Enhanced Outsider-anonymous Broadcast Encryption with Subset Difference Revocation

Kamalesh Acharya, Ratna Dutta
Department of Mathematics
Indian Institute of Technology Kharagpur, India
kamaleshiitkgp@gmail.com, ratna@maths.iitkgp.ernet.in

Abstract

This paper puts forward an efficient broadcast encryption in public key setting employing ternary tree subset difference method for revocation. It provides outsider anonymity disabling the revoked users from getting any information of message and concealing the set of subscribed users from the revoked users. Our approach utilizes composite order bilinear group setting and exhibits significant improvement in the broadcast efficiency. The proposed scheme compares favourably over the existing similar schemes in standard model. The public key and secret key sizes are poly-logarithmic while the ciphertext size is sublinear in total number of users. Our scheme achieves selective security against chosen plaintext attack in the standard model under reasonable assumptions.

Keywords: anonymous broadcast encryption, outsider anonymity, ternary subset difference, revocation.

1 Introduction

Broadcast encryption has received much attention from both the network and cryptography community. It is a cryptographic mechanism that provides encrypted message to a group of users in such a way that the non-members are unable to get the message. Broadcast encryption was formally introduced by Fiat and Naor (Fiat and Naor, 1994) in 1994, followed by subsequent works in various flavours- revocation scheme (DF; Boneh et al., 2005; Halevy and Shamir, 2002; Lewko et al., 2010), identity based scheme (Delerablé, 2007; Sakai and Furukawa, 2007), bilinear map based scheme (Boneh et al., 2005; Gentry, 2006; Phan et al., 2013), multilinear map based scheme (Boneh et al., 2014). It has wide applications in TV and radio subscription services where broadcast messages are encrypted for currently active subscribers.

Basic security property of public key encryption is data secrecy, whereby no information about the original message get leaked. It can reveal the set of recipients who will receive the message. In modern world of digital technology, hiding the recipient set from the non-recipient
users is of crucial importance. For instance, in satellite TV subscription service, a customer usually expects his identity should not get revealed when ordering a sensitive TV channel. It is required that the subscribed user’s identity should remain secret from the other subscribers and outsiders. The main focus of most of the broadcast encryption schemes referred above is to provide constructions with short parameters in terms of ciphertext overhead, secret key size and public key size. They do not support privacy property and decryption algorithms in these schemes take the recipient set S or the non-recipient set R as input. Barth et al. (Barth et al., 2006) introduced an anonymous broadcast encryption scheme to address the privacy issue in broadcast encryption.

Outside anonymous broadcast encryption is another interesting variant of broadcast encryption that achieves security and privacy of the receivers. Consider following applications:

- Suppose a group of scientists is working on a secret project. They need to share the documents among themselves. However, the documents and the identities of the involved scientists should be kept secret from the outsiders.

- Soldiers want to send a encrypted message in the air so that enemies cannot extract the original message and the identities of the intended recipients. If enemies can understand who are the opponents, they can compromise with some of the opponents and get important information.

- Suppose prime minister want to discuss some sensitive topic with all chief ministers in an urgent basis. They do not want to reveal the topic and identities of the participants outside the group.

In the aforementioned applications, subscribed user’s identity should be kept secret from the outsiders although it need not be concealed from the other subscribers. This notion of anonymity is termed as outsider anonymity by Fazio et al. (Fazio and Perera, 2012).

Our contribution: Protecting user’s privacy is the most significant requirement in the context of broadcast encryption apart from user revocation. There is a vast literature on broadcast encryption which does not exhibit anonymity inherently. Our goal is to devise new technique for managing revocation while featuring compact ciphertexts, secret keys and public keys with strong security properties.

We summarize below the main findings of this work:

(i) Fazio et al. has devided set of subscribed users in subgroups using binary complete subtree (CS) method. Then gives secret key corresponding to all nodes lies in path joining user u to root. In time of decryption each subscribed user tries to decrypt the ciphertext components by its available secret keys. As user will lie in at least one of complete subtree rooted at one of the node lies in path joining user u to root, user will able to decrypt the ciphertext. The scheme is secure under q-Augmented Decisional Bilinear Diffie-Hellman Exponent (q-ADBDHE) and unforgeability of underline signature scheme.
We propose an outsider anonymous broadcast encryption scheme by employing ternary tree subset difference method of Fukushima et al. (Fukushima et al., 2009) to partition subscribed users into groups. For each groups, broadcaster generates ciphertext using anonymous hierarchical identity based encryption of Seo et al. (Seo et al., 2009). Binary complete subtree (CS) method of Naor et al. (Naor et al., 2001), partitions subscribed users into $O(r \log_2 N)$ subsets, while binary subset difference (SD) method (Naor et al., 2001) partitions subscribed users into $O(r)$ subsets. Integrating the ternary SD revocation method, we reduce the size of partition, and consequently the ciphertext size, leading to a significant improvement in the broadcast efficiency over existing similar works. A comparative summary of anonymous broadcast encryption schemes are outlined in Table 1. To the best of our knowledge, the major works addressing the issue of anonymity in broadcast encryption appears in (Barth et al., 2006; Fazio and Perera, 2012; He et al., 2016; Libert et al., 2012; Ren et al., 2014; Zhang and Takagi, 2013). The construction of (Fazio and Perera, 2012) provides outsider anonymity. They have proposed a scheme using binary CS method with public key size $O(N)$, secret key size $O(\log_2 N)$, ciphertext size $O(r \log_2 \frac{N}{r})$, where N and r stands for the total number of users and the number of revoked users respectively. The ciphertext size can be reduced to $\min\{\frac{N}{2}, 2r - 1\}$ using binary SD method at the expense of public key and secret key size $O(N \log_2 N)$, $O(N)$ respectively. The description of their SD-based construction is rather informal and detail security proof is not provided. Our scheme enhances the work by Fazio et. al (Fazio and Perera, 2012) in the sense that it reduces the ciphertext size as well as public key size. It reduces the ciphertext size to $\min\{\frac{N}{3}, N - r, 2r - 1\}$ using ternary SD method at the expense of public key and secret key size $O(\log_3 N)$, $O(\log_3^2 N)$ respectively. Let L be the level of leaf nodes in a ternary tree. Our scheme is secure under L-weak Decisional Bilinear Deffie-Hellman Inversion assumption, Bilinear Subset Decision assumption and L-composite Decisional Deffie-Hellman assumption. We have proposed an special variant which has constant secret key per each subscribed user and decryption attempt reduces to $O(l)$, where l is theoretical bound of cover size. Zhang et al. (Zhang and Takagi, 2013) has proposed a scheme with ciphertext size $O(N - r)$ but it is in random oracle model. A proof in in the random oracle model can serve only as a heuristic argument, as all parties gets a black box access to a truly random function.

(ii) More interestingly, our scheme enjoys the revocation property which is one of the most significant requirement in the broadcast encryption setting. To facilitate revocation, subscribed user is issued the set of secret keys in such a way that he will capable to recover the message. None of the existing anonymous constructions discuss revocation process.

(iii) Furthermore, new users can join any time without any updation of pre-existing public key and secret key, provided the number of subscribed users in the system does not exceed the maximum number of users allowed in the system.
(iv) Our scheme achieves selective semantic security in standard model under L-weak Decisional Bilinear Diffie-Hellman Inversion assumption, Bilinear Subset Decision assumption and L-composite Decisional Diffie-Hellman assumption. Our proposed scheme can be extended using the k-ary tree (Bhattacherjee and Sarkar, 2015) to provide ciphertext size as $\min\{\frac{N}{k}, N - r, 2r - 1\}$ at the cost of decryption time.

Organization: The rest of the paper is organized as follows. We discuss related works in section 2. Section 3 provides necessary definitions and background materials. We describe our main construction in section 4 and prove its security in section 5. Section 6 provides an special variant. We finally conclude in section 7.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>PK size</th>
<th>SK size</th>
<th>CT size</th>
<th>Anon</th>
<th>SM</th>
<th>MC</th>
<th>RO</th>
<th>No-of-dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barth et al. (2006)</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N - r)$</td>
<td>Full</td>
<td>Selective IND-CCA</td>
<td>No</td>
<td>$O(N - r) + 1$</td>
<td></td>
</tr>
<tr>
<td>Libert et al. (2012)</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N - r)$</td>
<td>Full</td>
<td>Adaptive IND-CCA</td>
<td>No</td>
<td>$O(l) + 1$</td>
<td></td>
</tr>
<tr>
<td>Ren et al. (2014)</td>
<td>$N + 2$</td>
<td>$O(N - r)$</td>
<td>$O(N - r)$</td>
<td>Full</td>
<td>Adaptive IND-CCA</td>
<td>No</td>
<td>$O(N - r)$</td>
<td></td>
</tr>
<tr>
<td>He et al. (2016)</td>
<td>5</td>
<td>1</td>
<td>$N - r + 3$</td>
<td>Full</td>
<td>Adaptive IND-CPA</td>
<td>Yes</td>
<td>$O(1)$</td>
<td></td>
</tr>
<tr>
<td>Fazio and Perera (2012)</td>
<td>$N + 2$</td>
<td>$\log_2 N + 1$</td>
<td>$r \log_2 \frac{1}{r}$</td>
<td>Outsider</td>
<td>Adaptive IND-CCA</td>
<td>No</td>
<td>$O(r \log_2 N) + 1$</td>
<td></td>
</tr>
<tr>
<td>Zhang and Takagi (2013)</td>
<td>2</td>
<td>1</td>
<td>$N - r + 3$</td>
<td>Outsider</td>
<td>Adaptive IND-CPA</td>
<td>No</td>
<td>$O(N - r)$</td>
<td></td>
</tr>
<tr>
<td>Our Scheme</td>
<td>$\log_3 N + 6$</td>
<td>$\log_3 N + 6$</td>
<td>$\min{\frac{N}{k}, N - r, 2r - 1}$</td>
<td>Outsider</td>
<td>Selective IND-CPA</td>
<td>No</td>
<td>$O(Nl)$</td>
<td></td>
</tr>
<tr>
<td>Our SpeV</td>
<td>$\log_3 N + 6$</td>
<td>$\log_3 N + 6$</td>
<td>$\min{\frac{N}{k}, N - r, 2r - 1}$</td>
<td>Outsider</td>
<td>Selective IND-CPA</td>
<td>No</td>
<td>$O(Nl)$</td>
<td></td>
</tr>
</tbody>
</table>

PK=public key, SK= secret key, CT= ciphertext, Anon=anonymity, ‘No-of- dec’= Number of decryption, SM = security model, MC=message confidentiality, RO=random oracle, IND-CP(C)A=indistinguishability of ciphertext under chosen plaintext (ciphertext) attack. Here, N is total number of users and r is the number of revoked users and l is ciphertext length. Number of decryption $O(x) + 1$ means that it needs $O(x)$ decryption attempt to find the ciphertext decryptable by user and 1 decryption attempt to decrypt the ciphertext, SpeV = special variant.

2 Related Works

The concept of broadcast encryption was proposed by Fiat and Naor (Fiat and Naor, 1994) in 1994, following which a wide variety of schemes have been proposed. In this section we discuss various type of broadcast encryption schemes such as revocation based construction, algebraic construction using bilinear and multilinear map, identity based construction, anonymous construction, and others.
1. **Revocation Scheme:** Revocation schemes are broadcast encryption schemes where set of revoked users are taken as input in encryption function. In Crypto 2001, Naor et al. (Naor et al., 2001) suggested two private key broadcast encryption schemes. One of these scheme has ciphertext size $O(r \log_2 \frac{N}{r})$ and key storage $O(\log_2 N)$ per each subscribed user. The other scheme has ciphertext size $O(r)$ and key size $O(\log_2^2(N))$ per each subscribed user. These schemes are indistinguishable under chosen ciphertext attack (IND-CCA) on “key indistinguishability” assumption. A layer based subset difference scheme was proposed by Halevy and Shamir (Halevy and Shamir, 2002) in Crypto 2002. It has public key size $O(\log_2^{1+\epsilon} N)$ and secret key size $O(\xi)$ where $\epsilon > 0$. Dodis and Fazio (DF) converted above schemes in public key setting. In Pairing 2007, Delerablee et al. (Delerablée et al., 2007) proposed a scheme which achieves constant size secret key with ciphertext size $O(r)$ and public key size linear to the number of users. The scheme is indistinguishable under chosen plaintext attack (IND-CPA) in selective security model on the General Decisional Diffie-Helman Exponent (GDDHE) assumption. A broadcast encryption with constant size public key and secret key was proposed by Lewko et al. (Lewko et al., 2010) in Security and Privacy (SP), 2010 IEEE Symposium, where ciphertext size is $O(r)$. It achieves selective IND-CPA security under the q-Multi-Exponent Bilinear Diffie-Hellman (q-MEBDH) assumption.

2. **Algabric Construction using Bilinear and Multilinear map:** The schemes proposed in (DF; Delerablée et al., 2007; Halevy and Shamir, 2002; Lewko et al., 2010; Naor et al., 2001) are efficient to use if $r << N$. On the other hand, if $N - r << N$, i.e., if the revoked set is very large and the subscribed set is very less, then these schemes are not efficient as the computation cost will be increased. We will discuss some algabric construction using bilinear and multilinear map. In Crypto 2005, Boneh et al. (Boneh et al., 2005) presented a semantically secure broadcast encryption scheme with constant ciphertext, secret key size while public key size is $O(N)$. Above broadcast encryption system is semantically secure if the N-Decisional Bilinear Diffie-Helman Exponent (N-DBDHE) assumption holds. A semi-static secure broadcast encryption was proposed by Gentry et al. (Gentry, 2006) in Eurocrypt 2009, where the public key, secret key, ciphertext sizes are $O(N)$, $O(N)$, $O(1)$ respectively. Furthermore, they converted it into adaptive secure model. In IJIS 2013, Phan et al. (Phan et al., 2013) developed a scheme with public key size $O(N)$, secret key size $O(1)$, ciphertext size $O(1)$ and achieves selective IND-CCA security under N-DBDHE assumption. In Crypto 2014, Boneh et al. (Boneh et al., 2014) presented a scheme using multilinear map (Boneh and Silverberg, 2003; Coron et al., 2013; Garg et al., 2013a,0), with constant ciphertext and secret key size, whereas public key size is $O(\log_2 N)$. The scheme is selective IND-CPA secure under N-Hybrid Diffie-Hellman Exponent (N-HDHE) assumption.
3. **Identity Based Scheme:** Identity based encryption scheme was introduced by Shamir (Shamir, 1985). Delerablée (Delerablée, 2007) proposed first identity based broadcast encryption scheme in Pairing 2007. The scheme achieves constant ciphertext and secret key size and indistinguishable under chosen plaintext attack in selective ID model under the GDDHE assumption. Sakai et al. (Sakai and Furukawa, 2007) came up with a identity based broadcast encryption scheme on additive bilinear group with constant private key and ciphertext size. In Asiacrypt 2008, Boneh et al. (Boneh and Hamburg, 2008) proposed generalised identity based encryption scheme with public key size $O(N)$, private key size $O(1)$, ciphertext size $O(1)$ respectively. The scheme is key indistinguishable under adaptive key exchange attack in generic bilinear group model with random oracle.

4. **Traitor Tracing Scheme:** An important property on broadcast encryption scheme is the traceability. Traitor tracing scheme was introduced by Chor et al. (Chor et al., 1994) on Crypto 1994. Boneh, Sahai, Waters (Boneh et al., 2006) proposed first collision resistance scheme using private linear broadcast encryption. It has public key size $O(\sqrt{N})$, private key size $O(1)$, ciphertext size $O(\sqrt{N})$ respectively. The scheme is secure in index hiding game under decisional 3 party Diffie-Hellman, bilinear subgroup decision, subgroup decision assumption. Trace and revoke scheme is a combination of broadcast encryption and tracing scheme. Boneh and Waters (Boneh and Waters, 2006) proposed a scheme with all the above parameters as $O(\sqrt{N})$. The scheme is secure in index hiding game under decisional 3 party Diffie-Hellman assumption. Boneh et al. (Boneh and Zhandry, 2014) proposed a scheme using indistinguishability obfuscation where key size linear to logarithm of N. Security of this scheme lies on security of underlying pseudo random function.

5. **Distributed Broadcast Encryption Scheme:** In ProvSec 2014, Wu et al. (Wu et al., 2011) proposed another variant of broadcast encryption called as distributed broadcast encryption system in which instead of key generation centre, users creates secret key for themselves. The scheme obtains public key size $O(N)$, private key size $O(1)$, ciphertext size $O(1)$ respectively. Boneh et al. (Boneh and Zhandry, 2014) proposed a scheme using indistinguishability obfuscation in Crypto 2014. It has public key size $O(N)$, private key size $O(1)$, ciphertext size $O(1)$ and achieves IND-CCA security under the existence of multiparty key exchange protocol.

6. **Hierarchial Broadcast Encryption Scheme:** In ACISP 2014, Liu et al. (Liu et al., 2014) proposed a new primitive called as hierarchical identity based broadcast encryption scheme where user can delegate their decryption capability to their descendent users. The scheme obtain public key size $O(N)$, private key size $O(N)$, ciphertext size constant. They proposed a CCA secure version (Liu et al., 2015) in IJIS 2015.
7. **Broadcast Encryption with Dealership Scheme**: Gritti et al. (Gritti et al., 2015) proposed broadcast encryption with dealership scheme in which instead of broadcaster, a dealer selects a set of subscribed users. The scheme is semi-static IND-CPA secure under \(N\)-DBDHE assumption and have public key size \(O(N)\), private key size \(O(1)\), ciphertext size \(O(1)\) respectively. In this construction broadcaster need to rely on user response to detect a dishonest dealer. Acharya et al. (Acharya and Dutta, 2016) has solved the problem and proposed a scheme with constant communication.

8. **Anonymous Scheme**: In FCDS 2006, Barth et al. (Barth et al., 2006) proposed a new variant of broadcast encryption, called as *private broadcast encryption* or *anonymous broadcast encryption* (AnoBE) with public key size \(O(N)\), secret key size \(O(1)\), ciphertext size \(O(N - r)\). The scheme is selective IND-CCA secure in random oracle model. An adaptive IND-CCA secure scheme with same parameters and standard security model was developed by Libert et al. (Libert et al., 2012) in PKC 2012. In IJNS 2014, Ren et al. (Ren et al., 2014) came up with the first identity based *anonymous broadcast encryption* scheme with public key size \(O(N)\), secret key size \(O(N - r)\) and ciphertext size \(O(N - r)\). The scheme is adaptive IND-CPA secure under asymmetric decisional Bilinear Diffie-Hellman assumption. Fazio et al. (Fazio and Perera, 2012) proposed an anonymous scheme with sublinear ciphertext size in PKC 2012. It achieves outsider anonymity where no revoked user achieve any information about the subscribed users. Both the schemes (Barth et al., 2006; Libert et al., 2012) are generic.

3 Preliminaries

3.1 Outsider-anonymous Broadcast Encryption

An *outsider-anonymous broadcast encryption* scheme \(\text{OAnoBE} = (\text{Setup, KeyGeneration, Encrypt, Decrypt})\) consists of 3 probabilistic polynomial time algorithms \(\text{Setup, KeyGeneration, Encrypt}\) and 1 deterministic polynomial time algorithm \(\text{Decrypt}\).

Setup\((N, \lambda)\): The private key generation centre (PKGC) takes the total number of users \(N\) and security parameter \(\lambda\) and constructs a public key \(PK\) and a master key \(MK\).

KeyGeneration\((PK, MK, i)\): Receiving the public key \(PK\), master key \(MK\) and a subscribed user \(i\), the PKGC outputs secret key \(sk_i\) of user \(i\).

Encrypt\((R, PK, m)\): The broadcaster takes the set of revoked users \(R\), the public key \(PK\) and a message \(m\) as input and outputs a ciphertext \(C\).

Decrypt\((PK, sk_i, C)\): On input secret key \(sk_i\), ciphertext \(C\) encrypting message \(m\) and public key \(PK\), a subscribed user \(i\), outputs message \(m\).
In contrast to usual broadcast encryption, the decryption algorithm in OAnoBE does not require the set of subscribers or the set of revoked users as input.

Correctness: The correctness of the scheme lies in the fact that m can be retrieved from C, i.e., $\text{Decrypt}(\text{PK}, \text{KeyGeneration}(\text{PK, MK, i}), \text{Encrypt}(R, \text{PK, m})) = m$, for every revoked set R, every message m.

3.2 Security Game

We define below selective semantic security of our revocation scheme $\text{OAnoBE}= (\text{Setup}, \text{Key-Generation, Encrypt, Decrypt})$ following outsider anonymous scheme of Fazio et al. (Fazio and Perera, 2012) and revocation scheme of Naor et al. (Naor et al., 2001) in the form of an indistinguishability game played between a challenger C and an adversary A.

Initialization: The adversary A gives two revoked sets (i.e., the set of non-subscribed users) R_0, R_1 to the challenger C, where R_0, R_1 contain equal number of revoked users.

Setup: The challenger C runs $(\text{PK, MK}) \leftarrow \text{Setup}(N, \lambda)$. It keeps MK secret to itself and makes PK public.

Phase 1: The adversary A sends key generation query for $i_1, \ldots, i_m \in R_0 \cap R_1$ to C and receives the secret key $sk_i \leftarrow \text{KeyGeneration}(\text{PK, MK, i})$.

Challenge: The adversary A sends two equal length messages m_0, m_1 to C. The challenger C chooses a random $b \in \{0, 1\}$, makes $C_b \leftarrow \text{Encrypt}(R_b, \text{PK, m}_b)$ and sends C_b as challenge ciphertext to A.

Phase 2: This is similar to Phase 1 key generation query. The adversary A sends key generation query for $i_{m+1}, \ldots, i_q \in R_0 \cap R_1$ to C and receives secret key $sk_i \leftarrow \text{KeyGeneration}(\text{PK, MK, i})$.

Guess: The adversary A output a guess $b' \in \{0, 1\}$ of b.

The adversary A wins the game if $b' = b$ and its advantage is defined as

$$\text{Adv}_{\text{A}}^{\text{OAnoBE-IND-CPA}} = \left| Pr(b' = b) - \frac{1}{2} \right|.$$

The probability is over random bits used by C and A.

Definition 1. Broadcast encryption scheme is (t, q, ϵ)-IND-CPA secure if $\text{Adv}_{\text{A}}^{\text{OAnoBE-IND-CPA}} \leq \epsilon$ for every adversary A running for at most t time and making at most q key generation queries.
3.3 Complexity Assumptions

Definition 2. Let G and G_T be two multiplicative groups of order $n = pq$, where bit length of n is $|n| = \lambda$ and p, q are prime. Let g be a generator of G. A bilinear map $e : G \times G \rightarrow G_T$ is a function having the following properties:

1. $e(u^a, v^b) = e(u, v)^{ab}$, $\forall u, v \in G$ and $\forall a, b \in \mathbb{Z}$.
2. The map is non degenerate, i.e., $e(g, g)$ is generator of G_T.

The tuple $S = (n, G, G_T, e)$ is said to be a composite order bilinear group system.

Let G_p, G_q stand for subgroups of G of order p, q respectively, $G_{T,p}, G_{T,q}$ denote subgroups of G_T of order p, q respectively and g_p, g_q are generators of G_p and G_q respectively. We use the notation $x \in_R S$ to denote x is a random element of S. Let \mathbb{N}, \mathbb{R} are sets of natural and real numbers respectively. Let $\epsilon : \mathbb{N} \rightarrow \mathbb{R}$ be a function. If $\exists d \in \mathbb{N}$ such that $\epsilon(\lambda) \leq \frac{1}{\lambda^d}$ then ϵ is negligible function.

- **l-weak Decisional Bilinear Deffie-Hellman Inversion (l-wDBDHI) Assumption** (Seo et al., 2009):
 - **input:** $Z = (S, h, g_q, g_p, g_p^{\alpha}, \ldots, g_p^{\alpha^l}), T$, where $h \in_R G_p, \alpha \in_R \mathbb{Z}_n, T \in_R G_{T,p}$.
 - **output:** Yes if $T = e(g_p, h)^{\alpha^{l+1}}$; No otherwise.

 The advantage of adversary A in solving the above problem is $Adv^l_{A\text{-wDBDHI}} = \Pr[A(Z, e(g_p, h)^{\alpha^{l+1}}) = 1] - \Pr[A(Z, T) = 1]$.

- **l-composite Decisional Deffie Hellman (l-cDDH) Assumption** (Seo et al., 2009):
 - **input:** $Z = (S, h, g_q, g_p, g_p^{\alpha}, \ldots, g_p^{\alpha^l}, R_1, (g_p^{\alpha^{l+1}})^\beta, R_2), T$, where $R_1, R_2 \in_R G_q, \alpha, \beta \in_R \mathbb{Z}_n, T \in_R G$.
 - **output:** Yes if $T = g_p^{\beta} R_3$, for some $R_3 \in_R G_q$; No otherwise.

 The advantage of adversary A in solving the above problem is $Adv^l_{A\text{-cDDH}} = \Pr[A(Z, g_p^{\beta} R_3) = 1] - \Pr[A(Z, T) = 1]$.

- **Bilinear Subset Decision (BSD) Assumption** (Seo et al., 2009):
 - **input:** $Z = (S, g_q, g_p), T$, where $T \in_R G_T$.
 - **output:** Yes if $T \in_G G_T$; No otherwise.

 The advantage of adversary A in solving the above problem is $Adv^l_{A\text{BSD}} = \Pr[A(Z, T) = 1] - \Pr[A(Z, T^*) = 1]$, where $T \in_G G_T, T^* \in_G G_T$.

 BSD Assumption: For any PPT algorithm A, $Adv^l_{A\text{BSD}}$ is negligible.
3.4 Ternary subset difference framework

Our scheme is based on ternary tree SD method as introduced in (Fukushima et al., 2009). Consider a complete ternary tree \(T \) in which the users lie at the leaf nodes. This system can accommodate at most \(N \) users, where \(N \) is a power of 3. We level the nodes as in Figure 1. The root node \(v^{(1)} \) of \(T \) is at level 1. The left, middle, right child of \(v^{(l)} \) are \(v^{(l+1)} \), \(l+1 = 3l - 2, 3l - 1, 3l \) respectively. We denote by \(T_{v^{(l)}} \), the complete subtree rooted at \(v^{(l)} \). For a set of revoked users \(R \), \(ST(R) \) denotes the Steiner tree, i.e., the minimal subtree of \(T(= T_{v^{(1)}}) \) connecting all the members of the set of revoked users \(R \) with the root. For a node \(v^{(l)} \), its parent node is defined as

\[
\text{parent}(v^{(l)}) = \begin{cases}
 v^{(l\lfloor \frac{L}{2} \rfloor)} & \text{if it is a left or a middle child} \\
 v^{(l\lfloor \frac{L}{4} \rfloor)} & \text{if it is a right child}
\end{cases}
\]

Path connecting the root to the user \(u \) at a leaf node \(v^{(L)} \) is denoted by \(\text{path}(v^{(L)}) \). The nodes on \(\text{path}(v^{(L)}) \) are referred as \(\text{PN}(v^{(L)}) \) and the nodes just hanging of the nodes in \(\text{PN}(v^{(L)}) \) are defined as \(\text{HN}(v^{(L)}) \).

Definition 3. A chain is a sequence of nodes \(v^{(l)}, v^{(l+1)}, \ldots, v^{(l)} \) or \(v^{(l)}, v^{(l+1)}, \ldots, v^{(l)}, v^{(l+1)}, \ldots, v^{(l)}; \)

(ii) \(v^{(l)} \), \(v^{(l+1)} \), \ldots, \(v^{(l-2)} \) have one child each.

(iii) Each of \(v^{(l)}, v^{(l+1)}, v^{(l+2)} \) is either a node with three children or leaf node.

(iv) \(v^{(l)} \) is the root node or \(\text{parent}(v^{(l)}) \) is a node with two or three children.
Algorithm 1 FindChain
input: A revoked user.
output: Chain generating the subset cover $S_{v_i}^{(i)}J$ of the subscribed users.

1. Follow the path from the revoked user to the root.

2. if a node is found on the path with less than 3 children then
 (a) if \(\exists \) only one child \(v_j^{(l_{j1})} \) then set \(J = v_j^{(l_{j1})} \).
 (b) if \(\exists \) two children \(v_j^{(l_{j1})}, v_j^{(l_{j2})} \) then set \(J = v_j^{(l_{j1})} + v_j^{(l_{j2})} \).
 (c) from \(v_j^{(l_{j1})} \), proceed until a node \(v_i^{(l_i)} \) is found on the path whose parent has two or three children or it is the root node.
 (d) return sequence of nodes \(v_i^{(l_i)} \) to \(v_j^{(l_{j1})} \) or \(v_i^{(l_i)} \) to \(v_j^{(l_{j1})} + v_j^{(l_{j2})} \) on the path as the chain generating the subset cover \(S_{v_i}^{(i)}J \) of the subscribed users.

3. end if

We use the notation \(S_{v_i}^{(i)}v_j^{(j)} \) to represent the set of users in \(T_{v_i}^{(i)} \) minus that in \(T_{v_j}^{(j)} \) and \(S_{v_i}^{(i)}v_j^{(j)+v_j^{(j)}} \) to represent the set of users in \(T_{v_i}^{(i)} \) minus that in \(T_{v_j}^{(j)} \) and \(T_{v_j}^{(j)} \). We say that \(S_{v_i}^{(i)}v_j^{(j)} \) is the subset cover generated by the chain \(v_i^{(l_i)}, v_i^{(l_{i+1})}, \ldots, v_j^{(l_j)} \) and \(S_{v_i}^{(i)}v_j^{(j)+v_j^{(j)}} \) is the subset cover generated by the chain \(v_i^{(l_i)}, v_i^{(l_{i+1})}, \ldots, v_j^{(l_j)} + v_j^{(l_j)} \), where \(v_j^{(l_j)} \) are siblings.

We assign node identity \(t_i^{(l_i)} \in \mathbb{Z}_n \) to each level \(i \) node \(v_i^{(l_i)} \), where \(1 \leq i \leq \log_3 N + 1, 1 \leq l_i \leq 3^{i-1} \). At level \(i \), the hierarchical identity of a node \(v_i^{(l_i)} \) is \(\text{ID}_{v_i^{(l_i)}} = (t_i^{(l_i)}, t_{i+1}^{(l_{i+1})}, \ldots, t_i^{(l_i)}) \in (\mathbb{Z}_n)^i \), where \(t_i^{(l_i)}, t_{i+1}^{(l_{i+1})}, \ldots, t_i^{(l_i)} \) are the identities of nodes in the path from the root \(v_i^{(1)} \) to node \(v_i^{(l_i)} \).

All the nodes in the same level are assigned different hierarchical identities.

Definition 4. Let the node \(v_j^{(l_j)} \) be in the subtree \(T_{v_i^{(l_i)}} \) rooted at \(v_i^{(l_i)} \) and the hierarchical identity of the node \(v_j^{(l_j)} \) be \((t_1^{(l_j)}, t_2^{(l_j)}, \ldots, t_i^{(l_j)}) \). The modified hierarchical identity of a node \(v_j^{(l_j)} \) in \(T_{v_i^{(l_i)}} \) is defined to be \((t_1^{(l_j)}, t_1^{(l_j)}, t_{i+1}^{(l_{i+1})}, \ldots, t_i^{(l_i)}) \), i.e., the hierarchical identity from \(i \)-th position to rest in \(\text{ID}_{v_j^{(l_j)}} \).

Cover finding Algorithm: Cover finding Algorithm FindCover invokes procedure FindChain to generate chain corresponding to a given set \(R \) of revoked users and partitions the subscribed users into collection of disjoint subset covers. Different subset covers are generated from different chains. Algorithm 2 formally describes FindCover.
Algorithm 2 FindCover

Input: Set of revoked users R.

Output: Cover obtained by ternary SD method.

1. Set Cover = φ.
2. Invoke FindChain for each revoked user in R and generate all the chains.
3. for each chain in the Steiner tree $ST(R)$ of R do
 (a) Let a chain contains nodes $v_i^{(l_i)}, v_{i+1}^{(l_{i+1})}, \ldots, v_j^{(l_j)}$ or $v_i^{(l_i)}, v_{i+1}^{(l_{i+1})}, \ldots, v_{j+1}^{(l_{j+1})}; v_j^{(l_{j2})}$. Add $S_{v_i^{(l_i)}}(J = \{v_i^{(l_i)}\})$ or $v_j^{(l_{j2})}$ to the Cover and add $v_i^{(l_i)}$ to R and remove $v_j^{(l_{j2})}$ from R.
4. end for
5. Take the new revoked set R and goto step 2.

Lemma 1. The cover size for ternary SD is at most $\min\{N, 2r - 1\}$, where N is maximum number of users, r is number of revoked users.

Proof. For each chain $v_i^{(l_i)}, v_{i+1}^{(l_{i+1})}, \ldots, v_j^{(l_j)}$ or $v_i^{(l_i)}, v_{i+1}^{(l_{i+1})}, \ldots, v_{j+1}^{(l_{j+1})}; v_j^{(l_{j2})}$, $parent(v_i^{(l_i)})$ is either the root node or a node with 2 or 3 children in $ST(R)$. We define $v_i^{(l_i)}$ as the head node. If b is the number of children of parent of a head node and r is the number of revoked users in $ST(R)$, then the maximum number of parent node is given by $\frac{r}{b}$ as each child belongs to a chain which contain at least one revoked user. Thus the number of chain at most b^r. As each chain provides one subset cover, the number of cover is b^r. Head of these chain will be new revoked users. This provides the maximum number of parent node to be $\frac{r}{b}$ as each branch from parent will contain at least one of the previous $\frac{r}{b}$ parent node (head of new revoked users). This generates cover size at most b^r. Continue upto x th stage where $b^x = r$. So, we have an upper bound of the total number of subset cover as $b^r + b^{r-1} + \ldots + b^1(b^x = r) = b^{r+1} - 1$. The root is an additional head vertex which provides one more to the cover, so total number of cover becomes $b^{r+1} + 1$. This takes the maximum value at $b = 2$ and the value is $2r - 1$. In terms of the total number of users N, the number of subsets will be at most $\frac{N}{3}$. This happens when all the subscribed users are covered by ternary tree of height 1. Again there are $N - r$ subscribers and cover partition subscribers into groups. Therefore cover size should not exceed $N - r$. So, cover size = $\min\{\frac{N}{3}, N - r, 2r - 1\}$.

Example:

We illustrate below the working of FindCover algorithm for the set of revoked users $R = \{v_2^{(2)}, v_4^{(3)}, v_4^{(10)}\}$. In Figure 1, $PN(v_4^{(16)}) = \{v_1^{(1)}, v_2^{(2)}, v_3^{(6)}, v_4^{(16)}\}$ and $HN(v_4^{(16)}) = \{v_2^{(1)}, v_2^{(3)}, v_3^{(4)}, v_3^{(5)}, v_4^{(17)}, v_4^{(18)}\}$. For the set of revoked users $R = \{v_2^{(2)}, v_3^{(3)}, v_4^{(10)}\}$, the Steiner tree $ST(R)$ is depicted in Figure 2. The Cover with respect to R is determined as follows:
(i) The chain C_1 corresponding to the revoked user $v_4^{(2)}$ (or $v_4^{(3)}$) is $v_4^{(1)}, v_4^{(1)}, v_4^{(2)}, v_4^{(3)}$, yielding the subset cover $S_{v_4^{(2)}, v_4^{(2)}+v_4^{(3)}}$.

(ii) The chain C_2 corresponding to the revoked user $v_4^{(10)}$ is $v_2^{(2)}, v_3^{(4)}, v_4^{(10)}$, yielding the subset cover $S_{v_2^{(2)}, v_4^{(10)}}$.

(iii) The head nodes $v_1^{(2)}$ and $v_2^{(2)}$ of the chains C_1, C_2 are then added to R. The nodes $v_4^{(2)}, v_4^{(3)}, v_4^{(10)}$ are removed from R and the chain corresponding to $v_2^{(2)}$ (or $v_2^{(2)}$) is $v_1^{(1)}, v_2^{(1)}, v_2^{(2)}$, yielding the set $S_{v_1^{(1)}, v_2^{(1)}+v_2^{(2)}}$.

(iv) Hence, $\text{Cover} = S_{v_2^{(2)}, v_4^{(2)}+v_4^{(3)}} \cup S_{v_2^{(2)}, v_4^{(10)}} \cup S_{v_1^{(1)}, v_2^{(1)}+v_2^{(2)}}$.

Note that Cover is essentially a partition of the set of subscribed users into collection of disjoint subsets

\[
S_{v_2^{(2)}, v_4^{(2)}+v_4^{(3)}} = \{v_4^{(1)}, v_4^{(4)}, v_4^{(5)}, v_4^{(6)}, v_4^{(7)}, v_4^{(8)}, v_4^{(9)}\}, \\
S_{v_2^{(2)}, v_4^{(10)}} = \{v_4^{(11)}, v_4^{(12)}, v_4^{(13)}, v_4^{(14)}, v_4^{(15)}, v_4^{(16)}, v_4^{(17)}, v_4^{(18)}\}, \\
S_{v_1^{(1)}, v_2^{(1)}+v_2^{(2)}} = \{v_4^{(19)}, v_4^{(20)}, v_4^{(21)}, v_4^{(22)}, v_4^{(23)}, v_4^{(24)}, v_4^{(25)}, v_4^{(26)}, v_4^{(27)}\}.
\]

4 Our Scheme

Our outsider-anonymous broadcast encryption scheme $\text{OAAnoBE} = (\text{Setup}, \text{KeyGeneration}, \text{Encrypt}, \text{Decrypt})$ couples the anonymous hierarchical encryption scheme of Seo et al. (Seo et al., 2009) and ternary tree SD revocation of Fukushima et al. (Fukushima et al., 2009).

Our scheme enables a broadcaster to broadcast a message to a set of N users placed at the leaves of a complete ternary tree T. Let L be the level of the leaf nodes. The Setup and KeyGeneration algorithms are run by a trusted third party, called the Private Key Generation Center (PKGC), Encrypt algorithm is invoked by the broadcaster and Decrypt algorithm is carried out by the subscribed users. Formal description of these algorithms are provided below in algorithm 3-7.

The PKGC generates the public and the master key using Setup algorithm. It keeps the master key private to itself and publishes the public key. The subscribed user at a leaf node
gets the secret keys corresponding to all hanging node with respect to each path node from the PKGC by KeyGeneration algorithm through a secure communication channel between the PKGC and the subscribed user. The broadcaster runs FindCover procedure in Algorithm 2 and generates Cover- a partition of the subscribed users into disjoint subsets with respect to the set of revoked users. The KeyGeneration algorithm has a subroutine Derive which has 2 parts delegation and re-randomization. Delegation helps to compute secret key of children using secret key of its parent. Re-randomization helps to randomize the computed secret key. The broadcaster invokes Encrypt algorithm and forms the ciphertext components for each subset in Cover. To preserve the anonymity, the broadcaster also generates \((l - |Cover|)\) many dummy ciphertext components, where \(l\) is theoretical bound of cover size. The subscribed user \(u\) attempts to decrypt the ciphertext components using the secret keys received from the PKGC in KeyGeneration phase and utilizing the delegation mechanism of algorithm Derive. It succeeds in recovering the message either by the secret key corresponding to hanging nodes else by the derived keys.

Algorithm 3 Setup

input: Security parameter \(\lambda\), total number of users \(N\).

output: Public key parameter \(PK\), master key \(MK\).

1. Generate \(S = (n, G, G_T, e)\) using security parameter \(\lambda\). Here \(G\) and \(G_T\) are multiplicative cyclic groups of composite order \(n = pq\) and \(e : G \times G \rightarrow G_T\) is a bilinear mapping. Let \(G_p, G_q\) be subgroups of \(G\) with order \(p\) and \(q\) respectively and \(g_p, g_q\) are generators of \(G_p, G_q\) respectively. One can take \(g_p = g_1^p, g_q = g_1^q\), where \(g_1\) is a generator of \(G\).
2. Choose random elements \(g, f, v, h_1, \ldots, h_L, w\) from \(G_p\) and \(R_g, R_f, R_v, R_1, \ldots, R_L\) from \(G_q\), where \(L = \log_3 N + 1\) is the level of leaf nodes.
3. Compute \(G = g \cdot R_g, F = f \cdot R_f, V = v \cdot R_v, H_1 = h_1 \cdot R_1, \ldots, H_L = h_L \cdot R_L, E = e(g, w)\).
4. The public key parameters are \(PK = (g_p, g_q, G, F, V, H_1, H_2, \ldots, H_L, E, N, S)\).
5. The master key \(MK = (p, q, g, f, v, h_1, h_2, \ldots, h_L, w)\).

Observe that public key and master key both are of size \(O(L)\).

KeyGeneration algorithm works as follows: The PKGC generates the secret keys for all nodes in \(HN(v_i^{(L)})\) with respect to each node in \(PN(v_i^{(L)})\) and issues these keys to the subscribed user \(u\) at \(v_i^{(L)}\). For the user \(u\) at leaf \(v_i^{(L)}\), \(v_i^{(L)} \in PN(v_i^{(L)})\) at level \(i\), \(v_j^{(L)} \in PN(v_j^{(L)})\) \(\cup HN(v_j^{(L)})\) at level \(j\). Let \(sk_{u,v_i^{(j)},v_j^{(j)}}\) denotes the secret key of the user \(u\) with respect to \(v_j^{(L)} \in HN(v_j^{(L)})\), \(v_i^{(L)} \in PN(v_i^{(L)})\), which corresponds to the identities \((i_i^{(L)}, \ldots, i_{j-1}^{(L)}), i_j^{(L)})\). Let \(sk_{u,v_i^{(j)},v_j^{(j)}}\) be the secret keys of the user \(u\) corresponding to the identities \((i_i^{(L)}, \ldots, i_{j-1}^{(L)}, i_j^{(L)} + i_j^{(L)})\). Consider level 1 node \(v_1^{(L)} \in PN(v_1^{(L)})\). The PKGC uses step 2(a)i of Algorithm 4 to assign the secret keys corresponding to the nodes which are children of \(v_1^{(L)}\). In this process, it gets the secret key of \(v_2^{(L)} \in PN(v_2^{(L)})\). The PKGC uses 2(a)ii) to generate the combined secret key \(sk_{u,v_1^{(L)},v_2^{(L)}}\), where \(v_2^{(L)}, v_2^{(L)} \in HN(v_2^{(L)})\). The PKGC uses Derive algorithm to derive the
secret keys for nodes in $\mathbf{HN}(v_{L}^{(1)})$, that are not children of the initial path node $v_{1}^{(1)} \in \mathbf{PN}(v_{L}^{(1)})$. For example, the PKGC uses the secret key of $v_{2}^{(2)}$ to derive the secret keys for the children of $v_{2}^{(2)}$ (as in step 2(b)ii) of Algorithm 4). In this process, it gets secret key of $v_{3}^{(2)} \in \mathbf{PN}(v_{L}^{(1)})$. It uses 2(b)iii) to generate the third level combined secret key of the form $sk_{u,v_{1}^{(1)},v_{3}^{(1)},v_{2}^{(2)}+v_{3}^{(2)}}$, where $v_{3}^{(1)}, v_{3}^{(2)} \in \mathbf{HN}(v_{L}^{(1)})$. The PKGC uses the secret key of $v_{3}^{(2)} \in \mathbf{PN}(v_{L}^{(1)})$ to derive secret keys for the children of $v_{3}^{(2)}$ and continue up to level $L-1$ to obtain the secret key at leaf level. Next, consider level 2 node $v_{2}^{(2)} \in \mathbf{PN}(v_{L}^{(1)})$ and repeat the above process. Continue upto $L-1$ level node $v_{L-1}^{(L-1)} \in \mathbf{PN}(v_{L}^{(1)})$. Finally, the user u at $v_{L}^{(1)}$ is issued the secret keys corresponding to all nodes in $\mathbf{HN}(v_{L}^{(1)})$ with respect to all nodes in $\mathbf{PN}(v_{L}^{(1)})$. The secret keys of user u is $sk_{u} = \{sk_{u,v_{1}^{(1)},v_{3}^{(1)}}, sk_{u,v_{1}^{(1)},v_{2}^{(2)}}, sk_{u,v_{1}^{(1)},v_{3}^{(1)}+v_{3}^{(2)}}|1 \leq i \leq L, i+1 \leq j \leq L, v_{i}^{(L)} \in \mathbf{PN}(v_{L}^{(1)}), v_{j}^{(1)}, v_{j}^{(2)} \in \mathbf{HN}(v_{L}^{(1)})\}$. As an example, in Figure 1, user at $v_{4}^{(16)}$, will receive the secret key $sk_{u} = \{sk_{u,v_{1}^{(1)},v_{2}^{(2)}}|v_{2}^{(2)} = v_{2}^{(1)}, v_{2}^{(3)} + v_{2}^{(3)}\}, \{sk_{u,v_{1}^{(1)},v_{3}^{(1)}}|v_{3}^{(1)} = v_{3}^{(4)} + v_{3}^{(4)} + v_{3}^{(5)}\}, \{sk_{u,v_{1}^{(1)},v_{4}^{(2)}}|v_{4}^{(2)} = v_{4}^{(17)} + v_{4}^{(17)} + v_{4}^{(18)}\}, \{sk_{u,v_{2}^{(1)},v_{3}^{(1)}}|v_{3}^{(1)} = v_{3}^{(4)} + v_{3}^{(5)} + v_{3}^{(5)}\}, \{sk_{u,v_{2}^{(2)},v_{4}^{(2)}}|v_{4}^{(2)} = v_{4}^{(17)} + v_{4}^{(17)} + v_{4}^{(18)}\}$.

Algorithm 4: KeyGeneration

Input: \((I_1^{(l)}, \ldots, I_L^{(l)})\), \(PK=\(g_p, q, G, F, V, H_1, H_2, \ldots, H_L, E, N, S\)\), \(MK=\(p, q, g, f, v, h_1, h_2, \ldots, h_L, w\)\)

Output: \(sk_u = \{sk_{u,v_i^{(1)},v_j^{(1)}}(u), sk_{u,v_i^{(2)},v_j^{(2)}}(u), sk_{u,v_i^{(3)},v_j^{(3)}} + v_j^{(3)}(u) | 1 \leq i \leq L-1, i + 1 \leq j \leq L, v_i^{(l)} \in PN(v_L^{(l)}), v_j^{(l_1)}, v_j^{(l_2)} \in HN(v_L^{(l)})\}\)

1. **for** \(i = 1\) to \(L-1\) **do**

 Let \(v_i^{(l)} \in \text{path}(v_L^{(l)})\)

2. **for** \(j = i + 1\) to \(L\) **do**

 for each \(v_j^{(l)} \in HN(v_L^{(l)}) \cup PN(v_L^{(l)})\) **do**

 (a) **if** \(j = i + 1\) **then**

 i) Note that, \(v_j^{(l)}\) has the modified hierarchial identity \((I_i^{(l)}, I_{i+1}^{(l)})\) with respect to \(v_i^{(l)}\).

 Take \(r_1, r_2, s_1^{(1)}, s_1^{(2)}, s_2^{(1)}, s_2^{(2)} \in R Z_n\) such that \(s_1^{(1)} s_2^{(2)} - s_2^{(1)} s_1^{(2)} \neq 0\) (mod \(q\)), \(s_1^{(1)} s_2^{(2)} - s_2^{(1)} s_1^{(2)} \neq 0\) (mod \(p\)).

 Compute

 \[
 sk_{u,v_i^{(l)},v_j^{(l)}}^{(d)} = \left(w, (v \prod_{k=i}^{j} h_k^{(l_k)})^{r_1}, f^{r_2}, g^{r_3}, h_{j+1}^{r_4}, \ldots, h_L^{r_5} \right) \\
 sk_{u,v_i^{(l)},v_j^{(l)}}^{(r)} = \left((v \prod_{k=i}^{j} h_k^{(l_k)})^{r_1}, f^{r_2}, g^{r_3}, h_{j+1}^{r_4}, \ldots, h_L^{r_5} \right)_{x=1,2} \\
 \]

 Set \(sk_{u,v_i^{(l)},v_j^{(l)}} = (sk_{u,v_i^{(l)},v_j^{(l)}}^{(d)}, sk_{u,v_i^{(l)},v_j^{(l)}}^{(r)})\).

 ii) Additionally, compute \(j\)-th level combined secret key \(sk_{u,v_i^{(1)},v_j^{(1)}} + v_j^{(2)}\) for identity \((I_i^{(1)}, I_j^{(1)} + I_j^{(2)})\) (as in 2(a)i), where \(v_j^{(1)}, v_j^{(2)} \in HN(v_L^{(l)})\).

 end if

 (b) **if** \(j \neq i + 1\) **then**

 i) Derive the secret keys \(sk_{u,v_i^{(l)},v_j^{(l)}}\) from the secret key of upper level node \(v_{i-1}^{(l-1)} \in PN(v_L^{(l)})\) using procedure Derive as described in Algorithm 5.

 ii) Additionally, use procedure Derive to generate \(j\)-th level combined secret key \(sk_{u,v_i^{(1)},v_j^{(1)}} + v_j^{(2)}\) for identity \((I_i^{(1)}, I_j^{(1)} + I_j^{(2)})\), where \(v_j^{(1)}, v_j^{(2)} \in HN(v_L^{(l)})\).

 end if

 end for

3. **end for**

4. **return** secret key \(sk_u\) to user \(u\).
Secret key size: The subscribed user at a leaf node gets the secret keys for all hanging node with respect to each path node. It gets 3 secret keys for height 1 path node, 3 · 2 secret keys for height 2 path node, 3 · 3 secret keys for height 3 path node and so on. Total number of secret keys of user u is given by $\sum_{k=1}^{\log_3 N} 3i = O(\log_3^2 N)$.

Derive algorithm is a subroutine of KeyGeneration algorithm and used to derive secret key of child using the secret key of its parent.

Algorithm 5 Derive

input: Secret key $sk_{u,v_i^{(l_i)},v_j^{(l_j)-1}} = \left(sk_{u,v_i^{(l_i)},v_j^{(l_j)-1}}(d), sk_{u,v_i^{(l_i)},v_j^{(l_j)-1}}(r)\right) = (a_0, a_1, a_2, b_j, b_{j+1}, \ldots, b_L)$, $(\alpha_0^{(x)}, \alpha_1^{(x)}, \alpha_2^{(x)}, \beta_1^{(x)}, \beta_2^{(x)}, \ldots, \beta_L^{(x)})_{x=1,2}$ corresponding to $(I_i^{(l_i)}, \ldots, I_{j-1}^{(l_j)})$, PK, MK, $(I_i^{(l_i)}, \ldots, I_j^{(l_j)})$.

output: Secret key $sk_{u,v_i^{(l_i)},v_j^{(l_j)}}$ corresponding to modified hierarchial identity $(I_i^{(l_i)}, \ldots, I_j^{(l_j)})$.

Update secret keys using delegation followed by re-randomization process described below

1. **Delegation procedure:** Compute the followings using $sk_{u,v_i^{(l_i)},v_j^{(l_j)-1}}$:

 \[
 \tilde{sk}_{u,v_i^{(l_i)},v_j^{(l_j)}}(d) = (\zeta_0, \zeta_1, \zeta_2, \eta_{j+1}, \ldots, \eta_L) = (a_0(b_j)^{l_j}, a_1, a_2, b_{j+1}, \ldots, b_L) \\
 \tilde{sk}_{u,v_i^{(l_i)},v_j^{(l_j)}}(r) = (\theta_0^{(x)}, \theta_1^{(x)}, \theta_2^{(x)}, \phi_1^{(x)}, \phi_2^{(x)}, \phi_L^{(x)})_{x=1,2} \\
 = \left((\alpha_0^{(x)}(\beta_1^{(x)})^{l_j}, \alpha_1^{(x)}, \alpha_2^{(x)}, \beta_{j+1}, \ldots, \beta_L^{(x)})_{x=1,2}\right).
 \]

2. Pick random $\gamma_1, \gamma_2, \gamma_3, \delta_1, \delta_2, \delta_3$ from \mathbb{Z}_n satisfying $g_p^{\gamma_2\delta_3 - \gamma_3\delta_2} \neq 1 \pmod{p}$ and $g_q^{\gamma_2\delta_3 - \gamma_3\delta_2} \neq 1 \pmod{q}$.

3. **Re-randomization procedure:** Using $\tilde{sk}_{u,v_i^{(l_i)},v_j^{(l_j)}} = (\tilde{sk}_{u,v_i^{(l_i)},v_j^{(l_j)}}(d), \tilde{sk}_{u,v_i^{(l_i)},v_j^{(l_j)}}(r))$, compute $sk_{u,v_i^{(l_i)},v_j^{(l_j)}} = (sk_{u,v_i^{(l_i)},v_j^{(l_j)}}(d), sk_{u,v_i^{(l_i)},v_j^{(l_j)}}(r))$ as follows:

 \[
 sk_{u,v_i^{(l_i)},v_j^{(l_j)}}(d) = \left(\tilde{\zeta}_0(\theta_0^{(1)})^{\gamma_1}(\theta_0^{(2)})^{\delta_1}, \tilde{\zeta}_1(\theta_1^{(1)})^{\gamma_1}(\theta_1^{(2)})^{\delta_1}, \tilde{\zeta}_2(\theta_2^{(1)})^{\gamma_1}(\theta_2^{(2)})^{\delta_1}, \eta_{j+1}(\phi_1^{(1)})^{\gamma_1}(\phi_1^{(2)})^{\delta_1}, \ldots, \eta_L(\phi_L^{(1)})^{\gamma_1}(\phi_L^{(2)})^{\delta_1}\right) \\
 sk_{u,v_i^{(l_i)},v_j^{(l_j)}}(r) = \left((\theta_0^{(1)})^{\gamma_2}(\theta_0^{(2)})^{\delta_2}, (\theta_1^{(1)})^{\gamma_2}(\theta_1^{(2)})^{\delta_2}, (\theta_2^{(1)})^{\gamma_2}(\theta_2^{(2)})^{\delta_2}, (\phi_1^{(1)})^{\gamma_2}(\phi_1^{(2)})^{\delta_2}, (\phi_2^{(1)})^{\gamma_2}(\phi_2^{(2)})^{\delta_2}, (\phi_L^{(1)})^{\gamma_2}(\phi_L^{(2)})^{\delta_2})_{x=2,3}\right).
 \]

Remark 1. $sk_{u,v_i^{(l_i)},v_j^{(l_j)}}$ can be used to decrypt the ciphertext. Re-randomization is used to re-
randomize the secret key obtained in delegation procedure. Note that, the delegation procedure does not need MK and consequently can be run by any entity, who knows the upper level secret key \(sk_{u,v^{(l)}_i,v^{(l-1)}_j} \) to derive secret key \(\{ sk_{u,v^{(l)}_i,j} | J = v^{(l_1)}_j, v^{(l_2)}_j, v^{(l_1)}_j + v^{(l_2)}_j \} \). If we don’t use re-randomization procedure then every secret key \(\{ sk_{u,v^{(l)}_i,j} | J = v^{(l_1)}_j, v^{(l_2)}_j, v^{(l_1)}_j + v^{(l_2)}_j \} \) generated from \(sk_{u,v^{(l)}_i,v^{(l-1)}_j} \) will have same randomization exponents \(r_1, r_2 \). Dividing first component of \(sk^{(d)}_{u,v^{(l)}_i,v^{(l-1)}_j} \) by that of \(sk^{(d)}_{u,v^{(l)}_i,v^{(l-1)}_j} \), we obtain \(h^{(l_j)}_j \). Dividing first component of \(sk^{(d)}_{u,v^{(l)}_i,v^{(l-1)}_j} \) by \(h^{(l_j)}_j \), we can get first component of \(sk^{(d)}_{u,v^{(l)}_i,v^{(l-1)}_j} \). If the hanging nodes are already revoked users and now \(u \) revoke, then \(sk^{(d)}_{u,v^{(l)}_i,v^{(l-1)}_j} \) will decrypt the ciphertext (following Decrypt algorithm). Thus a revoked user is still able to recover the message. Re-randomization procedure solves the problem.

Correctness of Re-randomization Algorithm: In Delegation procedure, we generate

\[
\widetilde{sk}^{(d)}_{u,v^{(l)}_i,v^{(l)}_j} = (\zeta_0, \zeta_1, \zeta_2, \eta_{j+1}, \eta_{j+2}, \ldots, \eta_L) = (a_0(b_j)^{l^{(l)}_j}, a_1, a_2, b_{j+1}, \ldots, b_L)
\]

\[
= (w, (v \prod_{k=1}^{j} h_k^{l^{(l)}_k})^x f^2, g^r_1, g^r_2, h^r_1, \ldots, h^r_L).
\]

\[
\widetilde{sk}^{(r)}_{u,v^{(l)}_i,v^{(l)}_j} = \left((\phi_0^{(x)}(x), \phi_1^{(x)}(x), \phi_2^{(x)}(x), \phi_{j+1}^{(x)}(x), \phi_{j+2}^{(x)}(x), \phi_L^{(x)}(x))_{x=1,2} \right)
\]

\[
= (\left((\phi_0^{(x)}(x), \phi_1^{(x)}(x), \phi_2^{(x)}(x), \phi_{j+1}^{(x)}(x), \phi_{j+2}^{(x)}(x), \phi_L^{(x)}(x))_{x=1,2} \right)
\]

\[
= (v \prod_{k=1}^{j} h_k^{l^{(l)}_k})^x f^2, g^r_1, g^r_2, h^r_1, \ldots, h^r_L).
\]

In re-randomization procedure we set,

\[
\tilde{sk}^{(d)}_{u,v^{(l)}_i,v^{(l)}_j} = \left(\zeta_0, \zeta_1, \zeta_2, \eta_{j+1}, \eta_{j+2}, \ldots, \eta_L \right) = (a_0(b_j)^{l^{(l)}_j}, a_1, a_2, b_{j+1}, \ldots, b_L)
\]

\[
= (w, (v \prod_{k=1}^{j} h_k^{l^{(l)}_k})^x f^2, g^r_1, g^r_2, h^r_1, \ldots, h^r_L).
\]

where \(r_1 = r_1 + s_1^{(1)} \gamma_1 + s_1^{(2)} \delta_1 \) and \(\tilde{r}_2 = r_2 + s_2^{(1)} \gamma_1 + s_2^{(2)} \delta_1 \).
where $\bar{s}_1^{(1)} = s_1^{(1)}\gamma_2 + s_1^{(2)}\delta_2$, $\bar{s}_1^{(2)} = s_2^{(1)}\gamma_3 + s_2^{(2)}\delta_3$, $\bar{s}_1^{(1)} = s_1^{(1)}\gamma_2 + s_1^{(2)}\delta_2$, $\bar{s}_1^{(2)} = s_2^{(1)}\gamma_3 + s_2^{(2)}\delta_3$.

Algorithm 6 Encrypt

input: Public key $PK=(g_p, g_q, G, F, V, H_1, H_2, \ldots, H_L, E, N, S)$, $l=\min\{\frac{N}{3}, N-r, 2r-1\}$, r is number of revoked users. $(M\|K) \in \mathbb{G}_T$, where $M \in \{0, 1\}^{\lambda-k}$ is the message and $K \in \{0, 1\}^k$ is the verification component.

output: Ciphertext CT.

1. Find $Cover=\{S_1, \ldots, S_m\}$ using Algorithm 2
2. for $i = 1$ to l
 (a) for $x = 1$ to m do
 Let $S_x = S_{v_{l(j)}}, j \in Cover$.
 Let $(I_1^{(l)}, \ldots, I_{j-1}^{(l)})$, (i_j^1, i_j^2) or $(I_1^{(l)}, \ldots, I_{j-1}^{(l)}; I_j^{(l)}, i_j^{(l)})$ be the node identity of the corresponding chain $(v_1^{(l)}, \ldots, v_j^{(l)})$ or $(v_1^{(l)}, \ldots, v_j^{(l)}; v_{l(j)}^{(l)})$ of the subset cover $S_{v_{l(j)}}, j$. Select Z_1, Z_2, Z_3 at random from \mathbb{G}_q, s at random from \mathbb{Z}_n.

 if $J = v_{j}^{(l_1)} + v_{j}^{(l_2)}$, then compute
 $$C_x = (\gamma_1\gamma_2) \cdot G \cdot Z_1, F \cdot Z_2, \{e_{l_1}^{(l_1)}, e_{l_2}^{(l_2)}\}.Z_3$$.

 if $J = v_{j}^{(l_1)}$, then compute
 $$C_x = (\gamma_1\gamma_2) \cdot G \cdot Z_1, F \cdot Z_2, \{e_{l_1}^{(l_1)}\}.Z_3$$.

 if $J = v_{j}^{(l_2)}$, then compute
 $$C_x = (\gamma_1\gamma_2) \cdot G \cdot Z_1, F \cdot Z_2, \{e_{l_2}^{(l_2)}\}.Z_3$$.
 end for

(b) for $x = m+1$ to l do
 Choose $R_1 \in_R \mathbb{G}_T, R_2, R_3, R_4 \in_R \mathbb{G}$.
 Set $C_x = \{R_1, R_2, R_3, R_4\}$.
end for

3. end for

4. Set $C = \{C_1, C_2, \ldots, C_l\}$.

 Use permutation μ to compute $C_\mu = \{C_\mu(1), C_\mu(2), \ldots C_\mu(l)\}$.

 Broadcast ciphertext $CT=\{k, K, C_\mu\}$.

Remark 2. Broadcaster can take $Z_1 = g_1^{r_1}, Z_2 = g_2^{r_2}, Z_3 = g_3^{r_3}, r_1, r_2, r_3 \in_R \mathbb{Z}_n$. Components involving Z_1, Z_2, Z_3 are element of \mathbb{G}, so he can compute Z_1, Z_2, Z_3 on modulo n.

Ciphertext size: Here ciphertext size $l=\min\{\frac{N}{3}, N-r, 2r-1\}$.
Algorithm 7 Decrypt

input: PK, CT=\{k, K, C_\mu\}, sk_u = \{sk_{u,v_i^{(l_i)},v_j^{(l_j)}}\}, sk_{u,v_i^{(l_i)},v_j^{(l_j)},v_k^{(l_k)}} |1 \leq i \leq L, 1, i+1 \leq j \leq L, v_i^{(l_i)} \in \text{PN}(v_L^{(l_L)}), v_j^{(l_j)}, v_k^{(l_k)} \in \text{HN}(v_L^{(l_L)})\}

output: Message M \in \{0,1\}^{\lambda-k}.

1. for \(i = 1 \) to \(L-1 \) do

 Let \(v_i^{(l_i)} \in \text{PN}(v_L^{(l_L)}) \).

2. for \(j = i+1 \) to \(L \) do

 Let \(v_j^{(l_j)}, v_j^{(l_j)} \in \text{HN}(v_L^{(l_L)}) \).

 Set \(J = v_j^{(l_j)} + v_j^{(l_j)} \).

3. Let \(a_0, a_1, a_2 \) be first 3 components of \(sk_{u,v_i^{(l_i)},v_k^{(l_k)}} \) extracted from \(sk_{u,v_i^{(l_i)},v_k^{(l_k)}} \).

 for each ciphertext component \(C_i = (\hat{C}_1, \hat{C}_2, \hat{C}_3, \hat{C}_4) \) do

 Compute \(M^* = \hat{C}_1 \cdot \hat{C}_2 \cdot \hat{C}_3 \cdot \hat{C}_4 \).

 if last \(k \) bits of \(M^* \) matches with \(K \) then

 return first \(\lambda-k \) bits as \(M \).

 else

 (a) for each hanging node \(v_j^{(l_j)} \) (i.e., \(v_j^{(l_j)} \) or \(v_j^{(l_j)} \)) do

 Set \(J = v_j^{(l_j)} \) and execute initial 5 lines of step 3.

 if \(M \) is not recovered then

 for \(k = j+1 \) to \(L \) do

 i) sequentially set \(J = v_k^{(l_k)} \), where \(v_k^{(l_k)} \) is the \(k \)-th level node in \(T_v^{(l_j)} \). Compute the secret key \(sk_{u,v_i^{(l_i)},v_k^{(l_k)}} \) using the delegation mechanism of algorithm Derive. Execute first 5 lines of step 3 until \(M \) is recovered.

 ii) sequentially set \(J = v_k^{(l_k)} + v_k^{(l_k)} \), where \(v_k^{(l_k)}, v_k^{(l_k)} \) are the \(k \)-th level siblings in \(T_v^{(l_j)} \). Compute the combined secret key \(sk_{u,v_i^{(l_i)},v_k^{(l_k)}} \) using the delegation mechanism of algorithm Derive. Execute first 5 lines of step 3 until \(M \) is recovered.

 end for

 end if

 end for

 (b) end for

end if

end for

4. end for

5. end for

Decryption attempt: To recover the message using Decrypt algorithm, user \(u \) tries to decrypt \(\{C_i\}_{i=1} \) values with secret key corresponds to all possible subsets in which it can belong to. For height \(k \), there are at most \(2 \cdot 3 \) subsets of depth 1, \(2 \cdot 3^2 \) of depth 2 and so on. So, total \(2 \cdot 3 + 2 \cdot 3^2 + \ldots + 2 \cdot 3^k \) subsets. But, the user does not belong to \(3k \) subsets of the
form \(S_{v_i,u}^{(i_1),v_j}\), \(S_{v_i,u}^{(i_2),v_j}\) + \(v_j\), where \(v_j\) lies on the path joining the user and the root. So, for height \(k\), the user can belong to \(2 \cdot 3 + 2 \cdot 3^2 + \ldots + 2 \cdot 3^k - 3k = 3 \cdot (3^k - 1) - 3k \leq 3^{k+1} - 3k\) subset difference sets. This gives the maximum number of subsets in which it can belong, is \(\sum_{k=1}^{\log_3 N} (3^{k+1} - 3k) = O(N)\). The user generates or derive secret keys for each subsets and decrypt ciphertext components one by one until it recover message \(M\). So, total number of decryption attempt is \(O(NI)\).

Example: In Figure 1, \(PN(v_4^{(10)}) = \{v_1^{(1)}, v_2^{(2)}, v_3^{(6)}, v_4^{(16)}\}\) and \(HN(v_4^{(16)}) = \{v_1^{(1)}, v_2^{(3)}, v_3^{(4)}, v_4^{(5)}, v_4^{(17)}, v_4^{(18)}\}\), the set of revoked user \(R = \{v_4^{(2)}, v_4^{(3)}, v_4^{(10)}\}\). The user \(u\) at \(v_4^{(16)}\), has the secret key \(sk_u = \{sk_{u,v_1^{(1)},v_4^{(2)}}(v_2) = v_2^{(1)}, v_2^{(2)}, v_2^{(3)} + v_2^{(3)}\}, \{sk_{u,v_1^{(1)},v_3^{(2)}}(v_3) = v_3^{(4)}, v_3^{(5)}, v_3^{(4)} + v_3^{(5)}\}, \{sk_{u,v_2^{(2)},v_3^{(3)}}(v_4) = v_4^{(4)}, v_4^{(5)}, v_4^{(4)} + v_4^{(5)}\}, \{sk_{u,v_3^{(4)},v_4^{(5)}}(v_4) = v_4^{(4)}, v_4^{(5)}, v_4^{(4)} + v_4^{(5)}\}\). According to the **Decrypt** algorithm, the user will try to decrypt the ciphertext using the secret keys \(sk_{u,v_1^{(1)},v_2^{(2)}}, sk_{u,v_1^{(1)},v_2^{(3)}}\) respectively and will fail to recover the message as no ciphertext components corresponding to the subset cover \(S_{v_1^{(1)},J} = v_2^{(1)} + v_2^{(3)}\). If user has the secret key \(sk_{u,v_1^{(1)},v_j^{(l_1-1)}}\) for \((I_1^{(1)}, \ldots, I_{j-1}^{(l_1-1)})\), then it can compute the secretkeys \(sk_{u,v_1^{(1)},v_j^{(l_1)}}, sk_{u,v_1^{(1)},v_j^{(l_1)}}, sk_{u,v_1^{(1)},v_j^{(l_1)}}, \ldots, sk_{u,v_1^{(1)},v_j^{(l_1)}}, (I_1^{(1)}, \ldots, I_{j-1}^{(l_1-1)}, I_j^{(l_1)}, I_j^{(l_1)}, I_j^{(l_2)})\) by the delegation mechanism of **Derive**. Using this mechanism, subscribed user \(u\) will compute the following 3-rd level keys which belong to \(T_{v_2}^{(1)}\): the individual secret keys \(sk_{u,v_1^{(1)},v_4^{(2)}}, sk_{u,v_1^{(1)},v_3^{(2)}}, \ldots, sk_{u,v_1^{(1)},v_4^{(2)}}\) and the combined secret keys \(sk_{u,v_1^{(1)},v_4^{(2)}}, sk_{u,v_1^{(1)},v_3^{(2)}}, \ldots, sk_{u,v_1^{(1)},v_4^{(2)}}\). User \(u\) will try with these keys and fail to recover the message. User \(u\) will compute the following fourth level individual secret keys in \(T_{v_2}^{(1)}\): \(sk_{u,v_1^{(1)},v_4^{(3)}}, sk_{u,v_1^{(1)},v_4^{(3)}}, \ldots, sk_{u,v_1^{(1)},v_4^{(3)}}\) and still be unable to recover the message. It succeeds with the combined secret key \(sk_{u,v_1^{(1)},v_4^{(3)}}\) as there is a ciphertext component generated for \(S_{v_1^{(1)},v_4^{(3)}}\).

Correctness: Using the fact that \(e(h_p, h_q) = 1, h_p \in G_p, h_q \in G_q\), we show that ciphertext component \(C_i = (C_1, C_2, C_3, C_4)\) generated for subset cover \(S_{v_i^{(l_1)},v_j^{(l_2)}}\), will be decrypted using corresponding secret key \(sk_{u,v_i^{(l_1)},v_j^{(l_2)}}\). Let \(a_0, a_1, a_2\) are first 3 components of \(sk_{u,v_i^{(l_1)},v_j^{(l_2)}}\).
extracted from $sk_{u,v^{(i_1)},v^{(i_2)}}$.

$$\hat{C}_1 e(a_1, \hat{C}_3) e(a_2, \hat{C}_3) = (M \| K). E^s e(g^{r_1}, (V \prod_{k=1}^i H_k^{(l_k)})^s, Z_3). e(g^{r_2}, F^s, Z_2)$$

$$= (M \| K). E^s e(g^{r_1}, (V \prod_{k=1}^i H_k^{(l_k)})^s). e(g^{r_1}, Z_3). e(g^{r_2}, f^s). e(g^{r_2}, R_f^s, Z_2)$$

$$= (M \| K). E^s e(g^{r_1}, (v \prod_{k=1}^i h_k^{(l_k)})^s). e(g^{r_2}, f^s)$$

$$= (M \| K). E^s e(g^{r_1}, (v \prod_{k=1}^i h_k^{(l_k)})^s). e(f^{r_2}, g^s)$$

$$= (M \| K). E^s e(g^{r_1}, (v \prod_{k=1}^i h_k^{(l_k)})^s) e((v \prod_{k=1}^i h_k^{(l_k)})^r, g^s e(w, g^s) = (M \| K)$$

Similarly, ciphertext component generated for the subset cover $S_{v^{(i_1)},v^{(i_2)}}$, can be decrypted using the corresponding secret key $sk_{u,v^{(i_1)},v^{(i_2)}}$. In this case, $h_j^{l_1}$ is replaced by $h_j^{l_1}$. + $h_j^{l_2}$.

Lemma 2. Our scheme attains revocation property.

Proof. When a user u at $v^{(l_x)}_i$ gets revoked, the cover changes. Let $v^{(l_x)}_i \in T_{v^{(l_x)}} \setminus S_{v^{(l_x)},v^{(l_x)}}$. Then $v^{(l_x)}_i$ will be ancestor of the node $v^{(l_x)}_i$ and $v^{(l_x)}_i$ will either itself be $v^{(l_x)}_i$ or will be an ancestor of $v^{(l_x)}_i$. If $v^{(l_x)}_i$ is not an ancestor of $v^{(l_x)}_i$, then $v^{(l_x)}_i$ cannot be a revoked user as in $S_{v^{(l_x)},v^{(l_x)}}$, users at the leaf of the complete subtree rooted at $v^{(l_x)}_i$ are the revoked users. Thus both $v^{(l_x)}_i, v^{(l_x)}_i \in PN(v^{(l_x)}_i)$. As the user has the secret keys $sk_{u,v^{(l_x)},v^{(l_x)}}$, where $v^{(l_x)}_i \in HN(v^{(l_x)}_i)$, it will be unable to recover the message from the ciphertext generated corresponding to new Cover.

\[\square \]

5 Security Analysis

Theorem 1. Our OAnoBE scheme described in section 4 is selective secure against CPA under L_wDBDH^*, BSD and L_cDDH assumptions, where L is the level of leaf nodes.

Proof. We will organize the proof in a sequence of games: $Game^0_h(0 \leq h < l_0), Game^0_{l_0}, Game^1_{l_0}, Game^1_k$ ($l_1 > k \geq 1$) played between challenger C and adversary A, where $l_1, (i = 0, 1)$ is the cover size generated for the revoked set \mathbb{R}_i. Let the i-th chain of $ST(\mathbb{R}_0)$ contains nodes $(v^{(l_x)}_i, v^{(l_x+1)}_i, \ldots, v^{(l_x)}_i)$. As $\mathbb{R}_0, \mathbb{R}_1$ has equal number of revoked users, theoretical bound of cover

\[\square \]
size $l_1 = l_2 = l$ (say). Let $(I_i^{(l_i)}, I_{i+1}^{(l_{i+1})}, \ldots, I_j^{(l_j)})$ be the modified hierarchial identity of the last node $v_j^{(l_j)}$ of i-th chain with respect to its head node $v_i^{(l_i)}$. If the i-th chain of $\text{ST}(\mathbb{R}_0)$ contains nodes $(v_i^{(l_i)}, v_{i+1}^{(l_{i+1})}, \ldots, v_j^{(l_j)}, v_j^{(l_j)})$, then the modified hierarchial identity is $(I_i^{(l_i)}, I_{i+1}^{(l_{i+1})}, \ldots, I_j^{(l_j)} + I_j^{(l_j)})$. Let

$$\text{ID}_{i,0} = (0, \ldots, 0, I_i^{(l_i)}, I_{i+1}^{(l_{i+1})}, \ldots, I_j^{(l_j)}, 0, \ldots, 0) = (I_i^{(l_i)}, I_2^{(l_2)}, \ldots, I_L^{(l_L)}).$$

We start with the first game Game_0 where the challenger encrypts $m_0 = (M_0||K)$ for the adversary’s challenge revoked set \mathbb{R}_0. We then gradually change the encryption through multiple games into encryption of $m_1 = (M_1||K)$ for the revoked set \mathbb{R}_1. We show that each game is indistinguishable from its previous one. Thus showing our OAnoBE scheme to have selective security against CPA.

- Game_h ($0 \leq h < l_0$):

1. Initialization: Adversary A sends the challenge sets $\mathbb{R}_0, \mathbb{R}_1$ to C, where $\mathbb{R}_0, \mathbb{R}_1$ have equal number of revoked users.

2. Setup: C runs $(\text{PK}, \text{MK}) \leftarrow \text{Setup}(N, \lambda)$. It keeps MK secret to itself and makes PK public.

3. Phase 1: A takes an user $i \in \mathbb{R}_0 \cap \mathbb{R}_1$ and requests for the secret keys to C. C generates the secret key $sk_i \leftarrow \text{KeyGeneration}(\text{PK}, \text{MK}, i)$ and sends to A.

4. Challenge: A sends two equal length messages $m_0 = (M_0||K), m_1 = (M_1||K)$, where last k bits of each message is K. C computes following ciphertext components: $C_i, 1 \leq i \leq h$ as encryption of m_0 for identity $\text{ID}_{i,0}$ and $C_i, l_0 - h + 1 \leq i \leq l$ as $(R_1, R_2, R_3, R_4) \in R G_{\text{T}} \times G^3$ following Algorithm 6. C permutes the C_i values using some permutation μ and sends $\{k, K, C_{\mu(1)}, \ldots, C_{\mu(l)}\}$ to A.

5. Phase 2: Phase 2 is similar to Phase 1.

6. Guess: A wins the game if he can predict $b = 0$.

- Game_0: This game is similar to above except that challenge ciphertext component $C_i, 1 \leq i \leq l$ as $(R_1, R_2, R_3, R_4) \in R G_{\text{T}} \times G^3$ following Algorithm 6.

Let us now consider that the i-th chain of $\text{ST}(\mathbb{R}_1)$ contains nodes $(v_i^{(l_i)}, v_{i+1}^{(l_{i+1})}, \ldots, v_j^{(l_j)})$ and $(I_i^{(l_i)}, I_{i+1}^{(l_{i+1})}, \ldots, I_j^{(l_j)})$ be the modified hierarchial identity of the last node $v_j^{(l_j)}$ of this chain with respect to its head node $v_i^{(l_i)}$. Let $\text{ID}_{i,1} = (0, \ldots, 0, I_i^{(l_i)}, I_{i+1}^{(l_{i+1})}, \ldots, I_j^{(l_j)}, 0, \ldots, 0) = (I_1^{(l_1)}, I_2^{(l_2)}, \ldots, I_L^{(l_L)})$.

- Game_1: This game is identical to Game_0.

- Game_k ($l_1 > k \geq 1$): This game continues as in Game_1, except that the challenge ciphertext components. A sends two equal length messages $m_0 = (M_0||K), m_1 = (M_1||K)$. C computes
following ciphertext components: \(C_i, 1 \leq i \leq l_1 - k \) as encryption of \(m_1 \) for identity \(\text{id}_{i,1} \) and \(C_i, l_1 - k + 1 \leq i \leq l \) as \((R_1, R_2, R_3, R_4) \in R \mathbb{G}_T \times \mathbb{G}^3\) following Algorithm 6. \(C \) permutes the \(C_i \) values using some permutation \(\mu \) and sends \(\{ k, K, C_{\mu(1)}, \ldots, C_{\mu(l)} \} \) to \(\mathcal{A} \).

We now present a sequence of lemmas which will demonstrate that no PPT adversary can distinguish with non-negligible advantage between any two consecutive game described above. In Lemma 3, we show that \(\text{Game}^{0}_{h-1} \) and \(\text{Game}^{0}_h, 1 \leq h \leq l_0 \) are indistinguishable if \(L\text{-wDBDHI}^* \), BSD and \(L\text{-cDDH} \) assumption holds. \(\text{Game}^{1}_{k-1} \) and \(\text{Game}^{1}_k, 2 \leq k \leq l_1 \) are indistinguishable by Lemma 4 under the same assumptions. Let the adversary’s advantage of winning \(\text{Game}^{0}_h \) is \(\text{Adv}^{0}_h \), and that of \(\text{Game}^{1}_k \) is \(\text{Adv}^{1}_k \). Let the adversary’s advantage of distinguishing \(\text{Game}^{0}_h, \text{Game}^{0}_{h-1} \) and \(\text{Game}^{0}_{k-1} \), \(\text{Game}^{0}_k \) is at most \(\epsilon \). Then advantage of distinguishing \(\text{Game}^{0}_0, \text{Game}^{1}_1 \) is given by

\[
|\text{Adv}^{0}_0 - \text{Adv}^{1}_1| \leq \sum_{h=1}^{l_0} |\text{Adv}^{0}_{h-1} - \text{Adv}^{0}_h| + |\text{Adv}^{0}_0 - \text{Adv}^{1}_1| + \sum_{k=2}^{l_1} |\text{Adv}^{1}_{k-1} - \text{Adv}^{1}_k|
\leq \epsilon(l_0 + l_1) \leq \epsilon(l + l) \leq 2\epsilon(l).
\]

Lemma 3. \(\text{Game}^{0}_{h-1} \) and \(\text{Game}^{0}_h \) are indistinguishable under \(L\text{-wDBDHI}^* \), BSD and \(L\text{-cDDH} \) assumptions.

Proof. To prove the indistinguishability of \(\text{Game}^{0}_{h-1} \) and \(\text{Game}^{0}_h \), we define \(\overline{\text{Game}}^{0}_h \) in slightly different way from \(\text{Game}^{0}_k \) and prove the indistinguishability of \(\overline{\text{Game}}^{0}_h \) and \(\overline{\text{Game}}^{0}_{h-1} \). For \(i = l_0 - h + 1 \) to \(l \), the generated challenged ciphertext in \(\overline{\text{Game}}^{0}_h \) is of the form \((\hat{C}_1, R_p, \hat{C}_2, \hat{C}_3, \hat{C}_4)\) instead of \((R_1, R_2, R_3, R_4) \in R \mathbb{G}_T \times \mathbb{G}^3\), where \((\hat{C}_1, \hat{C}_2, \hat{C}_3, \hat{C}_4)\) is the encryption of the message \(m_0 \) using \(\text{id}_{i,0} \) and \(R_p \in R \mathbb{G}_{T,p} \).

Claim: \(\overline{\text{Game}}^{0}_{h-1} \) and \(\overline{\text{Game}}^{0}_h \) are indistinguishable under \(L\text{-wDBDHI}^* \) assumptions.

Proof. Let there is an adversary \(\mathcal{A} \) that can distinguish \(\overline{\text{Game}}^{0}_{h-1} \) and \(\overline{\text{Game}}^{0}_h \) with an advantage \(\epsilon \). We show that \(C \) can solve \(L\text{-wDBDHI}^* \) problem with advantage \(\epsilon \). Challenger \(C \) has input \(L\text{-wDBDHI}^* \) instance \(Z = (S, h, g_q, g_p, g_p^\alpha, \ldots, g_p^{\alpha^r}), T \), where \(h \in R \mathbb{G}_p, \alpha \in R \mathbb{Z}_n, T \in R \mathbb{G}_{T,p}, S = (n, G, \mathbb{G}_T, \epsilon) \).

1. Initialization: \(\mathcal{A} \) submits the challenge revoked sets \(R_0, R_1 \) to \(C \), where \(R_0, R_1 \) has equal number of revoked users.

2. Setup: \(C \) chooses \(\gamma, x, y, z, x_1, \ldots, x_L \in R \mathbb{Z}_n \) and \(R_q, R_f, R_{s1}, \ldots, R_{hs,L} \in R \mathbb{G}_q \). Let us consider a cover \(S_{v_{i}^{(i_{i}), s_{j}^{(i_{j})}}} \) generated by the chain \((v_{i}^{(i_{i})}, v_{i+1}^{(i_{i+1})}, \ldots, v_{j}^{(i_{j})})\), using the revoked set \(R_0 \). Let modified hierarchical identity of the end node \(v_{j}^{(i_{j})} \) with respect to the head node \(v_{i}^{(i_{i})} \) as

\[
(0, \ldots, 0, I_{i}^{(i_{i})}, I_{i+1}^{(i_{i+1})}, \ldots, I_{L}^{(i_{L})}, 0, \ldots, 0) = (I_{1}^{(i_{1})}, I_{2}^{(i_{2})}, \ldots, I_{L}^{(i_{L})}).
\]
So, some $I_k^{(i_k)}$ may be 0 at the beginning and end. Compute $G = g_p R_g, F = g_p^2 R_f, V = g_p^L \prod_{k=1}^{L} (A_{L-k+1})^{I_k^{(i_k)}} R_v, H_k = g_p^s / A_{L-k+1} R_h,k$ ($1 \leq k \leq L$), $E = e(A_1, A_L g_p^s)$, where $A_k = g_p^s$.

Set public key as $PK = (g_p, g_q, G, F, V, H_1, \ldots, H_L, E, N, S)$ and $w = (A_L g_p^s)^\alpha = A_{L+1} A_1^g$. Challenger does not have A_{L+1}, so he cannot compute w explicitly.

3. Phase 1: Let A wants to get secret keys for revoked user $i \in \mathbb{R}_0 \cap \mathbb{R}_1$. Let i be in $T_{(i)}$ of cover $S_{(i)}$ and it queries for a secret key component corresponding to modified hierarchial identity $(I_1^{(i_1)}, I_2^{(i_2)}, \ldots, I_L^{(i_L)})$. Let s be the least identity such that $I_s^{(i_s)} \neq I_s^{(i_s)}$.

i. Take $r_1, r_2 \in R_\mathbb{Z}_n$ and implicitly set $I_1 = r_1 + \frac{\alpha^s}{\alpha^{s}}$. Secret key g, f, v, h, \ldots, h_L can be obtained by removing the blinding factors $R_g, R_f, R_v, R_h, \ldots, R_{h,L}$ from $G, F, V, H_1, \ldots, H_L$ respectively.

ii. Next, C tries to compute

$$w. (v \prod_{k=1}^{s} h_k^{I_k^{(i_k)}})^{r_1} f^{r_2} = w. (v \prod_{k=1}^{s} h_k^{I_k^{(i_k)}})^{r_1} f^{r_2}. (v \prod_{k=1}^{s} h_k^{I_k^{(i_k)}})^{\alpha^s - I_s^{(i_s)}}.$$

Using secret keys $v, h_k (1 \leq k \leq s), f$ and public value $I_k^{(i_k)} (1 \leq k \leq s)$, $(v \prod_{k=1}^{s} h_k^{I_k^{(i_k)}})^{r_1} f^{r_2}$ is computable. Now,

$$w. (v \prod_{k=1}^{s} h_k^{I_k^{(i_k)}})^{\alpha^s - I_s^{(i_s)}}$$

$$= A_{L+1} A_1 \left(g_p^v \prod_{k=1}^{L} (A_{L-k+1})^{I_k^{(i_k)}} \prod_{k=1}^{s} (g_p^s / A_{L-k+1})^{I_k^{(i_k)}} \right)^{\alpha^s - I_s^{(i_s)}}$$

$$= A_{L+1} A_1 \left(A_{L+1} \prod_{k=s+1}^{L} (A_{L-s+1-k})^{I_k^{(i_k)}} \prod_{k=1}^{L} A_{s} \prod_{k=1}^{s} A_{s}^{I_k^{(i_k)}} \right)^{\alpha^s - I_s^{(i_s)}}$$

$$= A_1 \left(A_{s} \prod_{k=s+1}^{L} (A_{L-s+1-k})^{I_k^{(i_k)}} \prod_{k=1}^{L} A_{s} \prod_{k=1}^{s} A_{s}^{I_k^{(i_k)}} \right)^{\alpha^s - I_s^{(i_s)}}.$$

As all the required $A_k, I_k^{(i_k)}$, x_k values are available, $w. (v \prod_{k=1}^{s} h_k^{I_k^{(i_k)}})^{r_1} f^{r_2}$ is computable, so $w. (v \prod_{k=1}^{s} h_k^{I_k^{(i_k)}})^{r_1} f^{r_2}$ is also computable.

iii. Now using $Derive$ algorithm as stated in Algorithm 5, C computes first component of $sk_{(i,v)}^{(d)}$ as $w. (v \prod_{k=1}^{j} h_k^{I_k^{(i_k)}})^{r_1} f^{r_2}$. Other components $(g_1, g_2, h_{j+1}, \ldots, h_L)$ of
\[s_{k^{(d)}}_{i,v_i^{(j)},v_j^{(i)}} \] are easily computable using secret key components.

iv. Challenger need to choose \(s^{(1)}_1, s^{(1)}_2, s^{(2)}_1, s^{(2)}_2 \in R \mathbb{Z}^n \) such that \(s^{(1)}_1 s^{(2)}_2 - s^{(2)}_1 s^{(1)}_2 \neq 0 \pmod{g} \), \(s^{(1)}_1 s^{(2)}_2 - s^{(2)}_1 s^{(1)}_2 \neq 0 \pmod{p} \), for this it check the equation \(g^r s^{(1)}_1 s^{(2)}_2 - s^{(2)}_1 s^{(1)}_2 \neq 1 \) and \(g^r s^{(1)}_2 s^{(2)}_1 - s^{(2)}_2 s^{(1)}_1 \neq 1 \). Components of \(s_{k^{(r)}}_{i,v_i^{(j)},v_j^{(i)}} \) are almost same with \(s_{k^{(d)}}_{i,v_i^{(j)},v_j^{(i)}} \) except first component does not contain \(w \). So, \(C \) computes \(s_{k^{(r)}}_{i,v_i^{(j)},v_j^{(i)}} \) as previous.

Similarly, it can generate secret key \(s_{k^{(r)}}_{i,v_i^{(j)},v_j^{(i)}} + v_i^{(j)} \).

v. Adversary gets \(s^r_i = \{ s_{k^{(r)}}_{i,v_i^{(j)},v_j^{(i)}} \} \), where user \(i \) is at \(v_i^{(L)} \) and \(v_i^{(j)} \in \text{HN}(v_i^{(L)}) \).

4. Challenge: \(A \) sends two messages \(m_0 = (M_0||K), m_1 = (M_1||K) \) to \(C \), where last \(k \) bits of each message is \(K \). \(C \) computes ciphertext components following Algorithm 6 as follows. For \(1 \leq i \leq l_0 - h + 1 \), \(C_i \)'s are encryption of \(m_0 \) for identity \(I_{i,0} = (I_1^{(1)}, I_2^{(1)}, \ldots, I_L^{(1)}) \) and for \(l_0 - h + 2 \leq i \leq l \), \(C_i \)'s are encryption of \(m_0 \) for some random identity \((I_1^{(1)}, I_2^{(2)}, \ldots, I_L^{(L)}) \) as

\[
C_i = \left(m_0.E^s.G^s.Z_1,F^s.Z_2,(V \prod_{k=1}^L H_k^{l^{(k)}}l_k)^s.Z_3 \right), 1 \leq i \leq l_0 - h
\]

\[
C_i = \left(m_0.E^s.T,G^s.Z_1,F^s.Z_2,(V \prod_{k=1}^L H_k^{l^{(k)}}l_k)^s.Z_3 \right), l_0 - h + 2 \leq i \leq l
\]

\[
C_{l_0-h+1} = \left(m_0.T.e(A_1,h^\gamma),h.Z_1,h^s.Z_2,h^{y+s} \prod_{k=1}^L l^{(k)}_k x_k.Z_3 \right),
\]

where \(Z_1, Z_2, Z_3 \in R \mathbb{G}_q, s \in R \mathbb{Z}_n, T \in R \mathbb{G}_{T,p} \).

\(C \) permutates the \(C_i \) values using permutation \(\mu \) and sends ciphertext \(\{ k, K, C_{\mu(1)}, \ldots, C_{\mu(l)} \} \) to \(A \). As \(g_p \) is generator for \(\mathbb{G}_p \), let us consider \(h = g_p^c \), for some integer \(c \).

If \(T = e(g_p, g_p^c)^{a^{L+1}} \) then ciphertext component

\[
C_{l_0-h+1} = \left(m_0.e(g_p, g_p^c)^{a^{L+1}},e(A_1,h^\gamma),h.Z_1,h^s.Z_2,h^{y+s} \prod_{k=1}^L l^{(k)}_k x_k.Z_3 \right)
\]

\[
= \left(m_0.E^c.G^c.Z_1,F^c.Z_2,(V \prod_{k=1}^L H_k^{l^{(k)}}l_k)^c.Z_3 \right)
\]

where \(Z_1, Z_2, Z_3 \in R \mathbb{G}_q \).

This implies, if \(T = e(g_p, g_p^c)^{a^{L+1}} \) then ciphertext \(\{ k, K, C_{\mu(1)}, \ldots, C_{\mu(l)} \} \) is for the \(\text{Game}^0_{h-1} \) else it is for the \(\text{Game}^0_{h} \).

5. Phase 2: Same as Phase 1.

6. Guess: \(A \) wins the game if he can predict that ciphertext is for the \(\text{Game}^0_{h-1} \) or the \(\text{Game}^0_{h} \).

Adversary’s advantage of distinguishing the \(\text{Game}^0_{h-1} \) and \(\text{Game}^0_{h} \) is same as deciding \(T = e(g_p, g_p^c)^{a^{L+1}} \) or not, i.e., solving \(L \)-wDBDH* problem.
In Game_h^0, for $i = l_0 - h + 1$ to l, ciphertext is of the form $(\tilde{C}_1.R_p, \tilde{C}_2, \tilde{C}_3, \tilde{C}_4)$, where $R_p \in R \mathcal{G}_{T,p}$. Let R be a random element from \mathcal{G}_T. Seo et al. (Seo et al., 2009) has proved indistinguishability of $(\tilde{C}_1.R_p, \tilde{C}_2, \tilde{C}_3, \tilde{C}_4)$ from $(\tilde{C}_1.R = R_1, \tilde{C}_2, \tilde{C}_3, \tilde{C}_4)$ under BSD assumption. Again $(\tilde{C}_1.R = R_1, \tilde{C}_2, \tilde{C}_3, \tilde{C}_4)$ are indistinguishable from (R_1, R_2, R_3, R_4) under L-cDDH assumption (Seo et al., 2009). So, $(\tilde{C}_1.R_p, \tilde{C}_2, \tilde{C}_3, \tilde{C}_4)$ and (R_1, R_2, R_3, R_4) are indistinguishable under L-wDBDHI*, BSD and L-cDDH assumption. This implies that Game_h^0 and Game_h^0 are indistinguishable under same assumptions.

Lemma 4. Game_{k-1}^l and Game_k^l are indistinguishable under L-wDBDHI*, BSD and L-cDDH assumptions.

The proof of this Lemma is analogous to that of Lemma 3.

6 Special Variant of Our Scheme

Let $\{v^{(l_i)}_L|1 \leq l_i \leq N\}$ be leaf nodes of a tree. We fix $\{v^{(l_i)}_L| l_i = 1,9i,9i + 1,1 \leq i \leq [N/9]\}$ as revoked users for our improved variant. Let $l'_1 = \left[\frac{l_1}{3}\right], l'_2 = \left[\frac{l_2}{3}\right]$.

All subsets in cover can be found as follows:

1. If $v^{(l'_1)}_{L-1}$ has less than 3 children in $\text{ST}(R)$, and head has 3 children, then add $S_{u,v^{(l'_1)}_{L-1}+v^{(l_1)}_L,v^{(l_2)}_L}$ to the cover.

2. If $v^{(l'_2)}_{L-2}$ has 2 children in $\text{ST}(R)$, add $S_{u,v^{(l'_2)}_{L-2}+v^{(l_1)}_{L-1}+v^{(l_2)}_{L-1}}$ to the cover.

For each tree with height 3, head node and its ancestor has at least 3 children in $\text{ST}(R)$, so cover finding algorithm ensures that on this construction, no height 3 tree will be added into the cover. The secret keys of user u is $sk_u = \{sk_{u,v^{(l'_1)}_{L-1}+v^{(l_1)}_L}, sk_{u,v^{(l'_2)}_{L-2}+v^{(l_1)}_{L-1}+v^{(l_2)}_{L-1}}| L - 2 \leq i \leq L - 1, i + 1 \leq j \leq L, v^{(l_i)}_L \in \text{PN}(v^{(l_i)}_L), v^{(l_1)}_j, v^{(l_2)}_j \in \text{HN}(v^{(l_i)}_L)\}$. On decryption time user uses these secret keys to decrypt l ciphertext component. So decryption attempt is at most $O(l)$.

Example: For Figure 4, the Cover with respect to revoked users is determined as follows:

(i) The chain C_1 corresponding to the revoked user $v^{(1)}_4$ is $v^{(1)}_3, v^{(1)}_4$, yielding the subset cover $S_{v^{(1)}_3,v^{(1)}_4}$.

(ii) The chain C_2 corresponding to the revoked user $v^{(9)}_4$ is $v^{(3)}_3, v^{(9)}_4$, yielding the subset cover $S_{v^{(3)}_3,v^{(9)}_4}$.

(iii) The head nodes $v^{(1)}_3$ and $v^{(3)}_3$ of the chains C_1, C_2 are then added to R. The nodes $v^{(1)}_1, v^{(9)}_1$ are removed from R and the chain corresponding to $v^{(1)}_3 (or v^{(3)}_3)$ is $v^{(1)}_2, v^{(1)}_3, v^{(3)}_3$, yielding the set $S_{v^{(3)}_2,v^{(1)}_3}$.

(iv) Subtree at $v^{(1)}_3, v^{(3)}_3, v^{(1)}_2$, will be added in cover.

(v) Taking $v^{(1)}_1$ as head we can not find any chain, so no new cover will be added.
7 Conclusion

We have designed an efficient outsider-anonymous broadcast encryption in public key setting employing ternary tree subset difference method, achieving revocation property which is one of the most significant requirement in broadcast encryption setting. The ciphertext size is significantly reduced as compared to existing similar work in standard model. Our scheme is based on composite order bilinear group and is proven to have selective semantic security in a standard model under reasonable standard assumptions. We can extend our construction using k-ary SD (Bhattacherjee and Sarkar, 2015) scheme in a similar manner as in this work and can further reduce the ciphertext size to $\min\{\frac{N}{k}, N - r, 2r - 1\}$. However, the decryption cost will be increased.

References

