
Model-counting Approaches For Nonlinear
Numerical Constraints

Mateus Borges1, Quoc-Sang Phan2, Antonio Filieri1, and Corina S. Păsăreanu2,3

Imperial College London1, Carnegie Mellon University2, NASA Ames3

Abstract. Model counting is of central importance in quantitative rea-
soning about systems. Examples include computing the probability that
a system successfully accomplishes its task without errors, and measuring
the number of bits leaked by a system to an adversary in Shannon entropy.
Most previous work in those areas demonstrated their analysis on pro-
grams with linear constraints, in which cases model counting is polynomial
time. Model counting for nonlinear constraints is notoriously hard, and
thus programs with nonlinear constraints are not well-studied. This paper
surveys state-of-the-art techniques and tools for model counting with
respect to SMT constraints, modulo the bitvector theory, since this theory
is decidable, and it can express nonlinear constraints that arise from the
analysis of computer programs. We integrate these techniques within the
Symbolic Pathfinder platform and evaluate them on difficult nonlinear
constraints generated from the analysis of cryptographic functions.

Keywords: model counting modulo theories, bitvector arithmetic, non-
linear constraints, cryptographic functions

1 Introduction
Model counting is of central importance in quantitative reasoning, with appli-

cations in probabilistic inference [7, 8], reliability analysis [11], and quantitative
information flow [2, 3, 23, 24]. Most previous work in those areas was performed
on programs with linear constraints, using model counting tools such as Latte [18].
Model counting for nonlinear constraints is notoriously hard, and thus programs
with nonlinear constraints are not well-studied (with only limited support for
floating-point values abstracted as real numbers [4]). In this paper we survey state-
of-the-art model counting techniques and tools for SMT (satisfiability modulo
theories) constraints modulo the bitvector theory, since this theory is decidable
and it can express the nonlinear constraints that arise naturally from the analysis
of computer programs. Our work is motivated by a security project [1] that
aims to develop automated quantitative information flow analysis techniques for
complex applications, including cryptographic functions that are very difficult
to analyze. The bitvector theory is particularly useful for these functions which
typically use operations on bitvector values.

We integrate the surveyed techniques within Symbolic PathFinder (SPF) [25]
and evaluate them on difficult nonlinear constraints generated using symbolic
execution. Although we restrict our evaluation to cryptographic functions, our
study should be relevant to anybody interested in quantitative reasoning over
complex, nonlinear systems.

1.1 Symbolic Execution and SPF

SPF performs symbolic execution over Java byte code programs. Symbolic
execution [14] is a systematic analysis technique that executes a program on
symbolic, rather than concrete, input values and computes the effects of the
program as functions of these symbolic inputs. The result of symbolic execution
is a set of symbolic paths, each with a path condition PC, which is a conjunction
of constraints over the symbolic inputs that characterizes all the inputs that
follow that path. All the PCs are disjoint by construction.

1.2 Quantification of Information Leaks

Perfect software security is hard to achieve. Systems often leak information
to an adversary who can observe different aspects of program behavior. Research
on quantitative information flow aims at quantifying (in number of bits) the
expected leakage.

A program can be viewed as a probabilistic function that maps a high security
input h and a low security input l to an observable output o. An adversary tries
to guess h by providing l and observing the output. The leakage of the program
P is defined as the mutual information between the secret h and the public
output o [19]: Leakage(P) = H(o) − H(o|h), where H(x) denotes the classical
Shannon entropy of a random variable x, measuring the “uncertainty” about
x. For a deterministic program P , there is no uncertainty about o when h is
given. Therefore H(o|h) = 0.The entropy can thus be computed as: Leakage(P) =
H(o) = −

∑
i=1,m p(oi) log2(p(oi)) .

Intuitively, the leakage gives an estimate on the number of bits in the secret
that an adversary can infer by observing the output of the program. If this
estimate is small (or zero) then the program can be considered safe. In [2],
Backes et al. combined model checking and model counting to compute the
leakage when the observable is an output variable. In a similar setting, we used
symbolic execution (SPF) combined with Latte to compute an upper bound on
the leakage [23].

More recently [3, 24], we used SPF and Latte to compute the leakage when
the observables are non-functional characteristics of program executions, i.e.
side-channels, such as time consumed, number of memory accessed or packets
transmitted over a network. In this model, a symbolic path identified by PCi leads
to a concrete observable oi. Assuming the secret input has uniform distribution,
which means the adversary has no prior knowledge about it, the probability
of observing oi can be computed using SPF and model counting as follows:
p(oi) =

∑
cost(PC j)=oi

](PC j)/]D, where](PC j) is the number of solutions

(computed with model counting) of constraint PC j and #D is the size of the
input domain D assumed to be (possibly very large but) finite.

In all the previous work mentioned above, Latte was used to perform model
counting; it implements the polynomial time Barvinok algorithm to count models
for a system of linear integer inequalities. However Latte cannot handle nonlinear
constraints. In this paper we study approaches for the fixed-width bitvector
theory, which can represent such constraints. In the following, we use the term
“bitvector” and “word” interchangeably.

2 Model Counting Techniques and Tools

In this section we evaluate several tool-supported approaches for counting
the models of bitvector constraints. These approaches can be classified according
to two orthogonal dimensions: exact vs approximate and bit-level vs word-level.

Exact techniques count the exact number of models for a given constraint.
Approximate techniques only explore a portion of the solution space, carefully
selected to provide probabilistic guarantees on the accuracy (0 < ε < 1) and
confidence (0<δ<1) of the result. In particular, they guarantee that Pr

(
(1−ε)c≤

c∗ ≤ (1 + ε)c
)
≥ 1−δ, where c∗ is the approximate result and c is the exact

(unknown) count. Other randomized approaches not providing formal guarantees
(e.g., [26, 31]) are not considered in this study.

Bit-level approaches address the model counting problem for propositional
(SAT) formulas, i.e., #SAT. Model counting for bit vector formulas can be
performed as follows. A bitvector formula is first converted to a propositional
formula using bit blasting to generate an equivalent Boolean circuit based on
bit-level behavior of bitvector operations. This Boolean circuit is interpreted as a
propositional logic problem and converted in conjunctive normal form (CNF); at
this point #SAT approaches can be used to count the number of models. While
the procedure is general, the conversion of Boolean circuits into CNF is usually
based on the Tseitin transformation [30], which introduces additional Boolean
variables in the process. While this transformation guarantees a model for the
CNF form is also a model for the initial problem, the introduction of additional
variables may lead to different model counts. For this reason, in this paper we
use only #SAT tools supporting projection, i.e., able to project the solution
space only on the variables appearing in the Boolean circuit, ignoring the ones
introduced by Tseitin transformation.

We found five tools for #SAT that support projection and can thus be used in
our setting for bitvector counting: SharpCDCL, All-SAT, SharpSAT and Dsharp,
which compute exact solutions, and ApproxMC-p, which produces approximate
solutions.

– SharpCDCL [15] is an enumeration-based approach; it iteratively invokes the
SAT solver to produce at each iteration a new model, keeping trace of the
set of models and their number.

– All-SAT [13] and SharpSAT [28] extend the DPLL algorithm to count the
number of solutions of a SAT problem. They both use caching mechanisms
and use constraint propagation for pruning the DPLL, which avoid the
exhaustive exploration of subtrees containing no solutions.

– Dsharp [20] reuses the algorithmic core of SharpSAT, adapting it to work with
a deterministic Decomposable Negation Normal Form (d-DNNF) representa-
tion of the SAT problem. d-DNNF provides a more compact representation
of the constraints in memory that, according to [20], may better support
model counting.

– ApproxMC-p [16] takes as input accuracy and confidence targets and produce
an approximate count which deviates from the exact count by at most a
factor 1 ± ε with probability at least 1 − δ. The approach uses universal

hash functions to perform a uniform sampling within the domain. The ratio
between the number of models for this sample and the sample size is used
as an estimate of the ratio of models over the entire problem domain. The
samples is automatically decided to achieve ε and δ.

Word-Level Approaches aim to avoid the cost of bit blasting by defining
counting procedures that operate directly on SMT variables and operations. We
investigate a recent tool that provides an approximate counting procedure for
bitvectors: SMTApproxMC [7]. SMTApproxMC uses word-level hashing functions
to sample a finite number of candidate models and then an SMT solver to check
how many of these candidate models satisfy the constraint. The number of
models found within the sample are used to build a robust statistical estimator
achieving the desired probabilistic guarantees. SMTApproxMC can avoid bit
blasting whenever the SMT solver can check a constraint without it (e.g., for
linear constraints); however, for nonlinear constraints (all the subjects of this
study), SMTApproxMC requires bit blasting.

Chistikov et al. [8] also extend the hashing-based approach used for #SAT
(e.g., in [16]) to counting for SMT problems. Hashing functions allow to uniformly
sample candidate solutions. Statistics on the sample are used to estimate the
total number of models. However, no tool is available and, according to [7],
SMTApproxMC is faster.

A related approach is implemented in the MathSAT solver [9], which provides
a functionality, called All-SMT, that given a set of Boolean variables VI , it can
enumerate all the models of the problem projected on VI . The source code of the
tool is not available, nor a technical description of the All-SMT feature, thus we
do not know the details of the counting algorithm it implements but can only
report its execution time. Our own All-SMT solver aZ3 [21, 22] is less efficient
than MathSAT, so we do not include its experiment results here.

Other Approaches. We have also investigated other techniques for model
counting: blocking-clause enumeration, BDD-based enumerations, counting with
Gröbner bases and a brute-force enumeration that we use as baseline.

Blocking clause enumeration make the solver find all the models for a problem
by iteratively adding the negation of already found models to the initial problem.
The iteration terminates when no more solutions can be found. Intuitively, this
method can work only for complex problems with few models. We implemented
it on top of Z3 SMT solver [10] to practically confirm this intuition.

BDD-based enumeration represents a propositional formula as a binary deci-
sion diagram and then counts the paths from its root to the leaf representing the
Boolean constant “true”. We implemented a prototype based on the BDD library
CUDD [27], which builds a BDD corresponding to a constraint bitblasted with
Z3. Unfortunately, for all the subjects in this study the execution time exceeded
the timeout of 1hr.

Gröbner bases are used in computational algebra to reason about polynomials
over finite fields. Boolean variables and and operators from propositional logic
can be mapped into corresponding variables and functions over polynomials.
Each zero of such polynomials corresponds to exactly one model of the initial

propositional formula [12, 29]. Algebraic solvers can be used to find those zeroes.
We implemented this technique using PolyBoRi [5], but its execution timed out
for all the subjects.

Finally, we also implemented as a reference a brute force approach which
encodes the constraints as bitwise operations on unsigned integers in C. The
mapping is straightforward from the smtlib representation. The program iterates
over the entire domain and count the number of models for a constraint. We
compiled the C sources using level 1 optimization in GCC.

3 Evaluation

Subjects. We study modular exponentiation (modPow(b, e,m)=be mod m) and
modular multiplication (modMul(x, y)=x ∗ y mod m) implementations. These
are core routines for most public-key cryptographic systems, most notably RSA.
In the past, some implementations have been found vulnerable to side channel
attacks [6, 17], mostly as effect of optimizations. Our goal is to localize side
channels by quantifying information leaks with symbolic execution and model
counting (see Section 1).

For our experiments, we analyzed a set of randomly selected path conditions
from two different implementations of the modular operations (the source code is
given in the appendix). The first implementation (subjects a-* in the following),
taken from [24], optimizes modPow with a reduction step at each iteration, but
uses a naive implementation of modMul. We analyze the program with the
same configurations from [24]: the modulus m can be either 1717, 834443, or
1964903306; both the base b and exponent e are symbolic, with b≤m and e≤31.

The second implementation (benchmarks b-*) is more realistic as it uses
Java’s BigInteger class to encode large messages and secrets (this example was
provided to us by DARPA at a recent engagement) and uses fast multiplication.
Here modulus m is fixed with a 1536-bit value; the base b is also a concrete
1532-bit value; the exponent e is symbolic BigInteger with 40 bits. We analyze
both modPow and modMul, where both x and y are symbolic 24-bit BigInteger.

Experimental Results. Figure 1 summarizes the performance of the different
tools. The results indicate that enumeration-based techniques perform well for
complex problem with few solutions (SharpCDCL, Z3-BC). Exact techniques
based on DPLL (All-SAT and SharpSAT) scale better than enumeration, but
fail for the subjects involving complex constraints over large domains, like a-6

and a-7 which have approximately 58k and 78k CNF clauses over a domain of
59B points. Notably, All-SAT produced the correct count only for the first three
subjects. For all the others (marked with ∗), it significantly under-approximated
the count. However, the most recent release dates back to 2004 and the tool is
not maintained, making difficult to get the tool fixed.

The performance of approximate methods (ApproxMC and SMTApproxMC)
depends on the required accuracy ε and confidence δ. The correct counts and the
approximate ones are shown in a table in the appendix. We run the tools with
two different settings: (f) ε=0.5, δ=0.05 and (p) ε=0.1, δ=0.05. SMTApproxMC
provides a bad performance on our subjects; this is however expected since its

Subject a-1 a-2 a-3 a-4 a-5 a-6 a-7 b-1 b-2 b-3 b-4

N. Ops 11 26 15 37 121 57 117 250 243 1428 1428

Domain Size 10K 10K 10K 25M 25M 59B 59B 4T 4T 32B 32B

N. Solutions 1.7K 7 1.7K 208K 109K 80M 77M 2B 66B 1 1

N. CNF clauses 40K 78K 58K 67K 114K 58K 78K 2K 2K 2K 2K

Execution time

BitBlasting 15s 30s 24s 25s 44s 23s 30s 1s 1s 1s 2s

SharpCDCL 1s 1s 1s 43m - - - - - 1s 1s

All-SAT 1s 8s 2s 31m∗ 59m∗ 15m∗ 19m∗ - - 1s 1s

SharpSAT 5s 2s 11s 29m 53m - - 1s 1s 1s 1s

Dsharp 12m 32s 22m - - - - 1s 1s 1s 1s

ApproxMC (f) 4s 2s 5s 16s 32s 1m 1m 4s 5s 1s 1s

ApproxMC (p) 4s 2s 6s 2m 5m 21m 24m 16s 25s 1s 1s

SMTapproxMC (f) 6m 15m 8m - - - - - - 2m 2m

SMTapproxMC (p) - 15m - - - - - - - 2m 2m

MathSAT 2s 2s 5s 38m 54m - - - - 1s 1s

Z3-BC 12s 3s 18s - - - - - - 1s 1s

Brute Force 1s 1s 1s 1s 1s 8m 8m - - 2m 2m

Fig. 1. Execution time comparison.

internal solver is required to bit blast our nonlinear constraints for each query.
From our experience, low-accuracy approximate methods can be used for a
preliminary assessment of the number of solutions: if the coarse approximate
count is small, exact methods may then be used for an exact solution. Similarly,
if the count is close to the domain size, it is possible to count exactly the models
of the negation of the problem (which should be only a few). If the count is far
from its extreme values (0 and domain size) or if the problem is particularly
complex (>50k CNF clauses on our subjects), exact counters will probably fail
if the domain is large and a more precise approximate solution can be pursued.

Not surprisingly, the brute force approach is faster than model counting tools
when the domain size is small enough (<109), but it is not a viable solution for
larger problems.

4 Conclusion
We surveyed model counting techniques that are applicable to complex nonlin-

ear constraints. We restricted our study to techniques and tools that are capable
of providing formal guarantees on the results. Our survey suggests that that the
most promising techniques use approximate model counting and bit-level hashing,
however the performance of the tools can degrade when increased precision is
required. SMT-based model counting is still a very young research area, but its
relevance for quantitative analysis can be an effective driver for its development,
as program verification has effectively driven the development in SMT solving.

Acknowledgement. This work was funded in part by the National Science
Foundation (NSF Grant Nos. CCF-1319858, CCF-1549161) and also by DARPA
under agreement number FA8750-15-2-0087. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. Mateus Borges is funded by an Imperial College
PhD Scholarship.

References

[1] ISSTAC: Integrated Symbolic Execution for Space-Time Analysis of Code.
http://www.cmu.edu/silicon-valley/research/isstac

[2] Backes, M., Kopf, B., Rybalchenko, A.: Automatic Discovery and Quantifi-
cation of Information Leaks. pp. 141–153. SP ’09 (2009)

[3] Bang, L., Aydin, A., Phan, Q.S., Păsăreanu, C.S., Bultan, T.: String Analysis
for Side Channels with Segmented Oracles. pp. 193–204. FSE 2016, ACM
(2016)

[4] Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S., Visser, W.: Compo-
sitional Solution Space Quantification for Probabilistic Software Analysis.
pp. 123–132. PLDI, ACM (2014)

[5] Brickenstein, M., Dreyer, A.: Polybori: A framework for gröbner-basis com-
putations with boolean polynomials. Journal of Symbolic Computation 44(9),
1326 – 1345 (2009)

[6] Brumley, D., Boneh, D.: Remote Timing Attacks Are Practical. pp. 1–1.
SSYM’03, USENIX Association (2003)

[7] Chakraborty, S., Meel, K.S., Mistry, R., Vardi, M.Y.: Approximate Proba-
bilistic Inference via Word-level Counting. pp. 3218–3224. AAAI’16 (2016)

[8] Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate Counting in SMT
and Value Estimation for Probabilistic Programs. pp. 320–334. TACAS’15
(2015)

[9] Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 smt
solver. pp. 93–107. TACAS’13 (2013)

[10] De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. pp. 337–340.
TACAS’08 (2008)

[11] Filieri, A., Păsăreanu, C.S., Visser, W.: Reliability Analysis in Symbolic
Pathfinder. pp. 622–631. ICSE, IEEE Press (2013)

[12] Gao, S.: Counting Zeros over Finite Fields Using Gröbner Bases. Master’s
thesis, Carnegie Mellon University (2009)

[13] Grumberg, O., Schuster, A., Yadgar, A.: Memory efficient all-solutions sat
solver and its application for reachability analysis. pp. 275–289. FMCAD’04,
Springer (2004)

[14] King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),
385–394 (Jul 1976)

[15] Klebanov, V., Manthey, N., Muise, C.: SAT-based analysis and quantification
of information flow in programs. pp. 177–192. QEST’16 (2013)

[16] Klebanov, V., Weigl, A., Weisbarth, J.: Sound Probabilistic #SAT with
Projection. pp. 15–29. QAPL’16 (2016)

[17] Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. pp. 104–113. CRYPTO (1996)

[18] Loera, J.A.D., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point
counting in rational convex polytopes. Journal of Symbolic Computation
38(4), 1273 – 1302 (2004)

[19] Malacaria, P.: Algebraic foundations for quantitative information flow. Math-
ematical Structures in Computer Science 25, 404–428 (2 2015)

[20] Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: Fast d-DNNF
Compilation with sharpSAT, pp. 356–361. Springer (2012)

[21] Phan, Q.S.: Model Counting Modulo Theories. Ph.D. thesis, Queen Mary
University of London (2015)

[22] Phan, Q.S., Malacaria, P.: All-Solution Satisfiability Modulo Theories: ap-
plications, algorithms and benchmarks. pp. 100–109. ARES ’15 (2015)

[23] Phan, Q.S., Malacaria, P., Păsăreanu, C.S., d’Amorim, M.: Quantifying
Information Leaks Using Reliability Analysis. pp. 105–108. SPIN 2014, ACM
(2014)

[24] Păsăreanu, C.S., Phan, Q.S., Malacaria, P.: Multi-run Side-Channel Analysis
Using Symbolic Execution and Max-SMT. pp. 387–400. CSF ’16 (June 2016)

[25] Păsăreanu, C.S., Visser, W., Bushnell, D., Geldenhuys, J., Mehlitz, P.,
Rungta, N.: Symbolic PathFinder: integrating symbolic execution with
model checking for Java bytecode analysis. Automated Software Engineering
pp. 1–35 (2013)

[26] Rubinstein, R.: Stochastic enumeration method for counting np-hard prob-
lems. Methodology and Computing in Applied Probability 15(2), 249–291
(2013)

[27] Somenzi, F.: Cudd: Cu decision diagram package release 3.0. 0 (2015)
[28] Thurley, M.: sharpSAT–counting models with advanced component caching

and implicit BCP. pp. 424–429. SAT’06, Springer (2006)
[29] Tran, Q., Vardi, M.Y.: Groebner bases computation in boolean rings for

symbolic model checking. pp. 440–445. MOAS, ACTA Press (2007)
[30] Tseitin, G.S.: Automation of Reasoning: 2: Classical Papers on Compu-

tational Logic, chap. On the Complexity of Derivation in Propositional
Calculus, pp. 466–483. Springer (1983)

[31] Wei, W., Selman, B.: A New Approach to Model Counting, pp. 324–339.
Springer (2005)

Appendix
1 Source code of case studies used in the experiments

1.1 Modular exponentiation with reduction steps

The method modPow1 is taken from [24]. Modular exponentiation is optimized
with a reduction step at each iteration.

1 int modPow1(int num , int e, int m){

int s = 1, y = num , res = 0;

3 while (e > 0) {

if (e % 2 == 1) {

5 // reduction:

int tmp = s * y;

7 if (tmp > m){

tmp = tmp - m;

9 }

res = tmp % m;

11 } else {

res = s;

13 }

s = (res * res) % m;

15 e /= 2;

}

17 return res;

}

1.2 Modular exponentiation with fast multiplication

The method modPow2 is taken from SnapBuddy, a web application for image
processing and sharing. modPow2 is implemented with BigInteger, and it does not
have reduction steps. The modulus has 1536 bits; the base clientPublic (value
not shown here) has 1532 bits.

public KeyExchangeServer(String secretKey) {

2 String modp1536 = "

↪→ FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD"

+ "129024 E088A67CC74020BBEA63B139B22514A08798E3404"

4 + "DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C"

+ "245 E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406"

6 + "B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE"

+ "45 B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD"

8 + "24 CF5F83655D23DCA3AD961C62F356208552BB9ED529077"

+ "096966 D670C354E4ABC9804F1746C08CA237327FFFFFFFF"

10 + "FFFFFFFF";

this.modulus = new BigInteger(modp1536 , 16);

12 this.secretKey = secretKey.startsWith("0x") ?

new BigInteger(secretKey.substring (2), 16)

14 : new BigInteger(secretKey);

// ...

16 }

18 public BigInteger generateMasterSecret(BigInteger

↪→ clientPublic) {

return ModPow.modPow2(clientPublic , this.secretKey , this.

↪→ modulus);

20 }

public static BigInteger modPow2(final BigInteger base , final

↪→ BigInteger exponent , final BigInteger modulus) {

2 BigInteger s = BigInteger.valueOf (1L);

for (int width = exponent.bitLength (), i = 0; i < width;

↪→ ++i) {

4 s = s.multiply(s).mod(modulus);

if (exponent.testBit(width - i - 1)) {

6 s = fastMultiply(s, base).mod(modulus);

}

8 }

return s;

10 }

}

1.3 Modular multiplication

For x ∗ y mod m, we use the method fastMultiply from SnapBuddy and m
be the 1536-bit modulus defined in the constructor of KeyExchangeServer.

1 public static BigInteger fastMultiply(final BigInteger x,

↪→ final BigInteger y) {

final int xLen = x.bitLength ();

3 final int yLen = y.bitLength ();

if (x.equals ((Object)BigInteger.ONE)) {

5 return y;

}

7 if (y.equals ((Object)BigInteger.ONE)) {

return x;

9 }

BigInteger ret = BigInteger.ZERO;

11 int N = Math.max(xLen , yLen);

if (N <= 800) {

13 ret = x.multiply(y);

}

15 else if (Math.abs(xLen - yLen) >= 32) {

ret = standardMultiply(x, y);

17 }

else {

19 N = N / 2 + N % 2;

final BigInteger b = x.shiftRight(N);

21 final BigInteger a = x.subtract(b.shiftLeft(N));

final BigInteger d = y.shiftRight(N);

23 final BigInteger c = y.subtract(d.shiftLeft(N));

final BigInteger ac = fastMultiply(a, c);

25 final BigInteger bd = fastMultiply(b, d);

final BigInteger crossterms = fastMultiply(a.add(b), c.

↪→ add(d));

27 ret = ac.add(crossterms.subtract(ac).subtract(bd).

↪→ shiftLeft(N)).add(bd.shiftLeft (2 * N));

}

29 return ret;

}

31

public static BigInteger standardMultiply(final BigInteger x,

↪→ final BigInteger y) {

33 BigInteger ret = BigInteger.ZERO;

for (int i = 0; i < y.bitLength (); ++i) {

35 if (y.testBit(i)) {

ret = ret.add(x.shiftLeft(i));

37 }

}

39 return ret;

}

2 Detailed counts reported for each tool

Benchmark a-1 a-2 a-3 a-4 a-5 a-6 a-7 b-1 b-2 b-3 b-4

N. Ops 11 26 15 37 121 57 117 250 243 1428 1428

Domain Size 10K 10K 10K 25M 25M 59B 59B 4T 4T 32B 32B

N. CNF clauses 40K 78K 58K 67K 114K 58K 78K 2K 2K 2K 2K

Reported Counts

SharpCDCL 1701 7 1696 208096 - - - - - 1 1

All-SAT 1701 7 1696 51666 21298 40478 30810 - - 1 1

SharpSAT 1701 7 1696 208096 109495 - - 2081157128 66597028096 1 1

Dsharp 1701 7 1696 - - - - 2081157128 66597028096 1 1

ApproxMC (f) 1664 7 1664 172032 126976 83886080 77594624 2147483648 66571993088 1 1

ApproxMC (p) 1700 7 1696 209152 108544 78643200 76021760 2097152000 66571993088 1 1

MathSAT 1701 7 1696 208096 109495 - - - - 1 1

SMTapproxMC (f) 1799 2 1799 - - - - - - 0 0

SMTapproxMC (p) - 2 - - - - - - - 0 0

Z3-BC 1701 7 1696 - - - - - - 1 1

Brute Force 1701 7 1696 208096 109495 79963411 76589491 - - 1 1

Fig. 2. Counts reported by the tools under analysis

