
Trust Is Risk:
A Decentralized Financial Trust Platform

Orfeas Stefanos Thyfronitis Litos1 and Dionysis Zindros2,?

1 National Technical University of Athens
2 National and Kapodistrian University of Athens
olitos@corelab.ntua.gr, dionyziz@di.uoa.gr

Abstract. Centralized reputation systems use stars and reviews and
thus require algorithm secrecy to avoid manipulation. In autonomous
open source decentralized systems this luxury is not available. We cre-
ate a reputation network for decentralized marketplaces where the trust
each user gives to the other users is quantifiable and expressed in mone-
tary terms. We introduce a new model for bitcoin wallets in which user
coins are split among trusted associates. Direct trust is defined using
shared bitcoin accounts via bitcoin’s 1-of-2 multisig. Indirect trust is
subsequently defined transitively. This enables formal game theoretic ar-
guments pertaining to risk analysis. We prove that risk and maximum
flows are equivalent in our model and that our system is Sybil-resilient.
Our system allows for concrete financial decisions on the subjective mon-
etary amount a pseudonymous party can be trusted with. Risk remains
invariant under a direct trust redistribution operation followed by a pur-
chase.

1 Introduction

Online marketplaces can be categorized as centralized and decentralized.
Two examples of each category are ebay and OpenBazaar. The common
denominator of established online marketplaces is that the reputation of
each vendor and client is typically expressed in the form of stars and
user-generated reviews that are viewable by the whole network.

The goal of “Trust Is Risk” is to offer a reputation system for decen-
tralized marketplaces where the trust each user gives to the other users
is quantifiable in monetary terms. The central assumption used through-
out this paper is that trust is equivalent to risk, or the proposition that
Alice’s trust in another user Charlie is defined as the maximum sum of
money Alice can lose when Charlie is free to choose any strategy. To flesh
out this concept, we will use lines of credit as proposed by Sanchez [1].
Alice joins the network by explicitly entrusting some money to another

? Research supported by ERC project CODAMODA, project #259152

1

http://www.ebay.com
https://openbazaar.org/

user, say her friend, Bob (see Fig. 1 and 2). If Bob has already entrusted
some money to a third user, Charlie, then Alice indirectly trusts Charlie
since if the latter wished to play unfairly, he could have already stolen
the money entrusted to him by Bob. We will later see that Alice can now
engage in economic interaction with Charlie.

To implement lines-of-credit, we use Bitcoin [2], a decentralized cryp-
tocurrency that differs from conventional currencies in that it does not
depend on trusted third parties. All transactions are public as they are
recorded on a decentralized ledger, the blockchain. Each transaction takes
some coins as input and produces some coins as output. If the output of a
transaction is not connected to the input of another one, then this output
belongs to the UTXO, the set of unspent transaction outputs. Intuitively,
the UTXO contains all coins not yet spent.

Fig. 1: A indirectly trusts C 10B Fig. 2: A indirectly trusts C 5B

AA CC BB 20B 10B10B 5B

We propose a new kind of wallet where coins are not exclusively owned,
but are placed in shared accounts materialized through 1-of-2 multisigs,
a bitcoin construct that permits any one of two pre-designated users to
spend the coins contained within a shared account [3]. We use the nota-
tion 1/{Alice, Bob} to represent a 1-of-2 multisig that can be spent by
either Alice or Bob. In this notation, the order of names is irrelevant, as
either user can spend. However, the user who deposits the money initially
into the shared account is relevant – she is the one risking her money.

Our approach changes the user experience in a subtle but drastic way.
A user no more has to base her trust towards a store on stars or ratings
which are not expressed in financial units. She can simply consult her
wallet to decide whether the store is trustworthy and, if so, up to what
value, denominated in bitcoin. This system works as follows: Initially
Alice migrates her funds from her private bitcoin wallet to 1-of-2 multisig
addresses shared with friends she comfortably trusts. We call this direct
trust. Our system is agnostic to the means players use to determine who is
trustworthy for these direct 1-of-2 deposits. Nevertheless, these deposits
contain an objective value visible to the network that can be used to
deterministically evaluate subjective indirect trust towards other users.

Suppose Alice is viewing the listings of vendor Charlie. Instead of
his stars, Alice sees a positive value calculated by her wallet representing
the maximum value she can safely pay to purchase from Charlie. This
value, known as indirect trust, is calculated in Theorem 2 – Trust Flow.

2

Indirect trust towards a user is not global but subjective; each user views
a personalized indirect trust based on the network topology. The indirect
trust reported by our system maintains the following desired security
property: If Alice makes a purchase from Charlie, then she is exposed to
no more risk than she was already taking willingly. The existing voluntary
risk is exactly that which Alice was taking by sharing her coins with her
trusted friends. We prove this in Theorem 3 – Risk Invariance. Obviously
it is not safe for Alice to buy anything from any vendor if she has not
directly entrusted any value to other users.

In Trust Is Risk the money is not invested at the time of purchase and
directly to the vendor, but at an earlier point in time and only to parties
that are trustworthy for out of band reasons. The fact that this system
can function in a completely decentralized fashion will become clear in
the following sections. We prove this in Theorem 5 – Sybil Resilience.

We make the design choice that an entity can express her trust max-
imally in terms of her available capital. Thus, an impoverished player
cannot allocate much direct trust to her friends, no matter how trust-
worthy they are. On the other hand, a rich player may entrust a small
fraction of her funds to a player that she does not extensively trust and
still exhibit more direct trust than the impoverished player. There is no
upper limit to trust; each player is only limited by her funds. We thus take
advantage of the following remarkable property of money: To normalise
subjective human preferences into objective value.

A user has several incentives to join. First, she has access to otherwise
inaccessible stores. Moreover, two friends can formalize their mutual trust
by directly entrusting the same amount to each other. A company that
casually subcontracts others can express its trust towards them. Govern-
ments can choose to directly entrust citizens with money and confront
them using a corresponding legal arsenal if they make irresponsible use
of this trust. Banks can provide loans as outgoing and manage savings as
incoming direct trust. Last, the network is an investment and speculation
field since it constitutes a new area for financial activity.

Observe that the same physical person can maintain multiple pseudony-
mous identities in the same trust network and that multiple independent
trust networks for different purposes can coexist. On the other hand, the
same pseudonymous identity can be used to establish trust in different
contexts.

Trust Is Risk is not just a theoretical conception, but can be deployed
and applied in existing decentralized markets such as OpenBazaar. All
the necessary bitcoin constructs such as multisigs are readily available.

3

Our only concern pertains to the scalability of such an implementation,
but we are confident that such difficulties can be overcome.

2 Mechanics

We now trace Alice’s steps from joining the network to successfully com-
pleting a purchase. Suppose initially all her coins, say 10B, are under her
exclusive control.

Two trustworthy friends, Bob and Charlie, persuade her to try out
Trust Is Risk. She installs the Trust Is Risk wallet and migrates the 10B
from her regular wallet, entrusting 2B to Bob and 5B to Charlie. She
now exclusively controls 3B. She is risking 7B to which she has full but
not exclusive access in exchange for being part of the network.

A few days later, she discovers an online shoes shop owned by Dean,
also a member of Trust Is Risk. She finds a nice pair of shoes that costs
1B and checks Dean’s trustworthiness through her new wallet. Suppose
Dean is deemed trustworthy up to 5B. Since 1B < 5B, she confidently
proceeds to purchase the shoes with her new wallet.

She can then see in her wallet that her exclusive coins have remained
3B, the coins entrusted to Charlie have been reduced to 4B and Dean is
entrusted 1B, equal to the value of the shoes. Also, her purchase is marked
as pending. If she checks her trust towards Dean, it still is 5B. Under the
hood, her wallet redistributed her entrusted coins in a way that ensures
Dean is directly entrusted with coins equal to the value of the purchased
item and that her reported trust towards him has remained invariant.

Eventually all goes well and the shoes reach Alice. Dean chooses to
redeem Alice’s entrusted coins, so her wallet does not show any coins en-
trusted to Dean. Through her wallet, she marks the purchase as success-
ful. This lets the system replenish the reduced trust to Bob and Charlie,
setting the entrusted coins to 2B and 5B respectively once again. Alice
now exclusively owns 2B. Thus, she can now use a total of 9B, which is
expected, since she had to pay 1B for the shoes.

3 The Trust Graph

We now engage in the formal description of the proposed system, accom-
panied by helpful examples.

Definition 1 (Graph). Trust Is Risk is represented by a sequence of
directed weighted graphs (Gj) where Gj = (Vj , Ej) , j ∈ N. Also, since the

4

graphs are weighted, there exists a sequence of weight functions (cj) with
cj : Ej → R+.

The nodes represent the players, the edges represent the existing direct
trusts and the weights represent the amount of value attached to the
corresponding direct trust. As we will see, the game evolves in turns. The
subscript of the graph represents the corresponding turn.

Definition 2 (Players). The set Vj = V (Gj) is the set of all players in
the network, otherwise understood as the set of all pseudonymous identi-
ties.

Each node has a corresponding non-negative number that represents its
capital. A node’s capital is the total value that the node possesses exclu-
sively and nobody else can spend.

Definition 3 (Capital). The capital of A in turn j, CapA,j, is defined
as the number of coins that belong exclusively to A at the beginning of
turn j.

The capital is the value that exists in the game but is not shared with
trusted parties. The capital of A can be reallocated only during her turns,
according to her actions. We model the system in a way that no capital
can be added in the course of the game through external means. The use
of capital will become clear once turns are formally defined.

The formal definition of direct trust follows:

Definition 4 (Direct Trust). Direct trust from A to B at the end of
turn j, DTrA→B,j, is defined as the total finite amount that exists in
1/{A, B} multisigs in the UTXO in the end of turn j, where the money
is deposited by A.

DTrA→B,j =
{

cj (A, B) , if (A, B) ∈ Ej

0, else
. (1)

5

A
C

B

E

D

tx

tx

tx

tx

tx

tx

1/{B,C}
3B

C
10B

1/{A,B}
1B

B
1B

1/{C,E}
10B

1/{A,D}
6B

10B

1B

1/{B,D}
2B

3B

D
2B

A
6B6B

1/{A,C}
5B

C
3B

5B

A
5B

2B

Fig. 3: Trust Is Risk Game Graph and Equivalent Bitcoin UTXO

The definition of direct trust agrees with the title of this paper and coin-
cides with the intuition and sociological experimental results of Karlan et
al. [4] that the trust Alice shows to Bob in real-world social networks cor-
responds to the extent of danger in which Alice is putting herself into in
order to help Bob. An example graph with its corresponding transactions
in the UTXO can be seen in Fig. 3.

Any algorithm that has access to the graph Gj has implicitly access
to all direct trusts of this graph.

Definition 5 (Neighbourhood). We use the notation N+ (A)j to refer
to the nodes directly trusted by A at the end of turn j and N− (A)j for
the nodes that directly trust A at the end of turn j.

N+ (A)j = {B ∈ Vj : DTrA→B,j > 0} ,

N− (A)j = {B ∈ Vj : DTrB→A,j > 0} .
(2)

These are called out- and in-neighbourhood of A on turn j respectively.

Definition 6 (Total In/Out Direct Trust). We use inA,j , outA,j to
refer to the total incoming and outgoing direct trust respectively.

inA,j =
∑

v∈N−(A)j

DTrv→A,j , outA,j =
∑

v∈N+(A)j

DTrA→v,j . (3)

Definition 7 (Assets). Sum of A’s capital and outgoing direct trust.

AsA,j = CapA,j + outA,j . (4)

6

4 Evolution of Trust

Trust Is Risk is a game that runs indefinitely. In each turn, a player is
chosen, decides what to play and, if valid, the chosen turn is executed.
Definition 8 (Turns). In each turn j a player A ∈ V, A = Player (j),
chooses one or more actions from the following two kinds:
Steal(yB, B): Steal value yB from B ∈ N− (A)j−1, where 0 ≤ yB ≤
DTrB→A,j−1. Then set:

DTrB→A,j = DTrB→A,j−1 − yB .

Add(yB, B): Add value yB to B ∈ V, where −DTrA→B,j−1 ≤ yB. Then
set:

DTrA→B,j = DTrA→B,j−1 + yB .

yB < 0 amounts to direct trust reduction, while yB > 0 to direct trust
increase.

Let Yst, Yadd be the total value to be stolen and added respectively by
A. The capital is updated in every turn: CapA,j = CapA,j−1 + Yst − Yadd.
For a turn to be valid we require CapA,j ≥ 0 and DTrA→B,j ≥ 0 and
DTrB→A,j ≥ 0. A player cannot choose two actions of the same kind
against the same player in one turn. Turnj denotes the set of actions in
turn j. The graph that emerges by applying the actions on Gj−1 is Gj.

For example, let A = Player(j). A valid turn can be

Turnj = {Steal (x, B) , Add (y, C) , Add (w, D)} .

The Steal action requires 0 ≤ x ≤ DTrB→A,j−1, the Add actions require
DTrA→C,j−1 ≥ −y and DTrA→D,j−1 ≥ −w and the Cap restriction
requires y + w − x ≤ CapA,j−1.

We use prev (j) and next (j) to denote the previous and next turn
respectively played by Player(j).
Definition 9 (Prev/Next Turn). Let j ∈ N be a turn with Player (j)
= A. Define prev (j) /next (j) as the previous/next turn A is chosen to
play. Formally, let

P = {k ∈ N : k < j ∧ Player (k) = A} and
N = {k ∈ N : k > j ∧ Player (k) = A} .

Then we define prev (j) , next (j) as follows:

prev (j) =
{

max P, P 6= ∅
0, P = ∅

, next (j) = min N .

7

next (j) is always well defined with the assumption that after each turn
eventually everybody plays.

Definition 10 (Damage). Let j be a turn such that Player (j) = A.

DmgA,j = outA,prev(j) − outA,j−1 . (5)

We say that A has been stolen value DmgA,j between prev (j) and j. We
omit turn subscripts if they are implied from the context.

Definition 11 (History).We define History, H = (Hj), as the sequence
of all tuples containing the sets of actions and the corresponding player.

Hj = (Player (j) , Turnj) . (6)

Knowledge of the initial graph G0, all players’ initial capital and the his-
tory amount to full comprehension of the evolution of the game. Building
on the example of Fig. 3, we can see the resulting graph when D plays

Turn1 = {Steal (1, A) , Add (4, C) , Add (−1, B)} . (7)

Fig. 4: Game Graph after Turn1 (7) on the Graph of Fig. 3

A

C

B

E

D

10B

1B

3B
5B

4B5B

1B

We now define the Trust Is Risk Game formally. We assume players are
chosen so that, after her turn, a player will eventually play again later.
Trust Is Risk Game

1 j = 0
2 while (True)

3 j += 1; A
$← Vj

4 Turn = strategy[A](G0, A, CapA,0, H1...j−1)
5 (Gj, CapA,j, Hj) = executeTurn(Gj−1, A, CapA,j−1, Turn)

strategy[A]() provides player A with full knowledge of the game, except
for the capitals of other players. This assumption may not be always
realistic. executeTurn() checks the validity of Turn and substitutes it
with an empty turn if invalid. Subsequently, it creates the new graph Gj

and updates the history accordingly. For the routine code, see Appendix
B.

8

5 Trust Transitivity

In this section we define some strategies and show the corresponding
algorithms. Then we define the Transitive Game, the worst-case scenario
for an honest player when another player plays maliciously.

Definition 12 (Idle Strategy). A player plays the idle strategy if she
passes her turn.

Idle Strategy
Input : graph G0, player A, capital CapA,0, history (H)1...j−1
Output : Turnj

1 idleStrategy(G0, A, CapA,0, H) :
2 return(∅)

The inputs and outputs are identical to those of idleStrategy() for the
rest of the strategies, thus we avoid repeating them.

Definition 13 (Evil Strategy). A player plays the evil strategy if she
steals all incoming direct trust and nullifies her outgoing direct trust.

1 evilStrategy(G0, A, CapA,0, H) :
2 Steals =

⋃
v∈N−(A)j−1

{Steal(DTrv→A,j−1, v)}

3 Adds =
⋃

v∈N+(A)j−1

{Add(−DTrA→v,j−1, v)}

4 Turnj = Steals ∪ Adds
5 return(Turnj)

Definition 14 (Conservative Strategy). A player plays conservatively
if she replenishes the value she lost since the previous turn by stealing from
others who directly trust her as much as she can up to DmgA.

1 consStrategy(G0, A, CapA,0, H) :
2 Damage = outA,prev(j) - outA,j−1
3 if (Damage > 0)
4 if (Damage >= inA,j−1)
5 Turnj =

⋃
v∈N−(A)j−1

{Steal (DTrv→A,j−1, v)}

6 else
7 y = SelectSteal(Gj, A, Damage) #y = {yv : v ∈ N− (A)j−1}
8 Turnj =

⋃
v∈N−(A)j−1

{Steal (yv, v)}

9

9 else Turnj = ∅
10 return(Turnj)

SelectSteal() returns yv with v ∈ N− (A)j−1 such that∑
v∈N−(A)j−1

yv = DmgA,j ∧ ∀v ∈ N− (A)j−1 , yv ≤ DTrv→A,j−1 . (8)

Player A can arbitrarily define how SelectSteal() distributes the Steal ()
actions each time she calls the function, as long as (8) is respected.

The rationale behind this strategy arises from a real-world common
situation. Suppose there are a client, an intermediary and a producer. The
client entrusts some value to the intermediary so that the latter can buy
the desired product from the producer and deliver it to the client. The
intermediary in turn entrusts an equal value to the producer, who needs
the value upfront to be able to complete the production process. However
the producer eventually does not give the product neither reimburses the
value, due to bankruptcy or decision to exit the market with an unfair
benefit. The intermediary can choose either to reimburse the client and
suffer the loss, or refuse to return the money and lose the client’s trust.
The latter choice for the intermediary is exactly the conservative strategy.
It is used throughout this work as a strategy for all the intermediary
players because it models effectively the worst-case scenario that a client
can face after an evil player decides to steal everything she can and the
rest of the players do not engage in evil activity.

We continue with a possible evolution of the game, the Transitive
Game.
Transitive Game
Input : graph G0, A ∈ V idle player, B ∈ V evil player

1 Angry = Sad = ∅ ; Happy = V \ {A, B}
2 for (v ∈ V \ {B}) Lossv = 0
3 j = 0
4 while (True)

5 j += 1; v
$← V \ {A} # Choose this turn’s player

6 Turnj = strategy[v](G0, v, Capv,0, H1...j−1)
7 executeTurn(Gj−1, v, Capv,j−1, Turnj)
8 for (action ∈ Turnj)
9 action match do

10 case Steal(y, w) do # For each Steal,
11 exchange = y #
12 Lossw += exchange # pass on Loss

10

13 if (v != B) Lossv -= exchange #
14 if (w != A) # and change the
15 Happy = Happy \ {w} # mood of the
16 if (inw,j == 0) Sad = Sad ∪ {w} # affected player
17 else Angry = Angry ∪ {w}
18 if (v != B)
19 Angry = Angry\{v} # Change the mood of
20 if (Lossv > 0) Sad = Sad ∪ {v} # the active player
21 if (Lossv == 0) Happy = Happy ∪ {v}

Fig. 5: B steals 7B, then D steals 3B and finally C steals 3B

G3G2

G1G0
B B

D
Angry

D
Happy

A A

A A

E
Sad

E
Happy

E
Happy

E
Happy

C
Happy

C
Angry

C
Angry

C
Happy

B B

D
Sad

D
Sad

7B

6B

6B

3B

4B

7B 7B

6B3B

4B3B

6B

In turn 0, there is already a network in place. All players apart from A
and B follow the conservative strategy. The set of players is not modified
throughout the Transitive Game, thus we can refer to Vj as V. Each
conservative player can be in one of three states: Happy, Angry or Sad.
Happy players have 0 loss, Angry players have positive loss and positive
incoming direct trust (line 17), thus are able to replenish their loss at
least in part and Sad players have positive loss, but 0 incoming direct
trust (line 16), thus they cannot replenish the loss. An example execution
can be seen in Fig. 5.

Let j0 be the first turn on which B is chosen to play. Until then,
all players will pass their turn since nothing has been stolen yet (see
Appendix A (Theorem 6)). Moreover, let v = Player(j). The Transitive

11

Game generates turns:

Turnj =
⋃

w∈N−(v)j−1

{Steal (yw, w)} , where (9)

∑
w∈N−(v)j−1

yw = min (inv,j−1, Dmgv,j) . (10)

We see that if Dmgv,j = 0, then Turnj = ∅. From the definition of Dmgv,j

and knowing that no strategy in this case can increase any direct trust,
we see that Dmgv,j ≥ 0. Also, it is Lossv,j ≥ 0 because if Lossv,j < 0,
then v has stolen more value than she has been stolen, thus she would
not be following the conservative strategy.

6 Trust Flow

We can now define indirect trust from A to B.
Definition 15 (Indirect Trust). Indirect trust from A to B after turn
j is defined as the maximum possible value that can be stolen from A after
turn j in the setting of TransitiveGame(Gj,A,B).
Note that TrA→B ≥ DTrA→B. The next result shows TrA→B is finite.
Theorem 1 (Trust Convergence Theorem).
Consider a Transitive Game. There exists a turn such that all subsequent
turns are empty.
Proof Sketch. If the game didn’t converge, the Steal () actions would
continue forever without reduction of the amount stolen over time, thus
they would reach infinity. However this is impossible, since there exists
only finite total direct trust.
Proofs of all theorems can be found in Appendix A.

In the setting of TransitiveGame(G,A,B) and j being a turn in
which the game has converged, we use the notation LossA = LossA,j .
LossA is not the same for repeated executions of this kind of game, since
the order in which players are chosen may differ between executions and
conservative players can choose which incoming direct trusts they will
steal and how much from each.

Let G be a weighted directed graph. We investigate the maximum
flow on it. For an introduction to maximum flows see Introduction to
Algorithms, p. 708 [6]. Considering each edge’s capacity as its weight, a
flow assignment X = [xvw]V×V with source A and sink B is valid when:

∀(v, w) ∈ E , xvw ≤ cvw and (11)

12

∀v ∈ V \ {A, B},
∑

w∈N+(v)
xwv =

∑
w∈N−(v)

xvw . (12)

The flow value is
∑

v∈N+(A)
xAv =

∑
v∈N−(B)

xvB. We do not suppose skew

symmetry in X. There exists an algorithm MaxFlow (A, B) that returns
the maximum possible flow from A to B. This algorithm needs full knowl-
edge of the graph and runs in O (|V||E|) time [7]. We refer to the flow value
of MaxFlow (A, B) as maxFlow (A, B).

We will now introduce two lemmas that will be used to prove one of
the central results of this work, the Trust Flow theorem.

Lemma 1 (MaxFlows Are Transitive Games).
Let G be a game graph, let A, B ∈ V and MaxFlow (A, B) the max-
imum flow from A to B executed on G. There exists an execution of
TransitiveGame(G, A, B) such that maxFlow (A, B) ≤ LossA.

Proof Sketch. The desired execution of TransitiveGame() will contain
all flows from the MaxFlow (A, B) as equivalent Steal () actions. The
players will play in turns, moving from B back to A. Each player will
steal from his predecessors as much as was stolen from her. The flows and
the conservative strategy share the property that the total input is equal
to the total output.

Lemma 2 (Transitive Games Are Flows).
Let H =TransitiveGame(G, A, B) for some game graph G and A, B ∈ V.
There exists a valid flow X = {xwv}V×V on G0 such that

∑
v∈V

xAv = LossA.

Proof Sketch. If we exclude the sad players from the game, the Steal ()
actions that remain constitute a valid flow from A to B.

Theorem 2 (Trust Flow Theorem).
Let G be a game graph and A, B ∈ V. It holds that

TrA→B = maxFlow (A, B) .

Proof. From lemma 1 there exists an execution of the Transitive Game
such that LossA ≥ maxFlow (A, B). Since TrA→B is the maximum loss
that A can suffer after the convergence of the Transitive Game, we see
that

TrA→B ≥ maxFlow (A, B) . (13)

13

But some execution of the Transitive Game gives TrA→B = LossA. From
lemma 2, this execution corresponds to a flow. Thus

TrA→B ≤ maxFlow (A, B) . (14)

The theorem follows from (13) and (14).

Note that the maxFlow is the same in the following two cases: If a player
chooses the evil strategy and if that player chooses a variation of the evil
strategy where she does not nullify her outgoing direct trust.

Further justification of trust transitivity through the use of MaxFlow
can be found in the sociological work by Karlan et al. [4] where a direct
correspondence of maximum flows and empirical trust is experimentally
validated.

Here we see another important theorem that gives the basis for risk-
invariant transactions between different, possibly unknown, parties.

Theorem 3 (Risk Invariance Theorem). Let G be a game graph,
A, B ∈ V and l the desired value to be transferred from A to B, with
l ≤ TrA→B. Let also G′ with the same nodes as G such that

∀v ∈ V ′ \ {A},∀w ∈ V ′, DTr′v→w = DTrv→w .

Furthermore, suppose that there exists an assignment for the outgoing
direct trust of A, DTr′A→v, such that

Tr′A→B = TrA→B − l . (15)

Let another game graph, G′′, be identical to G′ except for the following
change: DTr′′A→B = DTr′A→B + l. It then holds that

Tr′′A→B = TrA→B .

Proof. The two graphs G′ and G′′ differ only in the weight of the edge
(A, B), which is larger by l in G′′. Thus the two MaxFlows will choose
the same flow, except for (A, B), where it will be x′′AB = x′AB + l.

A can reduce her outgoing direct trust in a manner that achieves (15),
since maxFlow (A, B) is continuous with respect to A’s outgoing direct
trusts.

14

7 Sybil Resilience

One of our aims is to mitigate Sybil attacks [8] whilst maintaining decen-
tralized autonomy [9]. We begin by extending the definition of indirect
trust.

Definition 16 (Indirect Trust to Multiple Players). Indirect trust
from player A to a set of players, S ⊂ V is defined as the maximum
possible value that can be stolen from A if all players in S are evil, A
is idle and everyone else (V \ (S ∪ {A})) is conservative. Formally, let
choices be the different actions between which the conservative players
choose, then

TrA→S,j = max
j′:j′>j,choices

[
outA,j − outA,j′

]
. (16)

We now extend the Trust Flow theorem to many players.

Theorem 4 (Multi-Player Trust Flow).
Let S ⊂ V and T be an auxiliary player such that, for the sake of argu-
ment, ∀B ∈ S, DTrB→T =∞. It holds that

∀A ∈ V \ S, TrA→S = maxFlow (A, T) .

Proof. If T chooses the evil strategy and all players in S play according to
the conservative strategy, they will have to steal all their incoming direct
trust since they have suffered an infinite loss, thus they will act in a way
identical to following the evil strategy as far as MaxFlow is concerned.
The theorem follows thus from the Trust Flow theorem.

We now define several useful notions to tackle the problem of Sybil at-
tacks. Let Eve be a possible attacker.

Definition 17 (Corrupted Set). Let G be a game graph and let Eve
have a set of players B ⊂ V corrupted, so that she fully controls their
outgoing and incoming direct trusts with any player in V. We call this the
corrupted set. The players B are considered legitimate before the corrup-
tion, thus they may be directly trusted by any player in V.

Definition 18 (Sybil Set). Let G be a game graph. Participation does
not require registration, so Eve can create unlimited players. We call the
set of these players C, or Sybil set. Moreover, Eve controls their direct
and indirect trusts with any player. However, players C can be directly
trusted only by players B ∪ C but not by players V \ (B ∪ C), where B is
the corrupted set.

15

Definition 19 (Collusion). Let G be a game graph. Let B ⊂ V be a
corrupted set and C ⊂ V be a Sybil set. The tuple (B, C) is called collusion
and is controlled by Eve.

Fig. 6: Collusion

C

BV \ (B ∪ C)

From a game theoretic point of view, players V \ (B ∪ C) perceive the
collusion as independent players with a distinct strategy each, whereas in
reality they are all subject to a single strategy dictated by Eve.
Theorem 5 (Sybil Resilience).
Let G be a game graph and (B, C) be a collusion of players on G. It is

TrA→B∪C = TrA→B .

Proof Sketch. The incoming trust to B ∪ C cannot be higher than the
incoming trust to B since C has no incoming trust from V \ (B ∪ C).
We have proven that controlling |C| is irrelevant for Eve, thus Sybil at-
tacks are meaningless. Note that the theorem does not reassure against
deception attacks. Specifically, a malicious player can create several iden-
tities, use them legitimately to inspire others to deposit direct trust to
these identities and then switch to the evil strategy, thus defrauding ev-
eryone that trusted the fabricated identities. These identities correspond
to the corrupted set of players and not to the Sybil set because they have
direct incoming trust from outside the collusion.

In conclusion, we have delivered on our promise of a Sybil-resilient
decentralized financial trust system with invariant risk for purchases.

8 Related Work

Webs-of-trust can be used as a basis for trust as shown by Caronni [10].
PGP [11] implements one and Pathfinder [12] explores its transitive clo-
sure. Freenet [13] implements a transitive web-of-trust for fighting spam.

16

Mui et al. [14] and Jøsang et al. [15] propose ways of calculating trust to-
wards distant nodes. Vişan et al. [16] calculate trust in a hierarchical way.
CA- and Byzantine-based [19] PKIs [17] and Bazaar [18] require central
trusted third parties or at least authenticated membership. FIRE [20],
CORE [21], Grünert et al. [22] and Repantis et al. [23] do not prove any
Sybil resilience. All these systems define trust in a non-financial manner.

We agree with Gollmann [24] in that the meaning of trust should not
be extrapolated. We adopted their advice and urge our readers to adhere
to the definitions of direct and indirect trust as defined here.

Beaver [25] includes a trust model that, to discourage Sybil attacks,
relies on fees, something we chose to avoid. Our motivating application
for exploring trust in a decentralized setting is OpenBazaar, where tran-
sitive financial trust has previously been explored by Zindros [9]. That
work however does not define trust as a monetary value. We are strongly
inspired by Karlan et al. [4] who give a sociological justification for the
central design choice of identifying trust with risk. We appreciate the work
in TrustDavis [26], which proposes a financial trust system with transi-
tivity and in which trust is defined as lines-of-credit, similar to us. We
extended their work by using the blockchain for automated proofs-of-risk,
a feature not available to them at the time.

Our conservative strategy and Transitive Game are similar to the
mechanism proposed by Fugger [27] which is also financially transitive
and is used by Ripple [28] and Stellar [29]. IOUs in those correspond to
reversed edges of trust in our system. The critical difference is that our
trust is expressed in a global currency and there is no money-as-debt.
Furthermore, we proved that trust and maximum flows are equivalent, a
direction not explored in their papers, even though it seems to hold for
their systems as well.

9 Further Research

When a purchase is made, outgoing direct trust must be reduced such
that (15) holds. Trust redistribution algorithms for this will be discussed
in a future paper.

Our game is static. In a future dynamic setting, users should be able
to play simultaneously, freely join, depart or disconnect temporarily from
the network. An interesting analysis would involve modelling repeated
purchases with the respective edge updates on the trust graph and treat-
ing trust on the network as part of the utility function. Other types of
multisigs, such as 1-of-3, can be explored.

17

MaxFlow in our case needs complete network knowledge, which can
lead to privacy issues [30]. Calculating the flows in zero knowledge remains
an open question. SilentWhispers [31] and its centralized predecessor,
PrivPay [32], offer insight into how privacy can be achieved.

A wallet implementation of our game on any blockchain is welcome.
Experimental results can be harvested by a simulation or implementation
of Trust Is Risk. Afterwards, our system can be used in decentralized
social networks, such as Synereo [33], and other applications.

Appendix A: Proofs, Lemmas and Theorems

Lemma 3 (Loss Equivalent to Damage).
Consider a Transitive Game. Let j ∈ N and v = Player (j) such that v
is following the conservative strategy. It holds that

min (inv,j , Lossv,j) = min (inv,j , Damagev,j) .

Proof.
Case 1: Let v ∈ Happyj−1. Then

1. v ∈ Happyj because Turnj = ∅,
2. Lossv,j = 0 because otherwise v /∈ Happyj ,
3. Damagev,j = 0, or else any reduction in direct trust to v would in-

crease equally Lossv,j (line 12), which cannot be decreased again but
during an Angry player’s turn (line 13).

4. inv,j ≥ 0

Thus
min (inv,j , Lossv,j) = min (inv,j , Damagev,j) = 0 .

Case 2: Let v ∈ Sadj−1. Then

1. v ∈ Sadj because Turnj = ∅,
2. inv,j = 0 (line 20),
3. Damagev,j ≥ 0 ∧ Lossv,j ≥ 0.

Thus
min (inv,j , Lossv,j) = min (inv,j , Damagev,j) = 0 .

If v ∈ Angryj−1 then the same argument as in cases 1 and 2 hold when
v ∈ Happyj and v ∈ Sadj respectively if we ignore the argument (1).
Thus the theorem holds in every case.

18

Proof of Theorem 1: Trust Convergence
First of all, after turn j0 player E will always pass her turn because she
has already nullified her incoming and outgoing direct trusts in Turnj0 ,
the evil strategy does not contain any case where direct trust is increased
or where the evil player starts directly trusting another player and the
other players do not follow a strategy in which they can choose to Add ()
direct trust to E. The same holds for player A because she follows the
idle strategy. As far as the rest of the players are concerned, consider the
Transitive Game. As we can see from lines 2 and 12 - 13, it is

∀j,
∑

v∈Vj

Lossv = inE,j0−1 .

In other words, the total loss is constant and equal to the total value
stolen by E. Also, as we can see in lines 1 and 20, which are the only
lines where the Sad set is modified, once a player enters the Sad set,
it is impossible to exit from this set. Also, we can see that players in
Sad ∪ Happy always pass their turn. We will now show that eventually
the Angry set will be empty, or equivalently that eventually every player
will pass their turn. Suppose that it is possible to have an infinite amount
of turns in which players do not choose to pass. We know that the number
of nodes is finite, thus this is possible only if

∃j′ : ∀j ≥ j′, |Angryj ∪Happyj | = c > 0 ∧Angryj 6= ∅ .

This statement is valid because the total number of angry and happy
players cannot increase because no player leaves the Sad set and if it were
to be decreased, it would eventually reach 0. Since Angryj 6= ∅, a player v
that will not pass her turn will eventually be chosen to play. According to
the Transitive Game, v will either deplete her incoming direct trust and
enter the Sad set (line 20), which is contradicting |Angryj ∪Happyj | = c,
or will steal enough value to enter the Happy set, that is v will achieve
Lossv,j = 0. Suppose that she has stolen m players. They, in their turn,
will steal total value at least equal to the value stolen by v (since they
cannot go sad, as explained above). However, this means that, since the
total value being stolen will never be reduced and the turns this will
happen are infinite, the players must steal an infinite amount of value,
which is impossible because the direct trusts are finite in number and in
value. More precisely, let j1 be a turn in which a conservative player is
chosen and

∀j ∈ N, DTrj =
∑

w,w′∈V
DTrw→w′,j .

19

Also, without loss of generality, suppose that

∀j ≥ j1, outA,j = outA,j1 .

In Turnj1 , v steals

St =
m∑

i=1
yi .

We will show using induction that

∀n ∈ N,∃jn ∈ N : DTrjn ≤ DTrj1−1 − nSt .

Base case: It holds that

DTrj1 = DTrj1−1 − St .

Eventually there is a turn j2 when every player in N−(v)j−1 will have
played. Then it holds that

DTrj2 ≤ DTrj1 − St = DTrj1−1 − 2St ,

since all players in N−(v)j−1 follow the conservative strategy, except for
A, who will not have been stolen anything due to the supposition.

Induction hypothesis: Suppose that

∃k > 1 : jk > jk−1 > j1 ⇒ DTrjk
≤ DTrjk−1 − St .

Induction step: There exists a subset of the Angry players, S, that
have been stolen at least value St in total between the turns jk−1 and jk,
thus there exists a turn jk+1 such that all players in S will have played
and thus

DTrjk+1 ≤ DTrjk
− St .

We have proven by induction that

∀n ∈ N,∃jn ∈ N : DTrjn ≤ DTrj1−1 − nSt .

However
DTrj1−1 ≥ 0 ∧ St > 0 ,

thus
∃n′ ∈ N : n′St > DTrj1−1 ⇒ DTrjn′ < 0 .

We have a contradiction because

∀w, w′ ∈ V, ∀j ∈ N, DTrw→w′,j ≥ 0 ,

20

thus eventually Angry = ∅ and everybody passes.

Proof of Lemma 1: MaxFlows Are Transitive Games
We suppose that the turn of G is 0. In other words, G = G0. Let X =
{xvw}V×V be the flows returned by MaxFlow (A, B). For any graph G
there exists a MaxFlow that is a DAG. We can easily prove this using the
Flow Decomposition theorem [34], which states that each flow can be seen
as a finite set of paths from A to B and cycles, each having a certain flow.
We execute MaxFlow (A, B) and we apply the aforementioned theorem.
The cycles do not influence the maxFlow (A, B), thus we can remove
these flows. The resulting flow is a MaxFlow (A, B) without cycles, thus
it is a DAG. Topologically sorting this DAG, we obtain a total order
of its nodes such that ∀ nodes v, w ∈ V : v < w ⇒ xwv = 0 [6]. Put
differently, there is no flow from larger to smaller nodes. B is maximum
since it is the sink and thus has no outgoing flow to any node and A
is minimum since it is the source and thus has no incoming flow from
any node. The desired execution of Transitive Game will choose players
following the total order inversely, starting from player B. We observe that
∀v ∈ V \ {A, B},

∑
w∈V

xwv =
∑

w∈V
xvw ≤ maxFlow (A, B) ≤ inB,0. Player

B will follow a modified evil strategy where she steals value equal to her
total incoming flow, not her total incoming direct trust. Let j2 be the
first turn when A is chosen to play. We will show using strong induction
that there exists a set of valid actions for each player according to their
respective strategy such that at the end of each turn j the corresponding
player v = Player (j) will have stolen value xwv from each in-neighbour
w.

Base case: In turn 1, B steals value equal to
∑

w∈V
xwB, following the

modified evil strategy.

Turn1 =
⋃

v∈N−(B)0

{Steal (xvB, v)}

Induction hypothesis: Let k ∈ [j2−2]. We suppose that ∀i ∈ [k], there
exists a valid set of actions, Turni, performed by v = Player (i) such
that v steals from each player w value equal to xwv.

∀i ∈ [k], Turni =
⋃

w∈N−(v)i−1

{Steal (xwv, w)}

Induction step: Let j = k + 1, v = Player (j). Since all the players
that are greater than v in the total order have already played and all of

21

them have stolen value equal to their incoming flow, we deduce that v
has been stolen value equal to

∑
w∈N+(v)j−1

xvw. Since it is the first time v

plays, ∀w ∈ N− (v)j−1 , DTrw→v,j−1 = DTrw→v,0 ≥ xwv, thus v is able
to choose the following turn:

Turnj =
⋃

w∈N−(v)j−1

{Steal (xwv, w)}

Moreover, this turn satisfies the conservative strategy since

∑
w∈N−(v)j−1

xwv =
∑

w∈N+(v)j−1

xvw .

Thus Turnj is a valid turn for the conservative player v.
We have proven that in the end of turn j2 − 1, player B and all the

conservative players will have stolen value exactly equal to their total
incoming flow, thus A will have been stolen value equal to her outgoing
flow, which is maxFlow (A, B). Since there remains no Angry player, j2
is a convergence turn, thus LossA,j2 = LossA. We can also see that if B
had chosen the original evil strategy, the described actions would still be
valid only by supplementing them with additional Steal () actions, thus
LossA would further increase. This proves the lemma.

Proof of Lemma 2: Transitive Games Are Flows
Let Sad, Happy, Angry be as defined in the Transitive Game. Let G′ be
a directed weighted graph based on G with an auxiliary source. Let also
j1 be a turn when the Transitive Game has converged. More precisely, G′
is defined as follows:

V ′ = V ∪ {T}

E ′ = E ∪ {(T, A)} ∪ {(T, v) : v ∈ Sadj1}

∀(v, w) ∈ E , c′vw = DTrv→w,0 −DTrv→w,j1

∀v ∈ Sadj1 , c′T v = c′T A =∞

22

Fig. 7: Graph G′, derived from G with Auxiliary Source T .

G

A

S

T G \ (S ∪ {A})

∞

∞

In the figure above, S is the set of sad players. We observe that ∀v ∈ V,∑
w∈N−(v)′\{T}

c′wv =

=
∑

w∈N−(v)′\{T}

(DTrw→v,0 −DTrw→v,j1) =

=
∑

w∈N−(v)′\{T}

DTrw→v,0 −
∑

w∈N−(v)′\{T}

DTrw→v,j−1 =

= inv,0 − inv,j1

(17)

and ∑
w∈N+(v)′\{T}

c′vw =

=
∑

w∈N+(v)′\{T}

(DTrv→w,0 −DTrv→w,j1) =

=
∑

w∈N+(v)′\{T}

DTrv→w,0 −
∑

w∈N+(v)′\{T}

DTrv→w,j−1 =

= outv,0 − outv,j1 .

(18)

We can suppose that
∀j ∈ N, inA,j = 0 , (19)

since if we find a valid flow under this assumption, the flow will still be
valid for the original graph.
Next we try to calculate MaxFlow (T, B) = X ′ on graph G′. We observe
that a flow in which it holds that ∀v, w ∈ V, x′vw = c′vw can be valid for
the following reasons:

23

– ∀v, w ∈ V, x′vw ≤ c′vw (Capacity flow requirement (11) ∀e ∈ E)
– Since ∀v ∈ Sadj1 ∪{A}, c′T v =∞, requirement (11) holds for any flow

x′T v ≥ 0.
– Let v ∈ V ′ \ (Sadj1 ∪ {T, A, B}). According to the conservative strat-

egy and since v /∈ Sadj1 , it holds that

outv,0 − outv,j1 = inv,0 − inv,j1 .

Combining this observation with (17) and (18), we have that∑
w∈V ′

c′vw =
∑

w∈V ′
c′wv .

(Flow Conservation requirement (12) ∀v ∈ V ′ \ (Sadj1 ∪ {T, A, B}))
– Let v ∈ Sadj1 . Since v is sad, we know that

outv,0 − outv,j1 > inv,0 − inv,j1 .

Since c′T v =∞, we can set

x′T v = (outv,0 − outv,j1)− (inv,0 − inv,j1) .

In this way, we have∑
w∈V ′

x′vw = outv,0 − outv,j1 and

∑
w∈V ′

x′wv =
∑

w∈V ′\{T}
c′wv + x′T v = inv,0 − inv,j1+

+(outv,0 − outv,j1)− (inv,0 − inv,j1) = outv,0 − outv,j1 .

thus ∑
w∈V ′

x′vw =
∑

w∈V ′
x′wv .

(Requirement 12 ∀v ∈ Sadj1)
– Since c′T A =∞, we can set

x′T A =
∑
v∈V ′

x′Av ,

thus from (19) we have ∑
v∈V ′

x′vA =
∑
v∈V ′

x′Av .

(Requirement 12 for A)

24

We saw that for all nodes, the necessary properties for a flow to be valid
hold and thus X ′ is a valid flow for G. Moreover, this flow is equal to
maxFlow (T, B) because all incoming flows to E are saturated. Also we
observe that∑

v∈V ′
x′Av =

∑
v∈V ′

c′Av = outA,0 − outA,j1 = LossA . (20)

We define another graph, G′′, based on G′.

V ′′ = V ′

E(G′′) = E(G′) \ {(T, v) : v ∈ Sadj}

∀e ∈ E(G′′), c′′e = c′e

If we execute MaxFlow(T, B) on the graph G′′, we will obtain a flow X ′′

in which ∑
v∈V ′′

x′′T v = x′′T A =
∑

v∈V ′′
x′′Av .

The outgoing flow from A in X ′′ will remain the same as in X ′ for two
reasons: Firstly, using the Flow Decomposition theorem [34] and deleting
the paths that contain edges (T, v) : v 6= A, we obtain a flow configuration
where the total outgoing flow from A remains invariant, 3 thus∑

v∈V ′′
x′′Av ≥

∑
v∈V ′

x′Av .

Secondly, we have∑
v∈V ′′

c′′Av =
∑

v∈V ′
c′Av =

∑
v∈V ′

x′Av∑
v∈V ′′

c′′Av ≥
∑

v∈V ′′
x′′Av

⇒
∑

v∈V ′′
x′′Av ≤

∑
v∈V ′

x′Av .

Thus we conclude that ∑
v∈V ′′

x′′Av =
∑
v∈V ′

x′Av . (21)

Let X = X ′′ \ {(T, A)}. Observe that∑
v∈V ′′

x′′Av =
∑
v∈V

xAv .

3 We thank Kyriakos Axiotis for his insights on the Flow Decomposition theorem.

25

This flow is valid on graph G because

∀e ∈ E , ce ≥ c′′e .

Thus there exists a valid flow for each execution of the Transitive Game
such that

∑
v∈V

xAv =
∑

v∈V ′′
x′′Av

(21)=
∑
v∈V ′

x′Av
(20)= LossA,j1 ,

which is the flow X.

Theorem 6 (Conservative World Theorem).
If everybody follows the conservative strategy, nobody steals any amount
from anybody.

Proof. Let H be the game history where all players are conservative and
suppose there are some Steal () actions taking place. Then let H′ be the
subsequence of turns each containing at least one Steal () action. This
subsequence is evidently nonempty, thus it must have a first element.
The player corresponding to that turn, A, has chosen a Steal () action
and no previous player has chosen such an action. However, player A
follows the conservative strategy, which is a contradiction.

Proof of Theorem 5: Sybil Resilience
Let G1 be a game graph defined as follows:

V1 = V ∪ {T1} ,

E1 = E ∪ {(v, T1) : v ∈ B ∪ C} ,

∀v, w ∈ V1 \ {T1}, DTr1
v→w = DTrv→w ,

∀v ∈ B ∪ C, DTr1
v→T1 =∞ ,

where DTrv→w is the direct trust from v to w in G and DTr1
v→w is the

direct trust from v to w in G1.
Let also G2 be the induced graph that results from G1 if we remove the
Sybil set, C. We rename T1 to T2 and define L = V \ (B ∪ C) as the set of
legitimate players to facilitate comprehension.

26

Fig. 8: Graphs G1 and G2

G1G1

G2

T2

T1L

L

B

B

C
∞ ∞

∞

According to theorem (4),

TrA→B∪C = maxFlow1 (A, T1) ∧ TrA→B = maxFlow2 (A, T2) . (22)

We will show that the MaxFlow of each of the two graphs can be used
to construct a valid flow of equal value for the other graph. The flow
X1 = MaxFlow (A, T1) can be used to construct a valid flow of equal
value for the second graph if we set

∀v ∈ V2 \ B, ∀w ∈ V2, xvw,2 = xvw,1 ,

∀v ∈ B, xvT2,2 =
∑

w∈N+
1 (v)

xvw,1 ,

∀v, w ∈ B, xvw,2 = 0 .

Therefore
maxFlow1 (A, T1) ≤ maxFlow2 (A, T2)

Likewise, the flow X2 = MaxFlow(A, T2) is a valid flow for G1 because
G2 is an induced subgraph of G1. Therefore

maxFlow1 (A, T1) ≥ maxFlow2 (A, T2)

We conclude that

maxFlow (A, T1) = maxFlow (A, T2) , (23)

thus from (22) and (23) the theorem holds.

27

Appendix B: Algorithms

This algorithm calls the necessary functions to prepare the new graph.

Execute Turn
Input : old graph Gj−1, player A ∈ Vj−1, old capital

CapA,j−1, TentativeTurn
Output : new graph Gj, new capital CapA,j, new history Hj

1 executeTurn(Gj−1, A, CapA,j−1, TentativeTurn) :
2 (Turnj, NewCap) = validateTurn(Gj−1, A, CapA,j−1,

TentativeTurn)
3 return(commitTurn(Gj−1, A, Turnj, NewCap))

The following algorithm validates that the tentative turn produced by
the strategy respects the rules imposed on turns. If the turn is invalid, an
empty turn is returned.

Validate Turn
Input : old Gj−1, player A ∈ Vj−1, old CapA,j−1, Turn
Output : Turnj, new CapA,j

1 validateTurn(Gj−1, A, CapA,j−1, Turn) :
2 Yst = Yadd = 0
3 Stolen = Added = ∅
4 for (action ∈ Turn)
5 action match do
6 case Steal(y, w) do
7 if (y > DTrw→A,j−1 or y < 0 or w ∈ Stolen)
8 return(∅, CapA,j−1)
9 else Yst += y; Stolen = Stolen ∪ {w}

10 case Add(y, w) do
11 if (y < -DTrA→w,j−1 or w ∈ Added)
12 return(∅, CapA,j−1)
13 else Yadd += y; Added = Added ∪ {w}
14 if (Yadd - Yst > CapA,j−1) return(∅, CapA,j−1)
15 else return(Turn, CapA,j−1 + Yst − Yadd)

Finally, this algorithm applies the turn to the old graph and returns the
new graph, along with the updated capital and history.

Commit Turn
Input : old Gj−1, player A ∈ Vj−1, NewCap, Turnj

Output : new Gj, new CapA,j, new Hj

1 commitTurn(Gj−1, A, NewCap, Turnj) :

28

2 for ((v, w) ∈ Ej) DTrv→w,j = DTrv→w,j−1
3 for (action ∈ Turnj)
4 action match do
5 case Steal(y, w) do DTrw→A,j = DTrw→A,j−1 − y
6 case Add(y, w) do DTrA→w,j = DTrA→w,j−1 + y
7 CapA,j = NewCap; Hj = (A, Turnj)
8 return(Gj, CapA,j, Hj)

It is straightforward to verify the compatibility of the previous algorithms
with the corresponding definitions.

References

1. Sanchez W.: Lines of Credit. https://gist.github.com/drwasho/
2c40b91e169f55988618#part-3-web-of-credit (2016)

2. Nakamoto S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
3. Antonopoulos A. M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

O’Reilly Media, Inc. (2014)
4. Karlan D., Mobius M., Rosenblat T., Szeidl A.: Trust and social collateral. The

Quarterly Journal of Economics, pp. 1307-1361 (2009)
5. Thyfronitis Litos O. S., Zindros D.: Trust Is Risk: A Decentralized Financial Trust

Platform. IACR Cryptology ePrint Archive (2017)
6. Cormen T. H., Leiserson C. E., Rivest R. L., Stein C.: Introduction to Algorithms

(3rd ed.). MIT Press and McGraw-Hill (2009)
7. Orlin J. B.: Max Flows in O(nm) Time, or Better. STOC ’13 Proceedings of the

forty-fifth annual ACM symposium on Theory of computing, pp.765-774, ACM,
New York, doi:10.1145/2488608.2488705 (2013)

8. Douceur J. R.: The Sybil Attack. International workshop on Peer-To-Peer Systems
(2002)

9. Zindros D. S.: Trust in Decentralized Anonymous Marketplaces (2015)
10. Caronni G.: Walking the web of trust. Enabling Technologies: Infrastructure for

Collaborative Enterprises, WET ICE 2000, Proceedings, IEEE 9th International
Workshops, pp. 153-158 (2000)

11. Zimmermann P.: PGP Source Code and Internals. The MIT Press (1995)
12. Penning H.P.: PGP pathfinder pgp.cs.uu.nl
13. Clarke I., Sandberg O., Wiley B., Hong T. W.: Freenet: A Distributed Anonymous

Information Storage and Retrieval System. H. Federrath, Designing Privacy En-
hancing Technologies pp. 46-66, Berkeley, USA: Springer-Verlag Berlin Heidelberg
(2001)

14. Mui L., Mohtashemi M., Halberstadt A.: A Computational Model of Trust and
Reputation. System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii
International Conference, pp. 2431-2439 IEEE (2002)

15. Jøsang A., Ismail R.: The Beta Reputation System. Proceedings of the 15th Bled
Electronic Commerce Conference (2002)

16. Vişan A., Pop F., Cristea V.: Decentralized Trust Management in Peer-to-Peer
Systems. 10th International Symposium on Parallel and Distributed Computing,
pp. 232-239, IEEE (2011)

29

https://gist.github.com/drwasho/2c40b91e169f55988618#part-3-web-of-credit
https://gist.github.com/drwasho/2c40b91e169f55988618#part-3-web-of-credit
pgp.cs.uu.nl

17. Adams C., Lloyd S.: Understanding PKI: concepts, standards, and deployment
considerations. Addison-Wesley Professional (2003)

18. Post A., Shah V., Mislove A.: Bazaar: Strengthening User Reputations in Online
Marketplaces. Proceedings of NSDI’11: 8th USENIX Symposium on Networked
Systems Design and Implementation, p. 183 (2011)

19. Lamport L., Shostak R., Pease M.: The Byzantine Generals Problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 4.3, pp. 382-401
(1982)

20. Huynh T. D., Jennings N. R., Shadbolt N. R.: An Integrated Trust and Reputa-
tion Model for Open Multi-Agent Systems. Autonomous Agents and Multi-Agent
Systems, 13(2), pp. 119-154 (2006)

21. Michiardi P., Molva R.: Core: a Collaborative Reputation Mechanism to Enforce
Node Cooperation in Mobile Ad-hoc Networks. Advanced Communications and
Multimedia Security, pp. 107-121, Springer US (2002)

22. Grünert A., Hudert S., König S., Kaffille S., Wirtz G.: Decentralized Reputa-
tion Management for Cooperating Software Agents in Open Multi-Agent Systems.
ITSSA, 1(4), pp. 363-368 (2006)

23. Repantis T., Kalogeraki V.: Decentralized Trust Management for Ad-hoc Peer-to-
Peer Networks. Proceedings of the 4th International Workshop on Middleware for
Pervasive and Ad-hoc Computing, MPAC 2006, p. 6, ACM (2006)

24. Gollmann D.: Why trust is bad for security. Electronic notes in theoretical com-
puter science, 157(3), 3-9 (2006)

25. Soska K., Kwon A., Christin N., Devadas S.: Beaver: A Decentralized Anonymous
Marketplace with Secure Reputation (2016)

26. DeFigueiredo D. D. B., Barr E. T.: TrustDavis: A Non-Exploitable Online Repu-
tation System. CEC, Vol. 5, pp. 274-283 (2005)

27. Fugger R.: Money as IOUs in Social Trust Networks & A Proposal for a De-
centralized Currency Network Protocol. http://archive.ripple-project.org/
decentralizedcurrency.pdf (2004)

28. Schwartz D., Youngs N., Britto, A.: The Ripple protocol consensus algorithm.
Ripple Labs Inc White Paper, 5 (2014)

29. Mazieres, D.: The stellar consensus protocol: A federated model for internet-level
consensus. Stellar Development Foundation (2015)

30. Narayanan A., Shmatikov V.: De-anonymizing Social Networks. Proceedings
of the 2009 30th IEEE Symposium on Security and Privacy, pp. 173-187,
10.1109/SP.2009.22 (2009)

31. Malavolta G., Moreno-Sanchez P., Kate A., Maffei M.: SilentWhispers: Enforcing
Security and Privacy in Decentralized Credit Networks (2016)

32. Moreno-Sanchez P., Kate A., Maffei M., Pecina K.: Privacy preserving payments
in credit networks. Network and Distributed Security Symposium (2015)

33. Konforty D., Adam Y., Estrada D., Meredith L. G.: Synereo: The Decentralized
and Distributed Social Network (2015)

34. Ahuja R. K., Magnanti T. L., Orlin J. B.: Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall https://ocw.mit.edu. License: Creative Com-
mons BY-NC-SA. (1993)

35. Jøsang A., Ismail R., Boyd C.: A Survey of Trust and Reputation Systems for
Online Service Provision. Decision Support Systems, 43(2), pp. 618-644 (2007)

30

http://archive.ripple-project.org/decentralizedcurrency.pdf
http://archive.ripple-project.org/decentralizedcurrency.pdf
https://ocw.mit.edu

	Trust Is Risk: A Decentralized Financial Trust Platform

