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Abstract

Cryptography is essential for the security of Internet communication, cars, and
implanted medical devices. However, many commonly used cryptosystems will be
completely broken once big quantum computers exist.

Post-quantum cryptography is cryptography under the assumption that the at-
tacker has a large quantum computer; post-quantum cryptosystems strive to remain
secure even in this scenario. This relatively young research area has seen some suc-
cesses in identifying mathematical operations for which quantum algorithms offer
little speedup, and then building cryptographic systems around those. The cen-
tral challenge in post-quantum cryptography is to meet demands for cryptographic
usability and flexibility without sacrificing trust.

1 Introduction

Attackers are recording, and sometimes forging, vast volumes of human communication.
Some of this communication is protected by cryptographic systems such as RSA and
ECC, but if quantum computing scales as expected then it will break both RSA and
ECC. We are in a race against time to deploy post-quantum cryptography before quantum
computers arrive.

This article reviews what cryptography does, and the damage done by quantum
computing. It then surveys several major candidates for post-quantum cryptography,
and concludes with a look to the future.
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2 Introduction to cryptography

When a user visits a website starting with https, the user’s computer uses “Transport
Layer Security” (TLS) to connect securely to the web server. TLS combines a sequence of
cryptographic operations to ensure that no third party can understand what is being sent
(confidentiality), that no third party can modify the messages without being detected
(integrity), and that no third party can impersonate one of the communicating parties
(authenticity).

Cryptographers typically call the communicating parties Alice and Bob, even though
in real life the parties are typically computing devices, such as desktops, laptops, cell
phones, or smart cards. A party is identified by knowing certain secret values that
are unique to it or to a connection. Cryptographic functions can be categorized into
symmetric functions and public-key functions, depending on who has access to those
secret values, the keys.

In symmetric cryptography a key is known to both communicating parties. An en-
cryption algorithm requires use of an encryption key kenc and the matching decryption
algorithm uses the same key. Alice uses kenc to encrypt a message m into a ciphertext c
for Bob; Bob then uses kenc to decrypt c obtaining m. An encryption function is called a
block cipher or stream cipher depending on whether it requires m to have a fixed length
(the block length) or can handle a stream of bits of arbitrary length. A block cipher
can be turned into a stream cipher by defining how messages longer than one block
are processed and how to fill up short messages to the block length by using a form of
padding.

Symmetric keys can also be used for authentication: if only Alice and Bob know
kauth then Alice can apply kauth to a challenge string provided by Bob to prove that she
has access to the key and Bob can verify the computation. Alice can also apply kauth
to a ciphertext; this provides not only authenticity but also integrity for the message.
These cryptographic functions are called message-authentication codes or just MACs.

Hash functions map strings of arbitrary length to strings of some fixed length n. In
this article we consider only hash functions designed to make the following operations
computationally hard: (1) given a value z in the image of h find a preimage, i.e. a
string m with h(m) = z; (2) given a string m and h(m) find a second preimage, i.e. a
string m′ 6= m with h(m) = h(m′); and (3) find a collision, i.e. strings m 6= m′ with
h(m) = h(m′). Hash functions provide compact fingerprints of messages; a small change
to the message produces a completely different fingerprint. MACs are often built from
hash functions.

In public-key cryptography each party has two keys: a public key and a private key.
The private key is only known to the party while the public key can be made public.
Given Alice’s public encryption key anybody can encrypt a message to her while only
she is in possession of the matching private key which she uses to decrypt.

Public-key signatures authenticate messages with public-key cryptography. A sig-
nature system has Alice perform a computation using her private signing key and the
message m in a way that everybody can verify it using her public signing key but that
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Name function pre-
quantum
security
level

post-quantum
security level

Symmetric cryptography

AES-128 [1] block cipher 128 64 (Grover)

AES-256 [1] block cipher 256 128 (Grover)

Salsa20 [2] stream cipher 256 128 (Grover)

GMAC [3] MAC 128 128 (no impact)

Poly1305 [4] MAC 128 128 (no impact)

SHA-256 [5] hash function 256 128 (Grover)

SHA-3 [6] hash function 256 128 (Grover)

Public-key cryptography

RSA-3072 [7] encryption 128 broken (Shor)

RSA-3072 [7] signature 128 broken (Shor)

DH-3072 [8] key exchange 128 broken (Shor)

DSA-3072 [9, 10] signature 128 broken (Shor)

256-bit ECDH [11, 12, 13] key exchange 128 broken (Shor)

256-bit ECDSA [14, 15] signature 128 broken (Shor)

Table 1: Examples of widely deployed cryptographic systems and their security levels
against the best pre-quantum and post-quantum attacks known. Security level b means
that the best attacks use approximately 2b operations. For hash functions, “security” in
this table refers to preimage security.

nobody else could have produced it. Like a MAC, a signature system ensures authentic-
ity and integrity of the message. The key differences are that a signature can be verified
by anybody using the public key, while a MAC is between the parties sharing kauth, and
that only one single party could have produced a valid signature while a MAC could
have been computed by Alice or Bob.

Public-key signatures are used in certificates to guarantee authenticity of websites,
in passports to certify the carrier as a citizen and to ensure integrity of the stored
information, and in operating system upgrades to ensure that the files originated from
a trusted source and have not been modified. These files are typically very large; the
signature system signs hashes of the files.

In TLS, public-key encryption is used in a first phase for Alice and Bob to establish
a shared symmetric key. Signatures guarantee the authenticity of the public keys. The
bulk of the communication is then secured by symmetric cryptography using a block or
stream cipher along with a MAC.
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3 The apocalypse: Shor’s algorithm

In the popular RSA public-key system [7], the public key is a product N = pq of two
secret prime numbers p, q. The security of RSA relies critically on the difficulty of finding
the factors p, q of N . However, in 1994, Shor [16] introduced a fast quantum algorithm
to find the prime factorization of any positive integer N .

There has been some research into analyzing and optimizing the exact costs of Shor’s
algorithm: in particular, the number of qubits required, and the number of qubit op-
erations required. For example, a variant of Shor’s algorithm by Beauregard [17] uses
O(n3 log n) operations on 2n + 3 qubits if N = pq fits into n bits. One can reduce the
number of operations to n2+o(1), at some expense in the number of qubits. One can also
run many of those operations in parallel.

Internally, Shor’s algorithm evaluates a periodic function on a superposition of all
inputs within a wide range; applies a quantum Fourier transform to obtain an approx-
imate superposition of periods of the function; and measures this superposition to find
a random period. The periodic function is e 7→ ae mod N , where a is a random integer
coprime to N . If N is not a power of a prime (an easy case to recognize) then a random
period reveals a factor of N with significant probability.

Shor introduced a similar algorithm to quickly find periods of the function e, f 7→
gehf mod p, revealing k such that h = gk mod p. Replacing multiplication mod p with
addition of points on an “elliptic curve” mod p breaks “elliptic-curve cryptography” [11,
12] (ECC), a popular alternative to RSA.

These algorithms, when applied to widely deployed public-key sizes for RSA and
ECC, require billions of operations on thousands of logical qubits. Fault-tolerant at-
tacks seem likely to require trillions of operations on millions of physical qubits. Per-
haps quantum computing will encounter a fundamental obstacle that prevents it from
ever scaling successfully to such sizes. However, no such obstacles have been identified.
Prudent risk management requires defending against the possibility that these attacks
will be successful.

4 Grover’s algorithm

Many more cryptographic systems are affected by an algorithm that Grover [18] intro-
duced in 1996. This algorithm is also the foundation for most, although not all, of the
positive applications that have been identified for quantum computing.

Grover originally described his algorithm as searching an unordered database of size
N using

√
N quantum queries. This begs the question of why the database creator

did not simply put the database into order, allowing it to be searched using O(logN)
queries. A closer look at the details of Grover’s algorithm also raises difficult questions
regarding the physical cost of quantum database queries.

It is better to describe Grover’s algorithm as searching for roots of a function f : i.e.,
searching for solutions x to the equation f(x) = 0. If one out of every N inputs is a root
of f then Grover’s algorithm finds a root using only about

√
N quantum evaluations
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of f on superpositions of inputs. If f can be evaluated quickly by a small circuit then
quantum evaluations of f do not use many qubit operations. This circuit condition often
holds for the functions f that appear in cryptography.

Assume, for example, that a user is known to have encrypted 128-bit plaintexts
“7” and “8” under a secret 128-bit AES key k, producing a 256-bit ciphertext c =
(AESk(7),AESk(8)) visible to the attacker. Define f(x) = (AESx(7),AESx(8))−c. This
function f can be evaluated quickly (about 20000 bit operations) by a small circuit,
and Grover’s algorithm finds a root of f using only about 264 quantum evaluations of
f (overall [19] about 286 “T-gates” and a similar number of “Clifford gates” applied to
about 3000 qubits). Presumably this root is k: unless AES is deeply flawed, there will
be at most a few pairs of distinct 128-bit keys x, k with collisions (AESx(7),AESx(8)) =
(AESk(7),AESk(8)), and the user will not have selected one of those keys by chance.

Grover’s speedup from N to
√
N is not as dramatic as Shor’s speedup. Furthermore,

each of Grover’s
√
N quantum evaluations must wait for the previous evaluation to

finish. If
√
N exceeds the time T available then Grover’s algorithm cannot use fewer

than N/T evaluations spread across N/T 2 parallel quantum processors. This is a factor
T better than pre-quantum techniques, but this improvement could be wiped out by
quantum overhead: perhaps scalable quantum computers will be built and will run
Shor’s algorithm successfully, but Grover’s algorithm will be useless.

On the other hand, if qubit operations are small enough and fast enough, then
Grover’s algorithm will threaten many cryptographic systems that aim for 2128 security,
such as 128-bit AES keys. We recommend simply switching to 256-bit AES keys: the
extra costs are rarely noticeable.

5 Post-quantum cryptography

Table 1 summarizes the effects of Shor’s and Grover’s algorithms upon typical cryptosys-
tems. The table gives the impression that the advent of quantum computers destroys
public-key cryptography, leaving only symmetric cryptography (with larger key sizes).
Fortunately, RSA and ECC are not the only public-key systems.

We now review details of several proposals that have solidly resisted every suggested
attack. In particular, nobody has been able to figure out any useful way to apply Shor’s
algorithm and its generalizations to these proposals.

Choosing secure key sizes for these proposals does require attention to Grover’s algo-
rithm, along with generalizations of Grover’s algorithm such as quantum walks. Simply
doubling the target security level is adequate but generally imposes much more notice-
able costs upon public-key systems than upon AES; these costs motivate research aimed
at understanding the exact impact of Grover’s algorithm, so as to be able to use smaller
key sizes.

This is not a comprehensive list of proposals and attack ideas. We do not describe
isogeny-based cryptography [20, 21, 22], for example, and we do not discuss Kuperberg’s
algorithm [23]. Our list is biased towards proposals that have survived decades of study.
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6 Code-based encryption

High-reliability computer equipment uses an “error-correcting code” to store 64 bits of
logical data in 72 bits of physical memory. There is a 72 × 64 “generator matrix” G
specifying each of the 72 physical bits as a sum, modulo 2, of some of the 64 logical bits.
The code is GF64

2 , a 64-dimensional subspace of the vector space F72
2 , where F2 = {0, 1}.

The code is designed so that any single error in the 72 bits (any change of a bit to its
opposite) can be reliably corrected, and any double error (changing any two bits) can
be reliably detected.

Error-correcting codes can be scaled up to correct more errors in longer blocks of
data. They are used in a wide range of applications, including hard drives, satellite
communication, and fault-tolerant quantum computation.

In 1978, early in the history of public-key cryptography, McEliece [24] proposed using
a generator matrix as a public key, and encrypting a codeword (an element of the code)
by adding a specified number of errors to it. McEliece’s code is secretly generated as
a random “Goppa code” that can efficiently correct the specified number of errors, but
this structure is not obvious from the generator matrix.

A simple but slow attack strategy against McEliece’s system is “information-set de-
coding” (ISD). An “information set” is a collection of codeword positions that determines
the rest of the codeword. ISD guesses an information set, hoping that the ciphertext
is error-free in those positions; uses linear algebra to (hopefully) determine the entire
codeword; and checks that the ciphertext has the specified number of errors, in which
case the codeword must be correct.

What makes ISD slow is that, for large matrices, the ciphertext is extremely unlikely
to be error-free on any particular information set. More precisely, the number of guesses
is (c + o(1))w where w is the number of errors added, c > 1 is a constant that depends
on the selected ratio between the number of matrix rows and columns, and o(1) means
something that converges to 0 as w →∞.

Dozens of attack papers against McEliece’s system have found many improvements
to ISD, but all of the pre-quantum attacks still take time (c + o(1))w for the same
c, a remarkably stable track record. McEliece’s original key sizes were designed for
264 security, and our successful attack against those key sizes thirty years later [25] took
more than 260 CPU cycles. All known algorithms to find the secret Goppa-code structure
take even more time. The only post-quantum change in c has been a straightforward
application [26] of Grover’s algorithm, replacing c with

√
c.

Rather than sending a message as a codeword, one should encrypt a random code-
word, using a hash of the codeword as a secret key to authenticate and encrypt a message;
this protects McEliece’s system against “chosen-ciphertext attacks” in which an active
attacker sees the results of decrypting modified ciphertexts. Another improvement to
McEliece’s system, due to Niederreiter [27], is to compress public keys to “systematic
form”. When k bits are encoded as n bits, “systematic form” means that the first k
physical bits are exactly the k logical bits, so the first k × k submatrix of the generator
matrix is the identity matrix, which need not be transmitted. Yet another improvement,
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Figure 1: Perspective view of a 9 × 9 × 9 subset of a non-orthogonal 3-dimensional
lattice. Lattice-based cryptography hides a point in a high-dimensional lattice mod q
by making small changes to all coordinates. Code-based cryptography hides a point in
a very-high-dimensional lattice mod 2 by changing some coordinates.

also due to Neiderreiter, is to send “syndromes” rather than erroneous codewords; this
reduces the ciphertext size to about 200 bytes at a high security level.

The main practical problem with these systems is the key size, roughly a megabyte
(in systematic form) at a high security level. Many newer code-based systems put more
structure into public keys to allow more compression, but some of those proposals have
been broken. The only systems that have received enough study for us to recommend
are the original McEliece/Niederreiter systems.

7 Lattice-based encryption

In the 1990s Hoffstein, Pipher, and Silverman [28] introduced an encryption system
“NTRU” that has much smaller keys than McEliece’s system and that remains unbroken
today. This system works as follows.

The public key is a p-coefficient polynomial h = h0 +h1x+ · · ·+hp−1x
p−1, with each

coefficient in the set {0, 1, . . . , q − 1}. A typical choice is p = 743 and q = 2048 = 211;
then the public key has 743 · 11 = 8173 bits.

A ciphertext is another polynomial c in the same range. The sender chooses two
secret polynomials d, e with small (say −1, 0, 1) coefficients, and computes c = hd +
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e mod xp − 1 mod q. The notation “mod xp − 1” means that xp is replaced by 1, xp+1

is replaced by x, etc., and the notation “mod q” means that each coefficient is replaced
by its remainder upon division by q.

Define L as the set of pairs (u, v) of p-coefficient polynomials with integer coefficients
such that hu−v mod xp−1 mod q = 0. Then L is a lattice in 2p-dimensional space, and
it contains a point close to (0, c), namely (d, c − e). The attacker’s problem of finding
the secrets d, e given the ciphertext c and public key h is thus an example of finding a
lattice point close to a given point. This problem is analogous to the decoding problem
for codes (see Figure 1), except that here “close” is interpreted as every coefficient being
small, while codes simply count the number of nonzero coefficients.

NTRU, like McEliece’s system, secretly generates the public key in a way that makes
decoding efficient. Specifically, the receiver starts with a short vector of the form (g, 3f),
and uses a Euclidean algorithm to find h such that the lattice contains this vector, i.e.,
such that hg − 3f mod xp − 1 mod q = 0. Then cg mod xp − 1 mod q is the same as
3df + eg mod xp − 1 mod q. An analysis of coefficient sizes shows that 3df + eg almost
certainly has all coefficients strictly between −q/2 and q/2, and then it is an easy exercise
to find (d, e) given f and g.

There are many potential attack avenues against NTRU and other lattice-based
cryptosystems. For example, very recently the “cyclotomic” structure of xp − 1 has
been used to break [29, 30, 31] some lattice-based cryptosystems by an extension of
Shor’s algorithm. There are no known attacks exploiting cyclotomics in NTRU, but this
attack avenue is new and has not been adequately explored. We recommend [32, 33]
replacing xp − 1 with xp − x − 1, avoiding this structure. As another example, recent
attacks [34, 35, 36] that work for arbitrary lattices, without exploiting any polynomial
structure, have smaller exponents than the best such attacks known just a few years
ago. Much more research is required to gain confidence in the security of lattice-based
cryptography.

8 Lattice-based signatures

The first attempts [37, 38, 39] to turn hard lattice problems into signature systems were
marred by attacks and surviving systems suffered from large signature sizes.

The most promising signature systems are based on Lyubashevsky’s signature sys-
tem [40] from 2012. Despite its evident youth we decided to include it because the
resulting signatures are relatively short and fast to compute.

The system is most easily presented using integer matrices. Implementations typi-
cally use polynomial rings and fast Fourier transforms for compact representations and ef-
ficiency. Lyubashevsky’s system uses several system parameters, namely integers k,m, n
determining the sizes of matrices, κ limiting the Hamming weight of certain vectors, and
q a modulus. Let A be an n ×m integer matrix modulo q, i.e. A ∈ Zn×m

q ; this matrix
may be shared by all users of the system but can also be chosen individually. The private
key is a matrix S ∈ Zm×k with small entries, where small means significantly smaller
than q, and often is restricted to {−1, 0, 1}. The public key is the n× k matrix T = AS,
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where the entries are computed modulo q. If A is not shared then it is also part of the
public key.

The system uses a hash function H : Zn
q × {−1, 0, 1}∗ → {0, 1}k, where the output

vectors additionally satisfy that no more than κ entries are non-zero. It is easy to build
H from a traditional hash function h by encoding inputs and outputs appropriately.

The signer starts by picking y from anm-dimensional distribution, typically a discrete
Gaussian distribution. (A discrete Gaussian distribution is a distribution obtained by
considering only integer values of the regular Gaussian distribution and normalizing
appropriately.) The signer then computes c = H(Ay mod q, µ), where µ is the message,
and z = Sc+ y. The signature is the pair (c, z). To avoid leaking information about the
private key S through the distribution of (c, z), Lyubashevsky uses rejection sampling
to force an S-independent distribution. This means that the process is restarted with
probability depending on (c, z).

The signature is accepted as valid if c and z are sufficiently small and if H(Az −
Tc mod q, µ) = c. The latter holds for valid signatures because Az − Tc ≡ A(Sc+ y)−
ASc ≡ Ay mod q.

Later proposals such as BLISS [41] improve the running time by reducing the fre-
quency of rejection in the last step. A ring version with k = n and m = 2n signs in
under half a millisecond and verifies about 10 times faster. Public keys and signatures
each are between 5 and 7 kilobits, not much larger than RSA signatures.

Ongoing challenges include (1) generating the distribution in a way that does not
leak [42] information on S through side channels and (2) analyzing the security of the
underlying algorithmic problem, namely the problem of finding short integer solutions
to a system of equations modulo q.

9 Multivariate-quadratic-equation signatures

Matsumoto and Imai [43] introduced a new signature system “C∗” in 1988. Patarin [44]
broke the C∗ system in 1995 but the next year [45] introduced a stronger system “HFEv−”
that remains unbroken today.

The HFEv− public key is a sequence of polynomials p1, . . . , pm in the n-variable
polynomial ring F2[x1, . . . , xn] over the field F2, with m ≤ n. The polynomials are
limited to quadratics and have no squared terms: each polynomial pi has the form
ai +

∑
j bi,jxj +

∑
j<k ci,j,kxjxk with ai, bi,j , ci,j,k ∈ F2. The coefficients have no obvious

public structure.
A signature of a message is an n-bit string (s1, . . . , sn) ∈ Fn

2 such that them-bit string
(p1(s1, . . . , sn), . . . , pm(s1, . . . , sn)) ∈ Fm

2 equals a standard m-bit hash (h1, . . . , hm) of
the message. An example of a reasonable parameter choice (including the internal pa-
rameters v, q described below) is (m,n, v, q) = (240, 272, 16, 2256); then a signature is
just 34 bytes. These very short signatures are an attractive feature of this signature
system.

The signer chooses the polynomials with a secret structure that allows the signer to
solve the simultaneous quadratic equations p1(s1, . . . , sn) = h1, . . . , pm(s1, . . . , sn) = hm.
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Specifically, HFEv− exploits the fact that there are general methods to solve univariate
polynomial equations of degree d over finite fields Fq in time (d log q)O(1). We now
explain how the multivariate polynomials p1, . . . , pm are secretly related to a univariate
polynomial.

The signer views an n-bit signature (s1, . . . , sn) as a randomly chosen v-bit string
(r1, . . . , rv) ∈ Fv

2, where v ≤ n−m, together with an (n− v)-bit element S ∈ Fq, where
q = 2n−v. This view is secret: v and q can be standardized, but before the signature is
partitioned into (r, S) it is passed through a secret invertible n×n matrix chosen by the
signer. This means that S is some linear function of s1, . . . , sn, but not a public linear
function.

The signer similarly views an m-bit hash value, together with a randomly chosen
(n − v −m)-bit string, as an element H ∈ Fq. Again this view is not standardized: it
is obscured by another secret matrix. Here is the overall signing process, starting from
the hash value: choose the v + (n − v − m) = n − m random bits mentioned above;
construct H; try to solve for S as explained below (or, if no solution S exists, start over
with another choice of random bits); and construct the resulting n-bit signature.

There is one more secret: a degree-d polynomial P ∈ Fq[x, y1, . . . , yv] of the form

A +
∑

j Bjx
2j +

∑
j>k Cj,kx

2j+2k +
∑

j Djyj +
∑

j,k Ej,kyjx
2k +

∑
j>k Fj,kyjyk. This

polynomial specifies a secret equation connecting S and H, namely P (S, r1, . . . , rv) = H.
To convert this equation into the public quadratic polynomials, the signer writes each
bit of S2j as a linear combination of s1, . . . , sn. To solve the equation for any particular
signature, the signer simply observes that this is a univariate equation in S for any
particular choice of random bits r1, . . . , rv.

For comparison, C∗ takes q = 2m = 2n; takes the polynomial P as a monomial x2
j+1

with exponent coprime to 2q − 1; and solves the equation S2j+1 = H by computing
S = He, where e is the reciprocal of 2j + 1 modulo 2q − 1. The core idea of Patarin’s
attack is that the bilinear equation S22jH = H2jS is equivalent to a secret bilinear
equation E on the bits of hashes and signatures. Each hash-signature pair produces a
linear equation for the secret coefficients of E, and after enough signatures the attacker
simply solves for those coefficients, at which point signature forgery is easy. HFEv−

blocks this attack by including more monomials in P .
There is a vast literature on other multivariate-quadratic signature systems and on

algorithms to attack these systems. For HFEv− in particular, all known attacks take
time exponential in approximately (n−m+ dlog2 de) log2 n. The same type of analysis
used for recent pre-quantum parameter choices [46] indicates that m = 240, n−v = 256,
and n = 272 provide high post-quantum security against known attacks even if d is quite
small.

10 Hash-based signatures

One of the design goals mentioned earlier for hash functions is that finding a preimage
for a given output string is computationally hard. In 1975 Lamport realized that this
could be used to build a one-time signature system [47, 8].
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Lamport’s one-time signatures work as follows. To generate her key pair, Alice
chooses two random strings x0 and x1; these constitute her secret key. Her public key is
(h(x0), h(x1)), where h is a hash function which is known to everybody. If she wants to
sign 0 she reveals x0; the verifier recomputes h(x0) and checks the result against the first
half of the public key. To sign 1, Alice reveals x1. More generally, to sign an m-bit mes-
sage, Alice takes 2m strings as the secret key X = (x10, x11, x20, x21, . . . , xm0, xm1) and
their hash values as public key Y = (h(x10), h(x11), h(x20), h(x21), . . . , h(xm0), h(xm1)).
The signature of, e.g., 10110 . . . is (x11, x20, x31, x41, x50, . . . ). Security rapidly degrades
if Alice signs more than one message under the same key.

To overcome the problems of large public keys that could be used only once, Merkle
proposed [48, 49] to combine 2k public keys into one which can then be used to verify
all 2k signatures. For that, create 2k key pairs for Lamport’s one-time signature and
arrange the public keys Y1, Y2, . . . , Y2k as the leaves of a binary tree with k + 1 levels.
A binary tree is one in which each node has exactly three edges, two going to a level
closer to the leaves and one going closer to the root, except for the leaf nodes having
only 1 and the root node having only 2 edges. Figure 2 shows an example of a Merkle
tree with 23 = 8 leaves. To compute the public key combining these 2k keys, start from
the leaves and compute the hash of each pair of public keys connected by edges in the
tree, starting with Y2k+1 = h(Y1, Y2); continue iteratively through the levels, ending by
computing the root Y2k+1−1 = h(Y2k+1−3, Y2k+1−2). The value Y2k+1−1 at the root node
is the public key of the system.

The public key is now a single hash value, but the signatures need to include more
information to make it possible to check them. As before, a signature using secret key
Xi reveals the xij matching the bit pattern of the message to be signed; in addition,
the matching public key Yi is included so that the Lamport signature can be verified.
The signature also includes all siblings to the nodes encountered on the path from Yi to
the root; signature verification links Yi to the public key by computing all hash values
towards the root and comparing the value at the root with the public key.

Hash functions appear in all signature systems. Standard hash functions are affected
only by Grover’s attack, not by Shor’s attack. This makes Merkle’s very simple signatures
prime candidates for post-quantum signatures: they have a clear security track record
and computing hash functions is very fast.

Various improvements exist: using better one-time signatures [50, 51] to decrease the
signature size, for example, or building trees of trees to reduce key-generation time. A
system based on XMSS [52, 53] is currently in the final steps of adoption for Internet
protocols by the Internet Research Task Force (IRTF). The U.S. National Institute for
Standards and Technology (NIST) has indicated that they will fast-track a hash-based
signature system.

It is important to never reuse a secret key Xi: each Xi is usable only one time.
This means that the system described so far is stateful: the signer needs to remember
which keys have been used. This might sound easy but has been described as a “huge
foot-cannon” [54]: it poses problems for environments that use virtual machines, shared
signing keys, etc. For such applications stateless systems exist [55] but this feature comes
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Figure 2: Merkle tree with public key Y15 to sign 8 messages. The boxes show the
verification path of the 6th signature, which reveals parts of X6 (the secret key of Lam-
port’s one-time signature), the matching public key Y6, and includes Y5, Y12, and Y13 to
compute the verification path to Y15.

at the expense of longer signatures and longer signature-generation time.

11 Integration into the real world

Deploying a cryptographic system incurs physical costs: the time and energy consumed
by cryptographic computations and by communication of keys, signatures, etc. Today’s
deployment of cryptography for billions of users relies on the fact that cryptography fits
the users’ budget. For comparison, some of the simplest goals of cryptography might
also be achieved by couriers transporting locked briefcases, but this is so expensive that
very few users can afford it.

Deploying a cryptographic system also raises questions of whether the real world
matches the system’s mathematical models of user capabilities and attacker capabili-
ties. The most important examples are “side-channel attacks”, in which the attacker
learns extra information by observing timing [56], power consumption [57], etc. Another
example is the stateful-signature-system “foot-cannon” mentioned above.

A large part of cryptographic research is aimed at finding the maximum real-world
security achievable under various constraints on real-world costs. For example, side-
channel attacks against cryptography are the largest topic at the immensely popular
“Cryptographic Hardware and Embedded Systems” conference series, whereas there ap-
pears to have been far less public analysis of, e.g., the power of side-channel attacks
against locked briefcases. As a final example, a state-of-the-art implementation [58] of
McEliece’s code-based system takes even less processing time than ECC; the only serious
obstacle to wide deployment of this system is its key size.
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12 Standardization

Several standardization bodies have recognized the urgency of switching to cryptosys-
tems that remain secure against attacks by quantum computers. This is an important
development because many applications of cryptography require all parties to use the
same cryptographic system: standardization is thus a prerequisite for widespread de-
ployment. Sometimes de-facto standards are set without standardization bodies, but
formal standardization processes are widely viewed as reducing cryptographic risks.

The Internet Engineering Task Force (IETF) and its research branch IRTF are lead-
ing with having almost finalized standardization of a hash-based signature system. NIST
has opened a call for submissions of candidates for standardization; the submission dead-
line is November 2017, and evaluation is expected to run 3–5 years. This call should
result in the recommendation of a small portfolio of systems for encryption, signatures,
and possibly other key-exchange mechanisms.

Other standardization bodies with post-quantum cryptography on the agenda are
ETSI, with their “quantum-safe” working group; ISO, with SC27 WG2; and OASIS,
with the KMIP standard.

Figure 3: PQCRYPTO logo.

One of the big European players in post-
quantum cryptography is the EU-H2020
PQCRYPTO project. The logo of the project
(see Figure 3) is illustrative of the state of
post-quantum cryptography at the start of that
project: confidence-inspiring proposals of long-
lived systems are too big or too slow for casual
deployment. The project covers research in design
and implementation of new systems and analysis,
including quantum cryptanalysis, of existing ones.

13 Ongoing and future work

These are exciting times for post-quantum cryptography. Researchers have identified
many different ways to provide critical functions such as public-key encryption and
public-key signatures. Some of these proposals have survived many years of scrutiny,
but these proposals incur serious costs, especially in network traffic. Other proposals
are more attractive for deployment, but their security is less clear, and it is likely that
some of those proposals will be broken. Much more work is needed to unify these lines of
research, building post-quantum systems that are widely deployable while at the same
time inspiring confidence.
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