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Abstract

Invariant subspace attack is a novel cryptanalytic technique which breaks sev-
eral recently proposed lightweight block ciphers. In this paper, we propose a
new method to bound the dimension of some invariant subspaces in a class of
lightweight block ciphers which have a similar structure as the AES but with
4-bit Sboxes. With assumptions on the diffusion layer, the dimension of any
invariant subspaces is at most 32 when the inputs into each Sboxes are linearly
independent. The observation brings new insights about the invariant subspace
attack, as well as lightweight countermeasures to enhance the resistance against
it.
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1. Introduction

Over the last few years, lightweight block ciphers have become the new trend
of symmetric primitives which are suitable for various constrained environments
[1, 2, 3, 4]. Performance always comes with a price. For the lightweight block
ciphers, some of them trade in a tolerable amount of security margin under
certain attack models to achieve improved performance in hardware implemen-
tation. Without an explicit guideline, it is an interesting question whether a
slight change towards higher efficiency may have devastating consequences.

A new type of attack named invariant subspace attack [5] is of special inter-

est. It was invented in the analysis of a lightweight block cipher PRINTcipher
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[6]. The discovery of invariant subspace attack often seems like ad-hoc, until
a generic algorithm to detect the existence of the invariant subspaces was pro-
posed in 2015 [7]. Another victim of the attack is a recently-proposed block
cipher Midori[3, 8]. Unlike differential cryptanalysis [9] and linear cryptanalysis
[10] which are extensively studied and comprehensively understood, a guideline
of avoiding the invariant subspace attack needs to be drawn by a “provably
secure” framework.

A short solution to resist invariant subspace attack is to use heavier key
schedules or randomised constants. However, in lightweight designs, an ultra-
light key schedule reduces the hardware cost greatly. In the meantime, there are
designs without key schedule yet having shown no vulnerability to the invariant
subspace attack so far, such as Fantomas [11].

In this paper, we focus on the lightweight AES-like ciphers with 4-bit Sboxes.
It can be shown that the dimension of an invariant subspace is upper bounded
by 32. Due to the fact that the majority of lightweight block ciphers follow
a similar structure with the AES, it may cast light on the provable security
framework against invariant subspace attack for lightweight designs.

The rest of this paper is organised as follows. In Section 2, we show the
propagation of affine subspaces through a round function. Section 3 studies the
invariant subspace in the AES-like lightweight block ciphers and new counter-

measures. Finally, we conclude in Section 4.

2. Characterisation of Invariant Subspace Attack

We denote an n-bit vector in Fa» by 2 = (zn—_1,Zn—2,...,%0). An affine
subspace of F3, is denoted by W = (Wi, Wa,...,W,) where W; is an affine
subspace on Fo:. The cardinality of a set S is denoted by |S|. Denote by “.”
the inner product. For a vectorial boolean function f over F,, the component
function f) is the boolean function A - f, where A € F,, is nonzero.

Suppose that the round function F' is composed with an Sbox layer F;, a

linear layer F; and a key addition Fy, where F' = F}, o F; o F;. If there exists an



affine subspace v + A such that it is stable under F, F(v + A) = v + A, then
when the round key k € v+ u + A, we have (Fjo Fy)(v+ A) =u+ A. It means
that the invariant subspace property in the round function of a key-alternating
block cipher is equivalent to the propagation of special affine subspaces [5]. It
is interesting to notice that the propagation of affine spaces is also discussed in
other studies, such as plateau characteristics [12]. Since the inverse of a linear
layer is also linear, one has F,(v+ A) = F, '(u) + F, ' (A). Therefore, next we

will focus on the propagation of affine subspaces through a layer of Sboxes.

Definition 1. Let f be a (nonlinear) function from Faon into Fom. If an affine
subspace (v + A) C Fan is mapped to (u + B) C Fam which is also an affine

subspace, then (v+ A — u+ B) is called an affine subspace propagation.

The linear relation (v, w)—linear in the Sboxes has been studied by Boura et
al. in [14] where the component function of an Sbox Sy,A € W with |[W| =w
is of degree at most 1 over all cosets of V with |V| = v. However, in most
applications, the property only holds for certain cosets. Therefore, we introduce

the following notion.

Definition 2. Let f be a function from Fan into Fom. Then, f is called linear
with respect to (V, W) if there ezist two affine subspaces V C Fon and W C Fom
with dimV = v and dim W = w, such that, for all \ € W, f\ has degree at

most 1 on V.

The propagation of affine subspaces through 4-bit Sboxes has been discussed
with the difference distribution table by Guo et al. in [8], while in this paper,
we aim to fit it into the framework of the criterion on linear relations in Sboxes

[14]. For the sake of completeness, we present the following proposition.

Proposition 1. Let S be an s-bit Sbox. Then the image of a 2-dimensional
affine subspace v+ A under the Shoz is also an affine subspace u+B of dimension

2 if and only if the Sboz is linear with respect to (v+ A,Fa:).

In most lightweight block cipher designs, optimal 3-bit and 4-bit Sboxes are

usually adopted to obtain optimised performance in hardware. It is easy to show



that no optimal 4-bit Sbox admits 3-dimensional affine subspace propagations,
while many transitions of 2-dimensional and 1-dimensional affine subspaces can

be found. Hence, we focus on the 3-bit and 4-bit Sboxes in the sequel.

Theorem 1. Let S be an optimal s-bit Sbox with s = 3,4. Then the image of an
affine subspace v+ A with dimension no larger than s —1 under the Sbox is also

an affine subspace u+ B if and only if S is linear with respect to (v + A,Fa:).
Proof. The proof follows from the transition of spaces in 3- and 4-bit Sboxes. [

Theorem 2. Let F = (Sp,S1,...,5-1) be a layer of optimal s-bit (s = 3,4)
Sbozes. Then there ezists an affine subspace v+A = (vo+Ag,v1+A1,...,Vp—1+
Ap_1) whose image through the Sbox layer is also an affine subspace u+ B =
(uo + Bo,u1 + Bi, ..., up—1 + Bp_1) if and only if v; + A; = F§ or F restricted

on v; + A; is a linear transformation, 0 <i<b—1.

3. Bounding the Invariant Subspaces in the AES-like* Ciphers

3.1. AES-like* Ciphers

The success of the AES invokes many designs taking a similar structure, to
name but a few, LED [15], Midori [3] and KLEIN [16]. The states (so, s1,. .., S15)
can be arranged by a 4 x 4 matrix, with each state being of 4-bit or 8-bit. The
round function of an AES-like cipher includes SubByte (or SubCell), ShiftRow
(or ShuffleCell), MixColumn, KeyAdd and ConstAdd. The first three opera-
tions are on 4-bit or 8-bit words, which means there are no bit-level operations.
Here we focus on the lightweight AES-like ciphers with 4-bit Sboxes, and denote
them by AES-like*.

3.2. Bounds on Invariant Subspace Attacks in AES-like*

The invariant subspace attacks up-to-date are found in two ways, ad-hoc or
heuristic search. Rather than checking possible attacks after every adjustment
of parameters and components, it is preferable for designers to have a guideline

of avoiding the existence of large invariant subspaces during the design process.
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Figure 1: The propagation of affine subspaces in the AES-like* cipher.

Based on the characterisations in the previous section, we will show that the
dimension of some invariant subspaces in AES-like* ciphers can be bounded.

Assume that there exists an invariant subspace A = (A;, Aa,...,Ass) in
the round function of an AES-like* block cipher. We ignore the KeyAdd and
ConstAdd for a moment, since they have no influence on the dimension of
the affine subspaces. According to Theorem 2, the output sets after SubCell,
ShuffleCell are also affine subspaces. Hence we denote the output sets B, D after
SubCell and ShuffleCell by B = (B, Ba,...,Big) and D = (Dy, Ds,..., Dsg),
as illustrated in Figure 1.

We limit the input space A = (A1, As,..., A1) to be such that the restric-
tions A; over each Sbox are linearly independent with each other. Then, we

have the following bound on the dimension of the invariant subspaces.

Theorem 3. Let f be the round function without key and constant addition
of an AES-like* cipher with an MDS MixColumn layer. When the input space
A= (A4, As,...,Asp) is such that the restrictions A; over each Sboz are linearly
independent with each other, the dimension of any invariant subspace is at most

32.

Proof. We show that the restriction of the invariant subspace A over every Sbox
is of dimension at most 2. Firstly, the subspaces propagating through 4-bit
Sboxes are of dimension 1, 2, or 4, and the dimensions of the intermediate out-
puts through the Sbox layer remain the same, hence ) dim(4;) = > dim(B;).
Note here that the sum of the dimensions of the restricted spaces only equals the
dimension of the input space when the restrictions are linearly independent with

each other. While the ShuffleCell operation simply permutes the cells, the only



operation that has an influence on the dimensions of the restricted subspaces
is the MixColumn layer. For the four cells involved in a MixColumn operation,
w.lo.g (A, Az, A3, Ay), we consider the following cases.

Case 1. Suppose that there is one cell taking values of F4. Since all the entries
in an MDS matrix are nonzero (the inverse of an MDS matrix is also MDS), the
dimensions of D;,¢ =1,2,3,4 are also 4.

Case 2. Suppose that there are two or three cells taking all values of F3. Since
all the entries of the MDS matrix are nonzero, and the values in each cell are
independent from other cells, the dimensions of D;,i = 1,2, 3,4 are also 4.

So for Case 1 and 2, " dim(D;) > " dim(A;). However, we know from

the SubCell layer that ) dim(A;) = 3 dim(B;), thus Y dim(D;) > > dim(B;),
which contradicts the fact that the ShuffleCell operation only permute the cells
without changing their dimensions.
Case 3. Suppose that all four cells take values in F3, then the dimensions of
D;,i = 1,2,3,4 are also 4. Recall that in the construction of the ShuffleCell,
in order to achieve good diffusion, it is preferably to spread the cells from the
same column into different columns. That is to say the cells of dimension 4 are
distributed into 4 different columns. As a result, Case 3 is either a contradiction
by Case 1 or a trivial case where all 16 cells receive inputs in F3.

To conclude, if there exists an invariant subspace in an AES-like* cipher
with MDS MixColumn layer, every cell can only take a value from 2-dimensional

subspaces, which means the total dimension is at most 32. O

There are also AES-like* lightweight proposals with non-MDS MixColumn
layer such as Midori64 and Skinny64 [4]. Those diffusion layers have less struc-
tural properties to fit into a general conclusion. Here we take the round function
of Midori64 without key and constant addition as an example. Assume that the
input cells are linearly independent. Since the linear layer of Midori64 is NMDS,
we consider the following cases inside a MixColumn operation as in the proof
of Theorem 3.

Case 1. Suppose there is one cell taking values of F3, then three of the four



D;’s are of dimension 4.
Case 2. Suppose that there are two or three cells taking values of F3, and they
are independent, then the dimensions of D;,i = 1,2, 3,4 are also 4.

A similar contradiction can be deduced as in the proof of Theorem 3. There-
fore, for the round function of Midori64 without the addition of keys and con-
stants, if there are any invariant subspaces with independent input cells, each
cell is of dimension at most 2. Recall that the round constants of Midori on each
cell are 0 or 1, they are more likely to fall into some aforementioned invariant
subspaces. It can also be seen as a general explanation of the “unfortunate

combination of constants” as described in the discovery of the distinguisher [8].

38.8. Countermeasures and Discussions

Countermeasures to resist the invariant subspace attack can be deduced
based on Theorem 3. Firstly we study the properties of the invariant subspaces
in the keyless and constant-less round function of a given cipher, based on
which a guideline for the choice of the constants can be deduced. For the round
function of AES-like* ciphers with MDS MixColumn layer and Midori64, when
considering the invariant subspaces with independent inputs on each cells, each
cell should be of dimension at most 2.

As a consequence, we deduce a countermeasure as follows. Denote the set
of the constants on a single cell over all rounds by C,,ns:. The designer choose

Ceonst sSuch that there is no 2-dimensional subspace V of F} satisfying
Cconst g V

To be specific, if the constants on the first cell so are {1,2,3,4,5} over the
first five rounds, and clearly {1,2,3,4,5} could not fall into any 2-dimensional
subspaces, then the propagation of any nontrivial invariant subspaces with inde-
pendent inputs on each cells will be blocked after five rounds. Hence, invariant
subspace attack cannot be found for arbitrary number of rounds. It is obvious
that this is much more lightweight compared with a heavier key schedule or

complex constants.



Remark 1. The bound and countermeasures are tailored for AES-like* primi-
tives, which are suitable for the majority of current lightweight designs. While
the bounding technique does not directly apply to bit-level operations, we leave

the generalisation to bit-based designs as an open problem.

4. Conclusion

In this paper, we study the property of the invariant subspace attacks for a
type of SPN ciphers. We show that the existence of invariant subspaces is closely
related to the previous framework of linear relations in the Sboxes. Furthermore,
we prove that the dimension of possible invariant subspaces in the AES-like*

ciphers can be bounded; hence a lightweight countermeasure is proposed.
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