
Cyclic Locking and Memristor-based Obfuscation Against
CycSAT and Inside Foundry Attacks

Amin Rezaei, Yuanqi Shen, Shuyu Kong, Jie Gu, and Hai Zhou
Northwestern University, Evanston, USA

me@aminrezaei.com, {yuanqishen2020, shuyukong2020}@u.northwestern.edu, {jgu, haizhou}@northwestern.edu

Abstract—The high cost of IC design has made chip protection
one of the first priorities of the semiconductor industry. Although
there is a common impression that combinational circuits must
be designed without any cycles, circuits with cycles can be
combinational as well. Such cyclic circuits can be used to reliably
lock ICs. Moreover, since memristor is compatible with CMOS
structure, it is possible to efficiently obfuscate cyclic circuits using
polymorphic memristor-CMOS gates. In this case, the layouts of
the circuits with different functionalities look exactly identical,
making it impossible even for an inside foundry attacker to
distinguish the defined functionality of an IC by looking at
its layout. In this paper, we propose a comprehensive chip
protection method based on cyclic locking and polymorphic
memristor-CMOS obfuscation. The robustness against state-of-
the-art key-pruning attacks is demonstrated and the overhead of
the polymorphic gates is investigated.

Keywords—Chip Protection; Cyclic Locking; Obfuscation;
Memristor; CycSAT Attack; Inside Foundry Attack

I. INTRODUCTION

With increasing the design costs of Integrated Circuits (ICs),
chip protection has become one of the main concerns for the
semiconductor industry. By using Reverse Engineering (RE)
techniques, gate-level netlist can be extracted and duplicated
without the authorization of the chip holder [1]. Moreover,
many semiconductor companies contract out manufacturing of
their designs to third party foundries. With the growing number
of untrusted foundries, the possibility of Inside Foundry Attack
(IFA) is also escalating [5]. Locking is a logical request to
make sure that the correct behavior only happens when a
correct key is applied and the correct key cannot be easily
figured out by studying the logic of the locked circuit. On the
other hand, obfuscation is a structural request to make sure that
the correct circuit cannot be revealed by any structural analysis
of the obfuscated circuit. To protect IC design against RE and
IFA, first the design should be locked and then obfuscated,
while its functionality is preserved.

A. Challenges

A lot of research has been done in software protection.
However, since the functionality of an IC may be completely
or partially known by other parties, hardware protection is en-
tirely different from software protection. Most of the previous
works have focused on hardware protection for acyclic combi-
national circuits. The main approach in acyclic combinational
protection is logic encryption in which the functionality of the
circuit is locked by inserting key-controlled gates [6, 7] and

���������	� 
�����	�

���
���

���
���

Fig. 1: Memristor (arrows show direction of the current)

then a logic resynthesis is done to obfuscate the whole circuit.
A more advanced technique is called IC camouflaging, in
which the cells are configured in a way that perform different
functions, while maintain an identical look in RE-based attacks
[8]. In this case the locking and the obfuscation are done
concurrently.

However, the SAT-based attack [9] on acyclic combinational
circuits allows the attacker to infer the correct values of the key
inputs using only a small number of input-output observations
taken from an activated IC. The proposed attack threatens
almost all the previous efforts in acyclic locking. Even with
applying incremental anti-SAT methods [10, 11], state-of-
the art IC camouflaging techniques, that take advantage of
dummy contact [12] and doping-based [13] obfuscations, are
still vulnerable to IFA. Because in order to manufacture the
chip, the third party foundry should have access to the connec-
tivity information (i.e. dummy/true contacts and always-on/off
CMOS transistors.) Thus, the main challenges in hardware
protection are twofold:
• Proposing locking schemes to defeat key-pruning attacks;
• Finding circuit obfuscation solutions to prevent IFA.

B. Contributions

There is a common impression that combinational circuits
must be designed without any cycles. However, circuits with
cycles can be combinational as well [17]. But, what is
the purpose of introducing such circuits? We believe cyclic
combinational circuits -if carefully designed- can make logic
locking stronger. Although there are quite a few works in
acyclic combinational locking, cyclic locking has not been
considered carefully. A cyclic locking for originally acyclic
combinational circuits is proposed in [15]. The approach is
based on creating dummy cycles with two conditions. First,
any created cycle has to have multiple entry points. Second,
at least two edges in a cycle have to be removable. However,
this scheme has been successfully attacked by CycSAT-I [16]
that assumes the correct key renders an acyclic circuit. On



the other hand, memristor [2, 3] -alongside resistor, capacitor,
and inductor- is the forth basic nano-scale chip element where
its resistance can be changed by the direction of electric
current shown in Fig. 1. Memristor is known for its three
main characteristics: 1) Non-volatility: Memristor is a non-
volatile element that its resistance serves as a stored variable;
2) Compatibility: As memristor is compatible with CMOS
structure, it is a supplementary element for integrated hybrid
memristor-CMOS logic circuits; 3) Scalability: Memristor can
be fabricated in high density at the intersection of nano-scale
width metal lines located on top of the silicon layer.

One of the interesting usage of memristor is to build
polymorphic memristor-CMOS gates [4]. Polymorphic gates
are multi-functional gates, in which change of their behavior
comes from modifications in the characteristics of their com-
ponents (e.g. changing memristor’s resistance) after fabrication
[14]. By taking advantage of polymorphic memristor-CMOS
obfuscation, the layouts of the circuits with different func-
tionalities may look exactly identical, making it impossible
even for an inside foundry attacker to distinguish the defined
functionality of an IC by looking at its layout. Thus, the
contributions of this paper are twofold:
• Defeating the state-of-the-art key-pruning attacks by first

converting the acyclic circuit to a cyclic one and then
introducing hard cycles;
• Overcoming the problem of IFA by employing polymor-

phic memristor-CMOS gates instead of using traditional
dummy contact and doping-based solutions.

The rest of the paper is arranged as follows. Section II
introduces a new CycSAT-proof logic locking scheme. Section
III proposes two novel polymorphic memristor-CMOS gates to
obfuscate cyclic circuits. The experimental results are shown
in Section IV. Finally, Section V concludes the paper.

II. CYCSAT-PROOF LOCKING SCHEME

The first version of the SAT-based attack on cyclic logic
locking (i.e. CycSAT-I [16]) can be as easy as the attack
on acyclic one if there exists a correct key under which the
circuit is acyclic. The pseudo-code of CycSAT-I is given in
Algorithm 1. The algorithm first computes a formula to capture
the condition that there is no structural cycle in the circuit.
Then, it adds this constraint to the locked circuit. The original
SAT-based attack [9] can finish the job on the constrained
circuit. To defeat CycSAT-I, the correct circuit should have at
least one real cycle in it (i.e. the original circuit should be
cyclic.)

On the other hand, the second version of CycSAT (i.e.
CycSAT-II [16]) relaxes the assumption that the original circuit
should be acyclic. The pseudo-code of CycSAT-II is given in
Algorithm 2. This time, the algorithm generates a formula
to postulate that there is no sensitizable path. To defeat
CycSAT-II, the locked circuit should have at least one non-
bipartitionable cycle.

In this section, first we propose an acyclic to cyclic conver-
sion method for combinational circuits to defeat CycSAT-I.

Algorithm 1: CycSAT-I attack
Input: Locked circuit g(X,K) and original function f(X)
Output: Correct key K∗ such that g(X,K∗) ≡ f(X)
Initialization : Find a set of feedback signals (W0, ...,Wm)

and compute ”no structural path” formulas
F (W0,W

′
0), ..., F (Wm,W ′m)

NC(X,K1) =
∧m

i=0
F (Wi,W

′
i ) ;

g(X,K1) = g(X,K1) ∧NC(K1) ;
g(X,K2) = g(X,K2) ∧NC(K2) ;
while X̂ = SAT (g(X,K1) 6= g(X,K2)) do

g(X,K1) = g(X,K1) ∧ (g(X̂,K1) = f(X̂));
g(X,K2) = g(X,K2) ∧ (g(X̂,K2) = f(X̂));

K∗ = SAT (g(X,K1));

Algorithm 2: CycSAT-II attack
Input: Locked circuit g(X,K) and original function f(X)
Output: Correct key K∗ such that g(X,K∗) ≡ f(X)
Initialization : Find a set of feedback signals (W0, ...,Wm)

and compute ”no sensitizable path” formulas
F (W0,W

′
0), ..., F (Wm,W ′m);

NC(X,K1) =
∧m

i=0
F (Wi,W

′
i ) ;

while
X̂ = SAT (NC(X,K1) ∧NC(X,K2) ∧ g(X,K1) 6= g(X,K2))
do

g(X,K1) = g(X,K1) ∧ (g(X̂,K1) = f(X̂));
g(X,K2) = g(X,K2) ∧ (g(X̂,K2) = f(X̂));

while X̂ = SAT (¬NC(X,K1) ∧ g(X,K1)) do
g(X,K1) = g(X,K1) ∧NC(X̂,K1);

K∗ = SAT (g(X,K1));

Then, we introduce a hard cycle insertion approach to defeat
CycSAT-II as well.

A. Acyclic to Cyclic Conversion

In order to convert an acyclic combinational circuit to
a cyclic one, an auxiliary-circuit f(a, b, x1, ..., xn) = c is
introduced with the following requisite:

Requisite 1. If input a equals input b, then output c keeps
its previous value and all the other inputs (i.e. x1 to xn) are
neutral; otherwise, f has non-combinational behavior.

Then, the generated auxiliary-circuit will be embedded to
the original acyclic circuit CA(X) to produce an equivalent
cyclic circuit CC(X). In order to introduce a real cycle, a
random signal r in CA(X) is disconnected from its sink and
fed into input a of auxiliary-circuit f . The output of f is then
fed into input b as well as the rest of the combinational circuit.
The procedure can be repeated to add more real cycles to the
circuit, each time with a new auxiliary-circuit.

Fig. 2 shows a descriptive A2C conversion example. As can
be seen in Fig. 2a, if a = b, the output of the first XOR will
be “0” and c will keep its previous value with the feedback
cycle; otherwise, c will oscillate between “0” and “1”. In order
to embed auxiliary-circuit f to the original acyclic circuit
CA(x1, x2), a random signal r is chosen as marked in Fig.
2b. Then, r is cut off from its sink and connected to input



(a) (b)

(c)

(d)

Fig. 2: A2C conversion example (a) Auxiliary-circuit (b)
Original acyclic circuit (c) Cyclic equivalent (d) Auxiliary-
circuit with neutral inputs

(a)

(b)

Fig. 3: Cyclic locking example (a) Cyclic circuit (b) locked
circuit with real/dummy cycles

a of auxiliary-circuit f . Afterward, c is connected to rest of
the original circuit as shown in Fig. 2c. Now, in order for the
new circuit CC(x1, x2) to maintain CA(x1, x2) functionality,
a feedback cycle is introduced from c to input b. Since r equals
r′, CA(x1, x2) ≡ CC(x1, x2). As can be seen in Fig. 2a, it is
possible for f to have inherent cycles. Also, please note that,
f can have additional neutral inputs as shown in Fig. 2d.

B. CycSAT-I Attack Analysis
In order to cyclically lock the cyclic circuit, a MUX-based

locking scheme [6] is utilized. First, a 2-1 MUX is introduced
for each real cycle such that one input of the MUX is connected
to the real feedback signal while the other input is a random
signal in the feed-backward path of the cycle. In other words,
choosing one input of the MUX produces a cycle while select-
ing the other one keeps the circuit acyclic. In this case, the
correct key bit should choose the real feedback. Then, some
random signals are chosen such that each of them is an input
for more than one gate. Afterward, an additional 2-1 MUX is
introduced for each of those signals. Subsequently, a random
dummy feedback is introduced from the feed-forward path for
one input of the MUX while the other input is connected to the
original chosen signal. Here, the correct key bit should avoid
the dummy feedback.

Fig. 3 depicts an example of cyclic locking, where two
real cycles and one dummy cycle are introduced using 2-1
MUXs. In order for the encrypted circuit to have the correct
behavior, k1 and k2 should choose the real feedbacks while
k3 should avoid the dummy one. In Fig. 3a, s1 cannot be used
for inserting a dummy cycle since it is the input of only one
gate. However, s2 can be a potential candidate.

Apart from sticking to Requisite 1, f has completely a ran-
dom structure. So, a possible removing attack is identifying the
boundary of f and testing the mentioned property in Requisite
1. However, this approach encounters two difficulties. First,
testing all the input patterns of auxiliary-circuit f in order to
find input a has exponentially high cost. Please recall that f
can have as many as neutral inputs. Second, by adopting a
nested structure, identifying the boundary of each auxiliary-
circuit f is not easily detectable.

CycSAT-I [16] can efficiently attack cyclic combinational
circuits if there is no real cycle in the original circuit (i.e. all
the cycles are dummy.) Since our original circuit is cyclic, it
cannot be attacked by CycSAT-I.

Theorem 1. The locked cyclic circuit cannot be unlocked by
CycSAT-I if there is at least one cycle under any correct key.

Proof. The NC formula in CycSAT-I assures that there is no
cycle in the circuit. Thus, if even one real cycle exists under
any correct key, the algorithm will break that cycle. In this
case, the SAT engine cannot choose the correct value for the
associated key bit in the real cycle. As a result, it cannot render
any correct key.

C. Hard Cycle Formation
We define hard cycle to denote a cycle that would be missed

in the acyclic condition generation of the CycSAT attacks.



kj

v
u

zw

AN
D

AND

AND

ki

kk

Fig. 4: Insertion of hard cycles

However, which cycles will be missed is dependent on the
order of the nodes being traversed. Therefore, our proposal
is to simultaneously introduce multiple dummy cycles in the
locked circuit such that no matter what traversal order is taken
there are always cycles that will be missed.

The method is illustrated in Fig. 4. Here, we will first
randomly select four gates u, v, w, z with the transitive fanout
relations shown in the dash arrows. That is, u has paths to v
and z, and w has a path to z. Assume that u and w are OR
gates, otherwise De Morgan’s law can be applied to get there.
Now, we will introduce three dummy edges (w, u), (v, w), and
(z, u) with AND gates of key bits on them. It can be shown
that no matter what traversal order is taken, one of the dummy
cycles will be missed by the acyclic condition generation in
the CycSAT attacks. For example, if edges (v, w) and (z, u)
are selected as feedbacks, then the cycle (u, v, w, z, u) will be
missed as a hard cycle.

D. CycSAT-II Attack Analysis

For locking the circuit, the real and dummy cycles of
Section II.A and II.B will be augmented to hard cycles by
adding additional dummy paths. Also, at least one signal in
each real cycle and all the dummy paths are chosen to be
locked by introducing key-bits.

CycSAT-II [16] can attack the locked circuit with simple
real and dummy cycles. However, if the cycles are augmented
to hard ones, it cannot be attacked by CycSAT-II since hard
cycles are non-bipartitionable.

Theorem 2. The locked circuit with real and dummy cycles
cannot be unlocked by CycSAT-II if there is at least one hard
cycle in the locked circuit.

Proof. The NC formula in CycSAT-II supposes that all the
cycles can be bipartitioned. In other words, it classifies the
edges of the directed graph extracted from the locked circuit
into two disjoint sets in a topological order. However, a
hard cycle is non-bipartitionable. It means, traversal in any
topological order of vertices ignoring the backward edges, will
miss the hard cycle. Thus, if even one hard cycle exists in the
locked circuit, it will be overlooked by CycSAT-II. In this

�

� �

�

�

� �

�

�

������

�� ��

��

��

Fig. 5: NONA gate

���

��

��

��

� �

Fig. 6: BINV gate

TABLE I: NONA config.

G1 G2 A B

NAND 1 0 1 0

NOR 0 1 0 1

TABLE II: BINV config.

G1 G2 A

BUFFER Step1 0 1 1
Step2 0 1 0

INV Step1 1 0 0
Step2 1 0 1

Fig. 7: NONA layout Fig. 8: BINV layout

case, the SAT engine either will not find the correct key or
will stick in an infinite loop.

III. IFA-PROOF OBFUSCATION APPROACH

Traditional logic encryption methods requires resynthesis
to obfuscate the key-controlled elements. Since there is no
powerful resynthesis tool for cyclic combinational circuits,
it is essential to find an escape door. IC camouflaging is
an advanced technique that combines the locking and ob-
fuscation phases. Although state-of-the-arts IC camouflaging
obfuscations (i.e. dummy contact [12] and doping-based [13]
solutions) may be hard to discover in RE-based attacks, they
are easily detectable in IFA. However, polymorphic CMOS-
memristor gates are IFA-proof since changing of their behavior
comes from modifying the resistance of their memristors after
fabrication.

Thus, in this section, we propose two different polymor-
phic CMOS-memristor gates that can be used to obfuscate
combinational circuits. Each gate requires a configuration
phase. However, the gates can be configured in parallel if
they have independent logical inputs. Upon completion of the
configuration phase, controlling signals are set to “0”.

A. NONA Design

The proposed NOR-NAND (NONA) polymorphic gate is
shown in Fig. 5. Based on different configurations of the
memristors, the functionality of NONA is changed. To charge
a memristor, its resistance is increased to the maximum
resistance (Rmax.) In this case, the memristor is considered



TABLE III: Cyclic locking evaluation with dummy cycles

Bench SAT-based attack CycSAT-I attack
CPU time #it CPU time #it

apex2 - Inf 0.04 4
apex4 - Inf 0.296 3
c432 - Inf - Inf
c499 0.072 8 0.06 3
c880 - Inf - Inf
c1355 - Inf 0.224 25
c1908 1.656 167 0.228 34
c2670 - Inf - Inf
c3540 - Inf - Inf
c5315 0.34 15 - Inf
c7552 - Inf - Inf
dalu 0.184 9 0.376 16
des - Inf 0.448 5
ex5 - Inf 0.116 11

ex1010 - Inf 0.488 3
i4 - Inf 0.02 3
i7 0.184 6 0.18 7
i8 0.396 7 0.42 8
i9 0.636 11 0.092 3
k2 - Inf - Inf
seq - Inf - Inf

as open-circuited (i.e. off.) On the other hand, to discharge
a memristor, its resistance is decreased to the minimum
resistance (Rmin.) In this case, the memristor is considered as
short-circuited (i.e. on.) If M1 is on while M2 is off, NONA
functions as NAND gate. On the contrary, if M1 is off while
M2 is on, NONA operates as NOR gate. The configuration
procedure for NONA is shown in Table I. In configuration
phase, the combination of the global controlling signals (i.e.
G1 and G2) and the logical inputs (i.e. A and B) is used.

B. BINV Design

The proposed BUFFER-INV (BINV) gate is depicted in Fig.
6. If M1 is on while M2 is off, BINV works as a BUFFER.
Contrariwise, BINV works as an INV. Table II shows a two-
step configuration procedure for BINV. The combination of
the global controlling signals (i.e. G1 and G2) and the logical
input (i.e. A) is used to configure BINV.

Theorem 3. Inside foundry attack has the same complexity
as reverse engineering based attack if the layout of the locked
circuit is obfuscated by polymorphic memristor-CMOS gates.

Proof. Since polymorphic memristor-CMOS gates look ex-
actly identical in circuit layout and charging/discharging of
the memristors is done after the fabrication, an inside foundry
attacker does not get more details from the connectivity
information of the layout than an attacker that uses reverse
engineering techniques to extract the layout.

IV. EXPERIMENTAL RESULTS

In this section, first we demonstrate robustness of the
proposed cyclic locking scheme against stat-of-the-art key-
pruning attacks. Then, we depict the layouts of the proposed
polymorphic gates and show the overhead.

TABLE IV: Cyclic locking evaluation with dummy/real cycles

Bench SAT-based attack CycSAT-I attack
CPU time #it CPU time #it

apex2 - Inf - UNSAT
apex4 - Inf 0.332 3
c432 - Inf - UNSAT
c499 - Inf - UNSAT
c880 - Inf - UNSAT

c1355 - Inf - UNSAT
c1908 0.22 12 - UNSAT
c2670 - Inf - UNSAT
c3540 - Inf - UNSAT
c5315 - Inf - UNSAT
c7552 - Inf - UNSAT
dalu 0.68 24 - UNSAT
des - Inf - UNSAT
ex5 - Inf - UNSAT

ex1010 - Inf 0.5 3
i4 - Inf - UNSAT
i7 0.168 6 - UNSAT
i8 - Inf - UNSAT
i9 6.504 318 - UNSAT
k2 - Inf - UNSAT
seq - Inf - UNSAT

A. Cyclic Locking Evaluation

We apply our proposed cyclic locking scheme into acyclic
combinational circuits of ISCAS ’85 and MCNC ’91. The
original acyclic circuits are the same as the ones have been
used in CycSAT paper [16]. For the first set of benchmarks, we
intentionally lock each circuit with ten dummy cycles while for
the second set, we intentionally add additional ten real cycles.
Since the code for CycSAT-II is not available, we compare
the decryption results between the original SAT-based and
CycSAT-I attack on both sets of benchmarks.

As depicted in Table III, for benchmarks with only dummy
cycles, CycSAT-I generally performs better than the original
SAT-based attack. In cases with Inf iterations, the SAT solver
gets stuck in an infinite loop and cannot report any key.

As shown in Table IV, both attacking schemes have bad
unlocking performance when real and dummy cycles co-exist
in the benchmarks. However, the precise unlocking results
between the original SAT-based and CycSAT-I attacks are
somewhat different. The SAT-based attack gets trapped in an
infinite loop when solving most of the locked circuits and
sometimes even returns wrong keys (i.e. i7 and i9.) In a
few benchmarks (i.e. c1908 and dalu) the original SAT-based
attack can return the correct key. This happens if the SAT
solver is lucky enough to find strong DIPs to prevent non-
combinational behavior from happening. Even with unlocking
those benchmarks, the original SAT-based attack has less than
10% unlocking success rate. On the contrary, CycSAT-I in
most of the cases returns no key because the correct key has
already been pruned by the acyclic condition while returns
wrong keys for the rest (i.e. apex4 and ex1010.) Thus, as
anticipated in Theorem 1, when real and dummy cycles are
added into the benchmarks, CycSAT-I attack has 0% success
rate. In addition to the key size, the overhead of our scheme
is bounded by the size of embedded auxiliary-circuits which
is a constant parameter in scaling the circuit size.



TABLE V: Polymorphic gates comparison

NAND NOR INV
Regular NONA Regular NONA Regular BINV

Average Propagation Delay (ps) 9.25 10.03 9.97 10.42 6.03 6.12
Average Energy Consumption (nJ) 243.2 376.2 267.2 378.4 495.1 591.1

Number of Transistors / Memristors 4/0 12/2 4/0 12/2 2/0 4/2

(a) (b) (c)

Fig. 9: EDP and ED2P (a) NAND (b) NOR (c) INV

B. Polymorphic Gates Evaluation

Fig. 7 and 8 depict the layouts for the proposed polymorphic
memrisor-CMOS gates (i.e. NONA and BINV.) As can be
seen layout of different gates (i.e. NOR/NAND in NONA and
BUFFER/INV in BINV) look exactly identical to anyone that
has access to the layout, including third party engineers who
manufacture the chip. Also, if the locking scheme is reliable,
the layout of any IC that is partially implemented using the
proposed polymorphic gates can even be publicly available.

In addition, Table V shows the overhead of NONA and BINV
compared with the regular gates in 45nm CMOS technology.
The experiments are done in Cadence Virtuoso platform.
Also, Fig. 9 shows Energy Delay Product (EDP) and Energy
Delay-squared Product (ED2P) of NAND, NOR, and INV under
polymorphic and regular gates. On average, propagation delay
of NONA and BINV are 7% and 6% more than regular gates
respectively. Also, energy consumption of NONA and BINV are
on average 40% and 20% more than regular gates respectively.
Moreover, based on the fact that memristor can be imple-
mented on top of the silicon layer, the size of NONA and BINV
are almost 3x and 2x larger in comparison with the regular
gates. As an example, if an obfuscation scheme exchanges
5%, 10%, and 20% of the regular gates with polymorphic
ones using an equal distribution of NONA and BINV, the total
area overhead is less than 8%, 15%, and 30% respectively that
seems reasonable for an obfuscation approach.

V. CONCLUSION

A functional IC can provide a lot of useful information to
the attacker. Thus, she can misuse those information to unlock
a locked circuit. This makes the SAT-based attack in particular
or any key-pruning attack in general, a serious threat to chip
protection. On the other hand, with the growing number of
untrusted foundries, IFA becomes an escalating problem. In
this paper, first we challenged the believe that cyclic combi-
national circuits are useless by proposing cyclic combinational
locking. Then, we proposed polymorphic memrisor-CMOS
gates to obfuscate the IC layout. Polymorphic gates look
exactly identical for anyone who has access to the layout
including inside foundry attackers. In this case, the design

goal is to have only one functional configuration while the
other configurations are meaningless.

ACKNOWLEDGMENT

This work is partially supported by NSF under CNS-
1441695, CNS-1651695, and CCF-1533656.

REFERENCES
[1] R. Torrance and D. James, “The state-of-the-art in semiconductor reverse engineer-

ing,” In Design Automation Conference (DAC), pp. 333-338, 2011.
[2] L. Chua, “Memristor - The missing circuit element,” In IEEE Transactions on

Circuit Theory, Vol. 18, Issue 5, pp. 507-519, 1971.
[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing

memristor found,” In Nature, Vol. 453, Issue 7191, pp. 80-83, 2008.
[4] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G. Friedman,

“MRL - Memristor ratioed logic,” In International Workshop on Cellular
Nanoscale Networks and their Applications (CNNA), pp. 1-6, 2012.

[5] Y. Shen, A. Rezaei, and H. Zhou, “A comparative investigation of approximate
attacks on logic encryptions,” In Asia and South Pacific Design Automation
Conference (ASP-DAC), 2018.

[6] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri,
“Fault analysis-based logic encryption,” In IEEE Transactions on Computers,
Vol. 64, Issue 2, pp. 410-424, 2015.

[7] F. Koushanfar, “Provably secure active IC metering techniques for piracy avoidance
and digital rights management,” In IEEE Transactions on Information Forensics
and Security, Vol. 7, Issue 1, pp. 51-63, 2012.

[8] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis of integrated
circuit camouflaging,” In ACM Conference on Computer and Communications
Security (CCS), pp. 709-720, 2013.

[9] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic encryption
algorithms,” In International Symposium on Hardware Oriented Security and
Trust (HOST), pp. 137-143, 2015.

[10] Y. Xie and A. Srivastava, “Mitigating SAT attack on logic locking,” In Crypto-
graphic Hardware and Embedded Systems (CHES), Lecture Notes in Computer
Science, Vol. 9813, pp 127-146, Springer, 2016.

[11] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “SARLock: SAT
attack resistant logic locking,” In International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 236-241, 2016.

[12] L. W. Chow, J. P. Baukus, and W. M. Clark Jr, “Integrated circuits protected against
reverse engineering and method for fabricating the same using an apparent metal
contact line terminating on field oxide,” US Patent 7,294,935, 2007.

[13] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy dopant-level
hardware trojans,” In Cryptographic Hardware and Embedded Systems (CHES),
Lecture Notes in Computer Science, Vol. 8086, pp. 197-214, Springer, 2013.

[14] L. Sekanin, “Design methods for polymorphic digital circuits,” In Design and
Diagnostics of Electronic Circuits and Systems Workshop (DDECS), pp. 145-
150, 2005.

[15] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic obfuscation
for creating SAT-unresolvable circuits,” In International Conference on Great
Lakes Symposium on VLSI (GLSVLSI), pp. 173-178, 2017.

[16] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-based attack on cyclic logic
encryptions,” In International Conference on Computer-Aided Design (ICCAD),
2017.

[17] J. Backes, B. Fett, and M. D. Riedel, “The analysis of cyclic circuits with Boolean
satisfiability,” In International Conference on Computer-Aided Design (ICCAD),
pp. 143-148, 2008.


