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TERMinator Suite: Benchmarking

Privacy-Preserving Architectures
Dimitris Mouris, Nektarios Georgios Tsoutsos, and Michail Maniatakos

Abstract

Security and privacy are fundamental objectives characterizing contemporary cloud computing. De-

spite the wide adoption of encryption for protecting data in transit and at rest, data in use remains

unencrypted inside cloud processors and memories, as computation is not applicable on encrypted values.

This limitation introduces security risks, as unencrypted values can be leaked through side-channels or

hardware Trojans. To address this problem, encrypted architectures have recently been proposed, which

leverage homomorphic encryption to natively process encrypted data using datapaths of thousands of

bits. In this case, additional security protections are traded for higher performance penalties, which

drives the need for more efficient architectures. In this work, we develop benchmarks specifically

tailored to encrypted computers, to enable comparisons across different architectures. Our benchmark

suite, dubbed TERMinator, is unique as it avoids “termination problems” that prohibit making control-

flow decisions and evaluating early termination conditions based on encrypted data, as these can leak

information. Contrary to generic suites that ignore the fundamental challenges of encrypted computation,

our algorithms are tailored to the security primitives of the target encrypted architecture, such as the

existence of branching oracles. In our experiments, we compiled our benchmarks for the Cryptoleq

architecture and evaluated their performance for a range of security parameters.

Index Terms

Benchmarks, data privacy, encrypted computation, termination problem, performance evaluation

I. INTRODUCTION

Cloud computing is consistently growing in popularity, since it offers strong computational power for

both individuals and companies while providing key advantages for doing business. On the cloud, however,

user data can be exposed to attacks from both the cloud provider and third parties. To mitigate these
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risks, cloud providers have adopted encryption for data in transit or at rest [4], [10], but all meaningful

data manipulations remain unencrypted in cloud processors and volatile memories. Thus, the data in use

can be exposed to security risks, including side-channel attacks [14], as well as hardware Trojans [2],

[11], [12], which can leak sensitive information.

As these risks are inherent in unencrypted computer architectures, including commodity architectures

such as x86 and ARM, recent efforts focused on improving hardware security by enabling native processing

of encrypted values in the processor pipeline. Indeed, encrypted computer architectures (e.g., [7], [13])

can leverage the properties of homomorphic encryption (e.g., [8]) and manipulate data directly in the

encrypted domain. This approach draws a trade-off between security and efficiency, as larger security

parameter sizes yield longer ciphertexts (e.g., 2048-bit values), but minimize the attack surface and

security risks of outsourcing computations to a third party.

One limitation inherent to encrypted computation is the inability to make runtime decisions when the

control values are encrypted. In fact, if the termination condition remains encrypted, a host executing

an encrypted program may not be able to decide if or when the execution ends (i.e., there exists a

“termination problem” [3]). In general, the host is unable to make branch decisions using encrypted data,

which motivates the use for special constructions, dubbed BRanching Oracles (BROs), which obliviously

evaluate the branch outcomes [7].

At the same time, in order to improve the efficiency of existing encrypted architectures, as well

as perform comparisons between contemporary and future processor instantiations, there is a need for

performance benchmarks. Despite the continuous evolution of benchmarking algorithms, existing suites

are optimized for unencrypted computation, without provisions for privacy-preservation during execution

[5]. Likewise, existing benchmarks do not consider the existence of BRO constructions and the termination

problems are not addressed in the algorithm design. This lack of specialized benchmarks makes it harder

to perform meaningful comparisons across different architectures, which is a prerequisite for improving

the efficiency of encrypted computation.

Our contribution: To address this problem, in our research we developed a novel benchmark suite for

encrypted computer architectures, which avoids termination problems while maintaining data privacy.

Our observation is that we can speculatively evaluate alternative execution paths for a given number

of iterations, before judiciously combining the results. This is possible since the underlying encrypted

architecture supports a privacy-preserving BRO. For our benchmarks, we use the Cryptoleq Enhanced

Assembly Language (CEAL) [7] to develop privacy-preserving versions of fourteen algorithms from four

benchmark classes (namely synthetic, microbenchmarks, kernels and encoder benchmarks), and in our

experiments we evaluate their performance over different security configurations. Contrary to traditional
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unencrypted benchmarks (such as gcc, bzip2, mcf, etc.), our algorithms are purposefully structured

to prevent data leakage while performing homomorphic operations on ciphertexts.

The rest of the paper is organized as follows: In Section II we discuss background notions, while

in Section III we elaborate on three examples of privacy-preserving algorithms included in our bench-

marks suite. Our experimental evaluation is presented in Section IV and our conclusions summarized in

Section V.

II. PRELIMINARIES

Homomorphic Encryption: There exist encryption algorithms that support meaningful manipulation of

encrypted data, such as addition (e.g., [8]) or multiplication (e.g., [9]). In this case, a homomorphic

function can be applied directly on ciphertexts so that when the result is eventually decrypted, it will be

the same as applying addition or multiplication on plaintexts. This enables users to encrypt their data and

outsource all manipulations to a third party, without sacrificing privacy. Using homomorphic operations in

a processor pipeline, however, requires special care to ensure that branching does not reveal any sensitive

data by observing side-channel information (e.g., the branch target). This risk is mitigated using BROs

that return an encryption of the correct branch target [7].

Termination problems: As observed in [3], an inherent limitation of homomorphic processing is that

an encrypted computation host remains oblivious to any termination conditions of the executed program.

Indeed, if a loop iterates on a condition over an encrypted variable (e.g., while(x > 0)), the host should

not learn if x > 0, or side-channel information may be leaked. In effect, executing programs with

encrypted variables cannot depend on early termination conditions or ciphertext-dependent decisions.

Thus, before encrypting sensitive program variables, the algorithm should be transformed to its privacy-

preserving counterpart, which trades efficiency for side-channel resistance by obliviously evaluating all

possible iterations.

Threat Model: To formalize our assumptions about the applicable risks to user data, we introduce

a concrete threat model. In our model, program evaluation is outsourced to a rational, honest-but-

curious third party, which implements the encrypted computer architecture correctly, but has incentives to

eavesdrop sensitive user data (e.g., to sell targeted advertisements). Likewise, we assume that adversaries

may compromise a vulnerable third party and eavesdrop on sensitive data in volatile or non-volatile

memory. In our developed benchmarks, we explicitly define which variables are sensitive and should

remain encrypted to preserve data privacy.

BRO Instantiation: Regarding ciphertext-controlled branch decisions, we assume that third parties and

adversaries can recover side-channel information by observing branch outcomes. To mitigate this risk,



4

we inherit the security assumptions of BROs, which is treated as decision-making black boxes, and all

inputs and outputs are encrypted. Without loss of generality, our BRO instantiation employs function G

introduced in [7, Section IV-B]), which outputs a re-encryption of its second argument if the plaintext

value of its first argument is positive, otherwise outputs the encryption of integer zero; due to probabilistic

encryption guarantees, these outputs are indistinguishable and protected against eavesdropping.

III. ALGORITHMS IN BENCHMARK SUITE

In this section, we introduce our benchmark suite comprising fourteen privacy-preserving benchmarks

without termination problems: Simon, Speck, Jenkins, Private Information Retrieval (PIR), Insertion

Sort, N-Queens, Private Set Intersection (PSI), Tak function, Deduplication, Fibonacci, Factorial, Matrix

Multiplication, Set Permutations, and Primes (Sieve of Eratosthenes).

Classes: Our benchmarks are categorized in four classes, depending on the type and features of the main

loop iteration:

• Synthetic: This class comprises of primitive recursive benchmarks (such as Tak [6] and N-Queens),

which allow assessing the universality of an abstract machine with respect to encrypted computation,

as well as the performance of encrypted data structures (e.g., a stack).

• Microbenchmarks: This class evaluates the performance of homomorphic addition and multiplica-

tion, which are critical micro-operations of encrypted abstract machines. Examples in this class

include Factorial (multiplication-intensive), Fibonacci (addition-intensive) and PIR (both addition-

and multiplication-intensive).

• Kernels: This class focuses on evaluating essential core loops of different real-life applications,

which combine memory swaps, branch decisions and arithmetic operations. Example benchmarks in

this class include Insertion Sort, PSI, Deduplication (i.e., Set Union), Matrix Multiplication, Primes

(i.e., Sieve of Eratosthenes) and Permutations.

• Encoder Benchmarks: This class comprises three real-life cryptographic and hash applications (namely

Speck, Simon [1] and Jenkins), which are demanding in terms of bitwise operations and branch

decisions on encrypted values, and allow assessing the BRO of the target abstract machine.

Rationale: Our benchmarks are specifically tailored for private computation in the encrypted domain,

and an important motivation for our selections is the ability to eliminate branch decisions over encrypted

control values (i.e., avoid termination problems and side-channel leakage). For that matter, in this work

we ensure that the control flow of our algorithms does not rely on runtime data dependencies, such as

early termination conditions within a loop (e.g., break statements based on sensitive values). As a result,

our benchmarks can preserve the privacy of encrypted values, leveraging the security primitives of the
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underlying abstract machine, such as a BRO, which can be founded on hardware root of trust, as well

as cryptographic primitives, depending on the security assumptions of the target architecture itself.

Since our benchmark selection is targeting encrypted computation processors, our objective is to

assess the universality of the underlying execution engine (e.g., the ability to evaluate primitive recursive

functions), the ability to support data structures in the encrypted domain (e.g., an encrypted stack), as

well as the ability of oblivious branch decisions (e.g., encrypted multiplexing). These are fundamental

properties of encrypted computation, and their runtime overhead can be assessed by our algorithms. In

fact, our benchmarks are tied to real-life privacy applications: for example, encrypted matrix multiplication

is beneficial in deep learning with private coefficients, PSI has applications in computing collision courses

of aerial objects privately (e.g., military satellites), while Deduplication is a key algorithm for removing

redundant files in cloud storage.

Moreover, our benchmarks are oblivious of the underlying encryption scheme (which depends solely on

the underlying encrypted architecture that is being measured), and allow evaluating the microarchitectural

features of a target encrypted processor implementation. Since encrypted computation relies on randomly

permuted memory spaces, our algorithms enable assessing different cache architecture levels, sizes and

replacement policies, as well as different branch prediction strategies. In addition, our algorithms allow

evaluating the performance of different homomorphic ALU implementations (e.g., pipelined ALUs), as

well as memory performance using intensive data transfers (e.g., permutations).

In the next paragraphs, we elaborate on the design and privacy-preservation challenges of three

representative benchmarks: Tak, Speck and Insertion Sort.1

Notation: We employ the same mathematical notation as earlier work [7, Section IV-A], where X̃

corresponds to the encryption of X , while +̂ , −̂, ? and D2 represent homomorphic addition, subtraction,

multiplication and integer division by 2 (i.e., right shift [7, Alg. 2]) respectively. Likewise, =̂ represents

private equality based on function G, and returns 1̃ if the operands map to equal plaintexts, or 0̃ otherwise

[7, Eq. 23].

A. Synthetic: Private Tak Function Benchmark

The Tak function is a synthetic benchmark, often used to demonstrate recursion performance. The

textbook version uses variables x, y, z as inputs, and unless x ≤ y, each invocation spawns three recursive

calls, where each variable is reduced by one [6].

1For conciseness, we elaborate on the implementation of a set of representative benchmarks; the source of all fourteen

benchmarks, along with experimental results and documentation, is available at https://github.com/momalab/TERMinatorSuite.

https://github.com/momalab/TERMinatorSuite
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Algorithm 1 Private Tak Function
Private Vars: x, y, z, sel, xold, yold

1: procedure TAK(x, y, z, iter)

2: sel← G(x −̂ y, 1̃)

3: while iter > 0 do

4: iter ← iter − 1

5: xold ← (1̃ −̂ sel) ? xold +̂ sel ? x

6: yold ← (1̃ −̂ sel) ? yold +̂ sel ? y

7: x← (1̃ −̂ sel) ? x +̂ sel ? TAK(x −̂ 1̃, y, z, iter)

8: y ← (1̃ −̂ sel) ? y +̂ sel ? TAK(y −̂ 1̃, z, xold, iter)

9: sel← G(x −̂ y, 1̃)

10: z ← (1̃ −̂ sel) ? y +̂ sel ? TAK(z −̂ 1̃, xold, yold, iter)

11: return z

Algorithm 2 Private Insertion Sort
Private Vars: array, x, y, diff,max,min

1: procedure INSERTIONSORT(array[N])

2: for i ∈ {1, . . . , N − 1} do

3: j ← i

4: while j 6= 0 do

5: x← array[j − 1], y ← array[j]

6: max← G(x −̂ y, x) +̂ G(y −̂ x, y)

7: max← max +̂ (x =̂ y) ? x

8: min← max −̂ G(x −̂ y, x −̂ y) −̂ G(y −̂ x, y −̂ x)

9: array[j − 1]← min, array[j]← max, j ← j − 1

10: return array

Threat Model & Challenges: In our benchmark, variables x, y, z are encrypted to preserve their privacy.

This requirement, however, prevents evaluating the termination condition, as x ≤ y comparisons are not

meaningful over ciphertexts.

Privacy-Preserving Algorithm: To enable meaningful comparisons between ciphertexts x and y, we

leverage function G to compute an encrypted bit sel (Algorithm 1, lines 2 & 9). The latter allows

multiplexing two variables (e.g., x and y) by evaluating an expression homomorphic to (1−sel)·x+sel ·y
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Algorithm 3 Private Speck32 Encryption Algorithm
Private Vars: x, y, xor, bit, {x, y}LSB, L,R, subkey[RNDS]

1: procedure XOR(x, y) . The word size WS = 16 for Speck32

2: xor ← 0̃

3: for i ∈ {0, . . . ,WS − 1} do . For all bits xLSB ⊕ yLSB

4: xLSB ← x −̂ D2(x) −̂ D2(x) . Compute LSB(x)

5: yLSB ← y −̂ D2(y) −̂ D2(y) . Compute LSB(y)

6: bit← (xLSB +̂ yLSB) ? (1 −̂ (xLSB ? yLSB)) . ⊕

7: for j ∈ {0, . . . , i− 1} do bit← bit +̂ bit

8: xor ← xor +̂ bit . Add corresponding bit

9: x← D2(x), y ← D2(y) . Continue with next bits

10: return xor

11: procedure ROR(x, POSITIONS)

12: for i ∈ {0, . . . , POSITIONS − 1} do . Rotate right N times

13: lsb← x −̂ D2(x) −̂ D2(x), y ← lsb

14: for i ∈ {0, . . . , WS − 2} do y ← y +̂ y

15: x← y +̂ D2(x −̂ lsb)

16: return x

17: procedure SPECK32ENCRYPT(L,R, subkey[RNDS])

18: for i ∈ {0, . . . , RNDS − 1} do

19: R← XOR( ROR(R, 7) +̂ L, subkey[i] )

20: L← XOR( ROR(L, 14), R )

21: return L,R . Ciphertext output

(lines 5-8 & 10). The maximum recursion depth is controlled by variable iter, which depends only on

the maximum potential range of inputs (i.e., the execution steps are oblivious to the actual private inputs).

Still, any additional recursions are innocuous, as homomorphic multiplexors maintain the correct result.

B. Kernels: Private Insertion Sort Benchmark

Insertion Sort enables in-place sorting of an input array, by left-shifting each array element to its

correct (sorted) position. The textbook algorithm iterates over all array elements and compares the j-th

element with its previous one; if the higher-index element is larger, the algorithm swaps the two elements.
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Fig. 1. Measured execution time of additional benchmarks, using a 512- and 1024-bit security parameter size and input parameters

from Table I.

Fig. 2. Measured execution time for the Tak function benchmark, for different security parameter sizes and different input

ranges (β = 8).

Fig. 3. Measured execution time for the Insertion Sort benchmark, for different security parameter and input array sizes (β = 16).

Fig. 4. Measured execution time for the Speck & Simon cipher benchmarks using different security parameter sizes, based on

the 32-bit input vector and β = 16.

Threat Model & Challenges: In our benchmark, all elements of the input array are encrypted to protect

their privacy. As a result, the algorithm cannot compare two array elements and decide if these elements

should be swapped.

Privacy-Preserving Algorithm: In Algorithm 2, we are able to compare two encrypted values x and y
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(i.e., find the min and max) using function G and the homomorphic difference x −̂ y. The algorithm

exhausts all possible iterations, so the number of executed steps does not depend on the input array

elements.

C. Encoders: Speck32 Cipher Benchmark

Speck is a lightweight block cipher that is based on the Add-Rotate-XOR (ARX) paradigm [1].

Essentially, each round of Speck encryption uses bitwise rotations and XOR operations to compress

an input block and round subkey into an output block, and multiple rounds are cascaded resembling a

standard “Feistel” structure. By design, Speck’s performance is optimized for software implementations.

Threat Model & Challenges: In our benchmark, all inputs and outputs are encrypted to preserve

their privacy (e.g., against side-channel leakage). An important challenge is the ability perform bitwise

operations (such as XOR and rotations) that do not have homomorphic counterparts, as well as oblivious

runtime decisions based on ciphertext bits.

Privacy-Preserving Algorithm: To enable bitwise operations in the encrypted domain, we leverage the

homomorphic equivalent of integer division by 2 (D2) and privately iterate over all bits in a block using

two new helper functions, namely XOR and ROR (Alg. 3). According to [1], a 32-bit input block requires

RNDS = 22 rounds and a 64-bit key that is expanded to 22 round subkeys using Speck’s key schedule.

IV. EXPERIMENTAL EVALUATION

For our evaluation, we instantiated all fourteen benchmarks in our suite using the CEAL programming

language [7], which offers native support for function G.2 In our experiments, we varied the input

length (N ), the bit-size of the public encryption key (λ), as well as the number of precision bits for

integer datatypes (β).3 CEAL public keys are defined as the product of two primes, so larger λ values

provide better resistance to cryptanalysis; however, as λ increases, homomorphic operations and function

G invocations become slower. Likewise, since the complexity of homomorphic multiplication (?) is O(β2)

[7, Section IV-C], in our experiments we opted for the minimum β fitting the input of each benchmark.

Experimental Setup: We measured the runtime performance of our benchmarks in both the encrypted

and unencrypted domain, using the Cryptoleq virtual machine implemented within the CEAL compiler,

2All benchmarks are also available in C/C++ to enable flexible integration with different encrypted architectures and BRO

instantiations.
3In CEAL programs, the range of positive integers is limited by 2β [7, Fig. 3], and each positive integer has a negative

counterpart.
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configured with the GNU GMP library for arbitrary-precision arithmetic. All experiments were performed

on Ubuntu 16.04, running on a 3.40 GHz Intel i7-6700 system with 16 GBs of memory.

Runtime Performance Results: In Fig. 2 we present our performance evaluation for the synthetic

class example (Section III-A), while our Kernel and Encoder benchmark examples (Sections III-B and

III-C) are presented in Figs. 3 and 4 respectively. An overview of the runtime performance of our

additional benchmarks is also reported in Fig. 1. As we observe from our experiments, the Tak runtime

performance is exponentially dependent on the input value range (i.e., the value of iter), while our

insertion sort experiments demonstrate a superlinear dependence on the input array size. Likewise, the

runtime overhead of Speck increases superlinearly with the size of λ, but is always faster compared to

the Simon cipher from the same family [1]. For comparison, our graphs also include the unencrypted

runtimes (solid-color bars) overlaid on the corresponding encrypted runtimes (i.e., patterned bars).

Benchmark Characterization: We further configured the Cryptoleq virtual machine to collect execution

statistics for all fourteen benchmarks. As reported in Table I, our suite covers a diverse set of algorithms,

ranging from 5·103 to 3·106 function G invocations, as well as 0 to 103 private equality invocations. Such

diversity renders TERMinator a suitable candidate for evaluating and comparing encrypted architecture

implementations.

TABLE I

Function G & Private Equality INVOCATIONS

Type Benchmark β Inputs
Invocations

G Fun Eq. ( =̂ )

Snth N-Queens 16 N = 4 2988500 0

Snth Tak 8 x, y, z ∈ [0− 3] 260544 0

Encd Speck Cipher 16 SPECK32 Test V. 466752 0

Encd Simon Cipher 16 SIMON32 Test V. 1204736 0

Encd Jenkins 32 ”ab, cd” 400448 0

Krnl Insertion Sort 16 N = 32 146320 496

Krnl PSI 16 [16] ∩ [16] 61416 1024

Krnl Deduplication 16 N = 32 288260 497

Krnl Permutations 16 4 elements 0 0

Krnl Eratosthenes 16 256 primes 73984 0

Krnl Matrix Mult. 16 [8×8]×[8×8] 93312 0

Micr PIR 16 db size = 32 4656 16

Micr Factorial 16 fact(8), iter = 16 9280 16

Micr Fibonacci 16 fib(24), iter = 32 9312 32
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V. CONCLUDING REMARKS

Encrypted computation comes at a high cost, and development of efficient computer architectures that

enable native processing of encrypted values can significantly improve runtime performance. In this work,

we developed an open-source benchmark suite over a diverse set of privacy-preserving algorithms, which

avoids termination problems using a branching oracle primitive, and enables comparisons across different

encrypted architectures. As our case study, we report baseline runtime measurements and execution

statistics using the Cryptoleq virtual machine and GMP arbitrary-precision library.
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