
Simple and Generic Constructions of Succinct Functional
Encryption

Fuyuki Kitagawa∗1 Ryo Nishimaki 2 Keisuke Tanaka 1

1 Tokyo Institute of Technology, Japan
{kitagaw1,keisuke}@is.titech.ac.jp
2 NTT Secure Platform Laboratories, Japan
{nishimaki.ryo}@lab.ntt.co.jp

Abstract

We propose simple generic constructions of succinct functional encryption. Our key tool is
exponentially-efficient indistinguishability obfuscator (XIO), which is the same as indistinguishability
obfuscator (IO) except that the size of an obfuscated circuit (or the running-time of an obfuscator) is
slightly smaller than that of a brute-force canonicalizer that outputs the entire truth table of a circuit
to be obfuscated. A “compression factor” of XIO indicates how much XIO compresses the brute-
force canonicalizer. In this study, we propose a significantly simple framework to construct succinct
functional encryption via XIO and show that XIO is a powerful enough to achieve cutting-edge
cryptography. In particular, we propose the following constructions:

• Single-key weakly succinct secret-key functional encryption (SKFE) is constructed from XIO
(even with a bad compression factor) and one-way function.

• Single-key weakly succinct public-key functional encryption (PKFE) is constructed from XIO
with a good compression factor and public-key encryption.

• Single-key weakly succinct PKFE is constructed from XIO (even with a bad compression
factor) and identity-based encryption.

Our new framework has side benefits. Our constructions do not rely on any number theoretic
or lattice assumptions such as decisional Diffie-Hellman and learning with errors assumptions.
Moreover, all security reductions incur only polynomial security loss. Known constructions of
weakly succinct SKFE or PKFE from XIO with polynomial security loss rely on number theoretic
or lattice assumptions.

Keywords: Functional Encryption, Succinctness, Indistinguishability Obfuscation.

∗This work was done while the author was visiting NTT Secure Platform Laboratories as a summer internship student.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Our Contributions . 3
1.3 Overview of Our Construction Technique . 6

2 Preliminaries 9
2.1 Notations and Basic Concepts . 9
2.2 Basic Cryptographic Primitives . 10
2.3 Functional Encryption . 14
2.4 Indistinguishability Obfuscation . 17
2.5 Strong Exponentially-Efficient Indistinguishability Obfuscation 18

3 Collusion-Succinct Functional Encryption from SXIO 18
3.1 Collusion-Succinct SKFE from SXIO and One-Way Function 18
3.2 Collusion-Succinct PKFE from SXIO and Public-Key Encryption 21
3.3 Collusion-Succinct PKFE from SXIO and Identity-Based Encryption 25

4 Weak Succinctness from Collusion-Succinctness 29

5 Putting It Altogether 31
5.1 Transformation from SKFE to PKFE . 32
5.2 Relationship among SKFE, SXIO, Updatable RE, and Multi-Input FE 32

A Single-Key Non-Succinct Functional Encryption 39

1 Introduction

1.1 Background

In cryptography, it is one of major research topics to construct more complex cryptographic primitives
from simpler ones in a generic way. Here, “generic” means that we use only general cryptographic tools
such as one-way function and public-key encryption. For such a generic construction, we do not use
any specific or concrete algebraic assumptions such as the factoring, decisional Diffie-Hellman (DDH),
learning with errors (LWE) assumptions. Generic constructions are useful in cryptography because they
do not rely on any specific structure of underlying primitives. It means that even if a specific number
theoretic assumption is broken, say the DDH, a generic construction based on public-key encryption
is still secure since there are many instantiations of public-key encryption from other assumptions.
Moreover, generic constructions are useful to deeply understand the nature of cryptographic primitives.

Many generic constructions have been proposed. For example, one-way functions imply pseudo-
random function (PRF) [GGM86], and many other primitives. However, we understand little of how to
construct functional encryption [BSW11, O’N10] in a generic way despite its usefulness as explained
below.

Functional encryption is a generalization of public-key encryption and enables us to generate func-
tional keys that are tied with a certain function f . Given such a functional key, we can obtain f (x) by
decryption of ciphertext Enc(x) where x is a plaintext. Functional encryption is a versatile cryptographic
primitive since it enables us to achieve not only fine-grained access control systems over encrypted data
but also indistinguishability obfuscation (IO) [BGI+12, GGH+13b, AJ15, BV15].

IO converts computer programs into those that hide secret information in the original programs
while preserving their functionalities. An obvious application of IO is protecting softwares from reverse
engineering. Moreover, IO enables us to achieve many cutting-edge cryptographic tasks that other
standard cryptographic tools do (or can) not achieve such as (collusion-resistant) functional encryption,
program watermarking, and deniable encryption [SW14, GGH+13b, CHN+16]. We basically focus on
functional encryption and IO for all circuits in this study.

Many concrete functional encryption and IO constructions have been proposed since the celebrated
invention of a candidate graded encoding system by Garg, Gentry, Halevi [GGH13a]. However, regarding
designing secure functional encryption and IO, we are still at the “embryonic” stage1. A few candidates of
graded encoding schemes have been proposed [GGH13a, CLT13, GGH15]. However, basically speaking,
all are attacked, and most applications (including functional encryption) that use graded encoding schemes
are also insecure [CHL+15, CGH+15, CFL+16, HJ16, MSZ16, ADGM17, CLLT17, CGH17]. As an
exception, a few IO constructions are still standing [GMM+16, FRS16]2.

The purpose of this study is that we shed new light on how to achieve functional encryption and IO.

The number of functional keys and the size of encryption circuit. In fact, the hardness of constructing
functional encryption depends on certain features of functional encryption such as the number of issuable
functional keys and ciphertexts and the size of encryption circuit.

We say “single-key” if only one functional key can be issued. We also say q-key or bounded
collusion-resistant when a-priori bounded q functional keys can be issued. If q is an a-priori unbounded
polynomial, then we say “collusion-resistant”. It is known that a single-key secret-key and public-key
functional encryption (SKFE and PKFE) are constructed from standard one-way function and public-
key encryption, respectively [SS10]. It is also known that a bounded collusion-resistant PKFE (resp.
SKFE) is constructed from public-key encryption (resp. one-way function) and pseudo-random generator

1We borrow this term from the talk by Amit Sahai at MIT, “State of the IO: Where we stand in the quest for secure
obfuscation” http://toc.csail.mit.edu/node/981

2Martin Albrecht and Alex Davidson maintain the status of graded encoding schemes and IO constructions at
http://malb.io/are-graded-encoding-schemes-broken-yet.html.

1

computed by polynomial degree circuits [GVW12]. However, it is not known whether collusion-resistant
functional encryption is constructed without expensive cryptographic tools such as graded encoding
systems [GGH13a, CLT13, GGH15] or IO [GGH13a].

It is also known that we can construct collusion-resistant PKFE from single-key weakly succinct
PKFE [GS16, LM16]. The notion of succinctness for functional encryption schemes [AJ15, BV15]3
means the size of encryption circuit is independent of the function-size. Weak succinctness means the
size of the encryption circuit is sγ · poly(λ, n) where λ is a security parameter, s is the size of f that is
embedded in a functional key, n is the length of a plaintext, and γ is a constant such that 0 < γ < 1.
The results of Garg and Srinivasan [GS16] and Li and Micciancio [LM16] mean that we can arbitrarily
increase the number of issuable functional keys by using succinctness. Moreover, succinct SKFE and
PKFE are constructed from collusion-resistant SKFE and PKFE, respectively [AJS15]. Thus, it is also
a difficult task to construct succinct functional encryption schemes without graded encoding systems or
IO.

The succinctness of functional encryption is also key feature to achieve IO. Ananth and Jain [AJ15]
and Bitansky and Vaikuntanathan [BV15] show that a sub-exponentially secure single-key weakly suc-
cinct PKFE implies IO.

These facts indicate that it is a challenging task to achieve either collusion-resistance or succinctness.

Running time of obfuscator. Not only the encryption-time of functional encryption but also the size
of obfuscated circuits and the running time of obfuscators are important measures.

Lin, Pass, Seth, and Telang [LPST16] introduced the notion of exponentially-efficient indistinguisha-
bility obfuscator (XIO), which is a weaker variant of IO. XIO is almost the same as IO, but the size of the
obfuscated circuits is poly(λ, |C|) · 2γn where λ is a security parameter, C is a circuit to be obfuscated,
n is the length of input for C, and a compression factor γ is some value such that 0 < γ < 1. We
note that the running time of XIO on an input a circuit of n-bit inputs can be 2n. They prove that if
we assume that there exists XIO for circuits and the LWE problem is hard, then there exists single-key
weakly succinct PKFE (and IO if sub-exponential security is additionally assumed).

Bitansky, Nishimaki, Passelègue, and Wichs [BNPW16a] extend the notion of XIO and define
strong XIO (SXIO). If the running time of the obfuscator is poly(λ, |C|) · 2γn, then we say it is SXIO.
Bitansky et al. show that sub-exponentially secure SXIO and public-key encryption imply IO. In addition,
they prove that single-key weakly succinct PKFE is constructed from SXIO, public-key encryption, and
weak PRF in NC1, which is implied by the DDH [NR04] or LWE assumptions [BPR12].

Thus, (S)XIO is useful enough to achieve weakly succinct functional encryption and IO. In this study,
we discuss more applications of SXIO to functional encryption. In particular, we discuss significantly
simple generic constructions of weakly succinct functional encryption by using SXIO.

From SKFE to PKFE. Bitansky et al. [BNPW16a] also prove that SXIO is constructed from collusion-
resistant SKFE. Thus, we can construct weakly succinct PKFE from a weaker primitive than PKFE by the
results of Lin et al. and Bitansky et al., though it is not known whether we can construct collusion-resistant
SKFE from standard cryptographic primitives.

The works of Lin et al. and Bitansky et al. are advancements on how to construct succinct PKFE from
weaker primitives. In particular, Bitansky et al. provide a nice generic framework for constructing weakly
succinct PKFE from SKFE and public-key encryption. However, their technique is very complicated.
Moreover, they still use the DDH or LWE assumptions to achieve weakly succinct PKFE with polynomial
security loss. Thus, it is not known whether we can construct weakly succinct PKFE with polynomial
security loss from SKFE and public-key encryption in a generic way.

3In some papers, the term “compactness” is used for this property, but we use the term by Bitansky and Vaikuntanathan
[BV15] in this study.

2

1.2 Our Contributions

The primary contribution of this study is that we propose a significantly simple and generic framework to
construct single-key weakly succinct functional encryption by using SXIO. In particular, our constructions
are significantly simpler than those by Bitansky et al. [BNPW16a]. More specifically, we prove the
following theorems via our framework:

Main theorem 1 (informal): A single-key weakly succinct PKFE is implied by public-key encryption
and SXIO with a sufficiently small compression factor.

Main theorem 2 (informal): A single-key weakly succinct PKFE is implied by identity-based encryp-
tion and SXIO with a compression factor that is only slightly smaller than 1.

Main theorem 3 (informal): A single-key weakly succinct SKFE is implied by one-way function and
SXIO with a compression factor that is only slightly smaller than 1.

Readers might find that the technique (see the overview in Section 1.3) in our framework is a little bit
straightforward and a combination of (minor variants of) well-known or implicitly known techniques.
However, we stress that it is not a disadvantage but the advantage of our study. We reveal that such a
simple combination of known techniques yields highly non-trivial results above for the first time. We
believe that our simple technique is useful to construct better functional encryption (and IO). In fact,
Kitagawa, Nishimaki, and Tanaka extend our technique and obtain an IO construction based only on
SKFE [KNT17b]. As side benefits of our new framework, our functional encryption schemes have
advantages over previous constructions. In particular, the third main theorem is totally new. We
highlight that all these new theorems incur only polynomial security loss and do not rely on any specific
number theoretic or lattice assumption. These are advantages over the constructions of Lin et al. and
Bitansky et al. [LPST16, BNPW16a] and the secondary contributions of this study. We explain details
of our results below.

Implication of first and second theorems. There are transformations from a single-key weakly suc-
cinct PKFE scheme to a collusion-resistant one with polynomial security loss [GS16, LM16]. Thus, by
combining the first or second theorems with the transformation, we obtain two collusion-resistant PKFE
schemes with polynomial security loss. One is based on public-key encryption and collusion-resistant
(non-succinct) SKFE since collusion-resistant (non-succinct) SKFE implies SXIO with an arbitrarily
small constant compression factor [BNPW16a]. The other is based on identity-based encryption and
single-key weakly succinct SKFE since single-key weakly succinct SKFE implies SXIO with a compres-
sion factor that is slightly smaller than 1 [BNPW16b]. Note that we can also obtain IO constructions
from the same building blocks if we assume that they are sub-exponentially secure by using the result of
Ananth and Jain[AJ15] or Bitansky and Vaikuntanathan [BV15].

As well as one-way function and public-key encryption, identity-based encryption [Sha84] is also a
standard cryptographic primitive since there are many instantiations of identity-based encryption based
on widely believed number theoretic assumptions and lattice assumptions [BF03, GPV08]. Thus, our
second result indicates that all one needs is to slightly compress the brute-force canonicalizer that
outputs an entire truth table of a circuit to be obfuscated to construct single-key weakly succinct (or
collusion-resistant) PKFE and IO.

Advantages over previous constructions. We look closer at previous works for comparison. Readers
who are familiar with the previous works on PKFE can skip this part and jump into the part about
implication of the third theorem.

3

Lin et al. [LPST16]: They construct single-key weakly succinct PKFE from XIO and single-key suc-
cinct PKFE for Boolean circuits. It is known that a single key succinct PKFE for Boolean circuits
is constructed from the LWE assumption [GKP+13].
Both their construction and ours are generic constructions using (S)XIO. However, their con-
struction additionally needs single-key succinct PKFE for Boolean circuits. We have only one
instantiation of such PKFE based on the LWE assumption while our additional primitives (i.e.,
public-key encryption and identity-based encryption) can be instantiated based on wide range of
assumptions. This is the advantage of our construction over that of Lin et al.

Bitansky et al. [BNPW16a]: They construct single-key weakly succinct PKFE from SXIO and public-
key encryption with 2O(d) security loss where d is the depth of a circuit. They introduce de-
composable garbled circuit, which is an extension of Yao’s garbled circuit [Yao86], to achieve
succinctness [BNPW16a]. Decomposable garbled circuit is implied by one-way function. How-
ever, it has two disadvantages. One is that it incurs the 2O(d) security loss. The other is that its
security proof is complex.
When we construct single-key weakly succinct (or collusion-resistant) PKFE only with polynomial
security loss, the exponential security loss in the depth of circuits is a big issue. Thus, Bitan-
sky et al. need weak PRF in NC1 to achieve single-key weakly succinct (or collusion-resistant)
PKFE with polynomial security loss due to the 2O(d) security loss [BNPW16a, Section 5.3]4.
If our goal is constructing IO, then the 2O(d) security loss is not an issue in the sense that we
need sub-exponential security of PKFE to achieve IO [BV15, AJ15], and we can cancel the 2O(d)

security loss by complexity leveraging.
Decomposable garbled circuit is a useful tool for Bitansky et al.’s construction. However, the
definition is complicated and it is not easy to understand the security proof. Our unified design
strategy significantly simplifies a construction of single-key weakly succinct PKFE based on
SXIO. In fact, our constructions use decomposable randomized encoding [IK00, AIK06], but
decomposable randomized encoding is a simple tool and does not incur 2O(d) security loss. 5

Using identity-based encryption. We show that we can relax the requirements on SKFE to
achieve PKFE and IO if we are allowed to use identity-based encryption.
Our construction of PKFE using identity-based encryption needs SXIO with compression factor
slightly smaller than 1 that is implied by single-key (weakly) succinct SKFE while the constructions
using public-key encryption need SXIO with sufficiently small compression factor that is implied
by collusion-resistant SKFE. It is not known whether single-key (weakly) succinct SKFE implies
collusion-resistant SKFE though the opposite is known [AJS15]. Of course, regarding additional
assumptions (public-key encryption and identity-based encryption), the existence of identity-based
encryption is a stronger assumption than that of public-key encryption. However, identity-based
encryption is a standard cryptographic primitive and the assumption is reasonably mild since many
instantiations of identity-based encryption are known [BF03, GPV08]. Readers who are familiar
with the construction of Bitansky et al. might think the second theorem is easily obtained from
the result of Bitansky et al., which actually uses an identity-based encryption scheme constructed
from SXIO and public-key encryption as a building block.6 This is not the case because their

4They use a bootstrapping technique by Ananth et al. [ABSV15], which transforms functional encryption for NC1 into one
for P/poly.

5 See Remark 2.8 in Section 2 for more details on the difference between decomposable garbled circuit and decomposable
randomized encoding.

6Note that our requirements on an identity-based encryption scheme is the same as theirs on their identity-based encryption
scheme.

4

construction uses an SXIO three times in a nested manner to construct their single-key weakly
succinct PKFE scheme. They construct a single-key weakly succinct PKFE scheme for Boolean
functions by using SXIO and identity-based encryption, and then transform it into a single-key
weakly succinct PKFE scheme for non-Boolean functions by using SXIO again. Therefore, even
if we replace their identity-based encryption scheme based on SXIO and public-key encryption
with an assumption that there exists identity-based encryption, their construction still requires the
use of SXIO two times in a nested manner, and due to this nested use, it still needs SXIO with
sufficiently small compression factor.
Thus, the advantages of our single-key weakly succinct PKFE schemes over Bitansky et al.’s
construction are as follows:

• Our single-key weakly succinct PKFE scheme does not incur 2O(d) security loss thus does
not need weak PRF in NC1 (implied by the DDH or LWE assumptions) to support all circuits.

• Our PKFE schemes and their proofs are much simpler.
• We can use single-key weakly succinct SKFE instead of collusion-resistant SKFE (if we use

identity-based encryption instead of public-key encryption).

Komargodski and Segev [KS17]: Komargodski and Segev construct IO for circuits with inputs of
poly-logarithmic length and sub-polynomial size from a quasi-polynomially secure and collusion-
resistant SKFE scheme for P/poly. They also construct PKFE for circuits with inputs of poly-
logarithmic length and sub-polynomial size from a quasi-polynomially secure and collusion-
resistant SKFE scheme for P/poly and sub-exponentially secure one-way function. Their reduction
incurs super-polynomial security loss. Thus, the advantages of our single-key weakly succinct
PKFE schemes and IO over Komargodski and Segev’s construction are as follows:

• Our PKFE schemes support all circuits. (When constructing IO by combining previous
results [AJ15, BV15], the construction also supports all circuits.)

• We can use single-key weakly succinct SKFE instead of collusion-resistant SKFE (if we use
identity-based encryption)

• Our PKFE schemes are with polynomial security loss and do not need sub-exponentially
secure one-way function (though we additionally use a public-key primitive).

We summarize differences between these previous constructions of single-key weakly succinct (or
collusion-resistant) PKFE schemes and ours in Table 1.

Table 1: Comparison with previous constructions. OWF, PKE, IBE, GC, dGC, and dRE denote one-way function,
public-key encryption, identity-based encryption, garbled circuit, decomposable garbled circuit, and decomposable
randomized encoding, respectively. Underlines denote disadvantages. In “supported circuit” column, Csub-poly

log -input
means circuits with inputs of poly-logarithmic length and sub-polynomial size.

ingredients for 1-key weakly succinct (or collusion-resistant) PKFE supported circuits

[LPST16] 1-key weakly succinct SKFE, LWE P/poly
[BNPW16a] collusion-resistant SKFE, PKE, dGC, PRF in NC1 (DDH or LWE) P/poly
[KS17] collusion-resistant SKFE, sub-exponentially secure OWF Csub-poly

log -input
1st thm. collusion-resistant SKFE, PKE, dRE P/poly
2nd thm. 1-key weakly succinct SKFE, IBE, GC, dRE P/poly

5

Implication of third theorem. We can obtain interesting by-products from the third theorem.

By-product 1: We show that single-key weakly succinct SKFE is equivalent to one-way function and
SXIO since it is known that such SKFE implies SXIO with a compression factor that is slightly
smaller than 1 [BNPW16b].

By-product 2: We show that the existence of output-compact updatable randomized encoding with
unbounded number of updates [ACJ17] and one-way function is equivalent to that of single-key
weakly succinct SKFE. Previously, it is known that the existence of output-compact updatable
randomized encoding with unbounded number of updates and the hardness of the LWE problem
imply the existence of single-key weakly succinct SKFE [ACJ17]. It is also known that single-key
weakly succinct SKFE implies output-compact updatable randomized encoding with unbounded
number of updates. Thus, we replace the LWE assumption in the results by Ananth, Cohen, and
Jain [ACJ17] with one-way function.

1.3 Overview of Our Construction Technique

Our core schemes are q-key weakly collusion-succinct functional encryption schemes for a-priori fixed
polynomial q that are constructed from SXIO and an additional cryptographic primitive (one-way
function, public-key encryption, or identity-based encryption). Weak collusion-succinctness means the
size of the encryption circuit is sub-linear in the number of issuable functional keys. See Definition 2.20
for more details on succinctness. It is known that weakly collusion-succinct functional encryption is
transformed into weakly-succinct one [BV15, AJS15].

We explain our ideas to achieve q-key weakly collusion-succinct functional encryption schemes
below.

Our main idea in one sentence. We compress parallelized encryption circuits of a non-succinct scheme
based on standard cryptographic primitives by using SXIO to achieve weak collusion-succinctness.

Starting point. A naive idea to construct a q-key functional encryption scheme from a single-key
non-succinct functional encryption scheme is running q single-key non-succinct functional encryption
schemes in parallel where q is a polynomial fixed in advance. A master secret/public key consist of q
master secret/public keys of the single-key scheme, respectively. A ciphertext consists of q ciphertexts of
a plaintext x under q master secret or public keys. This achieves q-key functional encryption.7 However,
this simply parallelized scheme is clearly not weakly collusion-succinct since the size of the encryption
circuit is linear in q. Note that a single-key non-succinct functional encryption scheme is constructed from
a standard cryptographic primitive (such as one-way function, public-key encryption) [SS10, GVW12].

Compressing by SXIO. Our basic idea is compressing the encryption circuit of the simply parallelized
scheme by using SXIO. Instead of embedding all q keys in an encryption circuit, our encryption algorithm
obfuscates a circuit that generates the i-th master secret/public key of the simply parallelized scheme and
uses it to generate a ciphertext under the i-th key where i is an input to the circuit.

For simplicity, we consider the SKFE case. We set a pseudo-random function (PRF) key K as a
master secret key. For a plaintext x, our weakly collusion-succinct encryption algorithm generates a
circuit E′[K, x] that takes as an input an index i ∈ [q], generates the i-th master secret key MSKi by using
the hard-wired K and the index i, and outputs a ciphertext Enc(MSKi, x) of the single-key scheme8.

7In fact, the functional key generation algorithm takes an additional input called index and is stateful. We ignore this issue
here. However, in fact, this issue does not matter at all. See Remark 2.16 in Section 2 regarding this issue.

8We ignore the issue regarding randomness of the ciphertext in this section.

6

A ciphertext of our scheme is sxiO(E′[K, x]). In E′[K, x], each master secret key is generated in an
on-line manner by using the PRF (it is determined only by K and input i). The encryption circuit size of
each Enc(MSKi, x) is independent of q because it is the encryption algorithm of the single-key scheme.
The input space of E′[K, x] is [q]. Thus, the time needed to generate the ciphertext sxiO(E′[K, x]) is
poly(λ, |x|, | f |) · qγ from the efficiency guarantee of SXIO. This achieves weak collusion-succinctness.
The size depends on | f |, but it is not an issue since our goal at this step is not (weak) succinctness. The
security is proved using the standard punctured programming technique [SW14].

Extension to public-key setting. We achieve a q-key weakly collusion-succinct PKFE by a similar
idea to the SKFE case. Only one exception is that we need an SXIO to generate not only a ciphertext but
also a master public-key to prevent the size of a master public-key from linearly depending on q. That is,
a master public-key is an obfuscated circuit that outputs a master public-key of a single-key scheme by
using a PRF key. We give the simplified description of this setup circuit (denoted by S) below for clarity.
For the formal description of S, see Figure 4 in Section 3.2. If we do not use sxiO(S) as the master public

// Description of (simplified) S
Hard-Coded Constants: K.
Input: i ∈ [q]

1. Compute ri
Setup ← FK(i).

2. Compute (MPKi , MSKi)← Setup(1λ; ri
Setup).

3. Return MPKi .

// Description of (simplified) E′′
Hard-Coded Constants: MPK, x.
Input: i ∈ [q]

1. Parse sxiO(S)← MPK.
2. Compute MPKi ← sxiO(S)(i)
3. Return CTi ← Enc(MPKi , x).

key, we must use {MPKi}i∈[q] as the master public-key and embed them in a public encryption circuit
E′′ since we cannot make PRF key K public. This leads to linear dependence on q of the encryption time.

Encryption circuit E′′ is almost the same as E′ in the SKFE construction except that MPK = sxiO(S)
is hardwired to generate a master public-key in an on-line manner. Similarly to the SKFE construction,
a ciphertext is sxiO(E′′). This incurs two applications of SXIO in a nested manner (i.e., we obfuscate
a circuit in which another obfuscated circuit is hard-wired). Although the input space of E′′ is [q] and
the size of the encryption circuit of the single-key scheme is independent of q, the size of sxiO(E′′)
polynomially depends on sxiO(S). Thus, a better compression factor of SXIO for S is required to ensure
the weak collusion-succinctness of the resulting scheme. Such better SXIO is implied by collusion-
resistant (non-succinct) SKFE [BNPW16a]. See Section 3.2 for details of the efficiency analysis.

Using power of identity-based encryption. To overcome the nested applications of SXIO, we directly
construct a q-key weakly collusion-succinct PKFE from SXIO, identity-based encryption, and garbled
circuit. The main idea is the same. Our starting point is the single-key non-succinct PKFE scheme of
Sahai and Seyalioglu [SS10], which is based on a public-key encryption scheme PKE. We use a universal
circuit U(·, x) in which a plaintext x is hard-wired and takes as an input a function f , which will be
embedded in a functional key. Let s := | f |. The scheme of Sahai and Seyalioglu is as follows.

Setup: A master public-key consists of 2s public-keys of PKE, {pkj
0, pkj

1}j∈[s].

Functional Key: A functional key for f consists of s secret-keys of PKE, {skj
f j
}j∈[s] where f = f1 . . . fs

and f j is a single bit for every j ∈ [s].
Encryption: A ciphertext of a plaintext x consists of a garbled circuit of U(·, x) and encryptions of 2s

labels of the garbled circuit under pkj
b for all j ∈ [s] and b ∈ {0, 1}.

Decryption: We obtain labels corresponding to f by using {skj
f j
}j∈[s] and evaluate the garbled U(·, x)

with those labels.

7

We can replace PKE with an identity-based encryption scheme IBE by using identities in [s]× {0, 1}.
That is, {pkj

0, pkj
1}j∈[s] is aggregated into a master public-key of IBE. A functional key for f consists

of secret keys for identities (1, f1), . . . , (s, fs). In addition, encryptions of 2s labels consist of 2s
ciphertexts for identities (j, b) for all j ∈ [s] and b ∈ {0, 1}. We parallelize this by extending the
identity space into [q]× [s]× {0, 1} to achieve a q-key scheme. We need compression to achieve weak
collusion-succinctness since simple parallelization incurs the linearity in q.

Our encryption algorithm obfuscates the following circuit Ẽ by using an SXIO. A master public-key
of IBE and plaintext x are hard-wired in Ẽ. Given index i, Ẽ generates a garbled circuit of U(·, x) with
2s labels and outputs the garbled circuit and encryptions of the 2s labels under appropriate identities.
Identities consist of (i, j, f j) ∈ [q] × [s] × {0, 1} for every j ∈ [s]. A ciphertext of our scheme is
sxiO(Ẽ). Therefore, if secret keys for identities

{
(i, j, f j)

}
j∈[s] are given as functional keys, then we can

obtain labels only for f from corresponding ciphertexts of IBE output by sxiO(Ẽ) on the input i, and
compute U(f , x) = f (x).

A master public-key and encryption circuit of the identity-based encryption are succinct in the sense
that their size is sub-linear in |ID| where ID is the identity space of IBE. That is, the size depends
on |ID|α for sufficiently small constant α.9 In addition, the input space of Ẽ is just [q] and the garbled
circuit part of Ẽ is independent of q. Therefore, the time needed to generate a ciphertext sxiO(Ẽ) is
sub-linear in q from the efficiency property of SXIO. Thus, the scheme is weakly collusion-succinct.

In fact, this PKFE construction is similar to that of Bitansky et al. [BNPW16a], but we do not need
decomposable garbled circuit because our goal is achieving weak collusion-succinctness, which allows
encryption circuits to polynomially depend on the size of f (our goal is not weak succinctness at this
stage). Thus, a standard garbled circuit is sufficient for our construction. Moreover, SXIO with a bad
compression factor is sufficient since we use an SXIO only once.

SXIO

OWF

PKE

1-key non-
succinct
SKFE

1-key non-
succinct
PKFE

q-key collusion-
succinct SKFE

q-key collusion-
succinct PKFE

1-key weakly
succinct
SKFE

1-key weakly
succinct
PKFE

+

+

[SS10, GVW12] [BV15, AJS15]

Thm. 3.2

Thm. 3.3

Figure 1: Illustration of our first and third theorems. Dashed lines denote known constructions. Purple boxes
denote our core schemes. We ignore puncturable PRF in this figure. It is implied by one-way function.

Uniting pieces. It is known that public-key encryption (resp. one-way function) implies single-key
non-succinct PKFE (resp. SKFE) [SS10, GVW12] and bounded-key weakly collusion-succinct PKFE
(resp. SKFE) implies single-key weakly succinct PKFE (resp. SKFE) [BV15, AJS15]. Thus, via our
weakly collusion-succinct PKFE (resp. SKFE), we can obtain single-key weakly succinct PKFE (resp.
SKFE) based on SXIO and standard cryptographic primitives. Figure 1 illustrates our first and third
informal theorems.

9When we say identity-based encryption, we assume that it satisfies this type of succinctness. In fact, most identity-based
encryption schemes based on number theoretic or lattice assumptions satisfy it. See Definition 2.11.

8

Concurrent and independent work. Lin and Tessaro [LT17] prove that a collusion-resistant PKFE
scheme for P/poly is constructed from any single-key PKFE scheme for P/poly (e.g., a PKFE scheme
based on public-key encryption proposed by Gorbunov, Vaikuntanathan, and Wee [GVW12]) and IO for
ω(log λ)-bit-input circuits.

Their construction is similar to that of our single-key weakly succinct PKFE scheme for P/poly
from public-key encryption and SXIO. One notable difference is that they use IO for ω(log λ)-bit-input
circuits while we use SXIO for P/poly based on collusion-resistant SKFE for P/poly with polynomial
security loss.

We observe that collusion-resistant SKFE for P/poly is constructed from one-way function and IO
for ω(log λ)-bit-input circuits by the construction similar to that of Lin and Tessaro. On the other hand,
it is not known whether IO for ω(log λ)-bit-input circuits is constructed from collusion-resistant SKFE
for P/poly even if we allow sub-exponential security loss.10 Thus, our assumptions are milder than theirs
to construct collusion-resistant PKFE for P/poly (or single-key weakly succinct PKFE for P/poly).

Organization. The main body of this paper consists of the following parts. In Section 2, we provide
preliminaries and basic definitions. In Section 3, we present our constructions of weakly collusion-
succinct functional encryption schemes based on SXIO and standard cryptographic primitives. In
Section 4, we provide a statement about how to transform weakly collusion-succinct functional encryption
schemes into single-key weakly succinct functional encryption schemes. In Section 5, we summarize
our results.

2 Preliminaries

We now define some notations and cryptographic primitives.

2.1 Notations and Basic Concepts

In this paper, x ← X denotes selecting an element from a finite set X uniformly at random, and y← A(x)
denotes assigning to y the output of a probabilistic or deterministic algorithm A on an input x. When we
explicitly show that A uses randomness r, we write y ← A(x; r). For strings x and y, x∥y denotes the
concatenation of x and y. Let [ℓ] denote the set of integers {1, · · · , ℓ}, λ denote a security parameter,
and y := z denote that y is set, defined, or substituted by z. PPT stands for probabilistic polynomial time.

• A function f : N → R is a negligible function if for any constant c, there exists λ0 ∈ N such
that for any λ > λ0, f (λ) < λ−c. We write f (λ) ≤ negl(λ) to denote f (λ) being a negligible
function.

• If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables indexed by λ ∈ N,

we say that X (0) and X (1) are computationally indistinguishable if for any PPT distinguisher D,
there exists a negligible function negl(λ), such that

∆ := |Pr[D(X(0)
λ) = 1]− Pr[D(X(1)

λ) = 1]| ≤ negl(λ).

We write X (0) c≈δ X (1) to denote that the advantage ∆ is bounded by δ.

10Komargodski and Segev [KS17] show that IO for O(poly(log λ))-bit-input and sub-polynomial size circuits is constructed
from collusion-resistant SKFE. However, the construction incurs quasi-polynomial security loss. In addition, it is not clear
whether their IO is sufficient for the construction of Lin and Tessaro since it supports only circuits of sub-polynomial size.

9

2.2 Basic Cryptographic Primitives

Definition 2.1 (Pseudo-Random Function). Let {FK : {0, 1}ℓ1 → {0, 1}ℓ2 | K ∈ {0, 1}λ} be a family
of polynomially computable functions, where ℓ1 and ℓ2 are some polynomials of λ. We say that F is a
pseudo-random function (PRF) family if for any PPT distinguisher A, it holds that

Advprf
A (λ) := |Pr[AFK(·)(1λ) = 1 | K ← {0, 1}λ]− Pr[AR(·)(1λ) = 1 | R← U]| ≤ negl(λ),

where U is the set of all functions from {0, 1}ℓ1 to {0, 1}ℓ2 . We further say that F is δ-secure, for some
concrete negligible function δ(·), if for any PPT A the above advantage is smaller than δ(λ)Ω(1).

Puncturable PRFs, defined by Sahai and Waters [SW14], are PRFs with a key-puncturing procedure
that produces keys that allow evaluation of the PRF on all inputs, except for a designated polynomial-size
set.

Definition 2.2 (Puncturable PRF). Let D and R be some sets. A puncturable PRF whose domain and
range are D and R, respectively, consists of a tuple of algorithms PPRF = (PRF.Gen, F, Punc) that
satisfy the following two conditions.

Functionality preserving under puncturing: For any polynomial-size set S ⊆ D and any x ∈ D \ S,
it holds that

Pr[FK(x) = FK{S}(x) | K ← PRF.Gen(1λ), K{S} ← Punc(K, S)] = 1.

Pseudorandom at punctured points: For any polynomial-size set S ⊆ D with S = {x1, . . . , xk(λ)}
and any PPT distinguisher A, it holds that

|Pr[A(FK{S}, {FK(xi)}i∈[k]) = 1]− Pr[A(FK{S}, Uk) = 1]| ≤ negl(λ),

where K ← PRF.Gen(1λ), K{S} ← Punc(K, S) and U denotes the uniform distribution over R.
We further say that PPRF is δ-secure, for some concrete negligible function δ(·), if for any PPT
A the above indistinguishability gap is smaller than δ(λ)Ω(1).

The Goldwasser-Goldreich-Micali tree-based construction of PRFs [GGM86] from one-way function
is easily seen to yield puncturable PRFs where the size of the punctured key grows polynomially with
the size of the set S being punctured, as recently observed [BW13, BGI14, KPTZ13]. Thus, we have:

Theorem 2.3 ([GGM86, BW13, BGI14, KPTZ13]). If one-way function exists, then for any efficiently
computable functions n(λ) and m(λ), there exists a puncturable PRF that maps n-bits to m-bits (i.e.,
D := {0, 1}n(λ) and R := {0, 1}m(λ)).

Definition 2.4 (Garbling Scheme). Let {Cn}n∈N be a family of circuits in which each circuit in Cn takes
n bit inputs. A circuit garbling scheme GC consists of two algorithms (Grbl, Eval).

Grbl(1λ, C) takes as inputs a security parameter 1λ and a circuit C ∈ Cn and outputs a garbled circuit
C̃, together with 2n wire keys (a.k.a labels) {Lj,α}j∈[n],α∈{0,1}.

Eval(C̃, {Lj,xj}j∈[n]) takes as inputs a garbled circuit C̃ and n wire keys {Lj,xj}j∈[n] where xi ∈ {0, 1}
and outputs y.

A garbling scheme is required to satisfy the following properties.

Correctness: It holds Eval(C̃, {Lj,xj}j∈[n]) = C(x) for every n ∈N, x ∈ {0, 1}n, where (C̃, {Lj,α}j∈[n],α∈{0,1})←
Grbl(1λ, C).

10

Security: Let GC.Sim be a PPT simulator. We define the following experiments Exptgc
A (1

λ, b) between
a challenger and an adversary A as follows.

1. The challenger chooses a bit b← {0, 1} and sends security parameter 1λ to A.
2. A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n to the challenger.
3. If b = 0, the challenger computes (C̃, {Lj,α}j∈[n],α∈{0,1}) ← Grbl(1λ, C) and returns

(C̃, {Lj,xj}j∈[n]) toA. Otherwise, the challenger returns (C̃, {Lxj}j∈[n])← GC.Sim(1λ, 1|C|, C(x)).

4. A outputs b′ ∈ {0, 1}. The experiment outputs b′.

We say that GC is secure if there exists a simulator GC.Sim, for any PPT A, it holds that

|Pr[Exptgc
A (1

λ, 0) = 1]− Pr[Exptgc
A (1

λ, 1) = 1]| ≤ negl(λ).

We further say that GC is δ-secure, for some concrete negligible function δ(·), if for any PPT adversary
A the above advantage is smaller than δ(λ)Ω(1).

Theorem 2.5 ([Yao86]). If there exists one-way function, there exists a secure garbling scheme for all
poly-size circuits.

Definition 2.6 (Decomposable Randomized Encoding). Let c ≥ 1 be an integer constant. A c-local
decomposable randomized encoding scheme RE for a function f : {0, 1}n → {0, 1}m consists of two
polynomial-time algorithms (RE.E, RE.D).

RE.E(1λ, f , x) takes as inputs the security parameter 1λ, a function f , and an input x for f , chooses
randomness r, and outputs an encoding f̂ (x; r) where f̂ : {0, 1}n × {0, 1}ρ → {0, 1}µ.

RE.D(f̂ (x; r)) takes as an input f̂ (x; r) and outputs f (x).

A randomized encoding scheme satisfies the following properties. Let s f̂ (resp. s f) denote the size of

the circuit computing f̂ (resp. f).

Correctness: For any λ, f , and x, it holds that Pr[f (x) = RE.D(RE.E(1λ, f , x))] = 1.

Decomposability: Computation of f̂ can be decomposed into computation of µ functions. That is,
f̂ (x; r) = (f̂1(x; r), · · · , f̂µ(x; r)), where each f̂i depends on at most a single bit of x and c bits
of r. We write f̂ (x; r) = (f̂1(x; rS1), · · · , f̂µ(x; rSµ

)), where Si denotes the subset of bits of r that
f̂i depends on. Parameters ρ and µ are bounded by s f · poly(λ, n).

Semantic Security: Let RE.Sim be a PPT simulator. We define the following experiments Exptdre
A (1λ, b)

between a challenger and an adversary A as follows.

1. The challenger chooses a bit b← {0, 1} and sends security parameter 1λ to A.
2. A sends a function f and input x ∈ {0, 1}n to the challenger.

3. If b = 0, the challenger computes
{

f̂i(x; r)
}µ

i=1
← RE.E(1λ, f , x) and returns them to A.

Otherwise, the challenger returns
{

f̂i(x; r)
}µ

i=1
← RE.Sim(1λ, 1| f |, f (x)).

4. A outputs a guess b′ ∈ {0, 1}. The experiment outputs b′.

We say that RE is semantically secure if there exists a simulator RE.Sim, for any PPT A, it holds
that

|Pr[Exptdre
A (1λ, 0) = 1]− Pr[Exptdre

A (1λ, 1) = 1]| ≤ negl(λ).

11

We further say that RE is δ-secure, for some concrete negligible function δ(·), if for any PPTA the above
advantage is smaller than δ(λ)Ω(1).

Theorem 2.7 ([Yao86, AIK06]). If there exists one-way function, there exists a semantically secure
decomposable randomized encoding for all poly-size circuits.

Remark 2.8 (Difference between decomposable randomized encoding and decomposable garbled cir-
cuit). We stress that there are significant differences between decomposable randomized encoding and
decomposable garbled circuit [BNPW16a] as we note in Section 1. In fact, both are basically slight
extensions of Yao’s garbled circuit. However, decomposable randomized encoding is a much simpler
tool and does not incur an exponential security loss in the depth of circuits while decomposable garbled
circuit does.

In decomposable garbled circuit, we can garble a circuit by a gate-by-gate manner and consider
hybrid garbled circuits that consist of real and simulated garbled gates. In the hybrid transitions from
the real to the simulation, a “punctured programming”-type security notion [SW14] is used for each
garbled gate. These two properties are differences from decomposable RE. To achieve the security
notion, Bitansky et al. change a real (resp. hybrid) garbled gate into a hybrid (resp. simulated) one if all
of its predecessor (resp. successor) gates are hybrid ones. Thus, 2O(d) (d is the depth of a circuit) hybrid
steps are needed to prove the security.

The reason decomposable garbled circuit is such complicated is that it is customized to be an IO-
friendly (or SXIO-friendly) tool [BNPW16a]. We use neither IO nor SXIO when we use decomposable
randomized encoding. Thus, we do not need decomposable garbled circuit for our purpose. See the
paper by Bitansky et al. for details of decomposable garbled circuit [BNPW16a].

Definition 2.9 (Secret-Key Encryption). A secret-key encryption scheme SKE is a two tuple (Enc, Dec)
of PPT algorithms.

• The encryption algorithm Enc, given a key K ∈ {0, 1}λ and a message m ∈ M, outputs a
ciphertext c, whereM is the plaintext space of SKE.

• The decryption algorithm Dec, given a key K and a ciphertext c, outputs a message m̃ ∈ {⊥}∪M.
This algorithm is deterministic.

Correctness: We require Dec(K, Enc(K, m)) = m for any m ∈ M and key K.

CPA-security We define the experiment Exptske
A (1λ, b) between an adversary A and a challenger as

follows. Below, let n be a fixed polynomial of λ.

1. The challenger selects a challenge bit b← {0, 1}, generates a key K ← {0, 1}λ, and sends
1λ to A.

2. A may make polynomially many encryption queries adaptively. If A sends (m0, m1) ∈
M×M to the challenger, then the challenger returns c← Enc(K, mb).

3. A outputs b′ ∈ {0, 1}. The experiment outputs b′.

We say the SKE scheme is CPA-secure if, for any PPT adversary A, it holds that

Advske
A := |Pr[Exptske

A (1λ, 0) = 1]− Pr[Exptske
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that SKE is δ-secure, for some concrete negligible function δ(·), if for any PPT A
the above advantage is smaller than δ(λ)Ω(1).

Definition 2.10 (Plain Public-key Encryption). LetM be a message space. A public-key encryption
scheme forM is a tuple of algorithms (KG, Enc, Dec) where:

12

• KG(1λ) takes as input the security parameter and outputs a public key pk and secret key sk.

• Enc(pk, m) takes as input pk and a message m ∈ M and outputs a ciphertext ct.

• Dec(sk, ct) takes as input sk and ct, and outputs some m′ ∈ M, or ⊥.

Correctness: For any m ∈ M and (sk, pk)← KG(1λ), we have that Dec(sk, Enc(pk, m)) = m.

CPA-security We define the experiment Exptpke
A (1λ, b) between an adversary A and challenger as

follows.

1. The challenger runs (sk, pk)← KG(1λ), and gives pk to A.
2. At some point, A sends two messages m∗0 , m∗1 as the challenge messages to the challenger.
3. The challenger generates ciphertext CT∗ ← Enc(pk, m∗b) and sends CT∗ to A.
4. A outputs a guess b′ for b. The experiment outputs b′.

We say PKE is CPA-secure if, for any PPT adversary A, it holds that

Advpke
A := |Pr[Exptpke

A (1λ, 0) = 1]− Pr[Exptpke
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that PKE is δ-secure, for some concrete negligible function δ(·), if for any PPT A
the above advantage is smaller than δ(λ)Ω(1).

Definition 2.11 (Succinct Identity-Based Encryption). Let M be a message space and ID be an
identity space. A succinct identity-based encryption scheme with α-compression for M and ID is a
tuple of algorithms (Setup, KG, Enc, Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK and master
public key MPK.

• KG(MSK, id) takes as input MSK and an identity id ∈ ID. It outputs a secret key skid for id.

• Enc(MPK, id, m) takes as input MPK, id ∈ ID, and a message m ∈ M, and outputs a ciphertext
ct.

• Dec(skid, ct) takes as input skid for id ∈ ID and ct, and outputs some m′ ∈ M, or ⊥.

We require the following properties:

Correctness: For any m ∈ M, any id ∈ ID, (MSK, MPK)← Setup(1λ), and skid ← KG(MSK, id),
we have that Dec(skid, Enc(MPK, id, m)) = m.

Succinctness: For any security parameter λ ∈ N and identity space ID, the size of the encryption
circuit Enc for ID and messages of length ℓ is at most |ID|αpoly(λ, ℓ) where α is a constant such that
0 < α < 1.

The efficiency property is not explicitly stated in many papers on identity-based encryption scheme
since identity-based encryption schemes based on number theoretic or lattice assumptions satisfy the
efficiency (in fact, the size of most schemes is bounded by poly(λ, ℓ, log |ID|)). This was defined by
Bitansky et al. [BNPW16a].

In this study, we considered the following security defined by Bitansky et al. [BNPW16a] which is
a weaker variant of standard selective-security in the sense that the definition requires an adversary to
declare challenge messages along with the challenge identity at the beginning of the security game.

13

Definition 2.12 (Selectively-Secure Identity-Based Encryption). A tuple of algorithms IBE = (Setup,
KG, Enc, Dec) is a selectively-secure identity-based encryption scheme forM and ID if it satisfies the
following requirement, formalized from the experiment Exptibe

A (1λ, b) between an adversary A and a
challenger:

1. A submits the challenge identity id∗ ∈ ID and the challenge messages m∗0 , m∗1 to the challenger.

2. The challenger generates (MSK, MPK) ← Setup(1λ) and ct∗ ← Enc(MPK, id∗, m∗b) and gives
(MPK,ct∗) to A.

3. A is allowed to query (polynomially many) identities id ∈ ID such that id ̸= id∗. The challenger
gives skid ← KG(1λ, MSK, id) to A.

4. A outputs a guess b′ for b. The experiment outputs b′.

We say the IBE is selectively-secure if, for any PPT A, it holds that

Advibe
A := |Pr[Exptibe

A (1λ, 0) = 1]− Pr[Exptibe
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that IBE is δ-selectively secure, for some concrete negligible function δ(·), if for any PPT
A the above advantage is smaller than δ(λ)Ω(1).

2.3 Functional Encryption

In this subsection we review the different notions of functional encryption.

Secret-Key Functional Encryption (SKFE)

We introduce the syntax of an index based variant SKFE scheme that we call an index based SKFE
(iSKFE) scheme. “Index based” means that, to generate the i-th functional decryption key, we need
to feed an index i to a key generation algorithm. For a single-key scheme, an iSKFE scheme is just a
standard SKFE scheme in which the key generation algorithm does not take an index as an input since
the index is always fixed to 1. See Remark 2.16 for details.

Definition 2.13 (Index Based Secret-key Functional Encryption). LetM := {Mλ}λ∈N be a message
domain, Y := {Yλ}λ∈N a range, I := [qk(λ)] an index space where qk is a fixed polynomial, and
F := {Fλ}λ∈N a class of functions f : M→ Y . An iSKFE scheme forM,Y , I , and F is a tuple of
algorithms SKFE = (Setup, iKG, Enc, Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK.

• iKG(MSK, f , i) takes as input MSK, a function f ∈ F , and an index i ∈ I , and outputs a secret
key sk f for f .

• Enc(MSK, x) takes as input MSK and a message x ∈ M and outputs a ciphertext CT.

• Dec(sk f , CT) takes as input sk f for f ∈ F and CT and outputs y ∈ Y , or ⊥.

Correctness: We require Dec(iKG(MSK, f , i), Enc(MSK, x)) = f (x) for any x ∈ M, f ∈ F , i ∈ I ,
and MSK← Setup(1λ).

Next, we introduce selective-message message privacy [BS15].

Definition 2.14 (Selective-Message Message Privacy). Let SKFE be an iSKFE scheme whose message
space, function space, and index space areM, F , and I , respectively. We define the selective-message
message privacy experiment Expsm-mp

A (1λ, b) between an adversary A and a challenger as follows.

14

1. A is given 1λ and sends (x(1)0 , x(1)1), · · · , (x(qm)
0 , x(qm)

1) to the challenger, where qm is an a-priori
unbounded polynomial of λ.

2. The challenger chooses MSK← Setup(1λ) and a challenge bit b← {0, 1}.

3. The challenger generates CT(j) ← Enc(MSK, x(j)
b) for j ∈ [qm] and sends them to A.

4. A is allowed to make arbitrary function queries at most |I| = qk times. For the ℓ-th key query
fℓ ∈ F from A, the challenger generates sk fℓ ← iKG(MSK, fℓ, ℓ) and returns sk fℓ to A.

5. A outputs b′ ∈ {0, 1}. The experiment output b′ if fℓ(x(j)
0) = fℓ(x(j)

1) for all j ∈ [qm] and
ℓ ∈ [qk], where qk is the number of key queries made by A; otherwise ⊥.

We say that SKFE is qk-selective-message message private (or selectively secure for short) if for any
PPT A, it holds that

Advsm-mp
A (λ) := |Pr[Expsm-mp

A (1λ, 0) = 1]− Pr[Expsm-mp
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that SKFE is (qk, δ)-selective-message message private, for some concrete negligible
function δ(·), if for any PPT A the above advantage is smaller than δ(λ)Ω(1).

Remark 2.15 (Regarding the number of key queries). Let FE be a functional encryption scheme. If qk
is an unbounded polynomial, then we say FE is a collusion-resistant functional encryption. If qk is a
bounded polynomial (i.e., fixed in advance), then we say FE is a bounded collusion-resistant functional
encryption. If qk = 1, we say FE is a single-key functional encryption. In this study, our constructions
are bounded collusion-resistant.

Remark 2.16 (Regarding an index for algorithm iKG). Our definitions of functional encryptions slightly
deviates from the standard ones (e.g., the definition by Ananth and Jain [AJ15] or Brakerski and
Segev [BS15]). Our key generation algorithm takes not only a master secret key and a function but
also an index, which is used to bound the number of functional key generations. This index should be
different for each functional key generation. One might think this is a limitation, but this is not the case
in this study because our goal is constructing single-key PKFE. For a single-key scheme, |I| = 1 and
we do not need such an index. Index based bounded collusion-resistant functional encryption schemes
are just intermediate tools in this study. In fact, such an index has been introduced by Li and Micciancio
in the context of PKFE [LM16].11

Public-Key Functional Encryption (PKFE)

We next review the definition of PKFE. Similarly to SKFE, we introduce the index based variant of
definition here.

Definition 2.17 (Index Based Public-Key Functional Encryption). LetM := {Mλ}λ∈N be a message
domain, Y := {Yλ}λ∈N a range, I := [qk(λ)] an index space where qk is a fixed polynomial, and
F := {Fλ}λ∈N a class of functions f :M→ Y . An index based PKFE (iPKFE) scheme forM,Y , I ,
and F is a tuple of algorithms PKFE = (Setup, iKG, Enc, Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK and master
public key MPK.

11 The security definition of Li and Micciancio for index based functional encryption and ours is slightly different. Their
definition allows an adversary to use indices for key generation in an arbitrary order. On the other hand, our definition does not
allow it. The difference comes from the fact that their goal is constructing collusion-resistant functional encryption while our
goal is constructing single-key functional encryption. By restricting an adversary to use indices successively from one, we can
describe security proofs more simply.

15

• iKG(MSK, f , i) takes as input MPK, a function f ∈ F , and an index i ∈ I . It outputs a secret
key sk f for f .

• Enc(MPK, m) takes as input MPK and a message m ∈ M, and outputs a ciphertext CT.

• Dec(sk f , CT) takes as input sk f for f ∈ F and c, and outputs y ∈ Y , or ⊥.

Correctness: We have that Dec(iKG(MSK, f , i), Enc(MPK, m)) = f (m) for any m ∈ M, i ∈ I ,
f ∈ F , and (MSK, MPK)← Setup(1λ).

Definition 2.18 (Selective-Security). We say that a tuple of algorithms PKFE = (Setup, iKG, Enc, Dec)
is a selectively-secure iPKFE scheme for M,Y , I , and F , if it satisfies the following requirement,
formalized from the experiment Exptsel

A (1λ, b) between an adversary A and a challenger:

1. A submits a message pair x∗0 , x∗1 ∈ M to the challenger.

2. The challenger runs (MSK, MPK)← Setup(1λ) and generates a ciphertext CT∗ ← Enc(MPK, x∗b).
The challenger gives (MPK, CT∗) to A.

3. A is allowed to make arbitrary function queries at most |I| = qk times, where it sends a function
fℓ ∈ F to the challenger. The challenger checks that fℓ(x∗0) = fℓ(x∗1). If the check fails, then the
challenger returns ⊥. Otherwise, the challenger responds with sk fℓ ← iKG(MSK, fℓ, ℓ) for the
ℓ-th query fℓ.

4. A outputs a guess b′ for b.

5. The experiment outputs b′.

We say that PKFE is selectively-secure if, for any PPT A, it holds that

Advsel
A (λ) := |Pr[Exptsel

A (1λ, 0) = 1]− Pr[Exptsel
A (1λ, 0) = 1]| ≤ negl(λ).

We further say that PKFE is (qk, δ)-selectively secure, for some concrete negligible function δ(·), if for
any PPT A the above advantage is smaller than δ(λ)Ω(1).

We also introduce an weaker variant of selective-security.

Definition 2.19 (Weakly Selective Security [GS16]). We say that a tuple of algorithms PKFE =
(Setup, iKG, Enc, Dec) is an weakly selectively secure iPKFE scheme forM,Y , I , and F , if it satisfies
the following requirement, formalized from the experiment Exptsel∗

A (1λ, b) between an adversary A and
challenger:

1. A submits a message pair x∗0 , x∗1 ∈ M and functions (f1, . . . , fqk) ∈ F qk to the challenger, where
qk is a polynomial of λ such that qk ≤ |I|.

2. The challenger runs (MSK, MPK) ← Setup(1λ), generates ciphertext CT∗ ← Enc(MPK, x∗b)
and secret keys sk fℓ ← Key(MSK, fℓ, ℓ) for all ℓ ∈ [qk]. The challenger gives (MPK, CT∗, sk f1 , . . . , sk fqk

)
to A.

3. A outputs a guess b′ for b.

4. The experiment outputs b′ if fℓ(x∗0) = fℓ(x∗1) for all ℓ ∈ [qk]; otherwise ⊥.

16

We say that PKFE is weakly selectively secure if, for any PPT adversary A, it holds that

Advsel∗
A (λ) := |Pr[Exptsel∗

A (1λ, 0) = 1]− Pr[Exptsel∗
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that PKFE is (qk, δ)-weakly-selectively secure, for some concrete negligible function δ(·),
if for any PPT A the above advantage is smaller than δ(λ)Ω(1).

Definition 2.20 (Succinctness of Functional Encryption [BV15]). For a class of functions F = {Fλ}
over message domainM = {Mλ}, we let:

• n(λ) be the input length of the functions in F ,

• s(λ) = max f∈Fλ
| f | be the upper bound on the circuit size of functions in Fλ,

• d(λ) = max f∈Fλ
depth(f) be the upper bound on the depth, and

a functional encryption scheme is

• succinct if the size of the encryption circuit is bounded by poly(n, λ, log s), where poly is a fixed
polynomial.

• weakly succinct if the size of the encryption circuit is bounded by sγ · poly(n, λ), where poly is
a fixed polynomial, and γ < 1 is a constant.

• weakly collusion-succinct if the size of the encryption circuit is bounded by qγ · poly(n, λ, s),
where q is the upper bound of issuable functional keys in bounded-key schemes (that is, the size of
the index space of the scheme), poly is a fixed polynomial, and γ < 1 is a constant.

We call γ the compression factor.
The following theorem states that one can construct IO from any single-key weakly succinct PKFE.

We recall that single-key iPKFE is also single-key PKFE, and vice versa.

Theorem 2.21 ([BV15]). If there exists a single-key sub-exponentially weakly selectively secure weakly
succinct PKFE scheme for P/poly, then there exists an indistinguishability obfuscator for P/poly.

2.4 Indistinguishability Obfuscation

Definition 2.22 (Indistinguishability Obfuscator). A PPT algorithm iO is an IO for a circuit class
{Cλ}λ∈N if it satisfies the following two conditions.

Functionality: For any security parameter λ ∈N, C ∈ Cλ, and input x, we have that

Pr[C′(x) = C(x)|C′ ← iO(C)] = 1 .

Indistinguishability: For any PPT distinguisher D and for any pair of circuits C0, C1 ∈ Cλ such that
for any input x, C0(x) = C1(x) and |C0| = |C1|, it holds that

|Pr [D(iO(C0)) = 1]− Pr [D(iO(C1)) = 1] | ≤ negl(λ) .

We further say that iO is δ-secure, for some concrete negligible function δ(·), if for any PPT D
the above advantage is smaller than δ(λ)Ω(1).

17

2.5 Strong Exponentially-Efficient Indistinguishability Obfuscation

Definition 2.23 (Strong Exponentially-Efficient Indistinguishability Obfuscation). Let γ < 1 be a
constant. An algorithm sxiO is a γ-compressing SXIO for a circuit class {Cλ}λ∈N if it satisfies the
functionality and indistinguishability in Definition 2.22 and the following efficiency requirement:

Non-trivial time efficiency We require that the running time of sxiO on input (1λ, C) is at most 2nγ ·
poly(λ, |C|) for any λ ∈N and any circuit C ∈ {Cλ}λ∈N with input length n.

Remark 2.24. In this paper, when we write “SXIO for P/poly”, we implicitly mean that SXIO for
polynomial-size circuits with inputs of logarithmic length. This follows the style by Bitansky et al. [BNPW16a]
though Lin et al. [LPST16] use the circuit class Plog/poly to denote the class of polynomial-size circuits
with inputs of logarithmic length. The reason why we use the style is that we can consider the polynomial
input length if we do not care about the polynomial running time of sxiO and the input length n obviously
must be logarithmic for the polynomial running time of sxiO from the definition.

3 Collusion-Succinct Functional Encryption from SXIO

In our bounded-key weakly collusion-succinct iSKFE and iPKFE schemes, we use single-key non-
succinct SKFE and PKFE schemes that are implied from one-way function and public-key encryption,
respectively.

Theorem 3.1 ([GVW12]12). If there exists a δ-secure one-way function, then there exists a (1, δ)-
selectively-secure and non-succinct SKFE scheme for P/poly. If there exists a δ-secure public-key
encryption, then there exists a (1, δ)-selectively-secure and non-succinct PKFE scheme for P/poly.

See Appendix A for more details of single-key non-succinct schemes. Throughout this paper, let n
and s be the length of a message x and size of a function f of a functional encryption scheme, respectively
as in Definition 2.20.

3.1 Collusion-Succinct SKFE from SXIO and One-Way Function

In this section, we discuss how to construct a bounded-key collusion-succinct iSKFE scheme from SXIO
and one-way function.

Our Construction. The construction of an iSKFE scheme qFE whose index space is [q] from a
single-key SKFE and SXIO is as follows, where q is an a-priori fixed polynomial of λ. Let 1FE =
(1FE.Setup, 1FE.KG, 1FE.Enc, 1FE.Dec) be a single-key non-succinct SKFE scheme, (PRF.Gen, F, Punc)
a puncturable PRF, and sxiO a γ̃-compressing SXIO, where γ̃ is a constant such that 0 < γ̃ < 1.

qFE.Setup(1λ) :

• Generate K ← PRF.Gen(1λ).

• Return M̂SK← K.

qFE.iKG(M̂SK, f , i) :

• Parse K ← M̂SK.
• Compute ri ← FK(i) and MSKi ← 1FE.Setup(1λ; ri).

12More precisely, Gorbunov et al. prove that we can construct adaptively secure schemes, in which adversaries are allowed
to declare a target message pair after the function query phase. However, selective security is sufficient for our purpose.

18

• Compute ski
f ← 1FE.KG(MSKi, f).

• Return ŝk f ← (i, ski
f).

qFE.Enc(M̂SK, x) :

• Parse K ← M̂SK.
• Generate K′ ← PRF.Gen(1λ) and E1fe[K, K′, x] defined in Figure 2.
• Return ĈT← sxiO(E1fe[K, K′, x]).

qFE.Dec(ŝk f , ĈT) :

• Parse (i, ski
f)← ŝk f .

• Compute the circuit ĈT on input i, that is CTi ← ĈT(i).
• Return y← 1FE.Dec(ski

f , CTi).

Encryption Circuit E1fe[K, K′, x](i)

Hardwired: puncturable PRF keys K, K′, and message x.
Input: index i ∈ [q].
Padding: circuit is padded to size pad := pad(λ, n, s, q), which is determined in analysis.

1. Compute ri ← FK(i) and r′i ← FK′ (i).
2. Compute MSKi ← 1FE.Setup(1λ; ri).
3. Output CTi ← 1FE.Enc(MSKi, x; r′i).

Figure 2: Description of E1fe[K, K′, x].

Theorem 3.2. If there exists non-succinct (1, δ)-selective-message message private SKFE for P/poly
and δ-secure γ̃-compressing SXIO for P/poly where 0 < γ̃ < 1 (γ̃ might be close to 1), then there exists
weakly collusion-succinct (q, δ)-selective-message message private iSKFE for P/poly with compression
factor γ′ such that 0 < γ̃ < γ′ < 1, where q is an a-priori fixed polynomial of λ.

Proof of Theorem 3.2. We start with the security proof, then move to analyzing succinctness.

Security Proof. Let us assume that the underlying primitives are δ-secure. Let A be an adversary
attacking the selective security of qFE. We define a sequence of hybrid games.

Hyb0: The first game is the original selective security experiment for b = 0, that is Exptsel
A (1λ, 0).

In this game, A first selects the challenge messages (x(1)0 , x(1)1), . . . , (x(qm)
0 , x(qm)

1), then obtains
encryptions of x(1)0 , . . . , x(qm)

0 . After that, it also adaptively makes q function queries { fi}i∈[q] such
that fi(x(j)

0) = fi(x(j)
1) for all i ∈ [q] and j ∈ [qm] and receives functional keys (see Definition 2.13

for more details).

Hybi∗
1 : Let i∗ ∈ [q]. For all j ∈ [qm], we generate the challenge ciphertext as obfuscated E(j) described

in Figure 3. In this hybrid game, we set ri∗ ← FK(i∗), K{i∗} ← Punc(K, i∗), r(j)
i∗ ← FK(j)(i∗),

K(j){i∗} ← Punc(K(j), i∗), MSKi∗ ← 1FE.Setup(1λ; ri∗), and CT(j)
i∗ ← 1FE.Enc(MSKi∗ ,

19

x(j)
0 ; r(j)

i∗) for every j ∈ [qm], where K(j) ← PRF.Gen(1λ) is randomness for the j-th target
ciphertext.

When i∗ = 1, for all j ∈ [qm], the behaviors of E1fe[K, K′, x(j)
0] and E(j) are the same since the

hard-wired ciphertexts CT(j)
1 in E(j) is the same as the output of E1fe[K, K′, x(j)

0] on an input 1.
Their size is also the same since we pad circuit E1fe[K, K′, x(j)

0] to have the same size as E(j). Then,
we can use the indistinguishability guarantee of sxiO and it holds that Hyb0

c≈δ Hyb1
1. (In fact, we

use indistinguishability qm times to change all qm ciphertexts.)

Encryption Circuit E(j)[K{i∗}, K(j){i∗}, x(j)
0 , x(j)

1 , CT(j)
i∗](i)

Hardwired: punctured PRF keys K{i∗}, K(j){i∗}, messages x(j)
0 , x(j)

1 , and ciphertext CT(j)
i∗ .

Input: index i ∈ [q].
Padding: circuit is padded to size pad = pad(λ, n, s, q), which is determined in the analysis.

1. If i = i∗, then output CT(j)
i∗ .

2. Else, compute ri ← FK{i∗}(i) and r(j)
i ← FK(j){i∗}(i).

3. Compute MSKi ← 1FE.Setup(1λ; ri).

4. If i > i∗, output CTi ← 1FE.Enc(MSKi, x(j)
0 ; r(j)

i).

5. If i < i∗, output CTi ← 1FE.Enc(MSKi, x(j)
1 ; r(j)

i).

Figure 3: Circuit E(j)[K{i∗}, K(j){i∗}, x(j)
0 , x(j)

1 , CT(j)
i∗].

Hybi∗
2 : We change ri∗ = FK(i∗) and r(j)

i∗ = FK(j)(i∗) into uniformly random ri∗ and r(j)
i∗ for all j ∈ [qm].

Due to the pseudo-randomness at punctured points of puncturable PRF, it holds that Hybi∗
1

c≈δ Hybi∗
2

for every i∗ ∈ [q].

Hybi∗
3 : We change the hard-wired ciphertext CT(j)

i∗ from 1FE.Enc(MSKi∗ , x(j)
0) to 1FE.Enc(MSKi∗ , x(j)

1)

for all j ∈ [qm]. In Hybi∗
2 and Hybi∗

3 , we do not need the master secret key MSKi∗ and randomness
for ciphertexts, which are used to generate CT(j)

i∗ . We just use CT(j)
i∗ as the hardwired ciphertext for

E(j). Therefore, for every i∗ ∈ [q], Hybi∗
2

c≈δ Hybi∗
3 follows from the selective-message message

privacy of 1FE.

Hybi∗
4 : We change ri∗ and r(j)

i∗ into ri∗ = FK(i∗) and r(j)
i∗ = FK(j)(i∗) for every j ∈ [qm]. We can show

that Hybi∗
3

c≈δ Hybi∗
4 for every i∗ ∈ [q] based on the pseudo-randomness at punctured point of

puncturable PRF.

From the definition of E(j)[K{i∗}, K(j){i∗}, x(j)
0 , x(j)

1 , CT(j)
i∗] and Hybi∗

1 , the behaviors of E(j) in Hybi∗
4

and Hybi∗+1
1 are the same for every i∗ ∈ [q− 1]. Thus, Hybi∗

4
c≈δ Hybi∗+1

1 holds for every i∗ ∈ [q− 1]

due to the indistinguishability of sxiO. It also holds that Hybq
4

c≈δ Exptsel
A (1λ, 1). (Again, we use the

security of sxiO qm times to show these indistinguishability.)

Padding Parameter. The proof of security relies on the indistinguishability of the obfuscated circuits
of E1fe and E(j) defined in Figure 2 and 3. j is a variable that takes a value in [qm], where qm is the
number of message pairs an adversary queries. Note that the value of j does not affect the size of E(j).
We need to set pad := max(|E1fe|, |E(j)|).

20

Let, n and s be the size of x and f , respectively. The circuits E1fe and E(j) compute a puncturable
PRF over the domain [q], an SKFE master secret key, and may have punctured PRF keys and a hardwired
ciphertext. Note that the size of instances of 1FE is independent of q. Thus,

pad ≤ poly(λ, n, s, log q) .

Weak Collusion-Succinctness. The input space for E1fe is [q]. Therefore, by the efficiency guarantee
of SXIO, the size of the encryption circuit qFE.Enc (dominated by generating the obfuscated E1fe) is

qγ̃ · poly(λ, n, s, log q) < qγ′ · poly(λ, n, s) ,

where γ̃ and γ′ are constants such that 0 < γ̃ < γ′ < 1.
This completes the proof of Theorem 3.2.

3.2 Collusion-Succinct PKFE from SXIO and Public-Key Encryption

In this section, we discuss how to construct a bounded-key weakly collusion-succinct iPKFE scheme
from an SXIO and PKE scheme.

Overview and proof strategy. Before we proceed to details, we give a main idea for our iPKFE
scheme.

Analogously to SKFE setting in Section 3.1, to achieve collusion-succinctness, we consider to set a
ciphertext as a circuit obfuscated by SXIO that can generate q ciphertexts of a single-key non-succinct
scheme. We need to maintain q encryption keys succinctly. In the SKFE setting, we maintain q master
secret-keys as one puncturable PRF key. However, we cannot directly use this solution in the PKFE
setting. If we do so in the PKFE setting, since the puncturable PRF key should be the master secret-key, an
encryptor cannot use it. Thus, we need some mechanism that makes all master public-keys of single-key
non-succinct schemes available to an encryptor maintaining them succinctly.

To generate a succinct master public-key, we generate a setup circuit (denoted by S1fe in our scheme)
that outputs i-th master public-key of a single-key non-succinct scheme corresponding to an input i, and
obfuscate the circuit by SXIO as explained in Section 1.3. An encryptor embeds MPK := sxiO(S1fe)
into an encryption circuit and outputs an obfuscation of this encryption circuit as a ciphertext. This
encryption circuit is hardwired a plaintext x and can output ciphertexts under all q master public-keys
like the encryption circuit in Section 3.1.

Our solution means that we must obfuscate a circuit in which an obfuscated circuit is hardwired
(nested applications of SXIO). The nested application still increases the size of a ciphertext. However, if
the compression factor of SXIO for S1fe is sufficiently small, we can achieve weak collusion-succinctness.

In the security proof, we use the security of a single-key non-succinct scheme to change a ciphertext
of x0 under each master public-key into that of x1 via the punctured programming approach as the SKFE
case. However, in the reduction to the single-key security, a target master public-key should be given
from the security experiment. This means that we must embed the target master public-key into the setup
circuit instead of generating it in an on-line manner. Thus, we must apply the punctured programming
technique to the setup circuit too before the reduction to the single-key security. This is what the first
hybrid step in the security proof does. The rest of the proof is almost the same as that of our iSKFE
scheme.

Our construction. The construction of an iPKFE scheme qFE whose index space is [q] from an
SXIO and public-key encryption scheme is as follows, where q is a fixed polynomial of λ. Let
1FE = (1FE.Setup, 1FE.KG, 1FE.Enc, 1FE.Dec) be a single-key non-succinct PKFE scheme and
(PRF.Gen, F, Punc) a puncturable PRF.

21

qFE.Setup(1λ) :

• Generate K ← PRF.Gen(1λ) and S1fe[K] defined in Figure 4.
• Return (M̂PK, M̂SK) := (sxiO(S1fe), K).

qFE.iKG(M̂SK, f , i) :

• Parse K := M̂SK.
• Compute ri ← FK(i) and (MSKi, MPKi)← 1FE.Setup(1λ; ri).
• Compute ski

f ← 1FE.KG(MSKi, f) and return ŝk f ← (i, ski
f).

qFE.Enc(M̂PK, x) :

• Generate K′ ← PRF.Gen(1λ) and E1fe[M̂PK, K′, x] defined in Figure 5.
• Return ĈT← sxiO(E1fe[M̂PK, K′, x]).

qFE.Dec(ŝk f , ĈT) :

• Parse (i, ski
f) := ŝk f .

• Compute the circuit ĈT on input i, that is CTi ← ĈT(i).
• Return y← 1FE.Dec(ski

f , CTi).

Setup Circuit S1fe[K](i)

Hardwired: puncturable PRF key K.
Input: index i ∈ [q].
Padding: circuit is padded to size padS := padS(λ, n, s, q), which is determined in analysis.

1. Compute ri ← FK(i).
2. Compute (MPKi, MSKi)← 1FE.Setup(1λ; ri) and output MPKi.

Figure 4: Description of S1fe[K].

Encryption Circuit E1fe[M̂PK, K′, x](i)

Hardwired: circuit M̂PK, puncturable PRF key K′, and message x.
Input: index i ∈ [q].
Padding: circuit is padded to size padE := padE(λ, n, s, q), which is determined in analysis.

1. Compute the circuit M̂PK on input i, that is MPKi ← M̂PK(i).
2. Compute r′i ← FK′ (i) and output CTi ← 1FE.Enc(MPKi, x; r′i).

Figure 5: Description of E1fe[M̂PK, K′, x].

Theorem 3.3. If there exists (1, δ)-selectively-secure non-succinct PKFE for P/poly and δ-secure γ-
compressing SXIO for P/poly where γ is an arbitrarily small constant such that 0 < γ < 1, then there
exists (q, δ)-selectively-secure weakly collusion-succinct iPKFE for P/poly with compression factor β,
where q is an a-priori fixed polynomial of λ, and β is a constant such that 0 < β < 1 specified later.

Proof of Theorem 3.3. We start with the security proof, then move on to analyzing succinctness.

22

Security Proof. Let us assume that the underlying primitives are δ-secure. Let A be an adversary
attacking the selective security of qFE. We define a sequence of hybrid games.

Hyb0: The first game is the original selective security experiment for b = 0, that is Exptsel
A (1λ, 0). A first

selects the challenge messages (x∗0 , x∗1) and receives the master public key M̂PK := sxiO(S1fe[K])
and target ciphertext sxiO(E1fe[M̂PK, K′, x∗0]). Next, A adaptively makes q function queries
f1, . . . , fq such that fi(x∗0) = fi(x∗1) for all i ∈ [q] and receives functional keys ŝk f1 , . . . , ŝk fq . (see
Definition 2.17 for more details).

Hybi∗
1 : Let i∗ ∈ [q]. We generate M̂PK as obfuscated S∗1fe described in Figure 6. In this hybrid game,

we set ri∗ ← FK(i∗), K{i∗} ← Punc(K, i∗) and (MPKi∗ , MSKi∗)← 1FE.Setup(1λ; ri∗).
When i∗ = 1, the behavior of S∗1fe is the same as that of S1fe since the hard-wired MPK1 in S∗1fe is
the same as the output of S1fe on the input 1. Their size is also the same since we pad circuit S1fe
to have the same size as S∗1fe. Then, we can use the indistinguishability guarantee of sxiO and it
holds that Hyb0

c≈δ Hyb1
1.

Hybi∗
2 : The challenge ciphertext is generated by obfuscating E∗1fe described in Figure 7. In this hybrid

game, we set r′i∗ ← FK′(i∗), K′{i∗} ← Punc(K′, i∗), CTi∗ ← 1FE.Enc(MPKi∗ , x∗0 ; r′i∗), and
MPKi∗ ← M̂PK(i∗).
When i∗ = 1, the behavior of E∗1fe is the same as that of E1fe since the hard-wired CT1 in E∗1fe is the
same as the output of E1fe on the input 1. Moreover, both circuits have the same size by padding
padE. Then, we can use the indistinguishability guarantee of sxiO and it holds that Hyb1

1
c≈δ Hyb1

2.
In addition, for i∗ ≥ 2, the behavior of E∗1fe does not change between Hybi∗

1 and Hybi∗
2 . Thus,

Hybi∗
1

c≈δ Hybi∗
2 holds for every i∗ ∈ {2, · · · , q} due to the security guarantee of sxiO.

Setup Circuit S∗1fe[K{i∗}, MPKi∗](i)

Hardwired: puncturable PRF key K{i∗} and 1FE master public-key MPKi∗ .
Input: index i ∈ [q].
Padding: circuit is padded to size padS := padS(λ, n, s, q), which is determined in analysis.

1. If i = i∗, output MPKi∗ .
2. Else, compute ri ← FK{i∗}(i).

3. Compute (MPKi, MSKi)← 1FE.Setup(1λ; ri) and output MPKi.

Figure 6: Circuit S∗1fe[K{i∗}, MPKi∗]. The description depends on i∗, but we use the notion S∗1fe instead of Si∗
1fe

for simpler notations.

Hybi∗
3 : We change ri∗ = FK(i∗) and r′i∗ = FK′(i∗) into uniformly random ri∗ and r′i∗ . Due to the

pseudo-randomness at punctured points of puncturable PRF, it holds that Hybi∗
2

c≈δ Hybi∗
3 for

every i∗ ∈ [q].

Hybi∗
4 : We change CTi∗ from 1FE.Enc(MPKi∗ , x∗0) to 1FE.Enc(MPKi∗ , x∗1). In Hybi∗

3 and Hybi∗
4 , we do

not need randomness to generate MPKi∗ and CTi∗ . We just hardwire MPKi∗ and CTi∗ into S∗1fe
and E∗1fe, respectively. Therefore, for every i∗ ∈ [q], Hybi∗

3
c≈δ Hybi∗

4 follows from the selective
security of 1FE under the master public key MPKi∗ .

Hybi∗
5 : We change r∗i and r′i∗ into ri∗ = FK(i∗) and r′i∗ = FK′(i∗). We can show Hybi∗

4
c≈δ Hybi∗

5 for
every i∗ ∈ [q] based on the pseudo-randomness at punctured point of puncturable PRF.

23

Encryption Circuit E∗1fe[M̂PK, K′{i∗}, x∗0 , x∗1 , CTi∗](i)

Hardwired: master public key M̂PK (that is an obfuscated circuit), puncturable PRF key K′{i∗}, messages x∗0 , x∗1 ,
and ciphertext CTi∗ .

Input: index i ∈ [q].
Padding: circuit is padded to size padE := padE(λ, n, s, q), which is determined in analysis.

1. If i = i∗, output CTi∗ .
2. Else, compute r′i ← FK′ (i) and the circuit M̂PK on input i, that is MPKi ← M̂PK(i).

If i > i∗: Output CTi ← 1FE.Enc(MPKi, x∗0 ; r′i).

If i < i∗: Output CTi ← 1FE.Enc(MPKi, x∗1 ; r′i).

Figure 7: Circuit E∗1fe[M̂PK, K′{i∗}, x∗0 , x∗1 , CTi∗]. The description depends on i∗, but we use the notion E∗1fe
instead of Ei∗

1fe for simpler notations.

From the definition of S∗1FE, E∗1FE, and Hybi∗
1 , the behaviors of S∗1FE and E∗1FE in Hybi∗

5 and Hybi∗+1
1 are

the same. Thus, Hybi∗
5

c≈δ Hybi∗+1
1 holds for every i∗ ∈ [q− 1] due to the security guarantee of sxiO.

It also holds that Hybq
5

c≈δ Exptsel
A (1λ, 1) based on the security guarantee of sxiO. This completes the

security proof.

Padding Parameter. The proof of security relies on the indistinguishability of obfuscated S1fe and S∗1fe
defined in Figures 4 and 6, and that of obfuscated E1fe and E∗1fe defined in Figure 5 and 7. Accordingly,
we set padS := max(|S1fe|, |S∗1fe|) and padE := max(|E1fe|, |E∗1fe|).

The circuits S1fe and S∗1fe compute a puncturable PRF over domain [q] and a key pair of 1FE, and
may have punctured PRF keys and a master public key hardwired. The circuits E1fe and E∗1fe run the
circuit M̂PK and compute a puncturable PRF over domain [q] and a ciphertext of 1FE, and may have
punctured PRF keys and a hard-wired ciphertext. Note that the size of instances of 1FE is independent
of q. Thus, it holds that

padS ≤ poly(λ, n, s, log q),

padE ≤ poly(λ, n, s, log q, |M̂PK|).

Weak Collusion-Succinctness. To clearly analyze the size of qFE.Enc, we suppose that SXIO used to
obfuscate S1fe and that used to obfuscate E1fe are different.

Let γ′ be the compression factor of the SXIO for S1fe. The input space for S1fe is [q]. Therefore, by
the efficiency guarantee of SXIO, we have

|sxiO(S1fe)| < qγ′ · poly(λ, n, s, log q) .

Let γ be the compression factor of the SXIO for E1fe. The input space of E1fe is also [q]. The size
of the encryption circuit qFE.Enc (dominated by generating the obfuscated E1fe) is

qγ · poly(λ, n, s, log q, |sxiO(S1fe)|) < qγ+cγ′ · poly(λ, n, s),

where c is some constant.
We assume there exists SXIO with an arbitrarily small compression factor. Thus, by setting γ′ as

γ′ < 1−γ
c , we can ensure that β := γ + cγ′ < 1, that is qFE is weakly collusion-succinct.

This completes the proof of Theorem 3.3.

24

3.3 Collusion-Succinct PKFE from SXIO and Identity-Based Encryption

In this section, we directly construct a weakly collusion-succinct and weakly selectively secure iPKFE
scheme from an SXIO and identity-based encryption scheme.

Our construction. The construction of a weakly collusion-succinct and weakly selectively secure q-
key iPKFE scheme qFE for any fixed polynomial q of λ is based on an SXIO, identity-based encryption
scheme in the sense of Definition 2.1113, and garbled circuit which is implied by a one-way function.
Our collusion-succinct iPKFE scheme is weakly selectively secure (see Definition 2.19)because we use
function descriptions as identities of identity-based encryption, and the selective security of identity-
based encryption requires adversaries to submit a target identity at the beginning of the game.

We assume that we can represent every function f by a s bit string (f [1], · · · , f [s]) where s =
poly(λ). Let IBE = (IBE.Setup, IBE.KG, IBE.Enc, IBE.Dec) be an identity-based encryption scheme
whose identity space is [q]× [s]× {0, 1}, GC = (Grbl, Eval) a garbled circuit, and (PRF.Gen, F, Punc)
a PRF whose domain is [q]× [s]× {0, 1, 2}.

qFE.Setup(1λ) :

• Generate (MPKibe, MSKibe)← IBE.Setup(1λ).
• Set MPK := MPKibe and MSK := MSKibe and return (MPK, MSK).

qFE.iKG(MSK, f , i) :

• Parse MSKibe ← MSK and (f [1], · · · , f [s]) := f .
• For every j ∈ [s], compute SKj ← IBE.KG(MSKibe, (i, j, f [j])).
• Return sk f := (i, f , {SKj}j∈[s]).

qFE.Enc(MPK, x) :

• Parse MPKibe ← MPK and choose K ← PRF.Gen(1λ).
• Return CTfe ← sxiO(ELgc[MPKibe, K, x]). ELgc is defined in Figure 8.

qFE.Dec(sk f , CTfe) :

• Parse (i, f , {SKj}j∈[s])← sk f .

• Compute the circuit CTfe on input i, that is (Ũ, {CTj,α}j∈[s],α∈{0,1})← CTfe(i).

• For every j ∈ [s], compute Lj ← IBE.Dec(SKj, CTj, f [j]).

• Return y← Eval(Ũ, {Lj}j∈[s]).

Theorem 3.4. If there exists δ-selectively-secure succinct identity-based encryption with α-compression
(α is a sufficiently small constant) and δ-secure γ̃-compressing SXIO for P/poly for a constant γ̃ such that
0 < γ̃ < 1 (γ̃ might be close to 1), then there exists weakly collusion-succinct (q, δ)-weakly-selectively
secure iPKFE for circuits of size at most s with compression factor β, where s and q are a-priori fixed
polynomials of λ and β is a constant such that γ̃ < β < 1 specified later.

Proof of Theorem 3.4. We start with the security proof then moving to analyzing succinctness.

13Again, we stress that the size of the encryption circuit of an identity-based encryption scheme is |ID|α · poly(λ, ℓ) where
ℓ is the length of plaintext, ID is the identity-space, and α is a constant such that 0 < α < 1. Most identity-based encryption
schemes based on concrete assumptions have such succinct encryption circuits. In our scheme, ID is just a polynomial size.

25

Garbling with encrypted labels circuit ELgc[MPKibe, K, x]

Hardwired: public parameter of IBE MPKibe, puncturable PRF key K, and plaintext x.
Input: index i ∈ [q].
Padding: circuit is padded to size padEL := padEL(λ, s, q), which is determined in analysis.

1. Compute rgc ← FK(i∥1∥2).
2. Compute (Ũ, {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x); rgc).

3. For every j ∈ [s] and α ∈ {0, 1}, compute ri∥j∥α ← FK(i∥j∥α) and CTj,α ←
IBE.Enc(MPKibe, (i, j, α), Lj,α; ri∥j∥α).

4. Return (Ũ, {CTj,α}j∈[s],α∈{0,1}).

Figure 8: The description of ELgc. U(·, x) is a universal circuit in which x is hardwired as the second input.

Security Proof. Let us assume that the underlying primitives are δ-secure. Let A be an adversary
attacking weakly selective security of qFE. We define a sequence of hybrid games.

Hyb0: The first game is the original weakly selective security experiment for b = 0, that is Exptsel∗
A (1λ, 0).

In this game, A first selects the challenge messages (x∗0 , x∗1) and queries q functions f1, . . . , fq
such that fi(x∗0) = fi(x∗1) for all i ∈ [q]. Then A obtains an encryption of x∗0 , the master public
key, and functional keys sk f1 , . . . , sk fq . (see Definition 2.19 for more details).

Hybi∗
1 : Let i∗ ∈ [q]. The challenge ciphertext is generated by obfuscating EL∗gc described in Fig-

ure 9. In this hybrid game, we set r∗gc ← FK(i∗∥1∥2), r∗i∗∥j∥α ← FK(i∗∥j∥α) for all j ∈

[s] and α ∈ {0, 1}, K{S∗} ← Punc(K, S∗) where S∗ :=
{

i∗∥1∥2, {i∗∥j∥α}j∈[s],α∈{0,1}

}
,

(Ũ∗, {L∗j,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·, x∗0); r∗gc), and CTj,α
i∗ ← IBE.Enc(MPKibe, (i∗, j, α),

Lj,α; r∗i∗∥j∥α) for all j ∈ [s] and α ∈ {0, 1}. Hereafter, we use r∗j∥α instead of r∗i∗∥j∥α for ease
of notation.
When i∗ = 1, the behaviors of ELgc and EL∗gc are the same from the definition of EL∗gc, and so
are their size since we pad circuit ELgc to have the same size as EL∗gc. Then, we can use the
indistinguishability guarantee of sxiO, and it holds that Hyb0

c≈δ Hyb1
1.

Hybi∗
2 : We change r∗gc = FK(i∗∥1∥2) and r∗j∥α = FK(i∗∥j∥α) into uniformly random r∗gc and r∗j∥α for all

j ∈ [s] and α ∈ {0, 1}. Due to the pseudo-randomness at punctured points of puncturable PRF, it
holds that Hybi∗

1
c≈δ Hybi∗

2 for every i∗ ∈ [q].

Hybi∗
3 : For ease of notation, let f ∗ := fi∗ and f be the complement of f , that is, (f [1], . . . , f [s]) :=
(1− f [1], . . . , 1− f [s]). Moreover, we omit each randomness for IBE.Enc since it is uniformly
random at this hybrid game. For every j ∈ [s], we change

• normal ciphertexts CTj, f ∗[j]
i∗ ← IBE.Enc(MPKibe, (i∗, j, f ∗[j]), Lj, f ∗[j]) into

• junk ciphertexts CTj, f ∗[j]
i∗ ← IBE.Enc(MPKibe, (i∗, j, f ∗[j]), 0ℓ(λ)), where ℓ is a polynomial

denoting the length of labels output by Grbl.

That is, for identities which do not correspond to the i∗-th function queried by A, we do not
encrypt labels of garbled circuit. We do not change CTj, f ∗[j]

i∗ for all j ∈ [s]. Note that all f1, . . . , fq
are known in advance since we consider weakly selective security. A is not given secret keys of

26

Garbling with encrypted labels circuit EL∗gc[MPKibe, K{S∗}, x∗0 , x∗1 , (Ũ∗, {CTj,α
i∗ }j∈[s],α∈{0,1})]

Hardwired: punctured PRF key K{S∗} where S∗ :=
{

i∗∥1∥2, {i∗∥j∥α}j∈[s],α∈{0,1}

}
, public parameter of IBE

MPKibe, messages x∗0 , x∗1 , and (Ũ∗, {CTj,α
i∗ }j∈[s],α∈{0,1}).

Input: index i ∈ [q].
Padding: circuit is padded to size padEL := padEL(λ, s, q), which is determined in analysis.

1. If i = i∗, then output (Ũ∗, {CTj,α
i∗ }j∈[s],α∈{0,1}).

2. Else, compute rgc ← F(K, i∥1∥2).

If i > i∗, compute (Ũ, {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗0); rgc).

If i < i∗, compute (Ũ, {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗1); rgc).

3. For every j ∈ [s] and α ∈ {0, 1}, compute ri∥j∥α ← F(K, i∥j∥α) and CTj,α
i ←

IBE.Enc(MPKibe, (i, j, α), Lj,α; ri∥j∥α).

4. Return (Ũ, {CTj,α
i }j∈[s],α∈{0,1}).

Figure 9: The description of EL∗gc. The description depends on i∗, but we use the notion EL∗gc instead of ELi∗
gc

for simpler notations. U(·, x) is a universal circuit in which x is hardwired as the second input.

IBE for identity (i∗, j, f ∗[j]), so it is hard for A to detect this change. We show Hybi∗
2

c≈δ Hybi∗
3

more formally in Lemma 3.5 by using the selective security of IBE.

Lemma 3.5. It holds that Hybi∗
2

c≈δ Hybi∗
3 for all i∗ ∈ [q] if IBE is selectively secure.

Proof. First, we define more hybrid games Hj∗ for j∗ ∈ {0, · · · , s} as follows.

Hj∗: This is the same as Hybi∗
2 except that for j ≤ j∗, CTj, f ∗[j]

i∗ ← IBE.Enc(MPKibe, i∗∥j∥ f ∗[j], 0ℓ).
We see that H0 and Hs are the same as Hybi∗

2 and Hybi∗
3 , respectively.

We show that Hj∗−1
c≈δ Hj∗ holds for all j∗ ∈ [s]. This immediately implies the lemma.

We construct an adversary B in the selective security game of IBE as follows. To simulate the
weakly selective security game of iPKFE, B runs A attacking qFE and receives a message pair
(x∗0 , x∗1) and function queries f1, · · · , fq. B simulates the game of qFE as follows.

Setup and Encryption: B sets id∗ := i∗∥j∗∥ f ∗[j∗] as the target identity to the challenger of IBE.
Note that f ∗ = fi∗ .
To set challenge messages of IBE,B computes (Ũ∗, {L∗j,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗0))
and sets m∗0 := L∗

j∗, f ∗[j∗]
and m1 := 0ℓ(λ). B sends id∗ and (m∗0 , m∗1) to the challenger of

IBE, and receives MPKibe and CTj∗, f ∗[j∗]
i∗ as the master public-key and target ciphertext of

IBE. B sets MPK := MPKibe. To simulate ciphertexts of qFE, B does the followings.

• For all j ≤ j∗ − 1, B computes CTj, f ∗[j]
i∗ ← IBE.Enc(MPKibe, i∗∥j∥ f ∗[j], Lj, f ∗[j]) and

CTj, f ∗[j]
i∗ ← IBE.Enc(MPKibe, i∗∥j∥ f ∗[j∗]), 0ℓ).

• For j = j∗, B computes CTj∗, f ∗[j∗]
i∗ ← IBE.Enc(MPKibe, i∗∥j∗∥ f ∗[j∗], Lj∗, f ∗[j∗]).

• For all j ≥ j∗+ 1 and α ∈ {0, 1},B computes CTj,α
i∗ ← IBE.Enc(MPKibe, i∗∥j∥α), Lj,α).

27

By using these ciphertexts {CTj,α
i∗ }j∈[s],α∈{0,1} , B constructs program EL∗gc and sets CT∗fe :=

sxiO(EL∗gc) as the target ciphertext of qFE.
Key Generation: Then, B queries identities (i, 1, fi[1]), . . . , (i, s, fi[s]) for all i ∈ [q] to the chal-

lenger of IBE, receives SKj
i ← IBE.KG(MSKibe, i∥j∥ fi[j]), and sets SK fi

:= (i, fi, {SKj
i}j∈[s])

for all i ∈ [q]. Note that B does not have to query the challenge identity (i∗∥j∗∥ f ∗[j∗]).

Now B sets all values for A and sends MPK, CT∗fe, and {SK fi}i∈[q] to A. If B is given

CTj∗, f ∗[j∗]
i∗ = IBE.Enc(MPKibe, i∗∥j∗∥ f ∗[j∗]), Lj∗, f ∗[j∗]), then B perfectly simulates Hj∗−1. If

B is given CTj∗, f ∗[j∗]
i∗ = IBE.Enc(MPKibe, i∗∥j∗∥ f ∗[j∗], 0ℓ(λ)), then B perfectly simulates Hj∗ .

Therefore, the advantage of A between Hj∗−1 and Hj∗ is bounded by that of B attacking IBE and
it holds that Hj∗−1

c≈δ Hj∗ . This completes the proof of the lemma.

Hybi∗
4 : We change (Ũ∗, {L∗j,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗0)) into a simulated output (Ũ∗, {L∗j, f ∗[j]}j∈[s])

← Sim.GC(1λ, y∗)) where y∗ := f ∗(x∗0) = f ∗(x∗1). By the requirement of the game, f ∗(x∗0) =
f ∗(x∗1) holds. In this game, {L∗

j, f ∗[j]
}j∈[s] are not generated since the simulator of GC does not

generate them. This is not a problem since for such labels, junk ciphertexts are generated as in
Hybi∗

3 . It holds that Hybi∗
3

c≈δ Hybi∗
4 for every i∗ ∈ [q] due to the security of the garbled circuit.

Hybi∗
5 : We change the simulated garbled circuit, junk ciphertexts, and punctured PRF keys hardwired

into EL∗gc back into the real garbled circuit, normal IBE ciphertexts, and un-punctured PRF
keys. In this hybrid game, we set r∗gc = FK(i∗∥1∥2), r∗j∥α = FK(i∗∥j∥α) for all j ∈ [s] and

α ∈ {0, 1}, (Ũ∗, {L∗j,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·, x∗1); r∗gc), and CTj,α
i∗ ← IBE.Enc(MPKibe,

(i∗, j, α), Lj,α; r∗j∥α). We can show Hybi∗
4

c≈δ Hybi∗
5 for every i∗ ∈ [q] in a reverse manner.

It holds Hybi∗
5

c≈δ Hybi∗+1
1 for every i∗ ∈ [q − 1] by the definition of EL∗gc and sxiO. That is,

Exptsel∗
A (1λ, 0) = Hyb0

c≈δ Hyb1
1

c≈δ · · ·
c≈δ Hybq

5
c≈δ Exptsel∗

A (1λ, 1) holds. This completes the
security proof.

Padding Parameter. The proof of security relies on the indistinguishability of obfuscated ELgc and
EL∗gc defined in Figures 8 and 9, respectively. Accordingly, we set padEL := max(|ELgc|, |EL∗gc|).

The circuits ELgc and EL∗gc compute a puncturable PRF over domain [q], 2s IBE ciphertexts, and
garbled circuit of U(·, x), and may have punctured PRF keys and a hard-wired ciphertext. Note that the
size of set S∗ of punctured points of PRF in EL∗gc is logarithmic in q. Note also that |ID| = 2qs. Thus,
due to the efficiency of IBE, it holds that

padEL ≤ 2s · (2qs)α · poly(λ) + poly(λ, s, log q) ≤ qα · poly(λ, s) ,

where α is a constant such that 0 < α < 1.

Weak Collusion-Succinctness. The input space for ELgc is [q]. Thus, by the efficiency guarantee of
SXIO, the size of the encryption circuit qFE.Enc (dominated by generating an obfuscated ELgc) is

qγ̃ · poly(λ, padEL) < qγ̃+cα · poly(λ, s),

where γ̃ is a constant such that 0 < γ̃ < 1 and c is some constant.
By using an identity-based encryption scheme whose compression factor α satisfies α < 1−γ̃

c , we
ensure that β := γ̃ + cα < 1, that is qFE is weakly collusion succinct. This completes the proof of
Theorem 3.4.

28

4 Weak Succinctness from Collusion-Succinctness

In this section, we see a transformation from a q-key weakly collusion-succinct index based functional
encryption into a single-key weakly succinct functional encryption. Bitansky and Vaikuntanathan
have shown such a transformation [BV15, Proposition IV.1].14 The key tool for the transformation is
decomposable randomized encoding, which is implied by one-way function (see Definition 2.6).

We stress that the transformation in this section is not new. The differences between the construction
of Bitansky and Vaikuntanathan and ours is that we assume that the underlying weakly collusion-succinct
scheme is weakly selectively secure and uses an index for functional key generation. The resulting weakly
succinct scheme of our transformation is also weakly selectively secure. Note that the resulting scheme
does not need any index for key generation since it is a single-key scheme.

It is known that single-key weakly selectively secure weakly succinct PKFE can be transformed
into collusion-resistant and succinct PKFE [GS16]. Moreover, to construct IO by using the theorem
by Bitansky and Vaikuntanathan [BV15], a single-key weakly selectively secure weakly succinct PKFE
scheme is sufficient.

Note that if the maximum size of functions in a function family is fixed, the number of decomposed
randomized encodings (denoted by µ) of a function is also fixed. Thus, (µ, δ)-weakly-selectively secure
(i.e., bounded collusion-resistant) schemes are sufficient for this transformation.

Readers that are familiar with the transformation by Bitansky and Vaikuntanathan [BV15, Proposition
IV.1] can skip this section. We write the transformation and a proof for the weakly selective security for
confirmation. Of course, we can obtain a selectively secure scheme by the transformation if we use a
selectively secure scheme as the underlying scheme.

Conversion. We show only the PKFE case. The SKFE case is similarly proven.
Our single-key weakly succinct PKFE scheme sFE = (sFE.Setup, sFE.KG, sFE.Enc, sFE.Dec) for

circuits of size at most s = s(λ) with n = n(λ) bit inputs is based on a q-key weakly collusion-succinct
iPKFE scheme qFE = (qFE.Setup, qFE.iKG, FE.Enc, qFE.Dec) for circuits of size at most s with n bit
inputs. Let F, RE, and SKE be a PRF, c-local decomposable randomized encoding, and CPA-secure
secret-key encryption scheme, respectively. In the scheme, we use F : {0, 1}λ × [ρ]→ {0, 1} (note that
{0, 1}λ × [ρ] is the domain).

sFE.Setup(1λ) :

• Generate (MPK, MSK)← qFE.Setup(1λ).
• Return (MPK, MSK).

sFE.KG(MSK, f) :

• Generate t← {0, 1}λ.
• Compute decomposed f , that is, (f̂1, . . . , f̂µ) together with (S1, . . . , Sµ) where Si ⊆ [ρ] and
|Si| = c.

• Choose SKE secret key SK← {0, 1}λ. For all i ∈ [µ], generate CTi
ske ← SKE.Enc(SK, 0),

and compute sk fi ← qFE.iKG(MSK, Dre[f̂i, Si, t, CTi
ske], i). The circuit Dre is defined in

Figure 10.
• Return sk f ← (sk f1 , . . . , sk fµ

).

sFE.Enc(MPK, x) :

14Ananth, Jain, and Sahai show a transformation from a collusion-resistant non-succinct functional encryption into a
(collusion-resistant) succinct one [AJS15]. It is easy to verify that the transformation by Ananth et al. also works for q-key
collusion-succinct functional encryption schemes to achieve single-key weakly succinct ones.

29

• Generate K ← PRF.Gen(1λ).
• Return CT← qFE.Enc(MPK, (0, x, K,⊥)).

sFE.Dec(sk f , CT) :

• Parse (sk f1 , . . . , sk fµ
)← sk f .

• For all i ∈ [µ], compute ei ← qFE.Dec(sk fi , CT).
• Decode y from (e1, . . . , eµ).
• Return y.

Decomposable Randomized Encoding Circuit Dre[f̂i, Si, t, CTi
ske]

Hardwired: decomposed function f̂i, set Si, tag t, and ciphertext CTi
ske

Input: bit b, message x, PRF key K, and SKE secret key SK

1. If b = 1, return ei ← SKE.Dec(SK, CTi
ske).

2. Else for all j ∈ Si, compute rj ← FK(t∥j), set rSi ← {rj}j∈Si .

3. Return ei ← f̂i(x; rSi).

Figure 10: Description of Dre.

Theorem 4.1. If there exists weakly collusion-succinct (µ, δ)-weakly-selectively secure iPKFE (resp.
iSKFE) for circuits of size at most s = s(λ) with n = n(λ) inputs with encryption circuit of size
µγ · poly(λ, n, s) where µ = s · polyRE(λ, n) and polyRE is a fixed polynomial determined by RE, then
there exists weakly succinct (1, δ)-weakly-selectively secure PKFE (resp. SKFE) for circuits of size at
most s = s(λ) with encryption circuit of size sγ′ · poly(λ, n), where γ′ is a fixed constant such that
γ < γ′ < 1.

Proof of Theorem 4.1. We start with analyzing succinctness then move on to the security proof.

Weak Succinctness. To issue one key, we need to issue 1 · µ = s · polyRE(λ, n) keys of qFE since
we consider functions of size s. Thus, we choose µ = s · polyRE(λ, n) as the number of issued keys of
qFE.

Let Di := Dre[f̂i, Si, t, CTi
ske]. Di includes a decryption of SKE, PRF evaluation on the domain

{0, 1}λ × [µ], and evaluation of decomposed randomized encoding f̂i. | f̂i| is independent of | f | by the
decomposability of RE and |t| and |CTi

ske| are bounded by O(λ). Moreover, the PRF evaluation is done
in time poly(λ, log s). Thus, the size of Di is poly(λ, n, log s). Therefore, the size of encryption circuit
sFE.Enc is

(s · poly(λ, n))γ · poly(λ, n, log s) = sγ′ · poly(λ, n) ,

where γ′ is a fixed constant such that γ < γ′ < 1.

Security Proof. Let us assume that the underlying primitives are δ-secure. Let A be an adversary
attacking the weakly selective security of sFE. We define a sequence of hybrid games.

Hyb0: The first game is the original weakly selective security experiment for b = 0, Exptsel∗
A (1λ, 0).

In this game, A first selects the challenge messages (x∗0 , x∗1) and a function f then obtains an
encryption of x∗0 , the master public key, and a functional decryption key sk f .

30

Hyb1: We change CTi
ske ← SKE.Enc(SK, 0) into CTi

ske ← SKE.Enc(SK, f̂i(x∗0 ; rSi)) for all i ∈ [µ]. It
holds that Hyb0

c≈δ Hyb1 due to the CPA-security of SKE.

Hyb2: We change CT← qFE.Enc(MPK, (0, x∗0 , K,⊥)) into CT← qFE.Enc(MPK, (1,⊥,⊥, SK)).

Lemma 4.2. It holds that Hyb1
c≈δ Hyb2 if qFE is a (q, δ)-weakly-selectively secure PKFE.

Proof of lemma. We construct an adversary B of qFE. First, A sends messages (x∗0 , x∗1) and a
function f to the challenger of sFE. B generates K ← PRF.Gen(1λ) and chooses random t
and an secret-key encryption key SK ← {0, 1}λ, computes (f̂1, . . . , f̂µ) from f together with
(S1, . . . , Sµ), and generates CTi

ske ← SKE.Enc(SK, f̂i(x∗0 ; rSi)) and Dre[f̂i, Si, t, CTi
ske] for all

i ∈ [µ]. Then, B sends messages ((0, x∗0 , K,⊥), (1,⊥,⊥, SK)) as challenge messages and
functions Di := Dre[f̂i, Si, t, CTi

ske] for all i ∈ [µ] to the challenger of qFE and receives MPK,
CT∗, and {skDi}i∈[µ]. B passes MPK, CT∗, and {skDi}i∈[µ] as the master public-key, target
ciphertext, and functional key for f to A. This perfectly simulates Hyb1 if CT∗ is an encryption
of (0, x∗0 , K,⊥) and Hyb2 if CT∗ is an encryption of (1,⊥,⊥, SK). Thus, the lemma follows.

Hyb3: We change rj ← FK(t∥j) into rj ← {0, 1} for all j ∈ [ρ]. It holds that Hyb2
c≈δ Hyb3 due to the

pseudo-randomness of F.

Hyb4: We change ei ← f̂i(x∗0 ; rSi) into ei ← f̂i(x∗1 ; rSi) for all i ∈ [µ]. It holds that Hyb3
c≈δ Hyb4 due

to the security of the decomposable randomized encoding and the condition f (x∗0) = f (x∗1) for
sFE. In fact, we intermediately use the output of the simulator of RE.

Hyb5: This is the same as Exptsel∗
A (1λ, 1). We can show Hyb4

c≈δ Hyb5 in a reverse manner.

This completes the proof of Theorem 4.1.

5 Putting It Altogether

Before summarizing our results, we introduce the following theorems regarding SKFE and SXIO ob-
tained by the results of Brakerski, Komargodski, and Segev [BKS16] and Bitansky et al. [BNPW16a,
BNPW16b]. Note that poly denotes an unspecified polynomial below.

Theorem 5.1 ([BKS16, BNPW16a]). If there exists (poly, δ)-selective-message message private and
non-succinct SKFE for P/poly, then there exists δ-secure and γ-compressing SXIO for P/poly where γ
is an arbitrary constant such that 0 < γ < 1. (γ could be sufficiently small)

Theorem 5.2 ([BNPW16b]). If there exists (1, δ)-selective-message message private and weakly succinct
SKFE for P/poly, then there exists δ-secure and γ̃-compressing SXIO for P/poly where γ̃ is a constant
such that 1/2 ≤ γ̃ < 1.

We also introduce the following result shown by Garg and Srinivasan [GS16] stating that we can
transform single-key PKFE into collusion-resistant one strengthening selective security and succinctness.

Theorem 5.3 ([GS16]). If there exists a (1, δ)-weakly-selectively secure and weakly succinct PKFE
scheme for P/poly, then there exists a (poly, δ)-selectively secure and succinct PKFE scheme for
P/poly.

31

5.1 Transformation from SKFE to PKFE

By Theorems 3.1, 3.3, 4.1 and 5.1, we obtain the following theorem. We note that Theorem 3.3 requires
a sufficiently small compression factor for SXIO.

Theorem 5.4. If there exists δ-secure plain public-key encryption and (poly, δ)-selective-message mes-
sage private and non-succinct SKFE for P/poly, then there exists (1, δ)-selectively secure and weakly
succinct PKFE for P/poly.

From this theorem and Theorem 5.3, we obtain the following corollary stating that collusion-resistant
PKFE is constructed from collusion-resistant SKFE if we additionally assume public-key encryption.

Corollary 5.5. If there exists δ-secure plain public-key encryption and (poly, δ)-selective-message
message private and non-succinct SKFE for P/poly, then there exists (poly, δ)-selectively secure and
succinct PKFE for P/poly.

We stress that the transformations above incur only polynomial security loss. Bitansky et al. [BNPW16a]
show a construction of PKFE based on public-key encryption and collusion-resistant SKFE. However,
their construction incurs exponential security loss in the depth of circuits, and thus their construction
leads to only PKFE for NC1 if we allow only polynomial security loss. In order to construct PKFE scheme
for P/poly with polynomial security loss through the construction of Bitansky et al., we additionally
need to assume weak PRF computable in NC1 to bootstrap the circuit class of PKFE. Moreover, we
believe that our construction and proof are significantly simpler than theirs as we show in Section 3.2.

We next see that single-key weakly-succinct SKFE is also powerful enough to yield PKFE if we
additionally assume identity-based encryption. By Theorems 3.4, 4.1 and 5.2, we obtain the following
theorem since Theorem 3.4 just requires that the compression factor of SXIO γ̃ is slightly smaller than
1 (no need to be sufficiently small).

Theorem 5.6. If there exists δ-secure identity-based encryption and (1, δ)-selective-message message
private and weakly succinct SKFE for P/poly, then there exists (1, δ)-weakly-selectively secure and
weakly succinct PKFE for P/poly.

We stress that the transformation above incurs only polynomial security loss. We note the following
two facts. It was not known whether (1, δ)-selective-message message private and weakly succinct
SKFE for P/poly implies (poly, δ)-selective-message message private SKFE for P/poly or not before
the recent work of Kitagawa, Nishimaki, and Tanaka [KNT17a]. Moreover, the transformation of
Kitagawa et al. incurs quasi-polynomial security loss.

By combining this theorem with Theorem 5.3, we obtain the following corollary stating that we can
construct collusion-resistant PKFE from single-key weakly succinct SKFE if we additionally assume
identity-based encryption.

Corollary 5.7. If there exists δ-selectively-secure identity-based encryption and (1, δ)-selectively-secure
weakly succinct SKFE for P/poly, then there exists (poly, δ)-selectively secure and succinct PKFE for
P/poly.

We stress that the transformation above incurs only polynomial security loss.
Figure 11 illustrates our results stated above.

5.2 Relationship among SKFE, SXIO, Updatable RE, and Multi-Input FE

Equivalence of SXIO and single-key weakly succinct SKFE. By Theorems 3.1, 3.2 and 4.1, we
obtain the following theorem.

32

Path of Thm 5.4 and Cor 5.5 Path of Thm 5.6 and Cor 5.7 Path of Thm 5.8 and Cor 5.9

γ̃-SXIO

γ̃ might be close to 1

γ-SXIO

γ is sufficiently small

PKE IBE OWF

1-key non-
succinct SKFE

1-key non-
succinct PKFE

q-key weakly
collusion-

succinct SKFE

q-key weakly
collusion-

succinct PKFE

1-key weakly
succinct SKFE

1-key weakly
succinct PKFE

collusion-resistant
succinct PKFE

collusion-
resistant SKFE

++

+

[SS10, GVW12] [SS10, GVW12]

Thm. 4.1
([BV15, AJS15]) ([BV15, AJS15])

Thm. 4.1

Thm. 3.2Thm. 3.3

Thm. 3.4

[BNPW16b]

[GS16]

[BNPW16a]

[AJS15]

Figure 11: Illustration of our theorems. Dashed lines denote known facts or trivial implications. White boxes
denote our ingredients or goal. Purple boxes denote our key schemes. Green boxes denote our intermediate tools.
All transformations in this figure incur only polynomial security loss. γ-SXIO (resp. γ̃-SXIO) denotes SXIO with
compression factor γ (resp. γ̃), which is sufficiently small constant of less than 1 (resp. arbitrary constant of less
than 1). We ignore garbled circuit, puncturable PRF, and decomposable RE in this figure. They are implied by
one-way function.

Theorem 5.8. If there exists δ-secure one-way function and δ-secure and γ̃-compressing SXIO for P/poly
for a constant γ̃ such that 0 < γ̃ < 1 (γ̃ might be close to 1), then there exists (1, δ)-selective-message
message private and weakly succinct SKFE for P/poly.

By combining this theorem and Theorem 5.2, we obtain the following corollary stating that the
existence of single-key weakly-succinct SKFE is equivalent to those of SXIO and one-way function.
Note that single-key weakly succinct SKFE for P/poly trivially implies one-way function.

Corollary 5.9. A single-key weakly succinct SKFE for P/poly is equivalent to one-way function and
γ̃-compressing SXIO for P/poly such that 0 < γ̃ < 1 (γ̃ might be close to 1).

33

Equivalence of SXIO and Updatable RE. We can also obtain equivalence of SXIO and updatable ran-
domized encoding (URE). We introduce the following results related to URE shown by Ananth et al. [ACJ17].

Theorem 5.10 ([ACJ17]). A single-key weakly succinct SKFE for P/poly implies output-compact URE
with an unbounded number of updates.

Theorem 5.11 ([ACJ17]). Output-compact URE with an unbounded number of updates implies a γ̃-
compressing SXIO for P/poly where 1

2 ≤ γ̃ < 1.

Note that Ananth et al. prove Theorem 5.11 for a γ̃-compressing XIO, but it is easy to observe that
their construction of XIO can be extended to γ̃-compressing SXIO. By Theorems 5.8, 5.10 and 5.11, we
can obtain the following corollary.

Corollary 5.12. A single-key weakly succinct SKFE for P/poly is equivalent to one-way function and
output-compact updatable randomized encoding with an unbounded number of updates.

Ananth et al. show that single-key weakly-succinct SKFE is equivalent to the combination of updat-
able randomized encoding and the LWE assumption. Regarding the result, Corollary 5.12 shows that the
LWE assumption is replaced with weaker and general assumption, that is one-way function.

Amplifying Compression Factor of SXIO and Relation to Multi-Input FE. Next, we show that a
compression factor of SXIO is arbitrarily decreased by using the result by Kitagawa, Nishimaki, and
Tanaka [KNT17a]. We also show a relationship between SXIO and multi-input FE (MIFE), where a
functional key for f enable us to compute f (x1, . . . , xn) from multiple ciphertexts of x1, . . . , xn. Here,
n is the number of arity for functions and if n is a constant then we say constant-arity MIFE. Before we
present our corollaries, we present known theorems that are needed for our purpose.

Theorem 5.13 ([KNT17a]). If there exists a single-key selectively secure and weakly succinct SKFE for
P/poly, then there exists a collusion-resistant SKFE for P/poly with quasi-polynomial security loss.

Theorem 5.14 ([BKS16]). If there exits a collusion-resistant non-succinct SKFE for P/poly, then there
exits a constant-arity MIFE for P/poly.

Theorem 5.15 ([BNPW16a]). If there exits a constant-arity MIFE for P/poly, then there exits a γ-
compressing SXIO for P/poly.

By Theorems 5.8 and 5.13 to 5.15, we can obtain the following corollary.

Corollary 5.16. If there exists one-way function and γ̃-compressing SXIO for P/poly for a constant γ̃
such that 0 < γ̃ < 1 (γ̃ might be close to 1), then there exists a γ-compressing SXIO for P/poly for an
arbitrarily small constant γ such that 0 < γ < 1.

By Theorems 5.8 and 5.13 to 5.15, we can obtain the following corollary.

Corollary 5.17. A constant-arity MIFE for P/poly is equivalent to one-way function and γ-compressing
SXIO such that 0 < γ < 1.

All corollaries are summarized in Figure 12.

34

γ̃-SXIO

γ̃ might be close to 1

γ-SXIO

γ is sufficiently small

1-key weakly
succinct SKFE

multi-key SKFE

constant-
arity MIFE

output compact
updatable RE

[AJS15]

[KNT17a]

Trivial

Cor. 5.16

+ OWF Cor. 5.17

[BNPW16a]

[BNPW16b]

[ACJ17]

[BKS16] [ACJ17] +OWF Cor. 5.12

+OWF Thm. 5.8

Figure 12: Illustration of our corollaries obtained from Theorem 5.8. The thick line denotes our first main
theorem. Solid lines denote known implications. Dashed lines denote our corollaries. γ-SXIO denotes SXIO with
compression factor γ, which is sufficiently small constant of less than 1. γ̃-SXIO denotes SXIO with compression
factor γ̃, which is arbitrary constant of less than 1. Note that the transformation from 1-key weakly succinct SKFE
to multi-key SKFE incurs quasi-polynomial security loss.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective
to adaptive security in functional encryption. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677. Springer,
Heidelberg, August 2015.

[ACJ17] Prabhanjan Ananth, Aloni Cohen, and Abhishek Jain. Cryptography with updates. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume
10211 of LNCS, pages 445–472. Springer, Heidelberg, May 2017.

[ADGM17] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of
indistinguishability obfuscations of circuits over GGH13. In 44rd International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw,
Poland (to appear), 2017.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomiz-
ing polynomials and their applications. Computational Complexity, 15(2):115–162, 2006.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg,
August 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation from
functional encryption for simple functions. Cryptology ePrint Archive, Report 2015/730,
2015. http://eprint.iacr.org/2015/730.

35

http://eprint.iacr.org/2015/730

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3):586–615, 2003.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the
ACM, 59(2):6, 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Heidelberg, March 2014.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
852–880. Springer, Heidelberg, May 2016.

[BNPW16a] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania to
obfustopia through secret-key functional encryption. In Martin Hirt and Adam D. Smith,
editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 391–418. Springer, Heidelberg,
October / November 2016.

[BNPW16b] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania to
obfustopia through secret-key functional encryption. Cryptology ePrint Archive, Report
2016/558, 2016. http://eprint.iacr.org/2016/558.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 719–737. Springer, Heidelberg, April 2012.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key
setting. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 306–324. Springer, Heidelberg, March 2015.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Heidelberg, March 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE Computer
Society Press, October 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of
LNCS, pages 280–300. Springer, Heidelberg, December 2013.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In 28th ACM STOC, pages 639–648. ACM Press, May 1996.

[CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu.
Cryptanalysis of the new CLT multilinear map over the integers. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages
509–536. Springer, Heidelberg, May 2016.

36

http://eprint.iacr.org/2016/558

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-
level zeroes: New MMAP attacks and their limitations. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 247–266.
Springer, Heidelberg, August 2015.

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching pro-
gram obfuscators. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 278–307. Springer, Heidelberg, May
2017.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 3–12. Springer,
Heidelberg, April 2015.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs.
Watermarking cryptographic capabilities. In Daniel Wichs and Yishay Mansour, editors,
48th ACM STOC, pages 1115–1127. ACM Press, June 2016.

[CLLT17] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Zeroizing
attacks on indistinguishability obfuscation over CLT13. In Serge Fehr, editor, PKC 2017,
Part I, volume 10174 of LNCS, pages 41–58. Springer, Heidelberg, March 2017.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps
over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 476–493. Springer, Heidelberg, August 2013.

[FRS16] Rex Fernando, Peter M. R. Rasmussen, and Amit Sahai. Preventing CLT attacks on
obfuscation with linear overhead. Cryptology ePrint Archive, Report 2016/1070, 2016.
http://eprint.iacr.org/2016/1070.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 1–17. Springer, Heidelberg, May 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 498–527. Springer, Heidelberg, March 2015.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nicko-
lai Zeldovich. Reusable garbled circuits and succinct functional encryption. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 555–564. ACM
Press, June 2013.

37

http://eprint.iacr.org/2016/1070

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and
Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 241–268.
Springer, Heidelberg, October / November 2016.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 197–206. ACM Press, May 2008.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryption
with polynomial loss. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,
volume 9986 of LNCS, pages 419–442. Springer, Heidelberg, October / November 2016.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer, Heidel-
berg, August 2012.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 537–
565. Springer, Heidelberg, May 2016.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In 41st FOCS, pages 294–304. IEEE
Computer Society Press, November 2000.

[KNT17a] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. From single-key to collusion-
resistant secret-key functional encryption by leveraging succinctness. Cryptology ePrint
Archive, Report 2017/638, 2017. http://eprint.iacr.org/2017/638.

[KNT17b] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Indistinguishability obfuscation
for all circuits from secret-key functional encryption. Cryptology ePrint Archive, Report
2017/361, 2017. http://eprint.iacr.org/2017/361.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 13, pages 669–684. ACM Press, November
2013.

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key functional
encryption. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 122–151. Springer, Heidelberg, May 2017.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986
of LNCS, pages 443–468. Springer, Heidelberg, October / November 2016.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 447–462. Springer,
Heidelberg, March 2016.

38

http://eprint.iacr.org/2017/638
http://eprint.iacr.org/2017/361

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and
block-wise local PRGs. Cryptology ePrint Archive, Report 2017/250, 2017. http:
//eprint.iacr.org/2017/250.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 629–658.
Springer, Heidelberg, August 2016.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM, 51(2):231–262, 2004.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/2010/556.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer,
Heidelberg, August 1984.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM
CCS 10, pages 463–472. ACM Press, October 2010.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Single-Key Non-Succinct Functional Encryption

Our construction of weakly-succinct PKFE (resp. SKFE) uses a single-key non-succinct PKFE (resp.
SKFE) scheme as a building block. As observed by Sahai and Seyalioglu [SS10] and later extended
by Gorbunov et al. [GVW12], single-key non-succinct functional encryption scheme can be constructed
based on standard assumptions such as public-key encryption and one-way function.

For self containment, we show the construction of single-key non-succinct PKFE scheme based on
public-key encryption scheme. More specifically, the construction is based on garbling scheme and
public-key encryption.

Let GC = (Grbl, Eval) be a garbling scheme, and PKE = (KG, Enc, Dec) be a public-key encryption
scheme. Using GC and PKE, we construct a single-key PKFE scheme OneKey = (1Key.Setup, 1Key.KG, 1Key.Enc,
1Key.Dec) as follows. Below, we assume that we can represent every function f by an n-bit string
(f [1], · · · , f [s]).

Construction. The scheme consists of the following algorithms.

1Key.Setup(1λ) :

• Generate (pkj,α, skj,α)← KG(1λ) for every j ∈ [s] and α ∈ {0, 1}.
• Return MPK← {pkj,α}j∈[s],α∈{0,1} and MSK← {skj,α}j∈[s],α∈{0,1}.

1Key.KG(MSK, f) :

39

http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2010/556

• Parse {skj,α}j∈[s],α∈{0,1} ← MSK and (f [1], · · · , f [s])← f .
• Return sk f ← (f , {skj, f [j]}j∈[s]).

1Key.Enc(MPK, m) :

• Parse {pkj,α}j∈[s],α∈{0,1} ← MPK.

• Compute (Ũ, {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, m)).
• For every j ∈ [s] and α ∈ {0, 1}, compute cj,α ← Enc(pkj,α, Lj,α).

• Return CT← (Ũ, {cj,α}j∈[s],α∈{0,1}).

1Key.Dec(sk f , CT) :

• Parse (f , {skj}j∈[s])← sk f and (Ũ, {cj,α}j∈[s],α∈{0,1})← CT.
• For every j ∈ [s], compute Lj ← Dec(skj, f [j], cj, f [j]).

• Return y← Eval(Ũ, {Lj}j∈[s]).

OneKey is single-key PKFE scheme that satisfies weakly selective security if GC is secure and PKE
is CPA-secure. The construction is non-succinct since the encryption algorithm of OneKey encrypts a
universal circuit whose size is at least linear in the size of functions.

We can analogously construct single-key non-succinct SKFE scheme based on garbling scheme and
secret-key encryption.

Gorbunov et al. [GVW12] later showed how to extend this construction to adaptively secure one
using a technique of non-committing encryption [CFGN96]. This is done by only using public-key
encryption (or one-way function) if we focus on single-key schemes. 15 Thus, we need only public-key
encryption or one-way function to obtain single-key adaptively secure schemes for our building blocks.

15If we want to achieve bounded collusion-resistant schemes, we additionally need a pseudo-random generator that is
computed by polynomial degree circuits, which is implied by number theoretic or lattice assumptions [GVW12].

40

	Introduction
	Background
	Our Contributions
	Overview of Our Construction Technique

	Preliminaries
	Notations and Basic Concepts
	Basic Cryptographic Primitives
	Functional Encryption
	Indistinguishability Obfuscation
	Strong Exponentially-Efficient Indistinguishability Obfuscation

	Collusion-Succinct Functional Encryption from SXIO
	Collusion-Succinct SKFE from SXIO and One-Way Function
	Collusion-Succinct PKFE from SXIO and Public-Key Encryption
	Collusion-Succinct PKFE from SXIO and Identity-Based Encryption

	Weak Succinctness from Collusion-Succinctness
	Putting It Altogether
	Transformation from SKFE to PKFE
	Relationship among SKFE, SXIO, Updatable RE, and Multi-Input FE

	Single-Key Non-Succinct Functional Encryption

