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Abstract

A (t, s, v)-all-or-nothing transform is a bijective mapping defined on s-tuples over an
alphabet of size v, which satisfies the condition that the values of any t input co-ordinates
are completely undetermined, given only the values of any s − t output co-ordinates.
The main question we address in this paper is: for which choices of parameters does
a (t, s, v)-all-or-nothing transform (AONT) exist? More specifically, if we fix t and v,
we want to determine the maximum integer s such that a (t, s, v)-AONT exists. We
mainly concentrate on the case t = 2 for arbitrary values of v, where we obtain various
necessary as well as sufficient conditions for existence of these objects. We consider
both linear and general (linear or nonlinear) AONT. We also show some connections
between AONT, orthogonal arrays and resilient functions.

1 Introduction and Previous Results

Rivest defined all-or-nothing transforms in [7] in the setting of computational security.
Stinson considered unconditionally secure all-or-nothing transforms in [8]. More general
types of unconditionally secure all-or-nothing transforms have been recently studied in
[2, 6, 9].

We begin with some relevant definitions. Let X be a finite set of cardinality v, called
an alphabet. Let s be a positive integer, and suppose that φ : Xs → Xs. We will think of
φ as a function that maps an input s-tuple, say x = (x1, . . . , xs), to an output s-tuple, say
y = (y1, . . . , ys), where xi, yi ∈ X for 1 ≤ i ≤ s. Let 1 ≤ t ≤ s be an integer. Informally,
the function φ is an (unconditionally secure) (t, s, v)-all-or-nothing transform provided that
the following properties are satisfied:

1. φ is a bijection.

2. If any s− t of the s output values y1, . . . , ys are fixed, then the values of any t inputs
are completely undetermined, in an information-theoretic sense.
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We will denote such a function as a (t, s, v)-AONT, where v = |X|.
We note that any bijection from Xs to itself is an (s, s, v)-AONT, so the case s = t is

trivial.
The work of Rivest [7] and Stinson [8] concerned the case t = 1. Rivest’s original

motivation for AONT involved block ciphers. The idea is to apply a (1, s, v)-AONT to s
plaintext blocks, where each plaintext block is treated as an element over an alphabet of
size v. After the AONT is applied the resulting s blocks are then encrypted. The AONT
property ensures that all s ciphertext blocks must be decrypted in order to obtain any
information about any single plaintext block.

Other applications of AONT are enumerated in [2], where AONT (and “approximations”
to AONT) for t ≥ 2 were first studied. The paper [2] mainly considers the case t = v = 2.
Additional results in this case are found in [9] and [6]; the latter paper also contains some
results for t = 2, v = 3. In this paper, we study AONT for arbitrary values of v and t,
obtaining our most detailed results for the case t = 2.

The definition of AONT can be rephrased in terms of the entropy function H. Let

X1, . . . ,Xs,Y1, . . . ,Ys

be random variables taking on values in the finite set X. These 2s random variables define
a (t, s, v)-AONT provided that the following conditions are satisfied:

1. H(Y1, . . . ,Ys | X1, . . . ,Xs) = 0.

2. H(X1, . . . ,Xs | Y1, . . . ,Ys) = 0.

3. For all X ⊆ {X1, . . . ,Xs} with |X | = t, and for all Y ⊆ {Y1, . . . ,Ys} with |Y| = t, it
holds that

H(X | {Y1, . . . ,Ys} \ Y) = H(X ). (1)

Let Fq be a finite field of order q. An AONT with alphabet Fq is linear if each yi is an
Fq-linear function of x1, . . . , xs. Then, we can write

y = φ(x) = xM−1 and x = φ−1(y) = yM, (2)

where M is an invertible s by s matrix with entries from Fq. Subsequently, when we refer
to a “linear AONT”, we mean the matrix M that transforms y to x, as specified in (2).

The following lemma from [2] characterizes linear all-or-nothing transforms in terms of
submatrices of the matrix M .

Lemma 1.1. [2, Lemma 1] Suppose that q is a prime power and M is an invertible s by s
matrix with entries from Fq. Then M defines a linear (t, s, q)-AONT if and only if every t
by t submatrix of M is invertible.

Remark 1.1. Any invertible s by s matrix with entries from Fq defines a linear (s, s, q)-
AONT.

An s by s Cauchy matrix can be defined over Fq if q ≥ 2s. Let a1, . . . , as, b1, . . . , bs be
distinct elements of Fq. Let cij = 1/(ai − bj), for 1 ≤ i ≤ s and 1 ≤ j ≤ s. Then C = (cij)
is the Cauchy matrix defined by the sequence a1, . . . , as, b1, . . . , bs. The most important
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property of a Cauchy matrix C is that any square submatrix of C (including C itself) is
invertible over Fq.

Cauchy matrices were briefly mentioned in [8] as a possible method of constructing
1-AONT. It was noted in [2] that, when q ≥ 2s, Cauchy matrices immediately yield the
strongest possible all-or-nothing transforms, as stated in the following theorem.

Theorem 1.2. [2, Theorem 2] Suppose q is a prime power and q ≥ 2s. Then there is a
linear transform that is simultaneously a (t, s, q)-AONT for all t such that 1 ≤ t ≤ s.

We observe that, in general, the existence of a (t, s, q)-AONT does not necessarily imply
the existence of a (t− 1, s, q)-AONT or a (t+ 1, s, q)-AONT.

We next review some results on general (i.e., linear or nonlinear) AONT. Let A be an N
by k array whose entries are elements chosen from an alphabet X of size v. We will refer to
A as an (N, k, v)-array. Suppose the columns of A are labelled by the elements in the set
C = {1, . . . , k}. Let D ⊆ C, and define AD to be the array obtained from A by deleting all
the columns c /∈ D. We say that A is unbiased with respect to D if the rows of AD contain
every |D|-tuple of elements of X exactly N/v|D| times.

The following result characterizes (t, s, v)-AONT in terms of arrays that are unbiased
with respect to certain subsets of columns.

Theorem 1.3. [2, Theorem 34] A (t, s, v)-AONT is equivalent to a (vs, 2s, v)-array that is
unbiased with respect to the following subsets of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s}, and

3. I ∪ {s + 1, . . . , 2s} \ J , for all I ⊆ {1, . . . , s} with |I| = t and all J ⊆ {s + 1, . . . , 2s}
with |J | = t.

An OAλ(t, k, v) (an orthogonal array) is a (λvt, k, v)-array that is unbiased with respect
to any subset of t columns. If λ = 1, then we simply write the orthogonal array as an
OA(t, k, v).

The following corollary of Theorem 1.3 is immediate.

Corollary 1.4. [2, Corollary 35] If there exists an OA(s, 2s, v), then there exists a (t, s, v)-
AONT for all t such that 1 ≤ t ≤ s.

For prime powers q, the existence of (1, s, q)-AONT has been completely determined in
[8].

Theorem 1.5. [8, Corollary 2.3] There exists a linear (1, s, q)-AONT for all prime powers
q > 2 and for all positive integers s.

When q = 2, we have the following.

Theorem 1.6. [8, Theorem 3.5] There does not exist a (1, s, 2)-AONT for any integer
s > 1.
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1.1 Organization of the Paper

Section 2 deals with linear AONT. First, we give a construction for certain (2, s, q)-AONT as
well as a nonexistence result. In Section 2.1, we focus on (2, q, q)-AONT and in Section 2.2
we report the results of some enumerations of small cases. Section 2.3 discusses the notion
of equivalence of linear AONT. Section 2.4 examines linear (t, s, q)-AONT and shows a
connection with linear t-resilient functions. Section 3 shows some relations between general
AONT, orthogonal arrays and resilient functions. Finally, Section 4 summarizes the paper
and gives some open problems.

2 New Results on Linear AONT

We begin this section with a construction.

Theorem 2.1. Suppose q = 2n, q − 1 is prime and s ≤ q − 1. Then there exists a linear
(2, s, q)-AONT over Fq.

Proof. Let α ∈ Fq be a primitive element and let M = (mr,c) be the s by s Vandermonde
matrix in which mr,c = αrc, 0 ≤ r, c ≤ s − 1. Clearly M is invertible, so we only need to
show that any 2 by 2 submatrix is invertible. Consider a submatrix M ′ defined by rows i, j
and columns i′, j′, where i 6= j and i′ 6= j′. We have

det(M ′) = αii
′+jj′ − αij′+ji′ ,

so det(M ′) = 0 if and only if αii
′+jj′ = αij

′+ji′ , which happens if and only if

ii′ + jj′ ≡ ij′ + ji′ mod (q − 1).

This condition is equivalent to

(i− j)(i′ − j′) ≡ 0 mod (q − 1).

Since q − 1 is prime, this happens if and only if i = i′ or j = j′. We assumed i 6= j and
i′ 6= j′, so we conclude that M ′ is invertible.

The above result requires that 2n−1 is a (Mersenne) prime. Here are a couple of results
on Mersenne primes from [4]. The first few Mersenne primes occur for

n = 2, 3, 5, 7, 13, 31, 61, 89, 107, 127.

At the time this paper was written, there were 49 known Mersenne primes, the largest being
274207281 − 1, which was discovered in January 2016.

If we ignore the requirement that a linear AONT is an invertible matrix, then a con-
struction for q by q matrices is easy.

Theorem 2.2. For any prime power q, there is a q by q matrix defined over Fq such that
any 2 by 2 submatrix is invertible.
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Proof. M = (mr,c) be the q by q matrix of entries from Fq defined by the rule mr,c = r+ c,
where the sum is computed in Fq. Consider a submatrix M ′ defined by rows i, j and columns
i′, j′, where i 6= j′ and i′ < j′. We have

det(M ′) = ii′ + jj′ − (ij′ + ji′),

so det(M ′) = 0 if and only if ii′ + jj′ = ij′ + ji′. This condition is equivalent to

(i− j)(i′ − j′) = 0,

which happens if and only if i = i′ or j = j′. We assumed i 6= j and i′ 6= j′, so we conclude
that M ′ is invertible.

We note that the above construction does not yield an AONT for q > 2, because the
sum of all the rows of the constructed matrix M is the all-zero vector and hence M is not
invertible.

We next define a “standard form” for linear AONT. Suppose M is a matrix for a linear
(2, s, q)-AONT. Clearly there can be at most one zero in each row and column of M . Then
we can permute the rows and columns so that the 0’s comprise the first µ entries on the
main diagonal of M . If µ = 0, then we can multiply rows and columns by nonzero field
elements so that all the entries in the first row and first column consist of 1’s. If µ 6= 0, we
can multiply rows and columns by nonzero field elements so that all the entries in the first
row and first column consist of 1’s, except for the entry in the top left corner, which is a 0.
Such a matrix M is said to be of type µ standard form.

Theorem 2.3. There is no linear (2, q + 1, q)-AONT for any prime power q > 2.

Proof. Suppose M is a matrix for a linear (2, q + 1, q)-AONT defined over Fq. We can
assume that M is in standard form. Consider the q + 1 ordered pairs occurring in any two
fixed rows of the matrix M . There are q symbols, which result in q2 possible ordered pairs.
However, the pair consisting of two zeros is ruled out, leaving q2− 1 ordered pairs. For two
such ordered pairs (i, j)T and (i′, j′)T , define (i, j)T ∼ (i′, j′)T if there is a nonzero element
α ∈ Fq such that (i, j)T = α(i′, j′)T . Clearly ∼ is an equivalence relation, and there are
q + 1 equivalence classes, each having size q − 1. We can only have at most one ordered
pair from each equivalence class, so there are only q+ 1 possible pairs that can occur. Since
there are q+ 1 columns, it follows that from each of these q+ 1 equivalence classes, exactly
one will be chosen. Therefore, each row must contain exactly one 0 and thus M is of type
q + 1 standard form.

From the above discussion, we see that M has the following structure:

0 1 1 1 . . . 1 1
1 0
1 0
1 0
...

. . .

1 0
1 0


.
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Now consider the lower right q by q submatrix M ′ of M . There is exactly one occurrence
of each element of Fq∗ in each column of M ′. Now, compute the sum of all the rows in
this matrix. Recall that the sum of the elements of a finite field Fq is equal to 0, provided
that q > 2. Therefore, regardless of the configuration of the remaining entries, the sum
of the last q rows of M is the all-zero vector. Therefore, the matrix M is singular, which
contradicts its being an AONT.

Remark 2.1. In [2, Example 16], it is shown that a linear (2, 3, 2)-AONT does not exist.
This covers the exception q = 2 in Theorem 2.3.

2.1 Linear (2, q, q)-AONT

We next obtain some structural conditions for linear (2, q, q)-AONT in standard form.

Lemma 2.4. Suppose M is a matrix for a linear (2, q, q)-AONT in standard form. Then
M is of type q or type q − 1.

Proof. Suppose that M is of type µ standard form, where µ ≤ q − 2. Then the last two
rows of M contain no zeroes. We proceed as in the proof of Theorem 2.3. The q ordered
pairs in the last two rows must all be from different equivalence classes. However, there are
only q − 1 equivalence classes that do not contain a 0, so we have a contradiction.

Therefore the standard form of a linear (2, q, q)-AONT looks like

M =



0 1 1 1 . . . 1 1
1 0
1 0
1 0
...

. . .

1 0
1 χ


,

where χ = 0 iff M is of type q and χ 6= 0 iff M is of type q − 1.
For the rest of this section, we will focus on linear (2, q, q)-AONT in type q standard

form. Suppose M is a matrix for such an AONT. Define a linear ordering on the elements in
the alphabet Fq. If M also has the additional property that the entries in columns 3, . . . , q
of row 2 are in increasing order (with respect to this linear order), then we say that M is
reduced. So the term “reduced” means that M is a linear (2, q, q)-AONT that satisfies the
following additional properties:

• the diagonal of M consists of zeroes,

• the remaining entries in the first row and first column of M are ones, and

• the entries in columns 3, . . . , q of row 2 of M are in increasing order.

Lemma 2.5. Suppose M is a matrix for a linear (2, q, q)-AONT in type q standard form.
Then we can permute the rows and columns of M to obtain a reduced matrix M ′.
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Table 1: Number of reduced and inequivalent linear (2, q, q)-AONT, for prime powers q ≤ 11

q reduced (2, q, q)-AONT inequivalent (2, q, q)-AONT

3 2 1

4 3 2

5 38 5

7 13 1

8 0 0

9 0 0

11 21 1

Proof. Let π be the permutation of 3, . . . , q, which, when applied to the columns of M ,
results in the entries in columns 3, . . . , q of row 2 being in increasing order. Call this matrix
Mπ. Now, apply the same permutation π to the rows of Mπ to construct the desired reduced
matrix M ′.

2.2 Some Computer Searches for Small Linear (2, q, q)-AONT

We have performed exhaustive searches for reduced (2, q, q)-AONT (which are by definition
linear AONT in type q standard form) for all prime powers q ≤ 11. The results are found
in Table 1. (The notion of “equivalence” will be discussed in Section 2.3.)

One perhaps surprising outcome of our computer searches is that there are no linear
(2, q, q)-AONT in type q standard form for q = 8, 9 (however, it is easy to find examples of
linear (2, q − 1, q)-AONT for q = 8, 9). We also performed an exhaustive search for linear
(2, q, q)-AONT in type q − 1 standard form for q ≤ 9, and we did not find any examples.

For the prime orders 3, 5, 7, 11, it turns out that there exists a reduced (2, q, q)-AONT
having a very interesting structure, which we define now. Let M be a matrix for a reduced
(2, q, q)-AONT. Let τ ∈ Fq. We say that M is τ -skew-symmetric if, for any pair of cells
(i, j) and (j, i) of M , where 2 ≤ i, j ≤ q and i 6= j, it holds that mij + mji = τ . Notice
that this property implies that the matrix M contains no entries equal to τ , since the only
zero entries are on the diagonal. Another way to define the τ -skew-symmetric property is
to say that M1 + M1

T = τ(J − I), where M1 is formed from M by deleting the first row
and column, J is the all-ones matrix and I is the identity matrix.

Our computer searches show that there is a (q − 1)-skew-symmetric reduced (2, q, q)-
AONT for q = 3, 5, 7, 11, as well as τ -skew-symmetric examples with various other values
of τ .

Example 2.1. A 2-skew-symmetric reduced linear (2, 3, 3)-AONT: 0 1 1
1 0 1
1 1 0

 .
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Example 2.2. A linear (2, 4, 4)-AONT, defined over the finite field F4 = Z2[x]/(x2+x+1):
0 1 1 1
1 0 1 x
1 x 0 x+ 1
1 1 x 0

 .

Example 2.3. A 4-skew-symmetric reduced linear (2, 5, 5)-AONT:
0 1 1 1 1
1 0 1 2 3
1 3 0 1 2
1 2 3 0 1
1 1 2 3 0


Example 2.4. A 6-skew-symmetric reduced linear (2, 7, 7)-AONT:

0 1 1 1 1 1 1
1 0 1 2 3 4 5
1 5 0 3 4 2 1
1 4 3 0 5 1 2
1 3 2 1 0 5 4
1 2 4 5 1 0 3
1 1 5 4 2 3 0


.

Example 2.5. A linear (2, 8, 9)-AONT, defined over the finite field F9 = Z3[x]/(x2 + 1):

0 1 1 1 1 1 1 1
1 0 1 2 x x+ 1 x+ 2 2x
1 1 0 2x+ 1 x+ 1 x+ 2 2 x
1 2x x 0 x+ 2 2 2x+ 1 x+ 1
1 x+ 2 2 x 0 1 2x 2x+ 1
1 x+ 1 x+ 2 2x 2x+ 1 0 1 2
1 x x+ 1 1 2 2x+ 1 0 x+ 2
1 2 2x+ 1 x+ 1 1 2x x 0


Example 2.6. A 10-skew-symmetric reduced linear (2, 11, 11)-AONT:

0 1 1 1 1 1 1 1 1 1 1
1 0 1 2 3 4 5 6 7 8 9
1 9 0 7 8 1 3 2 5 4 6
1 8 3 0 2 5 6 1 9 7 4
1 7 2 8 0 6 1 3 4 9 5
1 6 9 5 4 0 8 7 3 1 2
1 5 7 4 9 2 0 8 1 6 3
1 4 8 9 7 3 2 0 6 5 1
1 3 5 1 6 7 9 4 0 2 8
1 2 6 3 1 9 4 5 8 0 7
1 1 4 6 5 8 7 9 2 3 0
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1. Pick two distinct rows r1, r2. Interchange rows 1 and r1 of M and interchange
rows 2 and r2 of M . Then interchange columns 1 and r1 and interchange
columns 2 and r2 of the resulting matrix.

2. Multiply columns 2, . . . , q by constants to get (0 1 1 · · · 1) in the first row.

3. Multiply rows 2, . . . , q by constants to get (0 1 1 · · · 1)T in the first column.

4. Permute columns 3, . . . , q so the entries in row 2 in these columns are in
increasing order (there is a unique permutation π that does this).

5. Apply the same permutation π to rows 3, . . . , q.

6. Transpose M and apply the first five steps to the transposed matrix.

Figure 1: Generating the reduced (2, q, q)-AONT that are equivalent to a given reduced
(2, q, q)-AONT, M

2.3 Equivalence of Linear AONT

In this section, we discuss how to determine if two linear AONT are “equivalent”. We define
this notion as follows. Suppose M and M ′ are linear (t, s, q)-AONT. We say that M and
M ′ are equivalent if M can be transformed into M ′ by performing a sequence of operations
of the following type:

• row and column permutations,

• multiplying a row or column by a nonzero constant, and

• transposing the matrix.

Here, we confine our attention to reduced (2, q, q)-AONT, as defined in Section 2.1.
We already showed that any linear (2, q, q)-AONT of type q standard form is equivalent
to a reduced (2, q, q)-AONT. But it is possible that two reduced (2, q, q)-AONT could be
equivalent. We next describe a simple process to test for equivalence of reduced (2, q, q)-
AONT.

The idea is to start with a specific reduced (2, q, q)-AONT, say M . Given M , we can
generate all the reduced (2, q, q)-AONT that are equivalent to M . After doing this, it is a
simple matter to take any other reduced (2, q, q)-AONT, say M ′ and see if it occurs in the
list of reduced (2, q, q)-AONT that are equivalent to M .

The algorithm presented in Figure 1 generates all the reduced (2, q, q)-AONT that are
equivalent to M . After executing the first five steps, we have a list of q2 − q reduced
(2, q, q)-AONT, each of which is equivalent to M (this includes M itself). After transposing
the original matrix, we repeat the same five steps, which gives q2 − q additional equivalent
AONT. The result is a list of 2q2 − 2q equivalent AONT, but of course there could be
duplications in the list.

We have used this algorithm to determine the number of inequivalent (2, q, q)-AONT
for prime powers q ≤ 11. We started with all the reduced (2, q, q)-AONT and then we
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Table 2: Upper and Lower bounds on M(q)

bound authority

bq/2c ≤M(q) ≤ q for all prime powers q Theorem 1.2 and 2.3
M(q) ≥ q − 1 if q = 2n and q − 1 is prime Theorem 2.1

M(q) = q for q = 3, 4, 5, 7, 11 Examples 2.1–2.4 and 2.6
M(8) ≥ 7 Theorem 2.1
M(9) ≥ 8 Example 2.5

eliminated equivalent matrices using our algorithm as described above. The results are
presented in Table 1.

2.4 Additional Results on Linear AONT

Theorem 2.6. If there exists a linear (t, s, q)-AONT with t < s, then there exists a linear
(t, s− 1, q)-AONT.

Proof. Let M be a matrix for a linear (t, s, q)-AONT. Consider all the s possible s − 1 by
s − 1 submatrices formed by deleting the first column and a row of m. We claim that at
least one of these s matrices is invertible. For, if they were all noninvertible, then M would
be noninvertible, by considering the cofactor expansion with respect the first column of
M .

Given a prime power q, define

S(q) = {s : there exists a linear (2, s, q)-AONT}.

From Remark 1.1, we have that 2 ∈ S(q), so S(q) 6= ∅. Also, from Theorem 2.3, Remark
2.1 and Theorem 2.6, there exists a maximum element in S(q), which we will denote by
M(q). In view of Theorem 2.6, we know that a linear (2, s, q)-AONT exists for all s such
that 2 ≤ s ≤M(q). We summarize upper and lower bounds on M(q) in Table 2.

We finish this section by showing that the existence of linear AONT imply the existence
of certain linear resilient functions. We present the definition of resilient functions given in
[3]. Let |X| = v. An (n,m, t, v)-resilient function is a function g : Xn → Xm which has the
property that, if any t of the n input values are fixed and the remaining n− t input values
are chosen independently and uniformly at random, then every output m-tuple occurs with
the same probability 1/vm.

Suppose q is a prime power. A (n,m, t, q)-resilient function f is linear if f(x) = xMT

for some m by n matrix M defined over Fq.

Theorem 2.7. Suppose there is a linear (t, s, q)-AONT. Then there is a linear (s, s−t, t, q)-
resilient function.

Proof. Suppose that the s by s matrix M over Fq gives rise to a linear (t, s, q)-AONT.
Then, from Lemma 1.1, every t by t submatrix of M is invertible. Construct an s by t
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matrix M∗ by deleting any s − t rows of M . Clearly any t columns of M∗ are linearly
independent. Let C be the code generated by the rows of M∗ and let C′ be the dual code
(i.e., the orthogonal complement of C). It is well-known from basic coding theory (e.g., see
[5, Chapter 1, Theorem 10]) that the minimum distance of C′ is at least t + 1. Let N be
a generating matrix for C′. Then N is an s − t by s matrix over Fq. Since N generates
a code having minimum distance at least t + 1, the function f(x) = xNT is a a (linear)
(s, s− t, t, q)-resilient function (for a short proof of this fact, see [11, Theorem 1]).

3 New Results on General AONT

In this section, we present a few results on “general” AONT (i.e., results that hold for any
AONT, linear or not).

Theorem 3.1. Suppose there is a (t, s, v)-AONT. Then there is an OA(t, s, v).

Proof. Suppose we represent an (t, s, v)-AONT by a (vs, 2s, v)-array denoted by A. Let R
denote the rows of A that contain a fixed (s− t)-tuple in the last s− t columns of A. Then
|R| = vt. Delete all the rows of A not in R and delete the last s columns of A and call the
resulting array A′. Within any t columns of A, we see that every t-tuple of symbols occurs
exactly once, since the rows of A′ are determined by fixing s− t outputs of the AONT. But
this says that A′ is an OA(t, s, v).

The following classical bound can be found in [1].

Theorem 3.2 (Bush Bound). If there is an OA(t, s, v), then

s ≤


v + t− 1 if t = 2, or if v is even and 3 ≤ t ≤ v
v + t− 2 if v is odd and 3 ≤ t ≤ v
t+ 1 if t ≥ v.

Corollary 3.3. If there is a (2, s, v)-AONT, then s ≤ v + 1.

We recall that we proved in Theorem 2.3 that s ≤ v if a linear (2, s, v)-AONT exists;
the above corollary establishes a slightly weaker result in a more general setting.

Corollary 3.4. If there is a (3, s, v)-AONT, then s ≤ v+ 2 if v ≥ 4 is even, and s ≤ v+ 1
if v ≥ 3 is odd.

Lastly, we prove a generalization of Theorem 2.7 which shows that any AONT (linear
or nonlinear) gives rise to a resilient function. This result is based on a characterization of
resilient functions which says that they are equivalent to “large sets” of orthogonal arrays.
Suppose λ = vr for some integer r. A large set of OAvr(t, n, v) consists of vn−r−t distinct
OAvr(t, n, v), which together contain all vn possible n-tuples exactly once.

We will make use of the following result of Stinson [10].

Theorem 3.5. [10, Theorem 2.1] An (n,m, t, v)-resilient function is equivalent to a large
set of OAqn−m−t(t, n, v).
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Theorem 3.6. Suppose there is a (t, s, v)-AONT. Then there is an (s, s − t, t, v)-resilient
function.

Proof. We use the same technique that was used in the proof of Theorem 3.1. Let A be the
(v2, 2s, v)-array representing the AONT. For any (s − t)-tuple x, let Rx be the rows of A
that contain x in the last s− t columns of A. Let A′x denote the submatrix of A indexed by
the columns in Rx and the first s columns. Theorem 3.1 showed that A′x is an OA(t, s, v).

Now, consider all vs−t possible (s−t)-tuples x. For each choice of x, we get an OA(t, s, v).
These vs−t orthogonal arrays together contain all vs s-tuples, since the array A is unbiased
with respect to the first s columns. Thus we have a large set of OA1(t, s, v). Applying
Theorem 3.5, this large set of OAs is equivalent to an (s, s− t, t, v)-resilient function (note
that m = s− t because vs−m−t = 1).

4 Summary and Open Problems

In this paper, we have begun a study of t-all-or-nothing transforms over alphabets of arbi-
trary size. There are many interesting open problems suggested by the results in this paper.
We list some of these now.

1. Are there infinitely many primes p for which there exist linear (2, p, p)-AONT?

2. Are there infinitely many primes p for which there exist skew-symmetric linear (2, p, p)-
AONT?

3. Are there any prime powers q = pi > 4 with i ≥ 2 for which there exist linear
(2, q, q)-AONT?

4. As mentioned in Section 2.2, we performed exhaustive searches for linear (2, q, q)-
AONT in type q− 1 standard form, for all primes and prime powers q ≤ 9, and found
that no such AONT exist. We ask if there exists any linear (2, q, q)-AONT in type
q − 1 standard form.

5. For p = 3, 5, there are easily constructed examples of symmetric linear (2, p, p)-AONT
in standard form (where “symmetric” means that M = MT ). But there are no
symmetric examples for p = 7 or 11. We ask if there exists any symmetric linear
(2, p, p)-AONT in standard form for a prime p > 5.

6. Theorem 2.6 showed that a linear (t, s− 1, q)-AONT exists whenever a linear (t, s, q)-
AONT exists. Does an analogous result hold for arbitrary (linear or nonlinear) AONT?

7. We proved in Theorem 2.3 that, if a linear (2, s, q)-AONT exists, then s ≤ q. On the
other hand, for arbitrary (linear or nonlinear) (2, s, v)-AONT, we were only able to
show that s ≤ v+ 1 (Corollary 3.3). Can this second bound be strengthened to s ≤ v,
analogous to the linear case?

8. In the case t = 3, we have one existence result (Theorem 1.2) and one necessary
condition (Corollary 3.4). What additional results can be proven about existence or
nonexistence of (3, s, v)-AONT?
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