Definition 11 (Semantic Security for mu-labHE). Let mu-labHE = (Setup,KeyGen,Enc,Eval,
Dec) be a Multi-User Labeled Homomorphic Encryption scheme and A be a PPT adversary. Con-
sider the following experiment where A is given access to an oracle Enc(mpk, usk, ·, ·) that on input
a pair (τ,m) outputs Enc(mpk, usk, τ,m):

Experiment ExpSS
mu-labHE,A(λ)

b
$← {0, 1}; (mpk,msk)

$← Setup(1λ);

(upk, usk)
$← KeyGen(mpk)

(m0, τ
∗
0 ,m1, τ

∗
1 )←AEnc(mpk,usk,·,·)(mpk, upk)

C
$← Enc(mpk, usk, τ∗b ,mb)

b′←AEnc(mpk,usk,·,·)(C)
If b′ = b return 1. Else return 0.

We say that A is a legitimate adversary if it queries the encryption oracle on distinct labels (i.e.,
each label τ is never queried more than once), and never on the two challenge labels τ∗0 , τ

∗
1 . We define

A’s advantage as AdvSS
mu-labHE,A(λ) = Pr[ExpSS

mu-labHE,A(λ) = 1] − 1
2 . Then we say that mu-labHE

has semantic-security if for any PPT legitimate algorithm A it holds AdvSS
mu-labHE,A(λ) = negl(λ).

Finally we adapt the notion of context-hiding of Labeled Homomorphic Encryption to the multi-
user case. The intuitive meaning of the notion is the same, namely the decryptor does not learn
more information beyond what is in the input/output of the decryption algorithm.

Definition 12 (Context Hiding). A Multi-User Labeled Homomorphic Encryption scheme mu-labHE
satisfies context-hiding for a family of circuits F if there exists a PPT simulator Sim and a
negligible function ε(λ) such that the following holds. For any λ ∈ N, any pair of master keys

(mpk,msk)
$← Setup(1λ), any ` user keys (upk1, usk1), . . . , (upk`, usk`)

$← KeyGen(mpk), any circuit
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f ∈ F with t inputs, any tuple of messages m1, . . . ,mt ∈M, labels τ1, . . . , τt ∈ L, and ciphertexts
Ci←Enc(mpk, uskji , τi,mi) ∀i = 1, . . . , t and ji ∈ [`]:

SD[Eval(epk, f, C1, . . . , Ct), Sim(1λ,msk,upk,P,m)] ≤ ε(λ)

where P = (f, τ1, . . . , τt) and m = f(m1, . . . ,mt).

5.1 mu-labHE for Quadratic Polynomials

Here we show that the scheme of Section 4 can be easily modified to become multi-user.

Setup(1λ): On input a security parameter 1λ ∈ N, it runs ˆKeyGen(1λ) to get (pk, sk). Set L = {0, 1}∗.
Output (msk = sk,mpk = pk). The above assumes that pk already describes both ĤE’s message
space M and its ciphertext space Ĉ. The message space for mu-labHE will be M.

KeyGen(mpk): On input the master public key, the key generation algorithm samples a random

seed K
$← {0, 1}k, computes CK

$← ˆEnc(mpk,K), and outputs (upk, usk), where upk = CK and
usk = K.

Enc(mpk, usk, τ,m): Enc has two components Offline-Enc and Online-Enc.
Offline-Enc(mpk, usk, τ): Given a label τ , compute b← F (usk, τ) and outputs Coff = (b, ˆEnc(mpk, b)).
Online-Enc(Coff) Parse Coff as (b, β), output C = (a, β), where a← m− b ∈M.

Eval(pk, f, C1, . . . , Ct): This algorithm is identical to that described in Section 4.
Dec(msk,upk,P, C): As for the case of the encryption procedure, we describe the algorithm in

terms of its two components Offline-Dec and Online-Dec.
Offline-Dec(msk,upk,P) Let upk = (upk1, . . . , upk`). For all i ∈ [`], decrypt uski←D̂ec(msk, upki).

Next, parse the labeled program P, parse P as (f, τ1, . . . , τt). For i = 1, . . . , t, the algorithm
computes bi ← F (uskji , τi), b = f(b1, . . . , bt) and outputs skP = (sk, b). Notice that for every
i ∈ [t] the index ji ∈ [`] is assumed to be part of the description of the labeled program.
Namely, one knows to which input wire each user contributed.

Online-Dec(skP , C) Identical to the corresponding algorithm of Section 4.

The succinctness of mu-labHE can be checked by inspection. Correctness and semantic security of
mu-labHE are the same as for labHE. Context hiding is also very similar, with the only difference
that the simulator has to first obtain uski by decrypting upki.

6 Statistics using labHE

In this section we show that by using our constructions of (multi-user) Labeled Homomorphic
Encryption for quadratic polynomials, it is possible to compute relevant statistical functions over
encrypted data. In the next Section we will then describe two application scenarios where the specific
features of our protocol act as enablers for real-world applications. Intuitively, the restriction of
computing only quadratic polynomials can be described as follows: suppose a value x and a value y
are secret and are encrypted using our scheme. Then, one can compute any polynomial of the form
a1x

2 +a2y
2 +a3xy+a4x+a5y+a6. More generally, given an arbitrary number of encrypted values,

possibly coming from many users, one can compute any function that can be expressed as a linear
function of those values and pairwise products between those values. We will see a few interesting
examples of this next.

Consider a dataset as a matrix X = {xi,j}, for i = 1, . . . , n and j = 1, . . . , d. Number d represents
the dimension (i.e., the number of variables/columns) while n is the number of dataset members
(or rows).
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Mean and Covariance First, we show how to compute the mean and covariance over a multi-
dimensional dataset X. It is not hard to see how to extend these ideas to the computation of any
other function that can be represented with a degree-2 polynomial. Such functions include, e.g.,
the root mean square (RMS), and the Pearson’s and uncentered correlation coefficient.

The mean of the j-th column is the value µj = 1
n

∑n
i=1 xi,j . Since our labHE does not support

division, we will use it to compute homomorphically the value µ̂j =
∑n

i=1 xi,j and let the receiver
do the division after decryption. This is a natural thing to do in scenarios where the computation
conducted over the data is known to the decryptor, which is something that labelled homomorphic
encryption implicitly assumes.

For a dataset X, its covariance matrix C = {cj,k} for j, k = 1, . . . , d is defined as

cj,k =
1

n

n∑
i=1

xi,j · xi,k −
1

n2

(
n∑
i=1

xi,j

)(
n∑
i=1

xi,k

)
Again we will use the scheme to compute homomorphically the integers

ĉj,k = n2 · cj,k = n
n∑
i=1

xi,j · xi,k −

(
n∑
i=1

xi,j

)(
n∑
i=1

xi,k

)

and let the receiver obtain cj,k by doing a division by n2 after decryption.

Weighted Sum Given a dataset X = {xi,j} and a vector of weights y = {yi}ni=1, the weighted
sum of the j-th column of X is the value ωj =

∑n
i=1 xi,j · yi.

There are two situations to consider. If the weights are not secret, then the weighted sum can
be expressed as a degree-1 polynomial over the encrypted column X. If, on the other hand, the
vector of weights is itself secret, then the weighted sum becomes a degree two polynomial (an inner-
product) between two vectors of encrypted values. We will see in the next section how this can be
useful for genenetic association tests.

Euclidean Distance Given a matrix X = {xi,j} the (square of) Euclidean distance between the
j-th column of X and a vector y = {yi}ni=1 is the value δj =

∑n
i=1(xi,j − yi)2. This is an example

of a function that requires a quadratic computation if either part of the data set is encrypted.

7 Applications and evaluation

We have implemented our (multi-user) labHE realization in C starting from the GNU Multiprecision
Library4 (GMP) and the Kekkac Code Package5 (KCP). We used GMP to implement the linearly
homomorphic encryption scheme by Joye and Libert [28] (JL13) and relied on Sponge-based pseu-
dorandom function included in the KCP. The JL13 cryptosystem has message space Z2k and works
over Z∗N , where N = pq is the product of two quasi-safe primes p = 2kp′ + 1 and q = 2kq′ + 1. For
security [28] k needs to be at most 1/4 logN −λ, where λ is the security parameter. Note that tak-
ing message space Z2k allows to perform computations over the integers with k-bits precision, and
also to encode real values by using fixed point representations with suitable scaling as described,
e.g., in [13]. Although our implementation is flexible, we fixed the security level at that of 2048
RSA moduli, conjectured to correspond to roughly 100-112 bits of security.6 The message space

4 https://gmplib.org/
5 https://github.com/gvanas/KeccakCodePackage
6 https://www.keylength.com/
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was chosen to be that of bit strings of 128 bits. All our implementations are single-threaded. The
implementation is available upon request.

Our benchmarking results were collected in a standard MacBook Pro machine with a 2.7 GHz
Intel Core i5 and 16 GB or RAM. For every chosen set of parameters, we repeated the experiment
10 times, and took the median of the timings. In all cases we observed a coefficient of variation
below 10%.

Micro-benchmarks We first discuss the communication/storage costs of our solution. Every
ciphertext of our scheme, instantiated with the above parameters can be encoded into 272 bytes.
For instance, if we consider a dataset with n = 220 rows and d = 2 columns, it means that a server
has to store about 560 MBytes.

We now turn to the timings of basic operations such as key generation, encryption and decryp-
tion of level-1 ciphertexts (i.e., outputs of degree-1 functions, such as the Mean). Collected timings
are summarized in Table 1. Notably, while key generation is relatively relevant (it is executed only
once), the speed in the encryption procedure (that is executed for every dataset item) is way more
relevant for scalability. For a large data size such as the one above, encryption can be done in 12
minutes in a modest machine. As we detail in Appendix A, the encryption time of state-of-the-art
somewhat homomorphic encryption (for the same class of functions) is 85× slower, meaning that
encrypting a dataset of the above size would take about 17 hours.

Table 1. Timings of micro-benchmarks.

Operation Time (ms)
KeyGen 155.11

Enc 0.35
Dec 3.42

7.1 Application #1: Privacy Preserving Statistics on Outsourced Data

We now consider a real-world secure statistics scenario, where a potentially large data set is stored
in an untrusted Cloud and a Client can ask for the Cloud to perform statistical computations over
encrypted data.

Security model There are two variations for this scenario, with different trust models associated
with them.

The first scenario is the classical setting of computation outsourcing from a computationally
limited Client to a powerful worker. Namely, the Client acts as both the Data Provider and the
Receiver. In this case, the trust relation involves the Client and the Cloud only, as one can assume
that data is encrypted by the Client itself and the Cloud is used as a computational resource, which
is assumed to be honest-but-curious.

The second scenario involves three agents, and the trust relations are more complex. A Data
Provider is willing to allow the Client to perform statistical computations on the data and learn
the results, but not to access the raw data itself. To this end, it encrypts the data and outsources
it to the Cloud, which is trusted not to provide this encrypted data to the Client (as otherwise the
raw data would be revealed). The Client trusts the Data Provider to encrypt the correct data, and
the Cloud to follow the protocol.
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The advantage of our protocol in this case, is that it permits achieving unprecedented levels of
efficiency for the statistical functions we have shown to fall within the class of computations that can
be encoded as degree two polynomials. We emphasize that these applications are excellent examples
of the advantages of our scheme, since they do not require hiding the details of the computation
that is being carried out from the Client, although they may require hiding the originally encrypted
input values. It is clear that (non-labelled somewhat) homomorphic encryption could be used for
the same purpose, and it could even hide the computation being carried out, but our results show
that this would be a costly overkill (cf. Appendix A).

Indeed, labelled homomorphic encryption provides a new solution for these scenarios, where
knowledge of the computation being carried out on the Client side can be used to boost the
performance of the entire system (whilst still keeping Client-side computation at a very low cost).

Benchmarks We measured the timings of running homomorphic computation and decryption
for the mean and covariance functions described in Section 6. We considered datasets with n rows
and d columns where n and d are chosen among the following: n ∈ {210, 212, 214, 216, 218, 220},
d ∈ {1, 2, 4, 8, 12, 16, 20, 24}.

When computing only degree-1 functions, as is the case of the Means computation, our scheme
offers two possible methods for homomorphic evaluation and decryption that permit avoiding pre-
processing on the Client side, at a small extra cost in overall execution time. In Table 2 we show the
timings obtained for datasets of fixed dimension d = 2 and varying number of rows, including the
two options. We can see from the table the benefit of precomputation on the Client side: by allowing
the Client to precompute some meta-information that depends on computation being carried out
and on the labels associated with the input data, the overall efficiency of the protocol is significantly
improved; moreover, the cost to the Client grows very slowly with the size of the computation.

Table 2. Timings (in seconds) for Mean query on datasets of dimension d = 2 and varying number of rows.

With offline decryption No offline decryption
Dataset size Eval Dec (off) Dec (on) Dec (total) Eval + Dec Eval Dec Eval + Dec

1024 0.0001 0.0012 0.00001 0.0012 0.0012 0.0051 0.0070 0.0121
4096 0.0002 0.0046 0.00001 0.0046 0.0048 0.0205 0.0070 0.0275

16384 0.0008 0.0184 0.00001 0.0184 0.0192 0.0856 0.0070 0.0926
65536 0.0037 0.0739 0.00001 0.0739 0.0776 0.3249 0.0067 0.3316

262144 0.0122 0.2950 0.00001 0.2950 0.3072 1.3086 0.0063 1.3149
1048576 0.0630 1.1775 0.00001 1.1776 1.2405 5.5291 0.0063 5.5354

In Tables 3 (resp. 4) we provide timings for the processing of the Covariance query for a fixed
number of 2 columns and growing number of rows (resp. for a fixed number of 4096 rows and
a growing number of columns). Again, we can see that, although the decryption cost depends
on the computation that was carried out, it remains very low in practice (e.g., 5 seconds for
a dataset of over 2 million elements). More importantly, this offline decryption cost is always
(significantly) dominated from above by the cost of running Eval on the server side. This means
that the receiver could run the offline decryption while the server is computing the result, in which
case the real decryption time becomes virtually constant and independent of f . Furthermore, the
overall processing power required to run the protocol is much smaller than that required by solutions
based on other somewhat homomorphic encryption schemes, as discussed in Appendix A.

Regarding bandwidth and storage needs, the 560Mbytes value we provided above for a data set
of size 220 and dimension 2 corresponds to the larger data set in Table 2, and it increases linearly
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Table 3. Timings (in seconds) for Covariance queries on datasets of dimension d = 2 and varying number of rows.

Set size Eval Dec (off) Dec (on) Dec (tot)
1024 2.27730 0.00462 0.01046 0.01507
4096 8.98019 0.01845 0.01045 0.02891

16384 37.63178 0.07351 0.01046 0.08398
65536 142.28464 0.29512 0.00949 0.30460

262144 572.39846 1.17653 0.00949 1.18602
1048576 2391.64744 4.71030 0.00949 4.71979

with the number of elements in the data set. Recall that every ciphertext can be encoded into 272
bytes, so that the cost for the Cloud is n · d · 272 bytes. The comparison we present in Appendix A
indicates that for the alternative somewhat homomorphic encryption scheme we analysed, the same
data set would occupy 249 GBytes. The communication cost for every result sent from the Cloud
to the Client is just 272 bytes.

Table 4. Timings (in seconds) for Covariance queries with n = 4096 rows and varying dimension d.

Set dim. Eval Dec (off) Dec (on) Dec (tot)
1 2.9804 0.0069 0.0032 0.0101
2 9.1942 0.0184 0.0104 0.0289
4 31.0953 0.0553 0.0349 0.0901
8 109.3363 0.1839 0.1139 0.2978

16 231.0709 0.3862 0.2487 0.6350
20 404.4647 0.6627 0.4737 1.1363
24 624.9429 1.0124 0.6621 1.6745

7.2 Application #2: GAS

Genetic Association Studies (GAS) look for statistically relevant features across the human genome,
singling out those scientifically correlated with a given trait. GAS are carried out by performing
a series of tests, each of them targetting a particular trait, and taking into consideration trait-
associated information encoded in specific positions of an individual’s genome, the so-called Single
Nucleotide Polymorphisms (SNP).

Technically, SNPs are first identified by looking at statistically meaningful population groups
and searching for points (single nucleotides) in the genome, where deviations can be used to identify
outliers (i.e., most of the population is consistent at that position, but some individuals are not).
The resulting SNP data-sets are then stored and data-mined for correlations, e.g., with medical
information for the same population, to look for associations between SNP information and clinically
relevant traits. The resulting correlations can then be used to define association tests to evaluate
the likelihood of a (new) individual from the same population displaying the same trait.

Each test computes a Genetic Risk Score (GRS) that is essentially a weighted sum of the infor-
mation collected for each SNP; the weights correspond to risk estimates computed for a reference
population, typically the logarithm of an odds-ratio [32]. There are many applications of SNP geno-
typing [37], including personalised medicine, predictive medicine, forensics, prognosis, and many
other potentially revolutionary (and not at all consensual) developments in medicine and beyond.
Access to such tests is, for the most part, controlled by the health services of different countries,
but a new trend of Direct-to-Consumer (DTC) genomic analysis is arising, where companies offer
a multitude of association tests to the public. Privacy is obviously a paramount concern in such
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services, as revealing genome information to any public or private organization can have unpre-
dictable consequences, not only now but, perhaps most importantly, in the future, at a time when
technology (and society itself) may have evolved to make use of genetic tests for purposes such as
insurance, ethnicity profiling, etc.

In this paper we propose a technology that permits performing GAS securely, without com-
promising the privacy of the patient, and offering a trade-off between security and efficiency that
makes it an ideal candidate for practical deployment. Our solution also protects potential intellec-
tual property that the laboratories or medical centers carrying out the tests may want to protect,
and it may be used in a commodity cloud, since all computation is carried out over encrypted data.

The computations of GAS From a computational point of view, the statistically relevance of
an SNP for a particular individual can be represented as a pair (p, s), where p ∈ N is the position
in the genome that identifies the SNP, and s ∈ {0, 1, 2} is the distinguishing feature (possibly none)
that is observable at that point in a particular individual. One of the inputs to a GAS is therefore
a list G of such pairs. We will refer to G[p] as the value of s that corresponds to position p in G.
For each test included in the GAS, one needs to consider another input P , which is provided by
the entity performing the study, and that contains the parameters required to perform a statistical
computation over G. The test result, a Genetic Risk Score, is obtained by computing a floating
point value T (G,P ), which is a weighted sum that can be written as [32]:

T (G,P ) :=

k∑
i=1

(
ai ·G[pi]

2 + bi ·G[pi]
)

+ c . (1)

Here, P = (k, c, [(pi, ai, bi)]
k
i=1), where k is the number of relevant SNPs, c is a floating point

number, and (pi, ai, bi) for i ∈ [1..k] are the positions and association parameters (also floating
point numbers) for each relevant SNP.

The total number of SNPs that have been documented up to date in the human genome is
in the range of 150M. However, only a very small fraction of those, under 100K, has been looked
at from a clinical analysis point of view7 and, indeed, the number of medical conditions that have
been scientifically related to a Genetic Risk Score is around 5000.8 Furthermore, specific association
tests, e.g., for a medical condition, will focus on a very small number of SNPs ranging from 1 or 2,
to at most a few hundred and a safe estimate is that, over all current association tests, each of them
will on average look at 50 SNPs. This places the number of clinically relevant SNPs, at present,
at around 30K. Put differently, this is roughly the number of SNPs that one needs to look at in
order to evaluate all the Genetic Risk Scores that have currently been associated with a medical
condition.

We note that this stands in contrast with the current capability of extracting and data-mining
SNP genotyping information: in Exome-Wide Association Studies [30] a given exome will yield
roughly 50K potentially interesting SNPs; whereas in Genome-Wide Association Studies, these
figures can go up to 10M. These figures indicate that the 30K upper-bound we identified above is
likely to grow rapidly in coming years, and will likely increase by one order of magnitude in the
relative short term, and potentially by two orders of magnitude in the long run. We will use these
rough estimates to measure the practicality of our proposed solution for Privacy-Preserving GAS
later on.

7 https://www.ncbi.nlm.nih.gov/snp
8 http://www.disgenet.org/web/DisGeNET
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Security Model To describe the security goals of the system we propose, we present in Figure 2
the architecture of a Secure Direct-to-Consumer GAS.

CGI Cloud GAS

Patient
(pk, sk)

Sample s

Epk(Gs) Epk(P )

Epk(T (Gs, P ))

Fig. 2. Architecture of a Secure Direct-to-Consumer GAS.

The colors in the figure represent trust domains. The Patient wishes to be tested by the GAS
service and trusts a Certified Genotyping Institution (CGI) to analyse a biological sample s, extract
SNP information Gs, correctly encrypt it under the Patient’s public key pk, and then erase all of the
SNP-related information. This level of trust is implicit in GAS systems and cannot be eliminated
from such a system, unless the Patient can perform the genotyping activities autonomously.

The GAS is trusted by the Patient to correctly encrypt the test parameters P . In security terms,
the GAS is assumed to be honest-but-curious, in the sense that it is trusted to follow a set of rules
of the protocol, but not trusted to learn the genetic data of the Patient—even if it could learn the
information that the Patient provided to the Cloud.

The Cloud is also assumed to be honest-but-curious by both the Patient and the GAS. More
precisely, the following behaviour is assumed for the Cloud:

– The Cloud is trusted by the GAS not to reveal the encrypted test parameters to the Patient;
– The Cloud is trusted by the Client to correctly perform the computation (over encrypted data).9

Note that the Cloud is not trusted by the Client to learn genetic data, and it may also be
assumed to share data with the GAS, which means that this trust model is compatible with the
most likely scenario that the GAS owns or contracts the Cloud service itself, and uses it to provide
a service to the Patient.

Finally, we assume that there is a predefined set L of all positions (loci) of relevant SNPs, which
is public and known by all parties. This could be the union of all positions that the GAS may test
in all of its analyses—if this is not sensitive information from the point of view of the GAS—or it
may be a larger set of all positions of SNPs that are known to be clinically relevant by the scientific
community. In the first case we would have |L| in the range of a few hundred, and in the second
case we would have |L| in the range of the 30K, as things stand today [27,14]. These numbers may
increase by a factor of 10 and even 100 in the short and long terms, respectively. This way, in order
to ask for a test that involves only a subset L′ ⊂ L of positions, the GAS can simply work with the
full set L and set ai = bi = 0 for all pi ∈ L \ L′.
Under these assumptions, our solution guarantees that nothing is leaked about the genetic infor-
mation of the Patient nor about the concrete parameters used by the GAS to perform its tests.

9 We note that recent developments in commodity hardware such as Intel’s Software Guard Extensions permit
replacing this assumption with an attestation mechanism [3].
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Furthermore, if one sets L to include all clinically relevant SNPs, then no-one except the Patient
and the medical center defining the tests will learn which traits are being tested—crucially this
means that all access patterns over the stored genome data are kept private. Otherwise, it will be
publicly known that the Patient was tested at positions relevant for a specific GAS and no more.

Our solution We propose to use multi-user Labeled Homomorphic Encryption scheme introduced
in this paper to carry out the computation over encrypted data in the Cloud. The natural question
that arises is whether such a solution is practical. For this reason, we will also provide an extensive
experimental validation that answers this question in the affirmative. We begin by describing our
protocol:

Setup: The Patient generates a key pair (pk, sk)←Setup(1λ) for the mu-labHE scheme, and publishes
its public key.
SNP Encryption: The CGI generates Gs, containing a pair (pi, si) for all positions pi ∈ L.
It then generates a key pair (uskCGI , upkCGI)←KeyGen(pk), and constructs a list EGs of tu-
ples 〈pi,Enc(pk, uskCGI , 2 · i − 2, s2

i ),Enc(pk, uskCGI , 2 · i − 1, si)〉, for p1, . . . , p|L| ∈ L, and sends
(EGs, upkCGI) to the Cloud.
Parameter Encryption: For each test with parameters P that it may wish to perform, GAS gen-
erates a key pair (uskGAS , upkGAS)←KeyGen(pk), constructs a list EP of tuples 〈pi,Enc(pk, uskGAS , pi, 2·
i − 2, ai),Enc(pk, uskGAS , 2 · i − 1, bi)), for p1, . . . , p|L| ∈ L, and sends (EP,Enc(pk, uskGAS , 2 ·
|L|, c), upkGAS) to the Cloud.
Test Computation: The Cloud uses the Eval algorithm of mu-labHE to compute an encryption
Epk(T (Gs, P )) and sends it back to the Patient along with (upkCGI , upkGAS).
Result: The patient uses its secret key sk to recover the test result.

How the test result is used by the Patient is beyond the scope of this paper. We envision that for
some tests the patient may be provided sufficient information to analyse the result autonomously;
for other tests, the result can be shared with the GAS after the protocol is concluded to obtain an
informed analysis of the implications.

Security rationale We have proven that our encryption scheme has semantic security and context-
hiding, and that it can evaluate computations that can be expressed as quadratic polynomials.
Semantic security ensures that honest-but-curious adversaries, such as those contemplated in our
model, obtain no information about encrypted data, except for its length. Context hiding ensures
that even the Patient, with knowledge of his secret key, obtains no information about the (possibly
proprietary) test parameters P provided by the GAS. To show that we achieve our security goal,
it therefore suffices to ensure that the length of the encrypted data exchanged by the parties does
not reveal sensitive information. On the other hand, to show that we achieve correctness, it suffices
to show that the GAS computation can be correctly expressed as a quadratic polynomial on the
values that are provided to the Cloud in encrypted form.

For security, it is easy to see that the length of all data provided to the Cloud is independent of
both Patient data and test parameter data. We achieve this by fixing the set L of relevant positions
and always encoding information in all positions for all patients and all tests. Indeed, both EGs
and P will always be of length 2 ∗ |L|. The lengths of the encrypted values themselves, i.e., SNP
features and floating-point test parameters, are fixed by their computational representations, e.g.,
64-bits for integers and double-precision floating point numbers will suffice.

Although this approach may seem wasteful of resources, we emphasize that this is essential to
ensuring that the Cloud (or some external observer) can infer nothing from an encrypted version
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of Gs and P , in addition to the public set L itself, under the assumption that the encryption
scheme is semantically secure. Furthermore, as we will see in our experimental evaluation, the
efficiency of our homomorphic encryption scheme works as an enabler for this level of security, as
it permits performing computations in reasonable time. Previous solutions aiming for this level of
security either relied on heavy cryptographic machinery such as oblivious RAM [29]—to hide all
access patterns to the stored genomic data—and were significantly heavier from a computational
and infrastructural point of view because computation was only feasible if carried out by multiple
collaborating (and assumed to be non-colluding) servers—our solution works with a single Cloud
server. More efficient solutions proposed in the literature either compromise on security or they
require dedicated trusted hardware on the Patient side [17,4].

It remains to show that our protocol is correct. This follows from the fact that T (Gs, P ) can be
computed as a quadratic polynomial of the form x0 ·y0 +x1 ·y1 + . . .+xk ·yk+c, where k = 2 · |L|−1
and, for i ∈ [0..|L|), we have x2·i = G[pi+1]2, x2·i+1 = G[pi+1], y2·i = ai+1 and y2·i+1 = bi+1.

Benchmarks Figure 3 shows the timing data we collected when evaluating our protocol on data
sets of increasing sizes. The offline encryption and decryption times increase linearly with the
number of SNPs, although the offline decryption time is under 90ms even for 30000 SNPs, whereas
the off-line encryption time gradually grows up to 45s. This difference is justified by the fact that
off-line decryption precomputation works on raw label data, whereas off-line encryption is creating
a large number of ciphertexts. For this reason we have shown the two curves in logarithmic scale.
This also shows that the overall decryption time, even accounting for the preprocessing is very
light: note that on-line decryption takes constant time in the range of 3ms. Online encryption time,
on the other hand is very fast, and can be done in under 24ms even for 30000 SNPs. Finally,
the homomorphic computation in the cloud, grows linearly with the number of points, and it is
reasonably small, clearly in the range of practicality, and even using a single modest server and no
parallelism. In our machine, the processing time was around 47s for a risk analysis involving 30000
SNPs. We recall that this was the estimated worst case scenario for the union of SNPs corresponding
to all GAS-relevant information known to today. The size of the encrypted data processed by the
cloud is, in this case, 32MByte, half of it produced by the Patient and the rest by the medical
centre. For each test that the Medical Centre might perform, an additional 16MByte would be
uploaded to the Cloud, and could be used over the same genomic data provided by the Patient.
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Fig. 3. Timings for the various algorithms in the secure GAS protocol for increasing numbers of SNPs.

23



To evaluate the scalability of our solution, we considered a Map-Reduce scenario, in which the
multiplicative part of the weighted sum computation for GAS is split by multiple servers in the
Cloud, in such a way that many partial weighted sums can be computed in parallel, and later on
combined into a final aggregated result. Table 5 shows the result of our analysis. Presented times
include the overhead of reading data from storage and writing the results back for two scenarios
where one would outsource batches of 100K and 50K SNPs for partial sum computation in each
server. One can see that the time for partial sum computation is a fraction of that required for
the product computation and, similarly, the aggregation time for 10 parallel jobs is under one
millisecond. We are, of course ignoring in our analysis the communication time and, to compensate
for that, we include also in the amount of data that must be conveyed to each server and the size of
the results that must be retrieved. Overall, using this strategy, to compute a GAS over 1M SNPs
using 10 servers, the overall computation time would be in the range of 3 minutes, excluding the
communication overhead; this would remain essentially constant for 2M SNPs if one can duplicate
the number of servers.

Table 5. Timings for scalable secure GAS using map-reduce.

SNPs per server 50K 100K Unit
Product time per server 82 168 sec.
Partial sum time per server 2,52 5.13 sec.
Sum time (10 servers) 0,8 0.9 millisec.
Raw data per server 53.1 106.3 Mbytes
Result data per server 256 256 bytes

8 Further related work

Ayday, Raisaro, Hubaux, and Rougemont [2] presented a cryptographic protocol for a security model
that inspired our solution for secure GAS. The roles of the Patient and the Certified Institution
are the same, but the trust models between the Cloud (there called Storage and Processing Unit)
are problematic for real-world applications. Indeed, the Cloud and the Medical Centre are assumed
to be able to know which and how many SNPs are being tested in a particular evaluation, which
means that both the privacy of the Patient and that of the Medical Centre can be damaged be
engaging in the computation. Nevertheless, the solution guarantees that the concrete SNP values
are known only to the Patient, and that the test parameters used by the Medical Centre are not
revealed. This is achieved by revealing the test result to the Medical Centre implicitly, whereas in
our solution the Patient can choose to do so.

Danezis and De Cristofaro [17] revisit the scenario above and propose a solution that no longer
leaks which and how many SNPs are being tested. This is achieved by shifting part of the com-
putation to the Client side and requires the Patient to possess a trusted hardware token (e.g., a
smartcard) to participate in the protocol. This means that the scalability properties and deploy-
ment ease of this solution are limited. The same authors also present an alternative solution that
is based on secret-sharing-based multiparty computation, but here the trust model is different: one
must assume that the Cloud and the Medical Centre do not collude.

Barman et al. [4] look at various potential security problems in Genetic Risk Tests such as the
ones we consider in this paper. In particular, the approach of encrypting the entire set of relevant

24



SNPs, as we propose, is identified as a valid countermeasure for test inference attacks enabled by the
SNP position leaks described above. The drawback pointed out for this countermeasure is impact
on performance and scalability. The proposed solution in that paper implies a (controlled) com-
promise of the Medical Centres’ privacy. Our work shows that using present-day Cloud technology,
performance and scalability need not be an issue, and that such a compromise may not be needed.

More intricate solutions for hiding SNP patterns have been proposed based on Oblivious
RAM [29] and Private Information Retrieval [26]. However, here the permformance and scala-
bility problems associated with existing solutions for these cryptographic problems are significant
and, indeed, as pointed out by [4] the functionalities supported by such primitives are an overkill
for this application scenario. We have discussed the main differences to our solution in the main
text.

Other homomorphic encryption schemes could be used to address the same scenario of ge-
nomic analysis we consider. Dowlin et al. [33] present a framework for deploying homomorphic
encryption-based secure computation for bioinformatics. The authors describe how the Simple En-
crypted Arithmetic Library (SEAL) can be used to compute various bioinformatics-related statistics
using the YASHE [7] homomorphic encryption scheme (although SEAL 2.0 implements the FV ho-
momorphic encryption scheme). Overall, we found that implementing computations such as the
ones adopted in this paper with SEAL, at a security level of 128-bits, turns out to be 50× – 400×
slower and require 400× more bandwidth than using the solution we propose.

A series of other works focuses on using somewhat homomorphic encryption on bioinformatics
applications. We mention a few. Kim and Lauter [31] present a study on how various genomic
analyis statistics can be carried out using both the YASHE [7] and BGV [22] schemes. In [6],
predictive analysis is carried out over encrypted health data, and in [38], HELib [25] is used to
construct a secure solution to the challenges of the 2015 iDASH challenge.

9 Conclusions

We presented a new methodology for processing remotely outsourced data in a privacy preserving
way via the notion of Labeled Homomorphic Encryption. We showed an efficient realization and
implementation of this primitive that targets computations described by degree-2 polynomials, with
applications to executing statistical functions on encrypted data. Our experiments confirmed the
practicality of our solution showing that it outperforms solutions based on somewhat homomorphic
encryption. Our current solutions achieve privacy against a honest-but-curious Cloud server. In
order to achieve security against malicious servers, one can use verifiable computation protocols in
a generic fashion, as explained in [19]. Unfortunately, applying this idea generically to our schemes
does not yield an efficient solution. Informally this is because modeling algebraic operations over Z∗N
is expensive when using state-of-the-art VC protocols (such as [35]). Designing an ad-hoc verifiable
computation mechanism for our schemes while preserving efficiency is therefore a promising future
direction for this work.
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A Comparison to SHE

As we mentioned, a solution for the applications considered in our work can also be obtained by
using somewhat homomorphic encryption schemes supporting quadratic polynomials. As we argue
in this section, these solutions are however more expensive in terms of both communication and
computation.

Specifically, we compared our solution against the scale-invariant FV [18] homomorphic encryp-
tion scheme and its implementation in the library SEAL 2.0 [33].10 We considered an instantiation
of FV with parameters optimized to support the same security level and the same computations as
our solution, namely degree-2 polynomials over integers with 128-bits precision (considering that
both our applications aim to support up to 220 additions of degree-2 terms). Integers were encoded
in FV using the IntegerEncoding utility provided by SEAL. The FV scheme works over a polyno-
mial ring R := Z[X]/(Xn + 1), so that its message space is Rt := R/tR and its ciphertext space
is Rq := R/qR, for two integers t and q. In our instantiation we used n = 4096, t = 226, and
q a 116-bits prime. In our experimentation we also tested the BGV homomorphic encryption [8]
implemented in HElib [24]. However, for computations with few multiplications, such as the ones
in our applications, a scale-invariant scheme such as FV performs better.

10 http://sealcrypto.codeplex.com
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Table 6. Timings (s) for Mean and Covariance queries on data sets of dimension d = 2 and varying number of rows
using FV.

Set size Eval(Mean) Eval(Cov) Dec(Mean) Dec(Cov)
1024 0.4695 122.3210 0.0127 0.0337
4096 1.9499 486.0580 0.0140 0.0311

16384 8.7016 1931.2000 0.0127 0.0311

Micro-benchmarks We first discuss the communication/storage costs. Every ciphertext of the
FV scheme instantiated with the above parameters is 118.8 KBytes. If we consider a dataset with
n = 220 rows and d = 2 columns, it means that the Cloud has to store about 249 GBytes, whereas
with our solution the storage cost would be about 560 MBytes. Timing-wise, the basic operations
took 129.243ms for key generation, 30.284ms for encryption and 9.869ms for decryption, so a
parallel can be drawn to that in Table 1. We can see that, although our key generation time is
slightly larger (this is justified because we precompute some constant values that are useful to
speed-up encryption, evaluation and decryption), the two values are close. On the other hand, an
encryption in our scheme is over 80 times faster and decryption time for a fresh ciphertext is at
least three times faster. Nevertheless, as we will see below, the most significant differences arise in
the evaluation of computations over programs of increasing size.

A.1 Application #1: Secure statistics

We measured the performance of the FV somewhat homomorphic encryption in processing the
statistics queries of our first application. We measured the timing of homomorphic computation
and decryption for the mean and covariance functions described in Section 6. Since here we are
only interested in showing a comparison to our solution we only report the timings obtained when
considering datasets of fixed dimension d = 2 and varying number of rows n ∈ {210, 212, 214}.
We note that for larger datasets the FV-based solution we were not able to run the benchmarks
in the same machine where we collected the remaining data due to excessive use of memory. The
timings are provided in Table 6. By comparing the numbers against those obtained with our solution
provided in Tables 2 and 3, one can see that our solution is considerably faster. The processing
(including evaluation at the Cloud and decryption at the Client) of a Mean query is at least 400×
faster, while that of a Covariance query is at least 50× faster.

A.2 Application #2: GAS

We measured the performance of using FV in the GAS application. Considering a risk analysis
involving 30K SNPs, the size of encrypted data processed by the Cloud is, using FV, 14 GBytes,
which is over 400 times more than the space required by our solution. For the same risk analysis,
the processing time for computing the Genetic Risk Score using FV was around 100 times slower
than the ones reported in Section 7. The benchmarking platform quickly becomes unstable due to
the large memory requirements.
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