Forkable Strings are Rare

Alexander Russell1, Cristopher Moore2, Aggelos Kiayias3, and Saad Quader1

1University of Connecticut
2University of Edinburgh
3Santa Fe Institute

March 20, 2017

A fundamental combinatorial notion related to the dynamics of the \texttt{Ouroboros} proof-of-stake blockchain protocol is that of a forkable string. The original analysis of the protocol \cite{2} established that the probability that a string of length n is forkable, when drawn from a binomial distribution with parameter $(1 - \epsilon)/2$, is $\exp(-\Omega(\sqrt{n}))$. In this note we provide an improved estimate of $\exp(-\Omega(n))$.

Definition (Generalized margin and forkable strings). Let $\eta \in \{0, 1\}^*$ denote the empty string. For a string $w \in \{0, 1\}^*$ we define the generalized margin of w to be the pair $(\lambda(w), \mu(w)) \in \mathbb{Z} \times \mathbb{Z}$ given by the following recursive rule: $(\lambda(\eta), \mu(\eta)) = (0, 0)$ and, for all strings $w \in \{0, 1\}^*$,

$$(\lambda(w1), \mu(w1)) = (\lambda(w) + 1, \mu(w) + 1),$$

and

$$(\lambda(w0), \mu(w0)) = \begin{cases} (\lambda(w) - 1, 0) & \text{if } \lambda(w) > \mu(w) = 0, \\ (0, \mu(w) - 1) & \text{if } \lambda(w) = 0, \\ (\lambda(w) - 1, \mu(w) - 1) & \text{otherwise}. \end{cases}$$

Observe that $\lambda(w) \geq 0$ and $\lambda(w) \geq \mu(w)$ for all strings w. We say that a string w is forkable if $\mu(w) \geq 0$.

Our goal is to prove the following theorem.

Theorem 1. Let $w \in \{0, 1\}^n$ be chosen randomly according to the probability law that independently assigns each w_i to the value 1 with probability $(1 - \epsilon)/2$ for $\epsilon > 0$. Then $\Pr[w \text{ is forkable}] = \exp(-\Omega(n))$.

We prove two quantitative versions of this theorem, reflected by the bounds below. The first bound follows from analysis of a simple related martingale. The second bound requires more detailed analysis of the underlying variables, but establishes a stronger estimate.

Bound 1. With the random variable $w_1 \ldots w_n \in \{0, 1\}^n$ defined as above so that $\Pr[w_1 = 1] = (1 - \epsilon)/2$,

$$\Pr[w \text{ is forkable}] = \exp(-2\epsilon^4(1 - O(\epsilon))n).$$

Bound 2. With the random variable $w_1 \ldots w_n \in \{0, 1\}^n$ defined as above so that $\Pr[w_1 = 1] = (1 - \epsilon)/2$,

$$\Pr[w \text{ is forkable}] = \exp(-\epsilon^4(1 - O(\epsilon))n/2).$$

We begin with a proof of Bound 1 which requires the following standard large deviation bound for supermartingales.

Theorem 2 (Azuma; Hoeffding. See \cite{3} 4.16 for discussion). Let X_0, \ldots, X_n be a sequence of real-valued random variables so that, for all t, $\mathbb{E}[X_{t+1} | X_0, \ldots, X_t] \leq X_t$ and $|X_{t+1} - X_t| \leq c$ for some constant c. Then for every $\Lambda \geq 0$

$$\Pr[X_n - X_0 \geq \Lambda] \leq \exp\left(-\frac{\Lambda^2}{2nc^2}\right).$$
Proof of Bound 1. Let \(w_1, w_2, \ldots \) be a sequence of independent random variables so that \(\Pr[w_i = 1] = (1 - \epsilon)/2 \) as in the statement of the theorem. For convenience, define the associated \(\{\pm 1\} \)-valued random variables \(W_i = (-1)^{1 + w_i} \) and observe that \(\mathbb{E}[W_i] = -\epsilon \).

Define \(\lambda_i = \lambda(w_1, \ldots, w_i) \) and \(\mu_i = \mu(w_1, \ldots, w_i) \) to be the components of the generalized margin for the string \(w_1, \ldots, w_i \). The analysis will rely on the ancillary random variables \(\overline{\mu}_i = \min(0, \mu_i) \). Observe that \(\Pr[w \text{ forkable}] = \Pr[\mu(w) \geq 0] = \Pr[\overline{\mu}_n = 0] \), so we may focus on the event that \(\overline{\mu}_n = 0 \). As an additional preparatory step, define the constant \(\alpha = (1 + \epsilon)/(2\epsilon) \geq 1 \) and define the random variables \(\Phi_i \in \mathbb{R} \) by the inner product

\[
\Phi_i = (\lambda_i, \overline{\mu}_i) \cdot \left(\frac{1}{\alpha} \right) = \lambda_i + \alpha \overline{\mu}_i .
\]

The \(\Phi_i \) will act as a “potential function” in the analysis: we will establish that \(\Phi_n < 0 \) with high probability and, considering that \(a \overline{\mu}_n \leq \lambda_n + a \overline{\mu}_n = \Phi_n \), this implies \(\overline{\mu}_n < 0 \), as desired.

Let \(\Delta_i = \Phi_i - \Phi_{i-1} \); we observe that—conditioned on any fixed value \((\lambda, \mu)\) for \((\lambda_i, \mu_i)\)—the random variable \(\Delta_{i+1} \in [-1 + \alpha, 1 + \alpha] \) has expectation no more than \(-\epsilon\). The analysis has four cases, depending on the various regimes of the definition of generalized margin. When \(\lambda > 0 \) and \(\mu < 0 \), \(\lambda_{i+1} = \lambda + W_{i+1} \) and \(\overline{\mu}_{i+1} = \overline{\mu} + W_{i+1} \), where \(\overline{\mu} = \max(0, \mu) \); then \(\Delta_{i+1} = (1 + \alpha)W_{i+1} \) and \(\mathbb{E}[\Delta_{i+1}] = -(1 + \alpha)\epsilon \leq -\epsilon \). When \(\lambda > 0 \) and \(\mu \geq 0 \), \(\lambda_{i+1} = \lambda + W_{i+1} \) but \(\overline{\mu}_{i+1} = \overline{\mu} \) so that \(\Delta_{i+1} = W_{i+1} \) and \(\mathbb{E}[\Delta_{i+1}] = -\epsilon \). Similarly, when \(\lambda = 0 \) and \(\mu < 0 \), \(\overline{\mu}_{i+1} = \overline{\mu} + W_{i+1} \) while \(\lambda_{i+1} = \lambda + \max(0, W_{i+1}) \); we may compute

\[
\mathbb{E}[\Delta_{i+1}] = \frac{1 - \epsilon}{2}(1 + \alpha) - \frac{1 + \epsilon}{2}\alpha = \frac{1 - \epsilon}{2} - \epsilon \alpha = \frac{1 - \epsilon}{2} - \epsilon \left(\frac{1 + \epsilon}{2} \right) = -\epsilon.
\]

Finally, when \(\lambda = \mu = 0 \) exactly one of the two random variables \(\lambda_{i+1} \) and \(\overline{\mu}_{i+1} \) differs from zero: if \(W_{i+1} = 1 \) then \((\lambda_{i+1}, \overline{\mu}_{i+1}) = (1, 0)\); likewise, if \(W_{i+1} = -1 \) then \((\lambda_{i+1}, \overline{\mu}_{i+1}) = (0, -1)\). It follows that

\[
\mathbb{E}[\Delta_{i+1}] = \frac{1 - \epsilon}{2} - \frac{1 + \epsilon}{2}\alpha \leq -\epsilon.
\]

Thus \(\mathbb{E}[\Phi_n] = \mathbb{E}[\sum_i^n \Delta_i] \leq -\epsilon n \) and we wish to apply Azuma’s inequality to conclude that \(\Pr[\Phi_n \geq 0] \) is exponentially small. For this purpose, we transform the random variables \(\Phi_i \) to a related supermartingale by shifting them: specifically, define \(\tilde{\Phi}_i = \Phi_i + \epsilon t \) and \(\tilde{\Delta}_i = \Delta_i + \epsilon \) so that \(\tilde{\Phi}_i = \sum_i^{t_i} \tilde{\Delta}_i \). Then

\[
\mathbb{E}[\tilde{\Phi}_{t+1} | \tilde{\Phi}_1, \ldots, \tilde{\Phi}_t, W_1, \ldots, W_t] \leq \tilde{\Phi}_t, \quad \tilde{\Delta}_i \in [-1 + \alpha, \epsilon, 1 + \alpha + \epsilon],
\]

and \(\tilde{\Phi}_n = \Phi_n + \epsilon n \). It follows from Azuma’s inequality that

\[
\Pr[w \text{ forkable}] = \Pr[\overline{\mu}_n = 0] \leq \Pr[\Phi_n \geq 0] = \Pr[\tilde{\Phi}_n \geq \epsilon n] \leq \exp\left(-\frac{\epsilon^2 n^2}{2n(1 + \alpha + \epsilon)^2} \right) = \exp\left(-\frac{\epsilon^2}{1 + 3\epsilon + 2\epsilon^2} \cdot \frac{n}{2} \right) \leq \exp\left(-\frac{\epsilon^2}{1 + 3\epsilon} \cdot \frac{n}{2} \right) .
\]

We give a more detailed argument that achieves a bound of the form \(\exp(-\epsilon^3(1 + O(\epsilon))n/2) \) (Bound 2 above).

Proof of Bound 2. Anticipating the proof, we make a few remarks about generating functions and stochastic dominance. We reserve the term *generating function* to refer to an “ordinary” generating function which represents a sequence \(a_0, a_1, \ldots \) of non-negative real numbers by the formal power series \(A(Z) = \sum_{i=0}^{\infty} a_i Z^i \). When \(A(1) = \sum_i a_i = 1 \) we say that the generating function is a *probability generating function*; in this case, the generating function \(A \) can naturally be associated with the integer-valued random variable \(A \) for which \(\Pr[A = k] = a_k \). If the probability generating functions \(A \) and \(B \) are associated with the random variables \(A \) and \(B \), it is easy to check that \(A \cdot B \) is the generating function associated with the convolution \(A + B \) (where \(A \) and \(B \) are assumed to be independent). In general, we say that the generating function \(A \) *stochastically dominates* \(B \) if \(\sum_{i \leq T} a_i \leq \sum_{i \leq T} b_i \) for all \(T \geq 0 \); we write \(A \preceq B \) to denote this state of affairs. Observe that when these are probability generating functions and may be associated with random variables \(A \) and \(B \) it follows that \(\Pr[A \geq T] \geq \Pr[B \geq T] \) for every \(T \). If \(B_1 \preceq A_1 \) and \(B_2 \preceq A_2 \) then \(B_1 \cdot B_2 \preceq A_1 \cdot A_2 \) and \(\alpha B_1 + \beta B_2 \preceq \alpha A_1 + \beta A_2 \) (for any \(\alpha, \beta \geq 0 \)). Finally, we remark that if \(A(Z) \) is a generating function which
follows that for which \(M \) generating function, \(0 \), visits \("\text{gambler’s ruin}\" \) analysis \([1]\), the probability that a negatively-biased random walk starting at 0 ever rises to 1 is exactly \(A \). We likewise consider the generating function \(A(Z) \) for the \(\text{ascent stopping time} \), associated with the first time the walk, starting at 0, visits 1: we have \(A(Z) = pZ + qZA(Z)^2 \) and

\[
A(Z) = \frac{1 - \sqrt{1 - 4pqZ^2}}{2qZ}.
\]

Note that while \(D \) is a probability generating function, the generating function \(A \) is not: according to the classical “gambler’s ruin” analysis \([1]\), the probability that a negatively-biased random walk starting at 0 ever rises to 1 is exactly \(p/q \); thus \(A(1) = p/q \).

Returning to the generating function \(M \) above, we note that an epoch can have one of two “shapes”: in the first case, the epoch is given by a walk for which \(W_1 = 1 \) followed by a descent (so that \(\lambda \) returns to zero); in the second case, the epoch is given by a walk for which \(W_1 = -1 \), followed by an ascent (so that \(\mu \) returns to zero), followed by the eventual return of \(\lambda \) to 0. Considering that when \(\lambda_t > 0 \) it will return to zero in the future almost surely, it follows that
the probability that such a biased random walk will complete an epoch is \(p + q(p/q) = 2p = 1 - \epsilon \), as mentioned in the discussion of (1) above. One technical difficulty arising in a complete analysis of \(M \) concerns the second case discussed above: while the distribution of the smallest \(t > 0 \) for which \(\mu_t = 0 \) is proportional to \(A \) above, the distribution of the smallest subsequent time \(t' \) for which \(\lambda_{t'} = 0 \) depends on the value \(t \). More specifically, the distribution of the return time depends on the value of \(\lambda_t \). Considering that \(\lambda_t \leq t \), however, this conditional distribution (of the return time of \(\lambda \) to zero conditioned on \(t \)) is stochastically dominated by \(D' \), the time to descend \(t \) steps. This yields the following generating function \(\hat{M} \) which, as described, stochastically dominates \(M \):

\[
\hat{M}(Z) = pZ \cdot D(Z) + qZ \cdot D(Z) \cdot A(Z \cdot D(Z)).
\]

It remains to establish a bound on the radius of convergence of \(\hat{L} \). Recall that if the radius of convergence of \(\hat{L} \) is \(\exp(\delta) \) it follows that \(\Pr[w_1 \ldots w_n \text{ is forkable}] = O(\exp(-\delta n)) \). A sufficient condition for convergence of \(\hat{L}(z) = \epsilon/(1 - \hat{M}(z)) \) at \(z \) is that all generating functions appearing in the definition of \(\hat{M} \) converge at \(z \) and that the resulting value \(\hat{M}(z) < 1 \).

The generating function \(D(z) \) (and \(A(z) \)) converges when the discriminant \(1 - 4pqz^2 \) is positive; equivalently \(|z| < 1/\sqrt{1 - \epsilon^2} \) or \(|z| < 1 + \epsilon^2/2 + O(\epsilon^4) \). Considering \(\hat{M} \), it remains to determine when the second term, \(qzD(z)A(zD(z)) \), converges; this is likewise determined by positivity of the discriminant, which is to say that

\[
1 - (1 - \epsilon^2) \left(\frac{1 - \sqrt{1 - (1 - \epsilon^2)z^2}}{1 - \epsilon} \right)^2 > 0.
\]

Equivalently,

\[
|z| < \sqrt{\frac{1}{1 + \epsilon} - \frac{2}{\sqrt{1 - \epsilon^2} - 1 + \epsilon}} = 1 + \epsilon^3/2 + O(\epsilon^4).
\]

Note that when the series \(pZ \cdot D(z) \) converges, it converges to a value less than 1/2; the same is true of \(qzA(zD(z)) \). It follows that for \(|z| = 1 + \epsilon^3/2 + O(\epsilon^4) \), \(|\hat{M}(z)| < 1 \) and \(L(z) \) converges, as desired. We conclude that

\[
Pr[w_1 \ldots w_n \text{ is forkable}] = \exp(-\epsilon^3(1 + O(\epsilon)n/2)).
\]

\[\Box\]

References

