Forward Secure Efficient Group Signature in Dynamic Setting using Lattices

Meenakshi Kansal, Ratna Dutta and Sourav Mukhopadhyay
Department of Mathematics,
Indian Institute of Technology Kharagpur,
Kharagpur-721302, India
{kansal, ratna, sourav}@maths.iitkgp.ernet.in

Abstract: Secret key exposure is at high risk in the computing infrastructure due to the increase in use of harmful devices. As a result, achieving forward secrecy is a preferable feature for any cryptosystem where the lifetime of a user is divided into discrete time periods. Forward secrecy preserves the security of past periods even if the secret key is exposed. In this work, we introduce the first lattice based forward secure dynamic group signature scheme. The existing forward secure group signature schemes are secure in the bilinear setting, and becomes insecure in the quantum computer period. We employ a complete binary tree whose leaves are associated with discrete time periods and label the nodes in a unique way that enables each node of the same depth to have different Hamming weight. This helps the group manager to produce distinct certificates to distinct users. Our scheme withstands framing attack, mis-identification attack and preserves anonymity under the learning with errors (LWE) and short integer solution (SIS) assumptions.

Keywords: Lattice based cryptography, Dynamic group signature, forward security, anonymity, traceability.

1 Introduction

Group signature scheme enables any group member to produce a signature anonymously on behalf of the group and in case of misbehavior, the signer can be traced out by a designated authority, called the Opening Authority (OA). Group signature has been introduced by Chaum and Heyst [16] in 1991. Since then various constructions of group signature have been proposed in classical cryptography both in the random oracle model and standard model based on either strong RSA or bilinear map. Traceability and anonymity are the security attributes of any group signature. Traceability ensures that only the group manager is able to determine which member of the group issued the legitimate signature while anonymity
guarantees that no one other than the group manager should be able to determine any information about the signer. The confession page on Facebook can be seen as an example of a group signature scheme. The confession given by individuals is anonymous and can be traced out only by the administrator.

Group signature scheme can be broadly classified into two categories — static and dynamic. In static group setting, all the signing keys of the members are fixed during setup and hence the party handling setup phase has a high degree trust which is undesirable for practical real life applications. To overcome this problem, dynamic group setting has received considerable attention in the recent research community whereby a member can join the group at any-time and receives his private signing key during the joining period. Consequently, member identities are not fixed at the initial setup phase. Dynamic setting has two different parties called group manager and opening authority for issuing certificates to users and to trace the signature respectively. In case of static setting, group manager acts as the opening authority. The security of static group signatures was formalized by Bellare et al. [7]. In 2004 Bellare, Shi, and Zhang [9] formally defined the dynamic case. Later, in 2010, Gordon et al. [20] presented the first lattice based construction of group signature scheme followed by a number of works based on lattices [14, 23, 24, 28, 31]. Lattice based cryptography is a promising tool even in quantum era as there is no quantum algorithm yet to solve hard problems from which lattice based cryptosystems derive their security. Recently, in 2016, Libert et al. [25] proposed the first construction of dynamic group signature based on lattices.

Our contribution: We address the problem of designing efficient group signature scheme in dynamic setting from lattices featuring forward secrecy. With the increasing use of damaging tools in computing infrastructure, there is high risk in key exposure. Forward secrecy is achieved by partitioning the lifetime of a user into distinct and discontinuous time periods. It keeps the security of past periods secure even when the secret key of the user is exposed. Introducing forward secrecy in a dynamic group signature scheme without blowing up the storage, communication and computation overheads is a non-trivial task. All the existing works for group signature schemes with forward secrecy are in bilinear setup. There is no group signature based on lattices possessing forward secrecy so far to the best of our knowledge. In this paper, we improvise Libert et al. [25] dynamic group signature scheme into forward secure dynamic group signature scheme using a complete binary tree whose leaf nodes indicate discrete time periods. We label each node of the tree in a suitable manner that enables nodes at the same depth to have different Hamming weights. When a user joins, it is issued a certificate for a time period by the group manager. We skillfully utilize the labeling of this tree to generate distinct matrices for different users in issuing distinct certificates. Similar to [25], we employ Gentry-Peikert-Vaikuntanathan Identity based encryption (GPV-IBE) [18] and zero knowledge argument of knowledge to generate signature. We provide a concrete security analysis of our construction against framing attack, mis-identification attack and anonymity attack following the stronger notion of security for forward secrecy specified by Libert et al. [26]. Our scheme achieves security in the random oracle model under the hardness of learning with errors (LWE) problem and short integer solution (SIS) problem. We briefly summarize the comparison of our scheme with the existing lattice based group signature schemes [14, 20, 23, 25, 28] in Table 1 where \(N \) denotes the total number of group members and \(n \) is the security parameter. More precisely, we note the
Table 1: Comparative summary of lattice based group signature schemes

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Forward secure</th>
<th>Dynamic</th>
<th>Signature size</th>
<th>Public key size</th>
<th>Certificate size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKV [20]</td>
<td>No</td>
<td>No</td>
<td>$N \cdot \tilde{O}(n^2)$</td>
<td>$N \cdot \tilde{O}(n^2)$</td>
<td>-</td>
</tr>
<tr>
<td>CNR [14]</td>
<td>No</td>
<td>No</td>
<td>$N \cdot \tilde{O}(n^2)$</td>
<td>$N \cdot \tilde{O}(n^2)$</td>
<td>-</td>
</tr>
<tr>
<td>LLLS [23]</td>
<td>No</td>
<td>No</td>
<td>$\log N \cdot \tilde{O}(n)$</td>
<td>$\log N \cdot \tilde{O}(n^2)$</td>
<td>-</td>
</tr>
<tr>
<td>LNW1 [28]</td>
<td>No</td>
<td>No</td>
<td>$\log N \cdot \tilde{O}(n)$</td>
<td>$\log N \cdot \tilde{O}(n^2)$</td>
<td>-</td>
</tr>
<tr>
<td>LNW2 [28]</td>
<td>No</td>
<td>Yes</td>
<td>$\log N \cdot \tilde{O}(n)$</td>
<td>$\log N \cdot \tilde{O}(n^2)$</td>
<td>$\log N \cdot \tilde{O}(n)$</td>
</tr>
<tr>
<td>LLMNW [25]</td>
<td>No</td>
<td>Yes</td>
<td>$\log N \cdot \tilde{O}(n^3)$</td>
<td>$\log N \cdot \tilde{O}(n^2)$</td>
<td>$\log N \cdot \tilde{O}(n^2)$</td>
</tr>
<tr>
<td>Ours</td>
<td>Yes</td>
<td>Yes</td>
<td>$\log N \cdot \tilde{O}(n^3)$</td>
<td>$\log N \cdot \tilde{O}(n^2)$</td>
<td>$\log N \cdot \tilde{O}(n^2)$</td>
</tr>
</tbody>
</table>

(i) The certificate size in our construction is $\tilde{O}(n^2) \log N$ while that of [25] is $\tilde{O}(n) \log N$, where N is the total allowable group members and n is the security parameter. However, public key size in our scheme is same as of [25].

(ii) In contrast to [25], our scheme uses delegation process whereby the certificate once issued at the initial time, gets updated by the group members themselves without any interaction with the group manager.

(iii) The schemes [14], [20], [23], [28] are all static where signing keys of the members are fixed during setup. Although the scheme [25] is dynamic and has the flexibility to issue secret key at the joining time of a user, it does not achieve forward secrecy. On contrary, our scheme is the only forward secure group signature scheme in dynamic setting that derives its security from the hard problems based on lattices.

Paper Organization: The rest of the paper is organized as follows. Section 2 provides preliminaries and background materials. Syntax and security model of dynamic forward secure group signature scheme are presented in Section 3. Our scheme is described in Section 4. The underlying zero knowledge argument of knowledge is included in Section 5 and security of our scheme is discussed in Section 6 respectively. Finally, the paper is concluded in Section 7.

2 Background and Assumptions

Notations: Throughout the paper, we use the following notations unless otherwise stated:

- We use lower bold case letters for vectors and upper bold case letters for matrices. Wherever log is used we assume that base is 2. We refer by “||” the concatenation of strings or matrix columns and by “|” the concatenation of matrices.

- The Euclidean norm of the vector $x = \{x_1, x_2, \ldots, x_n\}$ is denoted by $||x|| = (x_1^2 + x_2^2 + \ldots + x_n^2)^{1/2}$ and infinity norm is denoted by $||x||_\infty = \max_{1 \leq i \leq n} x_i$. The Gram-Schmidt orthogonalization of matrix A is denoted by \tilde{A}. Transpose of a matrix A is denoted by A^t.

The notation \(A \leftarrow \Delta \) represents that \(A \) is a matrix following distribution \(\Delta \). A vector \(u \in \mathbb{Z}^m \) denotes a column vector of size \(m \times 1 \) with integer entries.

- A function \(f(n) \in \mathcal{O}(g(n)) \) indicates \(f(n) \in \mathcal{O}(g(n) \log^k g(n)) \), for some \(k \in \mathbb{N} \). We say that a function \(f \) is negligible in \(\lambda \) if \(f = \lambda^{-\omega(1)} \).

- Two distributions \(X \) and \(Y \), defined over a countable domain \(D \), are said to be statistically closed if their statistical difference, \(\frac{1}{2} \sum_{\alpha} |Pr[X = \alpha] - Pr[Y = \alpha]| \) is negligible.

- Two problems are computationally equivalent if one can be reduced to the other. In other words, both the problems are essentially as hard or as easy.

- A vector \(v \) is said to be a “short vector” if given a basis \(B \) of an \(n \)-dimensional lattice \(\Lambda(\mathbb{B}) \), we have \(||v|| \leq \gamma(n)\lambda(\Lambda) \), where \(\gamma \) is an approximation factor taken to be a function of the lattice dimension \(n \) and \(\lambda(\Lambda) = \min_{v \in \Lambda(B)-\{0\}} ||v|| \).

Definition 1. (Lattice). Let \(B = \{b_i\}_{i \leq n} \) be a linearly independent set of vectors of \(\mathbb{R}^n \). A lattice generated by \(B \) is defined as \(\Lambda(\mathbb{B}) = \{ \sum c_i b_i : c_i \in \mathbb{Z} \} \), the set of all integer linear combinations of \(b_i \in B \). The set \(B \) is said to be a basis of the lattice \(\Lambda \).

For \(q \in \mathbb{N} \), matrix \(A \in \mathbb{Z}^{n \times m}_q \) and vector \(u \in \mathbb{Z}^n_q \), we define the following three \(q \)-ary lattices generated by \(A \):

\[
\Lambda_q^l(A) = \{ x \in \mathbb{Z}^m : Ax = 0 \mod q \}
\]

\[
\Lambda_q^u(A) = \{ x \in \mathbb{Z}^m : Ax = u \mod q \}
\]

\[
\Lambda_q(A) = \{ x \in \mathbb{Z}^m : A's = x \mod q, \text{ for some } s \in \mathbb{Z}^n_q \},
\]

where \(m, n \) are integers with \(m \geq n \geq 1 \).

Definition 2. (Gaussian distribution over a lattice). For a lattice \(\Lambda \) and a real number \(\sigma > 0 \), discrete Gaussian distribution over \(\Lambda \) centered at 0, denoted by \(D_{\Lambda, \sigma} \), is defined as: \(\forall y \in \Lambda, D_{\Lambda, \sigma}[y] \sim \exp(-\pi||y||^2/\sigma^2) \), meaning that \(D_{\Lambda, \sigma}[y] \) is proportional to \(\exp(-\pi||y||^2/\sigma^2) \).

Lemma 2.1. For any \(n \)-dimensional lattice \(\Lambda \), and for \(\sigma > 0 \),

1. \(Pr_{b \leftarrow D_{\Lambda, \sigma}}[|b| \leq \sqrt{n} \sigma] \geq 1 - 2^{-\Omega(n)} \)
2. there exists the following probabilistic polynomial time (PPT) algorithms:

 - (i) \(\text{GPVSample}(B, \sigma) \rightarrow (b \in \Lambda) \)
 - (ii) \(\text{SamplePre}(A, T_A, u, \sigma) \rightarrow (x \in \Lambda^u_q(A)) \). This algorithm takes as input a matrix \(A \in \mathbb{Z}^{n \times m}_q \), a short basis \(T_A \) of \(\Lambda^l_q(A) \), a vector \(u \) whose preimage is to be sampled and the standard deviation \(\sigma \) of the distribution from which the preimage is to be sampled. The algorithm returns a short vector \(x \in \Lambda^u_q(A) \) sampled from a distribution statistically close to \(D_{\Lambda^u_q(A), \sigma} \) whenever \(\Lambda^u_q(A) \) is non empty i.e., \(x \) satisfies the relation \(Ax = u \mod q \).
(iii) TrapGen\((1^n,1^m,q) \rightarrow (A,T_A)\) \[4\]. Taking \(1^n,1^m,q\) as input, this algorithm outputs a matrix \(A \in \mathbb{Z}_q^{n \times m}\) and a basis \(T_A\) of \(\Lambda_q^+(A)\) such that \(A\) is within the statistical distance \(2^{-\Omega(n)}\) to \(U(\mathbb{Z}_q^{n \times m})\) and \(||T_A|| \leq O(\sqrt{n \log q})\). Here \(U(\mathbb{Z}_q^{n \times m})\) is the uniform distribution of integer matrices of order \(n \times m\) and \(\tilde{T}_A\) is the Gram-Schmidt orthogonalization of \(T_A\).

(iv) ExtBasis\((A,A,T_A) \rightarrow (T_A\mid\Lambda)\) \[15\]. Given a matrix \(A\) whose columns span \(\mathbb{Z}_q^n\), a basis \(T_A\) of \(\Lambda_q^+(A)\) and an arbitrary matrix \(\tilde{A}\), this algorithm outputs a basis \(T_{A\mid\Lambda}\) of \(\Lambda_q^+(A\mid\Lambda)\) such that \(||\tilde{T}_{A\mid\Lambda}|| = ||\tilde{T}_A||\).

(v) SampleRight\((A,C,R,T_C,\sigma,u) \rightarrow (b \in \mathbb{Z}^{2m})\) \[1\]. On input two matrices \(A,C \in \mathbb{Z}_q^{n \times m}\), a low norm matrix \(R \in \mathbb{Z}^{m \times m}\), a short basis \(T_C \in \mathbb{Z}_q^{m \times m}\) of \(\Lambda_q^+(C)\), a vector \(u \in \mathbb{Z}_q^n\) and a parameter \(\sigma \geq ||T_C||\Omega(\sqrt{\log n})\), this algorithm outputs a random vector \(b \in \mathbb{Z}^{2m}\) satisfying \([A|AR+C]b = u \mod q\) with distribution statistically close to the Gaussian distribution \(D_{q^2A,\sigma}\) where \(A\) denote the shifted lattice \(\{x \in \mathbb{Z}^{2m} : [A|AR+C]x = u \mod q\}\).

(vi) BasisDel\((A,R,T_A,\sigma) \rightarrow (B = AR^{-1},T_B)\) \[2\]. This algorithm takes as input a matrix \(A \in \mathbb{Z}_q^{n \times m}\), a \(\mathbb{Z}_q\)-invertible matrix \(R \in \mathbb{Z}_q^{m \times m}\) sampled from \((D_{\mathbb{Z}_q^{m},\sigma})^m\) (distribution on matrices in \(\mathbb{Z}_q^{m \times m}\)), a basis \(T_A\) of \(\Lambda_q^+(A)\), and a real parameter \(\sigma > 0\) and outputs a matrix \(B = AR^{-1}\) along with a basis \(T_B\) of \(\Lambda_q^+(B)\).

(vii) SampleRwithBasis\((A) \rightarrow (R,T_B)\) \[2\]. On input a matrix \(A\), this algorithm outputs a random \(\mathbb{Z}_q\)-invertible low norm matrix \(R\) and a basis \(T_B\) of \(\Lambda_q^+(B)\) as follows:

\begin{enumerate}
\item TrapGen\((1^n,1^m,q) \rightarrow (B,T_B)\).
\item for \(i = 1,2,\ldots,m\) do
\begin{enumerate}
\item SamplePre\((B,T_B,a_i,\sigma) \rightarrow (r_i \in \Lambda_q^+(B))\) i.e., \(Br_i = a_i \mod q\).
\item Repeat step (a) until \(r_i \in \mathbb{Z}_q\) is linearly independent of \(r_1,r_2,\ldots,r_{i-1}\).
\end{enumerate}
\item Form a matrix \(R \in \mathbb{Z}^{m \times m}\) with sampled \(r_i\)'s as \(R = (r_1,r_2,\ldots,r_m)\).
\end{enumerate}

Thus \(BR = A \mod q\) or \(B = AR^{-1} \mod q\).

2.1 Hardness Assumptions

Definition 3. (Inhomogeneous short integer solution (ISIS) \[3\]). Given an integer \(q\), a matrix \(A \in \mathbb{Z}_q^{n \times m}\), a vector \(u \in \mathbb{Z}_q^n\) and a real number \(\beta\), the ISIS problem is to find an integer vector \(e \in \mathbb{Z}^m\) such that \(Ae = u \mod q\) with \(||e|| \leq \beta\).

Remark 1. If a bound on \(e\) is not given, then the equation \(Ae = u \mod q\) is solvable in polynomial time using Gauss elimination. The ISIS problem is to find \(e\) of the equation
\[Ae = u \mod q \text{ with } ||e|| \leq \beta \] which is difficult. However, if a short basis \(T_A \) of \(\Lambda_q^m(A) \) is known then \textsf{ISIS} problem can be efficiently solved.

Definition 4. (Short integer solution (SIS)[3]). Given an integer \(q \), a matrix \(A \in \mathbb{Z}_q^{n \times m} \), and a real number \(\beta \), the SIS problem is to find an integer vector \(e \in \mathbb{Z}^m \) such that \(Ae = 0 \mod q \) with \(||e|| \leq \beta \).

Definition 5. (Learning with errors (LWE)[32]). Let \(\chi \) be a distribution on \(\mathbb{Z} \), \(n \geq 1 \) be any integer and \(p \geq 2 \) be any prime. For any \(s \in \mathbb{Z}_p^n \), given arbitrarily many samples of the form \((a, (a, s) + e) \) with \(a \) uniform in \(\mathbb{Z}_p^n \) and \(e \) is sampled from \(\chi \), the search LWE problem is to find \(s \) and the decisional LWE problem is to distinguish the distribution of \((a, (a, s) + e) \) from the uniform distribution \(U(\mathbb{Z}_p^n \times \mathbb{Z}_p) \). Here \((a, s) = a's \).

The search LWE and the decisional LWE are computationally equivalent [30].

2.2 Node Select Algorithm [26]

\text{Nodes}(t_1 + 1, t_2, G) \rightarrow (\text{SubsetHN}). Following Libert et al. [26], we describe this procedure in Algorithm 1 which on input a time interval \((t_1 + 1, t_2)\), a complete binary tree \(G \), returns a subset \(\text{SubsetHN} \) of hanging nodes in the given time interval. Let the height of the binary tree \(G \) be \(l \). Then the number of leaves in \(G \) is \(T = 2^l \). The leaves of \(G \) denote the time period which are binary strings. Each node in \(G \) is assigned a label in such a way that no two nodes at the same level have the same Hamming weight. One such assignment of labels is shown in Figure 1.

![Node Labeling](image.png)

Figure 1: Node Labeling

The root is at depth 0 and is assigned label 0. The two nodes at depth 1 are each assigned label of 2 bits, say, 00 and 01 with different Hamming weights. The \(4 = 2^2 \) nodes at depth...
2 require $2^2 - 1 = 3$-bit each with different Hamming weights and are assigned labels, say, 000, 001, 011, 111. Similarly, all the 2^p nodes at depth p can be assigned $(2^p - 1)$-bit labels with different Hamming weights. For a node w, let w_{dep} denotes its depth and w_{num} denotes its assigned label. Note that w_{num} is a binary string of length $2^{w_{\text{dep}}} - 1$ where $0 \leq w_{\text{dep}} \leq l$. There are total $T = 2^l$ time periods $\{1, 2, \ldots, T\}$ and the period t corresponds to the t-th node at depth l from left having $(2^l - 1)$-bit label denoted by w_{num}^{t-1}.

Let $\text{Path}(u)$ be the set of all nodes on the path from u to the root of the tree G. If a node w is a left or a right child of some node in $\text{Path}(u)$ with $w \not\in \text{Path}(u)$, then w is a hanging node with respect to $\text{Path}(u)$. For a node u at depth $\leq l$, its left and right child are denoted by u_0, u_1 respectively.

For instance, let $w_{\text{num}}^{t_1} = 0000001, w_{\text{num}}^{t_2} = 0111111$ then $X_1 = \{000, 00, 0\}$ and $X_2 = \{111, 01, 0\}$. For all $w \in X_1$, $\text{SubsetHN} = \{001\}$ and for all $w \in X_2$, $\text{SubsetHN} = \text{SubsetHN} \cup \{011\}$. Hence the resultant output is $\text{SubsetHN} = \{001, 011\}$.

Remark 2. Node Select algorithm outputs a subset of hanging nodes in such a way that the exactly one ancestor of each leaf between the time period t_1 and $t_2 - 1$ are being selected.

Algorithm 1: Nodes($t_1 + 1, t_2, G$)

Input: $t_1 + 1, t_2, G$

Output: SubsetHN

if $(t_1 + 1 > t_2)$ then
 return 0;
else
 $X_1, X_2, \text{SubsetHN} \leftarrow \emptyset$;
 $X_1 \leftarrow X_1 \cup \text{Path}(w_{\text{num}}^{t_1}));$ // $w_{\text{num}}^{t_1}$ is the labeling of the node at period t_1
 $X_2 \leftarrow X_2 \cup \text{Path}(w_{\text{num}}^{t_2});$ // $w_{\text{num}}^{t_2}$ is the labeling of the node at period $t_2 + 1$
 for ($w \in X_1$) do
 if ($w_1 \not\in X_1 \cup X_2$) then
 SubsetHN \leftarrow SubsetHN $\cup \{w_1\}$ // Here w_1 is the right child of w
 end if
 end do
 for ($w \in X_2$) do
 if ($w_0 \not\in X_1 \cup X_2$) then
 SubsetHN \leftarrow SubsetHN $\cup \{w_0\}$ // Here w_0 is the left child of w
 end if
 end do
end if
return SubsetHN;
2.3 GPV-IBE [18]

The identity-based encryption (IBE) by Gentry, Peikert and Vaikuntanathan [18] is a 4-tuple GPV-IBE = (Setup, Extract, Enc, Dec) consisting of 3 PPT algorithms Setup, Extract, Enc and a deterministic algorithm Dec.

- GPV-IBE.Setup($1^n, 1^m, q$) → (MPK, MSK). A trusted third party, called a key generation centre (KGC), runs this PPT algorithm by executing TrapGen($1^n, 1^m, q$) → (A, T_A) described in Lemma 1.1(b)(iii) and generates a random matrix $A \in \mathbb{Z}_q^{n \times m}$ along with a basis T_A of $\Lambda_q^1(A)$ such that A is within the statistical distance $2^{-\Omega(n)}$ to $U(\mathbb{Z}_q^{n \times m})$ and $||T_A|| \leq O(\sqrt{n\log q})$. The KGC also chooses a cryptographically secure hash function $\mathcal{F} : \{0, 1\}^* \rightarrow \mathbb{Z}_q^{r \times r}$ for any integer $r \geq 1$. It sets the master public key $\text{MPK} = (A, \mathcal{F}, m, n, q)$ and the master secret key $\text{MSK} = T_A$. The KGC makes MPK public and keeps MSK secret to itself.

- GPV-IBE.Extract(MPK, MSK, id) → (skid). This PPT algorithm is run by the KGC. The user with identity id asks for its secret to the KGC. If the identity id ∈ {0, 1}* has already been queried and (id, E) is in the local storage of the KGC for some $E \in \mathbb{Z}_q^{r \times m}$ then it returns E to the user. Otherwise, the KGC computes $R = \mathcal{F}(id) \in \mathbb{Z}_q^{r \times r}$ and generates $E \leftarrow \text{SamplePre}(A, T_A, R, \sigma)$ by using multiversion of Lemma 1.1(b)(ii), where \mathcal{F}, A are extracted from MPK and T_A from MSK. Here σ is chosen by the KGC and $E \in \mathbb{Z}_q^{r \times m}$ is an element of the lattice $\Lambda_q^1(A)$ with a distribution statistically close to $D_{\Lambda_q^1(A), \sigma}$. Consequently, E satisfies the equation $AE = R \mod q$. The KGC sends $\text{sk}_id = E$ through a secure channel to the user as its secret key.

- GPV-IBE.Enc(MPK, id, b) → (p, c). This PPT algorithm is executed by an encryptor to encrypt a bit string $b \in \{0, 1\}^*$ using $\text{MPK} = (A, \mathcal{F}, m, n, q)$. The encryptor with identity id ∈ {0, 1}* does the following:
 - samples $s \leftarrow U(\mathbb{Z}_q^n), x \leftarrow \chi^m, y \leftarrow \chi^r$, where χ is the LWE distribution;
 - computes $p = A's + x \in \mathbb{Z}_q^m$;
 - sets $c = R's + y + b[q/2] \in \mathbb{Z}_q^r$ where $R = \mathcal{F}(id)$;
 - finally, sends the ciphertext (p, c) over a public channel.

- GPV-IBE.Dec(skid, (p, c)) → (0 ∨ 1). It is a deterministic algorithm run by the decryptor. The decryptor computes $b' = (b_1', b_2', ..., b_r') = c - E'p \in \mathbb{Z}_q^r$, using its own secret key $\text{sk}_id = E \in \mathbb{Z}_q^{r \times m}$. For $i = 1, 2, ..., r$, it outputs $b_i' = 0$ if b_i' is closed to 0 modulo q; otherwise returns $b_i' = 1$.

We have $b' = g's + y + b[q/2] - e'(A's + x)$ and also $Ae = g \mod q$. So compute $b' = (y - e'x) + b[q/2]$; output 1 if b' is close to $q/2$ than to 0 modulo q; otherwise output 0.

Correctness: Let $\delta > 0$ satisfying $\Pr_{x \in \chi^m, y \in \chi}[|y - e'x| < \frac{q}{5}] > 1 - \delta$. Then the probability of decryption error is atmost δ.

Security: Let $q \geq 5\sigma(m + 1), \sigma \geq \omega(\sqrt{\log m})$ and $m \geq 2n \log q$. Then the GPV-IBE scheme is CPA-secure and anonymous, assuming that LWEq, χ is hard.
2.4 Decomposition-Extension Technique [27]

This section describes a procedure Ext for extending and a procedure Dec-Ext for extending as well as decomposing a vector following Ling et al. [27]. Let \(m \) be an arbitrary dimension and \(B \) be an infinity norm bound. Let \(B_m^2 = \{ x \in \{0, 1\}^{2m} : x \text{ has exactly } m \text{ co-ordinates equal to } j, \text{ for every } j \in \{0, 1\}\} \) and \(B_{mp}^3 = \{ x \in \{-1, 0, 1\}^{3mp} : x \text{ has exactly } mp \text{ co-ordinates equal to } j, \forall j \in \{-1, 0, 1\}\} \) where \(p = \lfloor \log_2 B \rfloor + 1 \). Let \(S_{3mp} \) be the set of permutations of \(3mp \) length vectors. Then for any \(\pi \in S_{3mp} \), we have \(\hat{w} \in B_{mp}^3 \Leftrightarrow \pi(\hat{w}) \in B_{mp}^3 \).

- **Ext\(_m\)(w) \rightarrow (\hat{w} \in B_{mp}^3) [25].** This algorithm takes an input a vector \(w \in \{0, 1\}^m \) with \(\lambda_0, \lambda_1 \) respectively the number of 0’s and number of 1’s in \(w \). It selects a random vector \(\tilde{w} \) having exactly \((m - \lambda_0)\) many 0’s and \((m - \lambda_1)\) many 1’s and outputs the extended vector \(\hat{w} = (w | \tilde{w}) \in B_m^2 \). Then for any permutation \(\pi : B_m^2 \rightarrow B_m^2 \), we have \(\hat{w} \in B_m^2 \Leftrightarrow \pi(\hat{w}) \in B_m^2 \).

- **Dec-Ext\(_{m,p}\)(w) \rightarrow (\hat{w} \in B_{mp}^3) [25].** On input \(w = (w_1, w_2, ..., w_m), w_i \in [-B, B], 1 \leq i \leq m \), this algorithm works as follows:
 - First, define a finite super-decreasing sequence \(\{B_j\}_{j=1}^p \) of integers by setting \(B_1 = \lceil \frac{B}{2} \rceil \) and \(B_j = \lceil \frac{B - (B_1 + B_2 + ... + B_{j-1})}{2} \rceil \) for \(2 \leq j \leq p \);
 - As \(\{B_j\} \) is super-decreasing, for any \(v \in [-B, B] \), one can efficiently compute \(v(1), v(2), ..., v(p) \in \{-1, 0, 1\} \) such that \(\sum_{j=1}^{p} B_j v(j) = v \). Note that \(v(1), v(2), ..., v(p) \in \{-1, 0, 1\} \) is a solution of the subset sum problem with weights \(\{B_j\}_{j=1}^p \) and capacity \(v \) and is solvable in polynomial time when the sequence \(\{B_j\}_{j=1}^p \) is super decreasing.
 - Next, define an \(m \times mp \) matrix \(K_{m,B} \) as
 \[
 K_{m,B} = I_m \otimes [B_1 | B_2 | ... | B_p] = \begin{bmatrix}
 B_1 \ B_2 \ldots \ B_p \\
 B_1 \ B_2 \ldots \ B_p \\
 \vdots \\
 B_1 \ B_2 \ldots \ B_p
 \end{bmatrix}
 \]
 and set \(\hat{K}_{m,B} = [K_{m,B} | 0^{m \times 2mp}] \in \mathbb{Z}^{m \times 3mp} \).
 - For the given vector \(w = (w_1, w_2, ..., w_m)^t \), one can efficiently compute \(w_i^{(1)}, w_i^{(2)}, \ldots, w_i^{(p)} \in \{-1, 0, 1\} \) corresponding to each \(w_i \in [-B, B], 1 \leq i \leq m \), satisfying \(\sum_{j=1}^{p} B_j w_i^{(j)} = w_i \). Then \(\hat{K}_{m,B} w' = w \) for the vector \(w' = (w_1^{(1)}, \ldots, w_1^{(p)}, w_2^{(1)}, \ldots, w_2^{(p)}, \ldots, w_m^{(1)}, \ldots, w_m^{(p)}) \in \{-1, 0, 1\}^{mp} \).
 - Append a \(2mp \) length vector \(\tilde{w} \) to \(w' \), following the procedure Ext to obtain \(\hat{w} = (w | \tilde{w}) \in B_{mp}^3 \). As the last \(2mp \) columns of \(\hat{K}_{m,B} \) are all 0, the vector \(\hat{w} \) satisfies \(\hat{K}_{m,B} \hat{w} = K_{m,B} w' = w \).
Then set, T can associate a permutation of strings over $\{-, 1\}$ where $q \geq 2$. Let Dec-Ext be any matrix and x be a secret vector (or matrix) with some conditions to be proven in zero-knowledge. Utilizing permutation, Stern designed in [34] a protocol that proves the Hamming weight of a binary vector \tilde{x} and hence \tilde{x} gives $w_1^{(1)} = -1, w_1^{(2)} = 0$. Similarly, $w_2 = 1 = 2. w_2^{(1)} + 1. w_2^{(2)}$ gives $w_2^{(1)} = 0, w_2^{(2)} = 1$.

Therefore, $\mathbf{w}' = (w_1^{(1)}, w_1^{(2)}, w_2^{(1)}, w_2^{(2)}) = (-1, 0, 0, 1) \in \{-1, 0, 1\}^{mp}$ satisfies $K_{m,B} \mathbf{w}' = \mathbf{w}$, where $K_{m,B} = K_{2,3}$ is an $m \times mp$ matrix given by $K_{2,3} = I_2 \otimes [B_1, B_2] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}$. Next we set,$$
\hat{K}_{2,3} = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Note that the number of -1‘s, 0’s, 1’s in \mathbf{w}' are respectively $\lambda_{-1} = 1, \lambda_0 = 2, \lambda_1 = 1$. We append to \mathbf{w}' a vector \bar{w} of length $2mp = 2 \times 2 \times 2 = 8$ having $mp - \lambda_{-1} = 3$ many -1’s, $mp - \lambda_0 = 2$ many 0’s, $mp - \lambda_1 = 3$ many 1’s following the procedure Ext and obtain an extended vector $\tilde{w} = (\mathbf{w}' || \bar{w})$ that satisfies $\hat{K}_{2,3} \tilde{w} = \mathbf{w}$. For instance, we can choose $\bar{w} = (0, 1, -1, 1 | -1, -1, 1, 0)$ and hence $\tilde{w} = (\mathbf{w}' || \bar{w}) = (-1, 0, 0, 1 | 0, 1, -1, 1 | -1, -1, 1, 0)$. Then

$$\hat{K}_{2,3} \tilde{w} = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} -1, 0, 0, 1, 0, 1, -1, 1, -1, 1, 0 \end{bmatrix} = (-2, 1)^t = \mathbf{w}$$

2.5 Zero Knowledge Argument Systems

In this section, we describe zero knowledge argument of knowledge (ZKAoK) for the relation $P \mathbf{x} = \mathbf{v}$ given in [25]. Here P is any matrix and \mathbf{v} is a vector (or matrix), both publicly available and \mathbf{x} is a secret vector (or matrix) with some conditions to be proven in zero-knowledge. Utilizing permutation, Stern designed in [34] a protocol that proves the Hamming weight of a binary vector \mathbf{x} in zero-knowledge. Ling et al. [27] extended Stern’s protocol to prove the possession of any vector (or matrix) \mathbf{x}, with a bound on the norm of \mathbf{x} using procedure Dec-Ext described in Section 2.4.

Let $q \geq 2$ and D, L be two positive integers. We consider a subset VALID of all L-length strings over $\{-1, 0, 1\}$. Let S be any finite set of permutations such that for any $\pi \in S$, we can associate a permutation T_π of L elements satisfying
A zero knowledge argument protocol should satisfy following three properties:

- **Correctness**: Honest prover will convince the verifier on proving a true statement. That is the probability of verifier accepting a true statement is 1.

- **Soundness**: A cheating prover cannot convince the verifier on proving a false statement. Thus the probability of verifier accepting a false statement is negligible. In case of proof of knowledge, soundness is replaced by a stronger notion called ”Knowledge Extractor”. For every cheating prover there exists an algorithm ”Knowledge Extractor” which extracts the witness involved in the interaction between the prover and the verifier.

- **Zero knowledge**: If the statement proven by the prover is true then the cheating verifier learns only the fact that the statement is true.

A ZKAoK for the relation $R = \{(P, v) \in \mathbb{Z}_q^{D \times L} \times \mathbb{Z}_q^D : Px = v \mod q\}$ is a 3-round protocol $ZKAoK=(Commitment, Challenge, Response,Verification)$ between a prover and a verifier, both having access to P and v, and works as follows:

1. **ZKAoK.Commitment**(P, v, x) \rightarrow ($COM = (C_1, C_2, C_3)$). The prover

 (a) samples randomness ρ_1, ρ_2, ρ_3 for generating commitments and $r \leftarrow U(\mathbb{Z}_q^L), \pi \leftarrow U(S)$ where S is a finite set of permutation.

 (b) computes the commitment, $COM = (C_1, C_2, C_3)$ where $C_1 = CMT_1(\pi, Pr; \rho_1)$ uses randomness ρ_1, $C_2 = CMT_2(T(\pi; r); \rho_2)$ uses randomness ρ_2, $C_3 = CMT_3(T(\pi; x + r); \rho_3)$ uses randomness ρ_3 and $CMT_i, i = 1, 2, 3$, is a statistically hiding and computationally binding commitment scheme where the hiding property holds even against all-powerful receivers, while the binding property holds only for polynomially bounded senders.

 (c) sends COM to the verifier.

2. **ZKAoK.Challenge**(P, v) \rightarrow ($Ch \leftarrow U(\{1, 2, 3\})$). The verifier sends a challenge $Ch \leftarrow U(\{1, 2, 3\})$ to the prover.

3. **ZKAoK.Response**($Ch, \rho_1, \rho_2, \rho_3, \pi, T, r, x$) \rightarrow (RSP). The prover sends a response RSP computed as follows:

 (a) if $Ch= 1$, then the prover sets $t_x = T(x), t_r = T(r)$ and $RSP= (t_x, t_r, \rho_3, \rho_3)$.

 (b) if $Ch= 2$, then the prover sets $\pi_2 = \pi, y = x + r$ and $RSP= (\pi_2, y, \rho_1, \rho_3)$.

 (c) if $Ch= 3$, then the prover sets $\pi_3 = \pi, r_3 = r$ and $RSP= (\pi_3, r_3, \rho_1, \rho_2)$.

Here ρ_1, ρ_2, ρ_3 are the randomness picked by the prover in generating the commitment CMT using the procedure $ZKAoK.Commitment$.

4. **ZKAoK.Verification**($P, v, RSP, COM, CMT_1, CMT_2, CMT_3$) \rightarrow (VRF). On receiving the response RSP from the prover, the verifier proceeds as follows:

\[
x \in VALID \iff T_\pi(x) \in VALID
\]

If $x \in VALID$ and π is uniform in S then $T_\pi(x)$ is uniform in $VALID$. \hspace{1cm} (1)
(a) if \(Ch = 1 \), then the verifier checks whether \(t_x \in \text{VALID} \) and \(C_2 = \text{CMT}_2(t_x; \rho_2), C_3 = \text{CMT}_3(t_x + t_r; \rho_3) \), where \(C_2, C_3 \) are extracted from \(\text{COM} \) and \(t_x, t_r, \rho_2, \rho_3 \) from \(\text{RSP} \).

(b) if \(Ch = 2 \), then the verifier checks whether \(C_1 = \text{CMT}_1(\pi_2, P_y - v; \rho_1), C_3 = \text{CMT}_3(T_{\pi_2}(y); \rho_3) \), using \(C_1, C_3 \) from \(\text{COM} \) and \(\pi_2, y, \rho_1, \rho_3 \) from \(\text{RSP} \).

(c) if \(Ch = 3 \), then the verifier checks whether \(C_1 = \text{CMT}_1(\pi_3, Pr_3; \rho_1), C_2 = \text{CMT}_2(T_{\pi_3}(r_3); \rho_2) \), where \(C_1, C_2 \) are obtained from \(\text{COM} \) and \(\pi_3, r_3, \rho_1, \rho_3 \) are from \(\text{RSP} \).

In each case, the verifier outputs \(\text{VRF} = 1 \) if the verification succeeds, otherwise outputs \(\text{VRF} = 0 \).

Remark 3. The above protocol is repeated \(s = \omega(\log n) \) times to achieve negligible soundness error and can be made non-interactive using Fiat-Shamir heuristic \([17]\) as a triple \(\Pi = (\{\text{COM}_\gamma\}_{\gamma=1}^s, \text{Ch}, \{\text{RSP}\}_{\gamma=1}^s) \) where \(\text{Ch} = H(M, \{\text{COM}_\gamma\}_{\gamma=1}^s, \text{aux}) \in \{1, 2, 3\}^s \) where \(H : \{0, 1\}^* \rightarrow \{1, 2, 3\}^s \) is a hash function and \(\text{aux} \) is some auxiliary information given as input.

Theorem 2.2. \([25]\) The protocol in Figure 2 is a statistical ZK\text{AOK} for the relation \(R \) with perfect completeness, soundness error \(2/3 \), and the communication cost \(O(L \log q) \).

Theorem 2.3. (Improved Forking Lemma)\([13]\) Let \(A \) be a probabilistic polynomial time (PPT) Turing machine called “Attacker” and a PPT simulator \(B \). Let \(l, q \) be real numbers such that \(l \leq \frac{\sqrt{q}}{4} \). If \(A \) can find a valid signature \((M, \sigma, h)\) with non-negligible probability \(\epsilon > \frac{4}{q} \) in less than \(Q_H \) number of hash queries where \(h = H((M, \sigma)) \) then with non-negligible constant probability \(\frac{1}{96} \) with \((1 + 24Q_H \log(2l)) \) replays of \(A \) and \(B \) with different random oracles, \(A \) will output \((l + 1)\) pairwise distinct valid signatures.

3 Dynamic Forward Secure Group Signature Scheme (FS-GS)\([26]\)

3.1 Syntax

We describe below the syntax and notion of dynamic fully forward secure group signature (FS-GS) following Kiayias-Yung \([22]\).

The concept of forward secure signature was demonstrated by Anderson in \([5]\) and was characterized formally by Bellare and Miner \([8]\). A FS-GS=(Setup, Join, Update, Sign, Verify, Open) scheme is run among a group manager (GM), users (\(\mathcal{U} \)) and an opening authority (OA) where FS-GS.Verify and FS-GS.Open are deterministic algorithms while FS-GS.Setup, FS-GS.Join, FS-GS.Update, and FS-GS.Sign are probabilistic algorithms.
Figure 2: Zero Knowledge Argument of Knowledge

Prover \((P, v)\)
\[\text{Secret: } x \text{ satisfying } Px = v \]

Verifier \((P, v)\)

Samples: Randomness \(\rho_1, \rho_2, \rho_3\) for COM and
\[r \leftarrow U(\mathbb{Z}_q^L), \pi \leftarrow U(S) \]

Computes:
\[C_1 = \text{CMT}_1(\pi, Pr; \rho_1) \]
\[C_2 = \text{CMT}_2(T_\pi(r); \rho_2) \]
\[C_3 = \text{CMT}_3(T_\pi(x + r); \rho_3) \]
\[\text{COM} = (C_1, C_2, C_3) \]

\[\text{CMT} \rightarrow \]

\[\text{Ch} \leftarrow U(\{1, 2, 3\}) \]

\[\text{Ch} \rightarrow \]

if \(\text{Ch} = 1\) then
\(\text{RSP} = (t_x = T_\pi(x), t_r = T_\pi(r), \rho_2, \rho_3)\)

if \(\text{Ch} = 2\) then
\(\text{RSP} = (\pi_2 = \pi, y = x + r, \rho_1, \rho_3)\)

if \(\text{Ch} = 3\) then
\(\text{RSP} = (\pi_3 = \pi, r_3 = r, \rho_1, \rho_2)\)

\[\text{RSP} \rightarrow \]

if \(\text{Ch} = 1\) then check whether \(t_x \in \text{VALID}\),
\[C_2 = \text{CMT}_2(t_r; \rho_2), C_3 = \text{CMT}_3(t_x + t_r; \rho_3) \]

if \(\text{Ch} = 2\) then check whether
\[C_1 = \text{CMT}_1(\pi_2, Py - v; \rho_2), C_3 = \text{CMT}_3(T_{\pi_2}(y); \rho_3) \]

if \(\text{Ch} = 3\) then check whether
\[C_1 = \text{CMT}_1(\pi_3, Pr_3; \rho_1), C_2 = \text{CMT}_2(T_{\pi_3}(r_3); \rho_2) \]

In each case, the verifier outputs \(\text{VRF} = 1\) if the verification succeeds, otherwise outputs \(\text{VRF} = 0\).
(i) **FS-GS.Setup**(λ, T) \rightarrow ($\mathcal{Y}, S_{\text{GM}}, S_{\text{OA}}, \text{St}$). It is run by a trusted third party, called the key generation center (KGC), the KGC given a security parameter $\lambda \in \mathbb{N}$, maximum allowable time period T, outputs the public parameter \mathcal{Y}, group manager’s secret key S_{GM} and opening authority’s private key S_{OA}. While $S_{\text{GM}}, S_{\text{OA}}$ are given to the respective authorities through secure channels, \mathcal{Y} is publicized. The KGC also initializes a public state, $\text{St}= (\text{St}_{\text{users}}, \text{St}_{\text{trans}})$, consisting of a set data structure St_{users} and a string data structure St_{trans}, initially set as $\text{St}_{\text{users}} = \emptyset$ and $\text{St}_{\text{trans}} = \epsilon$.

(ii) **FS-GS.Join(GM, U_i)(\mathcal{Y}, T) \rightarrow (cert$_{i,t_1 \rightarrow t_2}$, sec$_{i,t_1 \rightarrow t_2}$, St). It is an interactive protocol between the GM and the user U_i who wants to be a group member. This protocol manages two Turing machines J_{user} and the J_{GM} controlled respectively by U_i and GM. These Turing machines, on input \mathcal{Y}, T, generates a secret key sec$_{i,t_1 \rightarrow t_2}$ and a certificate cert$_{i,t_1 \rightarrow t_2}$ in some time interval $[t_1, t_2] \subseteq [1, T]$ selected by the GM for each user U_i. Let $[J_{\text{user}}(\mathcal{Y}, T), J_{\text{GM}}(\mathcal{Y}, t_1, t_2, T, S_{\text{GM}}, \text{St})]$ denotes the execution between U_i and GM after which U_i receives its certificate cert$_{i,t_1 \rightarrow t_2}$ generated by the GM through a secure communication channel. The secret key sec$_{i,t_1 \rightarrow t_2}$ of U_i is generated by U_i. On successful completion of the protocol, the user U_i sets its secret key sec$_{i,t_1 \rightarrow t_2}$ and the GM updates the public state $\text{St}= (\text{St}_{\text{users}}, \text{St}_{\text{trans}})$ as $\text{St}_{\text{users}} = \text{St}_{\text{users}} \cup \{i\}$ and $\text{St}_{\text{trans}} = \text{St}_{\text{trans}} \langle i, t_1, t_2, \text{transcript} \rangle$.

(iii) **FS-GS.Update**($\mathcal{Y}, t, t_2, \text{sec}_{i,t \rightarrow t_2}, \text{cert}_{i,t \rightarrow t_2}$) \rightarrow (sec$_{i,t+1 \rightarrow t_2}$, cert$_{i,t+1 \rightarrow t_2}$). It is a randomized algorithm executed by the user U_i. On input of $\mathcal{Y}, [t, t_2] \subseteq [1, T]$, a valid membership certificate cert$_{i,t \rightarrow t_2}$ and corresponding membership secret sec$_{i,t \rightarrow t_2}$, this algorithm allows U_i to obtain its updated membership certificate cert$_{i,t+1 \rightarrow t_2}$ and membership secret sec$_{i,t+1 \rightarrow t_2}$ for the subsequent time period $t+1$.

(iv) **FS-GS.Sign** (sec$_{i,t_1 \rightarrow t_2}$, cert$_{i,t_1 \rightarrow t_2}$, \mathcal{Y}, M) \rightarrow (σ). Given sec$_{i,t_1 \rightarrow t_2}$, cert$_{i,t_1 \rightarrow t_2}$, \mathcal{Y} and the message M, the user U_i runs this algorithm and outputs a signature σ on the message M.

(v) **FS-GS.Verify**($\sigma, t, M, \mathcal{Y}$) \rightarrow ($1\lor 0$). The verifier, on receiving the message M, signature σ and a time period t, invokes this algorithm using \mathcal{Y} to check whether the produced signature σ is a valid signature on M or not during the time period t. If σ is a valid signature, the verifier returns 1; otherwise outputs 0.

(vi) **FS-GS.Open**($\sigma, t, \mathcal{Y}, S_{\text{OA}}, \text{St}$) \rightarrow ($i \lor \bot$). The opening authority OA with its secret key S_{OA} along with $\mathcal{Y}, t, \sigma, M$ and St runs this algorithm and returns either the identity i of the group member that has produced the signature σ on M during the time period t or an opening failure \bot.

A state St is said to be valid if it can be attained from $\text{St}= (\emptyset, \epsilon)$ by a Turing machine having access to the oracle J_{GM}. Every membership certificate includes a unique tag (identity) specific to user generated by the GM

As in Kiayias-Yung [22], we use notation, cert$_{i,t_1 \rightarrow t_2} = \mathcal{Y} \text{sec}_{i,t_1 \rightarrow t_2}$ to indicate that there exists some coin tosses ϖ for J_{GM} run by the GM and J_{user} run by the user U_i such that for some valid public state St, the execution of $[J_{\text{user}}(\mathcal{Y}, T), J_{\text{GM}}(\mathcal{Y}, t_1, t_2, T, S_{\text{GM}}, \text{St})](\varpi)$ issues
\[\langle i, \text{sec}_{i,t_1\rightarrow t_2}, \text{cert}_{i,t_1\rightarrow t_2} \rangle \text{ to } J_{\text{user}} \text{ (i.e., to } U_i) \].

Correctness: The correctness of FS-GS is as follows:

(a) No two entries of \(\text{St}_{\text{trans}} \) should share the same tag and \(|\text{St}_{\text{users}}| = |\text{St}_{\text{trans}}| \).

(b) If \(\langle i, \text{sec}_{i,t_1\rightarrow t_2}, \text{cert}_{i,t_1\rightarrow t_2} \rangle \) is obtained by \(J_{\text{user}} \) (i.e., \(U_i \)) on honestly running \(\{J_{\text{user}}(\mathcal{Y}, T), J_{\text{GM}}(\mathcal{Y}, t_1, t_2, T, S_{\text{GM}}, \text{St})\} \), then \(\text{cert}_{i,t_1\rightarrow t_2} \equiv \gamma \text{sec}_{i,t_1\rightarrow t_2} \). Here \(\mathcal{Y}, S_{\text{GM}}, S_{\text{OA}}, \text{St} \) are generated by executing FS-GS.Setup(\(\lambda, T \)).

(c) Let \(\text{cert}_{i,t_1\rightarrow t_2} \equiv \gamma \text{sec}_{i,t_1\rightarrow t_2} \) be as in (b) and \(\langle i, \text{sec}_{i,t\rightarrow t_2}, \text{cert}_{i,t\rightarrow t_2} \rangle \) for \(t_1 \leq t \leq t_2 \) is obtained by running FS-GS.Update(\(\mathcal{Y}, k, t_2, \text{sec}_{i,k\rightarrow t_2}, \text{cert}_{i,k\rightarrow t_2} \) \(\rightarrow \) \(\text{sec}_{i,k+1\rightarrow t_2}, \text{cert}_{i,k+1\rightarrow t_2} \)), successively for \(k = t_1, t_1 + 1, \ldots, t - 1 \). Then \(\text{cert}_{i,t\rightarrow t_2} \equiv \gamma \text{sec}_{i,t\rightarrow t_2} \) and FS-GS.Verify(FS-GS.Sign(\(\text{sec}_{i,t\rightarrow t_2}, \text{cert}_{i,t\rightarrow t_2}, \mathcal{Y}, M \)), \(t, M, \mathcal{Y} \)) = 1.

(d) For any \(\langle i, \text{cert}_{i,t_1\rightarrow t_2}, \text{sec}_{i,t_1\rightarrow t_2} \rangle \) obtained by \(U_i \) on execution of \(\{J_{\text{user}}(\mathcal{Y}, t_1, t_2, T), J_{\text{GM}}(\mathcal{Y}, t_1, t_2, T, S_{\text{GM}}, \text{St})\} \) for some valid state \(\text{St} \), let \(\langle i, \text{cert}_{i,t\rightarrow t_2}, \text{sec}_{i,t\rightarrow t_2} \rangle \) be derived by FS-GS.Update algorithm as in (c). Now if \(\sigma = \text{FS-GS.Sign}(\text{sec}_{i,t\rightarrow t_2}, \text{cert}_{i,t\rightarrow t_2}, \mathcal{Y}, M) \), then FS-GS.Open(\(\sigma, t, M, \mathcal{Y}, S_{\text{OA}}, \text{St} \)) = \(i \).

3.2 Security Model

Security attributes of FS-GS scheme are formalized by three experiments (i) mis-identification attack (ii) framing attack and (iii) anonymity attack. An adversary \(\mathcal{A} \) invokes several oracles accessible in the attack games and interacts with a stateful interface \(I \) that maintains the following variables:

- \(\text{State}_I \): a data structure representing the state of the interface \(I \);
- \(U = |\text{St}_{\text{users}}| \): the number of currently involved members in the group;
- \(\text{Sigs} \): a database of signatures generated by the signing oracle FS-GS.Sign;
- \(U^a \): collection of adversarially controlled users since their admission;
- \(U^b \): collection of honest users with adversary as the dishonest group manager.

The state of the interface \(I \) is \(\text{State}_I = (\text{State}_{\text{pri}}, \text{State}_{\text{pub}}) \) where \(\text{State}_{\text{pri}} = (\text{cert}_{i,t_1\rightarrow t_2}, S_{\text{GM}}, S_{\text{OA}}) \) and \(\text{State}_{\text{pub}} = (\text{St}_{\text{users}}, \text{St}_{\text{trans}}, \mathcal{Y}, \text{St}_{\text{corr}}) \) where \(\mathcal{Y}, S_{\text{GM}}, S_{\text{OA}} \) and \(\text{St} = (\text{St}_{\text{users}}, \text{St}_{\text{trans}}) \) are generated by \(I \) on invoking FS-GS.Setup(\(\lambda, T \)) and \(\text{St}_{\text{corr}} \) store pairs of the form \((i, t) \) with \(i \in \text{St}_{\text{users}} \) and \(t \in \{1, 2, \ldots, T\} \) representing \(i \) is corrupted (i.e., \(i \in U^b \)) at time period \(t \). Each record stored in \(\text{Sigs} \) is of the form \((i, t, M, \sigma) \) indicates the message \(M \) is signed by \(U_i \) during the period \(t \). The adversary has access to the transcript \(\text{St}_{\text{trans}} \) of the FS-GS.Join protocol but not to user’s membership secret for users in \(U^b \).

The adversary \(\mathcal{A} \) is given access to the following oracles while mounting attacks.
• $Q_{pub}, Q_{keyGM}, Q_{keyOA}$. When adversary A invokes the oracles $Q_{pub}, Q_{keyGM}, Q_{keyOA}$, the interface I with $State_I$ returns γ, S_{GM}, S_{OA} respectively to A by extracting them from $State_I$.

• Q_{a-join}. The adversary A can introduce users under its control (users in U^a) by querying the oracle Q_{a-join}. On input $t_1, t_2 \in \{1, 2, ..., T\}$, the interface I executes $FS-GS.Join$ acting as the GM that controls the Turing machine J_{GM} and interacts with a malicious user U_i that controls the Turing machine J_{user}. If the protocol is successful, then the interface I increments U by 1, and updates $St=(St_{users}, St_{trans})$ adding index i of the malicious user U_i to both U^a and St_{users}, and updating St_{trans} as $St_{trans} = St_{trans}(i, t_1, t_2, transcript_i)$. The Interface I finally stores the membership certificate $cert_{i,t_1 \rightarrow t_2}$ in a private part of $State_I$.

• $Q_{sig}(M, i, t) \rightarrow (\sigma \lor \bot)$. On querying a tuple (M, i, t) consisting of a message M, an index i, and a time period t, the interface I first checks if $State_{pri}$ contains $sec_{i,t_1 \rightarrow t_2}, cert_{i,t_1 \rightarrow t_2}$ for some $t_1, t_2 \in \{1, 2, ..., T\}$ with $t_1 \leq t \leq t_2$ and $U_i \in U^b$. If so, I calls $FS-GS.Update(\gamma, k, t_2, sec_{i,k \rightarrow t_2}, cert_{i,k \rightarrow t_2})$ for $k = t_1, t_1+1, ..., t$ to generate the pair $(cert_{i,t \rightarrow t_2}, sec_{i,t \rightarrow t_2})$, returns a signature $\sigma \leftarrow FS-GS.Sign(cert_{i,t \rightarrow t_2}, cert_{i,t \rightarrow t_2}, \gamma, M)$ to A on behalf of user U_i for the period t and updates $Sigs=Sigs(\gamma, i, t, M, \sigma)$. Otherwise, the interface I returns \bot to A.

• $Q_{open}(M, \sigma, t) \rightarrow (i \lor \bot)$. Given a valid tuple (M, σ, t) from the adversary, the interface I runs the opening algorithm $FS-GS.Open(\sigma, t, M, \gamma, S_{OA}, St) \rightarrow (i \lor \bot)$ with the current state $St=(St_{users}, St_{trans})$. Let $S = \{(M, \sigma, t) \mid FS-GS.Verify(\sigma, t, M, \gamma) = 1\}$ and Q_{open}^{S} denotes a restricted oracle that applies opening algorithm $FS-GS.Open$ only for the valid tuples (M, σ, t) which are not in S.

• Q_{read} and Q_{write}. These queries permit the adversary A to read and write the contents in $State_I = (State_{pri}, State_{pub})$. By Q_{read} queries, the adversary A can read $State_{pri}$ of $State_I$ where membership secrets are stored after Q_{b-join} queries. On the other hand, Q_{write} query allows the adversary A to update $State_I$ by introducing users in U^b without altering, removing or reusing the already existing certificates.

• $Q_{corrupt}(i, t) \rightarrow ((cert_{i,t \rightarrow t_2}, sec_{i,t \rightarrow t_2}) \lor \bot)$. On receiving query (i, t), where $i \in St_{users}$ and $t \in \{1, 2, ..., T\}$ from A, the interface I checks if $i \in U^b$ and St_{trans} has a record of the form $(i, t_1, t_2, transcript_i)$ for some $t_1, t_2 \in \{1, 2, ..., T\}$ with $t_1 \leq t \leq t_2$. If not, returns \bot. Else, I extracts $cert_{i,t_1 \rightarrow t_2}, sec_{i,t_1 \rightarrow t_2}$ from $State_{pri}$ and iteratively call algorithm $FS-GS.Update(\gamma, k, t_2, sec_{i,k \rightarrow t_2}, cert_{i,k \rightarrow t_2})$ for $k = t_1, t_1+1, ..., t-1$ to generate $cert_{i,t \rightarrow t_2}$ and $sec_{i,t \rightarrow t_2}$ for $t > t_1$. It provides all these information to the adversary and stores (i, t) in St_{corr}. Once a user gets corrupted, it remains corrupted thereafter.
The security against mis-identification, framing and anonymity attacks are formally described below:

1. **Mis-identification Attack:** This attack is modeled by the experiment $\text{Exp}^{\text{mis-id}}_{A}(\lambda, T)$ described in Algorithm 2 between an adversary A and the interface I. In this attack, A gets the public parameter \mathcal{Y} by Q_{pub} query and $\text{State}_{\text{pub}}$ by Q_{read} query. Besides, A has the power to manipulate the opening authority given access to S_{OA} by querying Q_{keyOA} oracle. It can also launch new dishonest members in the group by making $Q_{\text{a-join}}$ queries whereby St gets updated and A receives all the secret information of the dishonest members. The aim of the adversary A is to produce a valid signature σ^{\star} on a message M^{\star} during the time period t^{\star} that does not belong to any adversarially controlled member (i.e., of U^{a}) endowed with the ability to sign during the period t^{\star}.

Definition 6. A FS-GS scheme over T periods is secure against mis-identification attack if $\text{Adv}^{\text{mis-id}}_{A}(\lambda, T) = Pr[\text{Exp}^{\text{mis-id}}_{A}(\lambda, T) = 1] \in \text{negl}(\lambda)$, where negl is a negligible function in λ.

Algorithm 2: $\text{Exp}^{\text{mis-id}}_{A}(\lambda, T)$

- $\text{State}_{I} = (\text{St}, \mathcal{Y}, S_{\text{GM}}, S_{\text{OA}}) \leftarrow \text{FS-GS.Setup}(\lambda, T)$;
- $(M^{\star}, t^{\star}, \sigma^{\star}) \leftarrow A(Q_{\text{pub}}, Q_{\text{a-join}}, Q_{\text{read}}, Q_{\text{keyOA}})$;
- if $(\text{FS-GS.Verify}(\sigma^{\star}, t^{\star}, M, \mathcal{Y}) = 0)$ then
 return 0;
- else
 $i = \text{FS-GS.Open}(\sigma^{\star}, t^{\star}, M^{\star}, \mathcal{Y}, S_{\text{OA}}, \text{St})$;
 if ($i \notin U^{a}$) then
 return 1;
 else
 if ($[(i, t_{1}, t_{2}, \text{transcript}_{i}) \in \text{St}_{\text{trans}}] \land [t_{1} \leq t^{\star} \leq t_{2}]$) then
 return 0;
 else
 return 1;
 end if
end if

2. **Framing Attack:** This attack game is formally described by the experiment $\text{Exp}^{\text{fra}}_{A}(\lambda)$ in Algorithm 3 which is played between an adversary A and the interface I. The adversary A has given the power to make the whole system including the group manager and the opening authority both colludes against some honest user. In this attack, the adversary A is capable to access the secret keys of both the GM and the OA. Acting as a dishonest group manager, A can introduce honest members using Q_{join} queries. At the same moment, A can corrupt the honest members of U^{b} by invoking Q_{corrupt} queries. It also has the power to observe the system when user produce signatures with Q_{sig} queries, and can create dummy users with Q_{write} queries. The adversary’s goal is to (a) either frame an uncorrupted group member or (b) generate a signature that opens to some corrupt member for a period proceeding the one where that member was not
3. Anonymity Attack: The formal notion of this attack game is modeled by the experiment $\text{Exp}_{\mathcal{A}}^{\text{anon}}(\lambda, T)$ outlined in Algorithm 4 between an adversary \mathcal{A} and the interface I. It consists of 2 stages. The first stage is the play stage, where the adversary \mathcal{A} is allowed to make Q_{write} queries and has access to Q_{open} oracle. At the end of this stage, \mathcal{A} chooses (M^*, t^*) and two pairs $(\text{sec}_{i_0, t^* \rightarrow t_0^*}, \text{cert}_{i_0, t^* \rightarrow t_0^*})$, $(\text{sec}_{i_1, t^* \rightarrow t_1^*}, \text{cert}_{i_1, t^* \rightarrow t_1^*})$, consisting of a well formed membership secret and a membership certificate for periods $[t^*, t_{b,2}^*]$ for $b \in \{0, 1\}$, and auxiliary information aux. The interface generates a signature σ^* using $(\text{sec}_{i, t^* \rightarrow t^*_i}, \text{cert}_{i, t^* \rightarrow t^*_i})$ by flipping a fair coin $d \in \{0, 1\}$. The aim of the adversary \mathcal{A} is to output a guess d' for the guess stage.

Definition 8. A FS-GS scheme is fully anonymous for any PPT adversary \mathcal{A}, if $\text{Adv}^{\text{anon}}(\mathcal{A}) := |Pr[\text{Exp}_{\mathcal{A}}^{\text{anon}}(\lambda) = 1] - 1/2| \in \text{negl}(\lambda)$, where negl is a negligible function in λ.

4 **Description of Our FSGS Scheme**

- $\text{FSGS.Setup}(\lambda, T) \rightarrow (\mathcal{Y}, S_{\text{GM}}, S_{\text{OA}}, \text{St})$. Given a security parameter $\lambda > 0$ and maximum allowable time period $T = 2^l$ for some integer l, the KGC chooses an integer n of size $\mathcal{O}(\lambda)$, a prime modulus q of size $\widetilde{\mathcal{O}}(ln^3)$ such that $T \leq q$ and an integer
Algorithm 4: Exp\textsubscript{anon} (\lambda)

State\textsubscript{f} = (St, \mathcal{Y}, S_{\text{GM}}, S_{\text{OA}}) \leftarrow \text{FS-GS.Setup}(\lambda, T);
(aux, M^*, t^*, (sec\textsubscript{io}, t^* \rightarrow t_0^*) (sec\textsubscript{st}, t^* \rightarrow t_1^*)) \leftarrow \mathcal{A}(\text{Play}: Q_{\text{pub}}, Q_{\text{keyGM}}, Q_{\text{open}}, Q_{\text{read}}, Q_{\text{write}});

if \([\neg(cert_{i_b, t^* \rightarrow t_0^*} = Y \text{sec}_{i_b, t^* \rightarrow t_0^*}) \text{ where } b \in \{0, 1\}] \lor [cert_{i_0, t^* \rightarrow t_1^*} = cert_{i_{\lambda}, t^* \rightarrow t_1^*}])\) then
 return 0;
else
 \(d \leftarrow U\{0, 1\}\);
 \(\sigma^* \leftarrow \text{FS-GS.Sign}(\text{sec}_{i_d, t^* \rightarrow t_0^*}, cert_{i_d, t^* \rightarrow t_0^*} ; \mathcal{Y}, M^*)\);
 \(d' \leftarrow \mathcal{A}(\text{guess}, \sigma^*, \text{aux}: Q_{\text{pub}}, Q_{\text{keyGM}}, Q_{\text{open}}^{-1}(M^*, \sigma^*, t^*)), Q_{\text{read}}, Q_{\text{write}})\);
 if \((d' = d)\) then
 return 1;
 else
 return 0;
end if

\(\mu\) with \(\mu \geq \log l\). The system supports atmost \(N = 2^\mu\) members. The KGC sets \(m = 2n[\log q]\), selects real numbers \(\sigma\) of size \(\Omega(\sqrt{n \log q \log n})\), \(\beta\) of size \(\sigma \omega(\log m)\) and \(\gamma\) of size \(\sqrt{n \omega(\log n)\text{)}\}. Here \(\mathcal{O}, \Omega, \omega\) are the standard asymptotic notations and \(\mathcal{O}\) is as defined in Section 2. The KGC executes the following steps to generate the public key \(\mathcal{Y}\), and the private keys \(S_{\text{OA}}\) of the opening authority (OA) and \(S_{\text{GM}}\) of the group manager (GM) respectively and initializes the state \(St\).

(i) It chooses random matrices \(M_0, M_1, \{A_k\}_{k=0}^\mu\), \(D_0, D_1 \leftarrow U(\mathbb{Z}_q^n), F \leftarrow U(\mathbb{Z}_q^{4n \times 4m})\), and a vector \(u \leftarrow U(\mathbb{Z}_q^n)\). It also selects three quantum secure hash functions which will be modeled as random oracle in the security analysis \(H : \{0, 1\}^* \rightarrow \{1, 2, 3\}^s, H_0 : \{0, 1\}^* \rightarrow \mathbb{Z}_q^{2n \times 2m}\) and \(H_2 : \{0, 1\}^* \rightarrow \mathcal{I}\), where \(s\) is an integer of size \(\omega(\log n)\), \(\mathcal{I}\) is a set of \(m \times m\) invertible matrices over \(\mathbb{Z}_q\) with columns having low norm and also picks a one time signature \(OTS \equiv (\mathcal{G}, S, V)\), where \(\mathcal{G}, S, V\) are the key generation, signing and verification algorithms respectively.

(ii) The KGC runs the key generation algorithm \(\text{D.Sig.KeyGen}\) of a digital signature scheme \(\text{D.Sig} = (\text{KeyGen}, \text{Sign}, \text{Verify})\) and generates signing-verification key pair \((\text{usk}[i], \text{uvk}[i])\) for each user \(U_i, i \in [N]\). We assume that \(\text{uvk}\) table is public and anyone can access the genuine copy of the verification key of any user.

(iii) The KGC runs \(\text{TrapGen}(1^n, 1^m, q) \rightarrow (\mathbf{A}, T_{\mathbf{A}})\) and \(\text{TrapGen}(1^n, 1^m, q) \rightarrow (\mathbf{B}, T_{\mathbf{B}})\) as described in Lemma 1.1(b)(iii) in Section 2 and outputs matrices \(\mathbf{A}, \mathbf{B} \in \mathbb{Z}_q^{n \times m}\) with short bases \(T_{\mathbf{A}}(\mathbf{A})\) and \(T_{\mathbf{B}}(\mathbf{B})\). The short basis \(T_{\mathbf{A}}\) is the secret key \(S_{\text{GM}}\) of the GM utilized to issue certificates to the new users while \(T_{\mathbf{B}}\) is the master secret key \(S_{\text{OA}}\) of the OA employed to trace the signer.

(iv) Initializes the public state \(St = (St_{\text{users}}, St_{\text{trans}}) = (\emptyset, \varepsilon)\).
(v) The KGC publishes the group public key

\[\mathcal{Y} = (M_0, M_1, A, \{A_k\}_{k=0}^\mu, B, D, D_0, D_1, F, u, OTS, DSig, H, H_0, H_2, \beta, \gamma, \sigma) \]

and sends \(S_{OA} = T_B \) to the OA and \(S_{GM} = T_A \) to the GM through a secure communication channel.

- \(FSGS.Join(\mathcal{Y}, T)^{\text{GM,User}} \rightarrow (\text{cert}_{i,t_1 \rightarrow t_2}, \text{sec}_{i,t_1 \rightarrow t_2}, \text{St}) \). It is an interactive protocol run between the GM and the user \(U_i \). The GM and the user \(U_i \) runs the Turing machines \(J_{GM} \) and \(J_{user} \) respectively. On completion of the protocol, \(U_i \) receives its membership certificate \(\text{cert}_{i,t_1 \rightarrow t_2} \) from the GM through a secure communication channel for the time interval \([t_1, t_2]\) and fixes its secret key \(\text{sec}_{i,t_1 \rightarrow t_2} \) while the GM updates the public state \(\text{St} = (\text{St}_{users}, \text{St}_{trans}) \) (initially set to be \((\emptyset, \varepsilon)\) by the KGC) as follows.

 (i) The user \(U_i \) samples \(z_i^{(0)} \leftarrow D_{\mathbb{Z}^{4m,\sigma}} \) meaning \(z_i^{(0)} \) is an integer column vector of length \(4m \) chosen from discrete Gaussian with standard deviation \(\sigma \). The user \(U_i \) computes \(v_i^{(0)} = F \cdot z_i^{(0)} \mod q \), \(\text{sig}_i = DSig.Sign(usk[z], v_i^{(0)}) \) and sends \((v_i^{(0)}, \text{sig}_i) \) to the GM.

 (ii) The GM runs \(DSig.Verify(uvk[i], \text{sig}_i, v_i^{(0)}) \). If the verification fails then the GM aborts. Otherwise, if \(v_i^{(0)} \) is not previously used by a registered member, then the GM chooses a \(\mu \)-bit identity \(id_i = (id_i[1], id_i[2], ..., id_i[\mu]) \in \{0, 1\}^\mu \) and a time interval \([t_1, t_2] \subset [1, T] \) for user \(U_i \) and uses the secret key \(S_{GM} = T_A \) to issue a new certificate to \(U_i \) as follows:

 - The GM computes the matrix

 \[A_{id_i} = [A|\overline{A}] \in \mathbb{Z}_{2m}^{n \times 2m}, \text{ with } \overline{A} = A_0 + \sum_{k=1}^\mu \text{id}_i[k] A_k \]

 where \(A, \{A_k\}_{k=0}^\mu \) are extracted from the public key \(\mathcal{Y} \), and \(\text{id}_i[k] \) indicates the \(k \)th bit of the identity \(id_i \) of user \(U_i \).

 - It runs \(\text{ExtBasis}(A, \overline{A}, T_A) \rightarrow (T_A|\overline{A} = T_A{id_i}) \) as in Lemma 1.1(b)(iv) of Section 2 to generate a short basis \(T_A{id_i} \) of \(\Lambda^{\perp} (A_{id_i}) \).
The GM samples a short vector $s_i \leftarrow D_{\mathbb{Z}^{2m}, \sigma}$. Note that by Lemma 1.1(a) in Section 2, $|s_i| \leq \sqrt{2m}\sigma$. As $|x|_{\infty} \leq |x| \leq \sqrt{n}|x|_{\infty}$ for any $x \in \mathbb{R}^n$, we have $|s_i|_{\infty} \leq \sigma \omega(\log m) = \beta$.

By using the short basis $T_{A_{id_i}}$ of $\Lambda^+_{q}(A_{id_i})$ as mentioned in Remark 1 in Section 2, the GM computes a short vector $d_i = [d_{i1}, d_{i2}]^t \in \mathbb{Z}^{2m}$ with $|d_i| \leq \beta$, $d_{i1}, d_{i2} \in \mathbb{Z}^m$, satisfying

$$A_{id_i}d_i = u + D \cdot r_i \mod q$$

where

$$r_i = \bin(D_0 \cdot \bin(v_i^{(0)}) + D_1 \cdot s_i) \mod q$$

Here $\bin(v_i^{(0)})$ stands for the binary representation of the vector $v_i^{(0)}$. Observe that $D_1 \cdot s_i \in \mathbb{Z}^{2n \times 1}$ and $D_0 \cdot \bin(v_i^{(0)}) \in \mathbb{Z}^{2n \times 1}$ as $\bin(v_i^{(0)})$ is of length $4n[\log q] = 2m$. We also point out that $T_{A_{id_i}}$ is computable only by the GM, as T_A is known only to the GM and the μ-bit identifier id_i for user U_i is selected by the GM itself. Thus, the GM can compute the short vector d_i with $|d_i| \leq \beta$.

The GM then runs the algorithm Nodes($t_1 + 1, t_2, G$) to identify the collection of subset of hanging nodes SubsetHN as explained in Section 2.2 where G is the complete binary tree of height l with $T = 2^l$ leaves each indicating a time period. For each node $w = (w_{num}, w_{dep}) \in \text{SubsetHN}$ where $w_{num} \in \{0, 1\}^*$ is the label of the node w and $w_{dep} \in \mathbb{Z}, 0 \leq w_{dep} \leq l$, is its depth in the tree G of height l, the GM does the following:

(a) computes the matrix

$$A_{i,w} = [A_{id_i} | \tilde{A}_w] \text{ with } \tilde{A}_w = [M_0 + wt(w_{num})M_1 | A_0 + \sum_{k=1}^{\mu} \alpha_k A_k]$$

where $\alpha_1 \alpha_2 \ldots \alpha_\mu = 0^{\mu-\delta}|\bin(w_{dep}), \alpha_k \in \{0, 1\}, \delta = \text{len}(\bin(w_{dep}))$ denotes the length of $\bin(w_{dep})$ and $wt(w_{num})$ represents the Hamming weight of w_{num}.

Note that $wt(w_{num})$ and w_{dep} helps to generate different matrices A_{iw} for each $w \in \text{SubsetHN}$. By our choice of labeling, Hamming weights are different at the same level so in this case w_{num} ensures for different matrices whereas w_{dep} guarantees to get different matrices each time when Hamming weights are same at different depth.

(b) executes $\text{ExtBasis}(A_{id_i}, \tilde{A}_w, T_{A_{id_i}}) \rightarrow (T_{A_{id_i} | A_{i,w}} = T_{A_w})$ to generate a short basis $T_{A_{i,w}}$ of $\Lambda^+_{q}(A_{i,w})$;

(c) samples short vector $s_{i,w}^{(0)} \leftarrow D_{\mathbb{Z}^{2m}, \sigma}$, i.e., $|s_{i,w}^{(0)}| \leq \sqrt{2m}\sigma$ with high probability whereby $|s_{i,w}^{(0)}|_{\infty} \leq \sigma \omega(\log m) = \beta$ as guaranteed by Lemma 1.1(a).
(d) computes a short vector \(x^{(0)}_{i,w} = [x^{(0)}_{i,w,1} | x^{(0)}_{i,w,2} | x^{(0)}_{i,w,3}]^t \) with \(||x^{(0)}_{i,w}||_\infty \leq \beta \) satisfying

\[
A_{i,w} x^{(0)}_{i,w} = u + D \cdot \bin(D_0 \cdot \bin(v^{(0)}_i) + D_1 \cdot s^{(0)}_{i,w}) \mod q
\]

(4)

by using the short basis \(T_{A_w} \) of \(\Lambda^\perp_q(A_w) \) as stated in Remark 1 of Section 2 where \(x^{(0)}_{i,w,1} \in \mathbb{Z}^{2m} \) and \(x^{(0)}_{i,w,2}, x^{(0)}_{i,w,3} \in \mathbb{Z}^m \). Note that the knowledge of \(T_{A_{id}} \) is required to compute \(T_{A_w} \) and knowledge of \(T_{A_{id}} \) is required to compute \(T_{A_{id}} \) using the algorithm ExtBasis. As the GM knows the short basis \(T_{A} \), it can generate a short vector \(x^{(0)}_{i,w} \) with \(||x^{(0)}_{i,w}||_\infty \leq \beta \).

- The GM computes \(H_2(id_i||0) = R_i^{(0)} \), where \(R_i^{(0)} \) is a \(\mathbb{Z}_q \)-invertible matrix of size \(m \times m \) whose columns have low norm, sets \(C_i^{(0)} = A(R_i^{(0)})^{-1} \), and runs the delegation algorithm \(\text{BasisDel}(A, R_i^{(0)}, T_A, \sigma) \rightarrow (C_i^{(0)}, T_{C_i^{(0)}}) \) as in Lemma 1.1(b)(vi) in Section 2 to generate a short basis \(T_{C_i^{(0)}} \) of \(\Lambda^\perp_q(C_i^{(0)}) \).

(iii) The GM finally issues the membership certificate

\[
\text{cert}_{i,t_1 \rightarrow t_2} = \left(id_i, d_i, s_i, \{x^{(0)}_{i,w}, s^{(0)}_{i,w}\}_{w \in \text{SubsetHN} \leftarrow \text{Nodes}(t_1 + 1, t_2, G)}, C_i^{(0)}, T_{C_i^{(0)}}, [t_1, t_2] \right)
\]

to the user \(U_i \) through a secure communication channel. The GM updates the public state \(St \) by storing \(i \) in \(St_{\text{users}} \) and transcript, \(t = (v_i^{(0)}, i, uvk[i], \sigma, [t_1, t_2]) \) in \(St_{\text{trans}} \).

(iv) The user \(U_i \) verifies \(||d_i||_\infty \leq \beta, ||s_i||_\infty \leq \beta \) satisfying Eq 2 and for all \(w \in \text{SubsetHN} \leftarrow \text{Nodes}(t_1 + 1, t_2, G) \), \(||x^{(0)}_{i,w}||_\infty \leq \beta \) and \(||s^{(0)}_{i,w}||_\infty \leq \beta \) satisfying Eq 4. Also it checks \(C_i^{(0)} = A(H_2(id_i||0))^{-1} \). If any of these verification fails, then \(U_i \) aborts. Otherwise \(U_i \) sets its secret key \(\text{sec}_{i,t_1 \rightarrow t_2} = z_i^{(0)} \) and defines \(\text{cert}_{i,t_1 \rightarrow t_2} \) as its membership certificate corresponding to its secret key \(\text{sec}_{i,t_1 \rightarrow t_2} = z_i^{(0)} \) for the time interval \([t_1, t_2]\).
Figure 3: Join Algorithm

User $U_i(usk[i], T, Y)$

Chooses: $z_i(0)$
Computes: $v_i(0) = F \cdot z_i(0) \mod q$
\[\text{sig}_i = \text{DSig.Sign}(usk[i], v_i(0)) \]

\[(v_i(0), \text{sig}_i, uvk[i]) \]

Runs: DSig.Verify(usk[i], sig_i, v_i(0))
if (verification succeeds) then
Selects: $[t_1, t_2] \subset [1, T]$ and
\[\text{id}_i = \text{id}_i[1], ..., \text{id}_i[\mu] \in \{0, 1\}^\mu \]
Computes: $A_{\text{id}_i} = [A | \bar{A}]$
Generates: $T_{A_{\text{id}_i}} \leftarrow \text{ExtBasis}(A, \bar{A}, T_A)$
Selects: s_i
Computes: d_i satisfying Eq (2) using $T_{A_{\text{id}_i}}$
Generates: $\text{SubsetHN} \leftarrow \text{Nodes}(t_1 + 1, t_2, G)$
for (each $w \in \text{SubsetHN}$) do
Computes: $A_{i,w} = [A_{\text{id}_i} | \bar{A}_w]$
Generates:
\[T_{A_w} \leftarrow \text{ExtBasis}(A_{i,w}, \bar{A}_w, T_{A_{\text{id}_i}}) \]
Selects: $\{s^{(0)}_{i,w}\}$
Computes: $\{x^{(0)}_{i,w}\}$ using $T_{A_{i,w}}$
end do
Computes: $R^{(0)}_i$ and Sets: $C^{(0)}_i = A(R^{(0)}_i)^{-1}$
Generates:
\[(C^{(0)}_i, T^{(0)}_{C_i}) \leftarrow \text{BasisDel}(A, R^{(0)}_i, T_A, \sigma) \]
Stores:
\[\text{cert}_{i,t_1 \rightarrow t_2} = (\text{id}_i[, d_i[,] s_i[, \{x^{(0)}_{i,w}, s^{(0)}_{i,w}\}_{w \in \text{SubsetHN}},
T^{(0)}_{C_i}, [t_1, t_2])} \]
Stores: $\text{transcript}_i = (v_i(0), i, uvk[i], \text{sig}_i, [t_1, t_2])$

Sets: $\text{sec}_{i,t_1 \rightarrow t_2} = z_i(0)$
• \textsf{FSGS.Update}(\mathcal{Y}, t_1, t_2, \text{sec}_{i,t(j)\rightarrow t_2}, \text{cert}_{i,t(j)\rightarrow t_2}) \rightarrow (\text{sec}_{i,t(j+1)\rightarrow t_2}, \text{cert}_{i,t(j+1)\rightarrow t_2})$: A user \(\mathcal{U}_i\) with a valid certificate \(\text{cert}_{i,t(j)\rightarrow t_2}\) and the corresponding secret key \(\text{sec}_{i,t(j)\rightarrow t_2}\) for the time interval \([t(j), t_2]\), computes \(R_i^{(j+1)} = H_2((i+d_{i,t})+1|F_i^{(j+1)})\) where \(F_i^{(j+1)} \in \{0,1\}^m\) is a random vector and executes the following steps to output the updated certificate \(\text{cert}_{i,t(j+1)\rightarrow t_2}\) and secret key \(\text{sec}_{i,t(j+1)\rightarrow t_2}\) for the time interval \([t^{(j+1)}, t_2]\), where \(t^{(j)} = t_1 + j\) for \(j = 0, 1, 2, \ldots, (t_2 - t_1)\).

1. The user \(\mathcal{U}_i\) runs \(\text{BasisDel}(C_i^{(j)}, R_i^{(j+1)}, T_{C_i^{(j)}}, \sigma) \rightarrow (C_i^{(j+1)}, T_{C_i^{(j+1)}})\) as stated in Lemma 2.1 of Section 2 to generate \(C_i^{(j+1)} = C_i^{(j)}(R_i^{(j+1)})^{-1}\) and a short basis \(T_{C_i^{(j+1)}}\) of \(\Lambda_q(C_i^{(j+1)})\).

2. The user \(\mathcal{U}_i\) solves \(C_i^{(j+1)}, \tilde{z}_i^{(j+1)} = v_i^{(j)}\) for a vector \(\tilde{z}_i^{(j+1)}\) such that \(||\tilde{z}_i^{(j+1)}|| \leq \sqrt{4m} \sigma\) and sets user’s secret for the time period \([t^{(j+1)}, t_2]\) as \(\text{sec}_{i,t^{(j+1)}\rightarrow t_2} = z_i^{(j+1)} = \tilde{z}_i^{(j+1)} + z_i^{(0)} + r_i^{(j+1)}\) where \(r_i^{(j+1)} \in \mathbb{Z}^{4m}\). The user also defines \(v_i^{(j+1)} = F \cdot z_i^{(j+1)} \mod q\).

3. For all \(w = (w_{\text{num}}, w_{\text{dep}}) \in \text{SubsetHN} \leftarrow \text{Nodes}(t^{(j)} + 1, t_2, G)\) user \(\mathcal{U}_i\) does the following:

 (i) sets
 \[
 C_{i,w}^{(j)} = [C_i^{(j)}|C_{i,w}^{(j)}]\]
 with \(C_{i,w}^{(j)} = [A_0 + \sum_{k=1}^{\mu} a_k A_k | M_0 + wt(w_{\text{num}}) M_1 | A_0 + \sum_{k=1}^{\mu} a_k A_k] \) where \(a_k \in \{0,1\}\) is the \(k\)th bit of the \(\mu\)-bit string \((0^{\mu-\delta}||\text{bin}(w_{\text{dep}})).\) Define \(C_{i,w}^{(0)} = A_{i,w}\);

 (ii) runs \(\text{ExtBasis}(C_i^{(j)}, C_{i,w}^{(j)}, T_{C_i^{(j)}}) \rightarrow (T_{C_i^{(j)}, C_{i,w}^{(j)}} = T_{C_i^{(j)}})\) to get a short basis \(T_{C_i^{(j)}, C_{i,w}^{(j)}}\) of \(\Lambda_q(C_{i,w}^{(j)});\)

 (iii) samples short vectors \(s_{i,w}^{(j)} \leftarrow D_{\mathbb{Z}^{2m,n}}\) and using the short basis \(T_{C_{i,w}^{(j)}}\) as in Remark 1 in Section 2 computes \(x_{i,w}^{(j)} = [x_{i,w,1}^{(j)} x_{i,w,2}^{(j)} x_{i,w,3}^{(j)}] \in \mathbb{Z}^{4m}\) with \(||x_{i,w}^{(j)}||_\infty \leq \beta\) and \(x_{i,w,1}^{(j)} = [x_{i,w,1,1}^{(j)} x_{i,w,1,2}^{(j)}] \in \mathbb{Z}^{2m}\) satisfying
 \[
 C_i^{(j)} x_{i,w,1,1}^{(j)} + C_{i,w}^{(j)} [x_{i,w,1,2}^{(j)} x_{i,w,2}^{(j)} x_{i,w,3}^{(j)}] = u + D \cdot m_{i,w}^{(j)} \mod q
 \]
 where \(m_{i,w}^{(j)} = \text{bin}(D_0 \cdot \text{bin}(v_i^{(j)}) + D_1 \cdot s_{i,w}^{(j)}) \mod q\)

4. The updated certificate is
 \[
 \text{cert}_{i,t^{(j+1)}\rightarrow t_2} = \left((i+d_{i}), s_{i,w}^{(j)}, \{x_{i,w,1}^{(j)}, x_{i,w,2}^{(j)}, x_{i,w,3}^{(j)}\}_{w \in \text{SubsetHN} \leftarrow \text{Nodes}(t^{(j+1)} + 1, t_2, G)}, C_i^{(j+1)}, T_{C_i^{(j+1)}}, \right)
 \]
 \([t^{(j+1)}, t_2]\) and the associated updated secret is \(\text{sec}_{i,t^{(j+1)}\rightarrow t_2} = \{v_i^{(0)}, z_i^{(j+1)} + z_i^{(0)} + r_i^{(j+1)}, F \cdot r_i^{(j+1)}\}\). Here \(r_i^{(j+1)} \in \mathbb{Z}^{4m}\) is chosen such that \(||z_i^{(j+1)} + r_i^{(j+1)}|| \leq \sqrt{4m} \sigma.\)
(5) The user U_i sends $(v_i^{(j)}, v_i^{(j+1)}, DSig.Sign(usk[i]), v_i^{(j+1)})$ to GM. The GM runs $DSig.Verify(uvk[i], DSig.Sign(usk[i], v_i^{(j+1)}), v_i^{(j+1)})$. If verification fails the GM aborts. Otherwise, the GM updates the public state $St=(St_{users}, St_{trans})$. In particular, the update algorithm updates the transcript i in St_{trans}.

(6) After updating the keys for the period $[t^{(j+1)}, t_2]$, the algorithm erases $cert_{i,(t^{(j)})} → t_2$ and $sec_{i,(t^{(j)})} → t_2$ for the time period $[t^{(j)}, t_2]$.

- $FSGS.Sign(sec_{i,(t^{(j)})} → t_2, cert_{i,(t^{(j)})} → t_2, Y, M) → (\sigma)$: To sign a message $M \in \{0, 1\}^*$, the user U_i generates a one time signature signing-verifying key-pair (VK, SK) by running OTS-\textit{G} and performs the following steps:

 (i) Computes $G_0\leftarrow H_0(VK) \in \mathbb{Z}_q^{n \times 2m}$, randomly chooses $e_0 \leftarrow \chi^m, e_1 \leftarrow \chi^m, e_2 \leftarrow \chi^{2m}$, where χ is a γ-bounded distribution, extracts F, B from Y, $z_i^{(j)}$ from $sec_{i,(t^{(j)})} → t_2$, calculates

$$v_i^{(j)} = F \cdot z_i^{(j)} \quad (8)$$

and encrypts

$$y_i^{(j)} = \text{bin}(v_i^{(j)}) \in \{0, 1\}^{2m} \quad (9)$$

to generate the ciphertext $GPV-\text{IBE-Enc}(B, VK, y_i^{(j)}) \rightarrow c_{v_i^{(j)}}$.

$$c_{v_i^{(j)}} = (c_1, c_2) = (B^t e_0 + e_1, G_0^t e_0 + e_2 + y_i^{(j)} [q/2]) \in \mathbb{Z}_q^m \times \mathbb{Z}_q^{2m} \quad (10)$$

(ii) For each signature, the ith signer chooses a new random $R_i \in \mathbb{Z}_q^{n \times n}$ and computes

$$C_i^{(j)} = R_i C_i^{(j)}.$$

Note that

$$C_i^{(j)} x_i^{(j)} x_i^{(j)} = 0 \mod q \Rightarrow R_i C_i^{(j)} x_i^{(j)} x_i^{(j)} = 0 \mod q$$

and thus basis $T_{C_i^{(j)}}$ of $\Lambda_q^+(C_i^{(j)})$ serves as a basis $T_{C_i^{(j)}}$ of $\Lambda_q^+(C_i^{(j)})$. Random matrix R_i helps in maintaining anonymity.

(iii) Rewrite Eq 5 as

$$C_i^{(j)} = [C_{id_i} | M_0 + \text{wt}(w_{num}) M_1 | A_0 + \sum_{k=1}^{\mu} \alpha_k A_k] \quad (11)$$

where

$$C_{id_i} = [C_{i,R}^{(j)} | A_0 + \sum_{k=1}^{\mu} id_i[k] A_k].$$

Let H and \tilde{H} be the following $(2n \times m)$ and $(4n \times 2m)$ matrices.
\[
\tilde{H} = \begin{bmatrix}
1 & 2 & 4 & \cdots & 2^{\lceil \log q \rceil - 1} \\
1 & 2 & 4 & \cdots & 2^{\lceil \log q \rceil - 1} \\
\vdots & & & & \vdots \\
1 & 2 & 4 & \cdots & 2^{\lceil \log q \rceil - 1}
\end{bmatrix}
\]

In order to prove the knowledge of

- \(s_i, d_i, z_i^{(j)}\) with infinity norm bound \(\beta\)
- \(x_i^{(j)}, s_{i,w}^{(j)}\) for all \(w \in \text{SubsetHN} \leftarrow \text{Nodes}(t^{(j)} + 1, t_2, G)\) with infinity norm bound \(\beta\)
- \(e_0, e_1, e_2\) with infinity norm bound \(B\)
- \(r_i, m_i^{(j)}\) satisfying Eq 3, Eq 7 respectively
- \(id_i \in \{0, 1\}\), \(y_i^{(j)} = \text{bin}(v_i^{(j)})\) satisfying the following system of equations:

\[
\begin{align*}
&\text{from Eq 2: } A d_{i,1} + A_0 d_{i,2} + \sum_{k=1}^{\mu} A_{k\cdot d_{i,2}} - D r_i = u \mod q \\
&\text{from Eq 3: } H \cdot r_i = D_0 y_i^{(0)} + D_1 s_i \mod q \\
&\text{from Eq 8 and 9: } F \cdot z_i^{(j)} = \tilde{H} y_i^{(j)} \mod q \\
&\text{from Eq 10: } c_1 = B^t e_0 + e_1 \mod q \\
&\text{from Eq 10: } c_2 = G^t e_0 + e_2 + \lfloor q/2 \rfloor y_i^{(j)} \mod q \\
&\text{from Eq 6 and 11: } C_i^{(j)} \cdot x_i^{(j)} + M_0 x_i^{(j)} + w(t_{\text{num}}) M_1 x_i^{(j)} + A_0 x_i^{(j)} + \sum_{k=1}^{\mu} \alpha_k A_{k\cdot x_i^{(j)}} - D m_i^{(j)} = u \mod q \\
&\text{from Eq 7: } H \cdot m_i^{(j)} = D_0 y_i^{(j)} + D_1 s_i^{(j)} \mod q
\end{align*}
\]

We write the above system of equations in the form \(P x = v\) where \(P, v\) are public and \(x\) is secret, as explained in the subsequent Section 5 and employ the non-interactive ZK AoK protocol (see Remark 3 in Section 2.5) for zero knowledge proof of argument described in Section 2.5 to generate a proof \(\Pi_i = (\{\text{COM}_{i,k}\}_{k=1}^s, \text{Ch}_i, \{\text{RSP}_{i,k}\}_{k=1}^s)\) where \(\text{Ch}_i = H(M, VK, c_i^{(j)}, \{\text{COM}_{i,k}\}_{k=1}^s)\) \(\in \{1, 2, 3\}^s\) to prove the
knowledge of \(x \in \mathcal{R} = \{(P, v) \in \mathbb{Z}_q^{D \times L} \times \mathbb{Z}_q^D, x \in \text{VALID} : Px = v \mod q \} \) satisfying \(Px = v \).

(iii) Computes a one time signature, \(\text{osig}_i = \text{OTS}.S(SK, c_{\nu_i(j)}, \Pi_i) \) and outputs the message signature pair \((M, \sigma)\) where

\[
\sigma = (VK, c_{\nu_i(j)}, \Pi_i, \text{osig}_i, C_{i,R}^{(j)}, [t^{(j)}, t_2])
\]

\(\vdots \)

Remark 4:

(i) By making two Join queries for two users \(U_0 \) and \(U_1 \), the adversary obtains two pairs \((\text{sec}_0, \text{cert}_0)\) and \((\text{sec}_1, \text{cert}_1)\). Note that adversary knows \(\text{id}_0 \) and \(\text{id}_1 \) for \(U_0 \) and \(U_1 \) respectively.

(ii) The challenge returns \(\sigma^* \) signed by \(U_d \) where \(d \in \{0, 1\} \).

(iii) Given \(\sigma^* \), the adversary checks the matrix \(C_{i,R}^{(j)} \) in \(\sigma^* \). Adversary can determine \(d \) by checking whether the right block of the matrix \(C_{i,R}^{(j)} \) is equivalent to \([A_0 + \sum_{i=1}^\mu \text{id}_i[k]A_k] \) or not.
Remark 5: Our scheme withstands mis-identification attack because after a user's secret key and certificate gets updated, the update algorithm updates the transcript in S_{trans}. The updated transcript helps the open algorithm to run and enables the OA to find the record available in the transcript. If the update algorithm does not update the transcript then we can construct an adversary against mis-identification attack as follows:

1) The adversary queries to $Q_{a\rightarrow join}$ with $[t_1, t_2] = [1, T]$ and obtains user's secret key and certificate. The database contains transcript $t_1 = (v_1^{(0)}, 1, uvk[1], sig, [1, T])$.

2) The adversary updates the certificate and secret key. In this procedure, the adversary randomly chooses $z_1^{(1)}$ from a Gaussian distribution and computes $v_1^{(1)} = F \cdot z_1^{(1)} \mod q$. As the transcript is not updated by the update algorithm, $v_1^{(1)}$ is not available in the transcript.

3) The adversary generates the signature σ^* using the updated certificate and secret key. Consequently, σ^* contains the updated value $v_1^{(1)}$ instead of $v_1^{(0)}$.

4) The adversary outputs $M^*, t^* = 1$, and σ^*.

5) The OA will output nothing since there are no transcript $= (v, i, uvk[i], sig, [t_1, t_2])$ such that $v = v_1^{(1)}$.

4.1 Efficiency

The forward secure dynamic group signature has public key size $O(\mu mn \log q) = \tilde{O}(mn) \log N = \tilde{O}(n^2) \log N$. The secret key size of a group member is $O(m) = \tilde{O}(n)$. The signature size depends upon the non-interactive argument Π. The communication cost of Π is $s \cdot O(\mu m \log q) = s \cdot \tilde{O}(n) \log N$. Thus the total size of the signature is $s \cdot \tilde{O}(n^3) \log N$.

5 The Underlying Zero Knowledge for Our Scheme

It is the argument system for the zero knowledge Π_1. The argument system upon which our group signature scheme is built can be summarized as follows:

1. **Common Input:** $C_{id_i}^{(j)} \in \mathbb{Z}_q^{n \times 2m}, M_0, M_1 \in \mathbb{Z}_q^{n \times m}, A_{id_i} \in \mathbb{Z}_q^{n \times 2m}, A, A_0, \ldots, A_m, D_0, D_1 \in \mathbb{Z}_q^{2n \times 2m}, F \in \mathbb{Z}_q^{4n \times 4m}, H \in \mathbb{Z}_q^{2n \times 2m}, \tilde{H} \in \mathbb{Z}_q^{4n \times 2m}, B \in \mathbb{Z}_q^{n \times m}, G_0 \in \mathbb{Z}_q^{n \times 2m}, u \in \mathbb{Z}_q^n, c_1 \in \mathbb{Z}_q^m, c_2 \in \mathbb{Z}_q^2$.

2. **Prover's Input:** $x_{i, w, 1} \in [-\beta, \beta]^{2m}, x_{i, w, 2} \in [-\beta, \beta]^m, x_{i, w, 3} \in [-\beta, \beta]^m, y_i^{(0)} \in \{0, 1\}^{2m}, y_i^{(j)} \in \{0, 1\}^{2m}, s_{i, w}^{(j)} \in [-\beta, \beta]^{2m}, m_{i, w}^{(j)} \in \{0, 1\}^m, r_i \in \{0, 1\}^m, s_i \in [-\beta, \beta]^{2m}, d_{i, 1}, d_{i, 2} \in [-\beta, \beta]^m, z_i^{(j)} \in [-\beta, \beta]^{4m}, r_i^{(j)} \in [-\beta, \beta]^{4m}, i_d = (id_1[1], id_1[2], \ldots, id_1[\mu])^t \in \{0, 1\}^\mu, e_0 \in [-\gamma, \gamma]^m, e_1 \in [-\gamma, \gamma]^m, e_2 \in [-\gamma, \gamma]^2m$. Note that $x \in [-\beta, \beta]^m$ means $x \in \mathbb{Z}_q^m$ with $\|x\|_\infty \leq \beta$.
3. **Prover’s Goal**: Convince the verifier in zero knowledge of the system of equations given in Eq \(12\). To achieve this, we rewrite Eq \(12\) as

\[
N_0 x_0 + N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4 = v \mod q,
\]

where

\[
N_0 = \begin{bmatrix}
A_{n \times m} & 0_{n \times 2m} & 0_{n \times 4m} \\
0_{2n \times m} & (D_1)_{2n \times 2m} & 0_{2n \times 4m} \\
0_{m \times m} & 0_{4n \times 2m} & F_{4n \times 4m} \\
0_{2m \times m} & 0_{2n \times 2m} & 0_{2n \times 4m} \\
0_{2n \times m} & 0_{2n \times 2m} & 0_{2n \times 4m} \\
0_{2n \times m} & 0_{2n \times 2m} & 0_{2n \times 4m} \\
\end{bmatrix},
\]

\[
N_1 = \begin{bmatrix}
A_0 | A_1' | A_2' | \cdots | A_m' \end{bmatrix}, \quad (3m+11n) \times (\mu+1)m, \quad \text{with} \quad A_i' = \begin{bmatrix} A_i & 0 \end{bmatrix}, \quad (3m+11n) \times m
\]

\[
N_2 = \begin{bmatrix}
(-D)_{n \times m} & 0_{2n \times 2m} & 0_{2n \times 2m} \\
-H_{2n \times 2m} & (D_0)_{2n \times 2m} & 0_{2n \times 2m} \\
0_{m \times m} & H_{2n \times 2m} & 0_{2n \times 2m} \\
0_{2m \times m} & 0_{2n \times 2m} & 0_{2n \times 2m} \\
0_{2n \times m} & 0_{2n \times 2m} & 0_{2n \times 2m} \\
0_{2n \times m} & 0_{2n \times 2m} & 0_{2n \times 2m} \\
\end{bmatrix},
\]

\[
N_3 = \begin{bmatrix}
0_{n \times n} & 0_{n \times m} & 0_{n \times 2m} \\
0_{2n \times n} & 0_{2n \times m} & 0_{2n \times 2m} \\
0_{4n \times n} & 0_{4n \times m} & 0_{4n \times 2m} \\
(B^t)_{m \times n} & 1_{m \times m} & 0_{m \times 2m} \\
(G_0^t)_{2m \times n} & 0_{2m \times m} & 1_{2m \times 2m} \\
0_{2n \times m} & 0_{2n \times 2m} & 0_{2n \times 2m} \\
0_{2n \times m} & 0_{2n \times 2m} & 0_{2n \times 2m} \\
\end{bmatrix},
\]

\[
N_4 = \begin{bmatrix}
0_{n \times (\mu+2)m} & 0_{n \times m} \\
0_{2n \times (\mu+2)m} & 0_{2n \times m} \\
0_{4n \times (\mu+2)m} & 0_{4n \times m} \\
0_{m \times (\mu+2)m} & 0_{m \times m} \\
0_{2m \times (\mu+2)m} & 0_{2m \times m} \\
0_{2n \times (\mu+2)m} & 0_{2n \times m} \\
0_{2n \times m} & 0_{2n \times 2m} \\
0_{2n \times m} & 0_{2n \times 2m} \\
\end{bmatrix},
\]

where,

\[
Z = \begin{bmatrix}
C_{i,R} | A_0 | A_1 | \cdots | A_m \end{bmatrix}, \quad x_0 = \begin{bmatrix} d_{i,1} & s_i \tilde{z}_i^{(j)} + r_i^{(j)} \end{bmatrix}^t,
\]

\[
x_1 = \begin{bmatrix} d_{i,2} | |d_i[1]| |d_i[2]| \cdots | |d_i[\mu]| |d_i[1]| \end{bmatrix}, \quad x_2 = \begin{bmatrix} r_i y_i^{(0)} m_i^{(j)} y_i^{(j)} \end{bmatrix}^t,
\]

\[
x_3 = \begin{bmatrix} e_0 & e_1 & e_2 \end{bmatrix}^t, \quad x_4 = \begin{bmatrix} x' \tilde{x}_i^{(j)} x_i^{(j)} s_i^{(j)} \end{bmatrix}^t
\]

where

\[
x' = \begin{bmatrix} x_i^{(j)} [1] x_i^{(j)} [1] \cdots | |d_i[1]| x_i^{(j)} [1] \cdots | |d_i[\mu]| x_i^{(j)} [1] \cdots | |d_i[1]| \end{bmatrix}^t,
\]

\[
v = [u \quad 0 \quad 0 \quad c_1 \quad c_2 \quad u \quad 0]^t
\]
Let \(\tilde{p} = \lfloor \log \gamma \rfloor + 1 \) and \(p = \lfloor \log \beta \rfloor + 1 \), \(B_l^3 \) is the collection of \(2l \) length strings over the alphabet \(\{0, 1\} \) having equal number of 0’s, 1’s and \(B_l^1 \) is the collection of \(3l \) length strings over the alphabet \(\{-1, 0, 1\} \) having equal number of 0’s, 1’s – 1’s.

Let \(N_i \) and \(\hat{X}_i \) for \(i = 0, 1, \ldots, 4 \) are obtained as follows using the algorithm Dec.Ext described in Section 2.4 and \(\hat{K}_{m,\beta} \) described in the same section with the property that \(\hat{K}_{m,\beta} \hat{X} = x \).

\[
\text{Dec-Ext}_{1,0}(x_0) \rightarrow (\hat{x}_0 \in B^3_{(mp)}),
\]
\[
N_0,\hat{K}_{m,\beta} \rightarrow (N'_0 \in Z_q^{(3m+11n) \times 3(7m)}),
\]
\[
\text{Dec-Ext}_{1,0}(x_1) \rightarrow (\hat{x}_1 \in B^3_{(mp)}),
\]
\[
N_1,\hat{K}_{m,\beta} \rightarrow (N'_1 \in Z_q^{(3m+11n) \times 3(3m+1)}),
\]
\[
\text{Dec-Ext}_{0,m,\beta}(x_2) \rightarrow (\hat{x}_2 \in B^2_{(mp)}),
\]
\[
|N|\|0(3m+11n)\times 6mp| = N'_2 \in Z_q^{(3m+11n) \times 2(6m)}),
\]
\[
\text{Dec-Ext}_{1,0}(x_3) \rightarrow (\hat{x}_3 \in B^3_{(mp)}),
\]
\[
N_3,\hat{K}_{m,\beta} \rightarrow (N'_3 \in Z_q^{(3m+11n) \times 3(3m+1)}),
\]
\[
\text{Dec-Ext}_{0,m,\beta}(x_4) \rightarrow (\hat{x}_4 \in B^3_{(mp)}),
\]
\[
N_4,\hat{K}_{m,\beta} \rightarrow (N'_4 \in Z_q^{(3m+11n) \times 3(3m+1)}).
\]

Next we set
\[
P = [N'_0]|N'_1||N'_2||N'_3||N'_4] \in Z_q^{(3m+11n) \times (52+4\mu)mp+(9m+3n)\tilde{p}},
\]
\[
x = [x_0]|x_1|x_2|x_3|x_4] \in Z_q^{(52+4\mu)mp+(9m+3n)\tilde{p}},
\]
\[
L = (52 + 4\mu)mp + (9m + 3n)\tilde{p}, \quad D = 5(3m + 11n),
\]
\[
\text{VALID} = \{w \in \{-1, 0, 1\}^L : w = (w_0^t|w_1^t|w_2^t|w_3^t|w_4^t) \text{ for some } w_0 \in B^3_{(mp)}, w_1 \in B^3_{(mp)}, w_2 \in B^2_{(mp)}, w_3 \in B^3_{(mp)}, w_4 \in B^3_{(mp)}\}.
\]

Then \(x \in \text{VALID} \).

Note that
\[
N_0\hat{K}_{m,\beta}x_0 + N_1\hat{K}_{m,\beta}x_1 + [N_2]|0(3m+11n)\times 6mp]\hat{x}_2 + N_3\hat{K}_{m,\beta}x_3 + N_4\hat{K}_{m,\beta}x_4
\]
\[
= N_0x_0 + N_1x_1 + N_2x_2 + N_3x_3 + N_4x_4 = v \mod q.
\]

Let us now define the set \(S \) and permutations of \(L \) elements \(T_\pi : \pi \in S \) satisfying the following conditions:

(i) \(z \in \text{VALID} \iff T_\pi(z) \in \text{VALID} \)

(ii) \(z \in \text{VALID} \iff T_\pi(z) \) is uniform in \(\text{VALID} \) whenever \(\pi \) is uniform in \(S \).

Let us define \(S = S_{21mp} \times S_{3(\mu+1)mp} \times S_{12mp} \times S_{(9m+3n)\tilde{p}} \times S_{(3\mu+18)mp} \).

Then for any randomly selected \(\pi = (\pi_0, \pi_1, \pi_2, \pi_3, \pi_4) \) and \(z = (z_0, z_1, z_2, z_3, z_4) \in \text{VALID} \), we have \(T_\pi(z) = (\pi_0(z_0), \pi_1(z_1), \pi_2(z_2), \pi_3(z_3), \pi_4(z_4)) \) satisfying above conditions (i) and (ii). Finally, we invoke the algorithm ZKAoK described in Section 2.5 for the relation \(\mathcal{R} = \{(P, v) \in Z_q^D \times L \times Z_q^D : x \in \text{VALID} : Px = v \mod q\} \) for statistical zero knowledge argument of knowledge.
6 Security

Theorem 6.1. The group signature scheme FSGS described in Section 4 is secure against mis-identification attack as per the security framework given in Algorithm 2 of Section 3.2 under the SIS assumption in the random oracle model.

Proof: Let \(\mathcal{A} \) be a PPT adversary that breaks the security of our group signature scheme FSGS with non-negligible advantage \(\epsilon \). We will construct a simulator \(\mathcal{B} \) that solves the SIS problem using \(\mathcal{A} \) as a subroutine i.e., given \(\mathcal{A} = [\mathbf{A}_1, \mathbf{A}_2] \in \mathbb{Z}_q^{n \times 2m} \) with \(m = 2n \lceil \log q \rceil \) where \(\mathbf{A}_1, \mathbf{A}_2 \in \mathbb{Z}_q^{n \times m} \) and a real number \(\beta \), the simulator \(\mathcal{B} \) interacts with \(\mathcal{A} \) and finds a vector \(\mathbf{z} \in \mathbb{Z}^{2m} \) with \(||\mathbf{z}|| \leq \beta \) satisfying \(\mathbf{A}\mathbf{z} = 0 \mod q \).

The simulator \(\mathcal{B} \) acts as the KGC as well as the GM. It first chooses randomly \(\mathbf{i}^* \leftrightarrow U([0, 1]^\mu) \), \(\mathbf{i}^* \leftrightarrow U([1, \delta]) \) and \(\mathbf{r} \in [1, T] \) where \(\delta \) is the cardinality of the set \(U^a \) of adversarially controlled users since their admission and \(T = 2^l \) is the maximum allowable time periods with \(\mu \geq \log l \). The total number of users supported by the system is \(N = 2^\mu \). Also \(\mathcal{B} \) has access to a knowledge extractor for each cheating prover by the soundness property of zero knowledge argument of knowledge ZK\(\text{KoK} \) for the relation \(\mathbf{P}\mathbf{x} = \mathbf{v} \) as described in Section 1.5 where \(\mathbf{P}, \mathbf{v} \) are public and \(\mathbf{x} \) is secret witness. The knowledge extractor extracts the witness \(\mathbf{x} \) involved in the interaction between the cheating prover \(\mathcal{A} \) and the verifier \(\mathcal{B} \).

After repeated executions of the adversary \(\mathcal{A} \), let \(\mathbf{id}^* \in \{0, 1\}^\mu \) be the identifier in the witness \(\mathbf{x} \) revealed by the knowledge extractor of the proof system for \(\mathbf{P}\mathbf{x} = \mathbf{v} \) associated in \(\mathcal{A} \)'s forgery \((M^*, \sigma^*, t^*) \) where \(\sigma^* \) is a forged signature on a message \(M^* \) at time \(t^* \). The identifier \(\mathbf{id} \) chosen by \(\mathcal{B} \) at the beginning before the Setup works as a suspicion of the identifier \(\mathbf{id}^* \) disclosed by the knowledge extractor from \(\sigma^* \) which can be used in solving the given SIS instance. We have the following two cases.

Case I: \(\mathbf{id}^* = \mathbf{i}^* \) and \(\mathbf{id}^* \) does not belong to any user in \(U^a \).

Case II: \(\mathbf{id}^* = \mathbf{i}^* \) and \(\mathbf{id}^* \) belongs to a certain group member in \(U^a \) but \(t^* \notin [t_1, t_2] \) where \([t_1, t_2]\) is the time period for which \(\mathbf{i}^* \) has been issued certificate.

Subcase I: \(\mathbf{r}^* \neq \mathbf{r}_{i^*} \) where

\[
\mathbf{r}^* = \bin(\mathbf{D}_0\bin(\mathbf{v}^*) + \mathbf{D}_1\mathbf{s}^*), \quad \text{and}
\]

\[
\mathbf{r}_{i^*} = \bin(\mathbf{D}_0\bin(\mathbf{v}_{i^*}) + \mathbf{D}_1\mathbf{s}_{i^*}).
\]

Here \(\mathbf{r}^* \) is contained in the witness \(\mathbf{x} \) that is disclosed to \(\mathcal{B} \) by the knowledge extractor for the relation \(\mathbf{P}\mathbf{x} = \mathbf{v} \) associated in \(\mathcal{A} \)'s forgery \(\sigma^* \) on message \(M^* \) at time \(t^* \) and \(\mathbf{r}_{i^*} \) corresponds to an adversarially controlled user \(\mathcal{U}_{i^*} \in U^a \). Since the forgery \(\sigma^* \) on a message \(M^* \) at time \(t^* \) is framed by \(\mathcal{A} \) and \(\mathcal{U}_{i^*} \in U^a \) with \(i^* \) pre selected by \(\mathcal{B} \) before the Setup, both the vectors \(\mathbf{v}^*, \mathbf{v}_{i^*} \in \mathbb{Z}_q^{2m} \) are chosen by \(\mathcal{A} \) and \(\mathbf{s}^* \) is also selected by \(\mathcal{A} \) while \(\mathbf{s}_{i^*} \in \mathbb{Z}_q^{2m} \) are selected by \(\mathcal{B} \). The matrices \(\mathbf{D}_0, \mathbf{D}_1 \in \mathbb{Z}_q^{2n \times 2m} \) are part of the public parameters \(\mathcal{Y} \) set by \(\mathcal{B} \).

Subcase II: \(\mathbf{r}^* = \mathbf{r}_{i^*} \) but \((\bin(\mathbf{v}^*), \mathbf{s}^*) \neq (\bin(\mathbf{v}_{i^*}), \mathbf{s}_{i^*}) \), where \(\mathbf{r}^*, \mathbf{r}_{i^*}, \mathbf{s}^*, \mathbf{s}_{i^*} \) are as above in Subcase I.
\(\langle A \rangle \) Case I (id* = \(\widehat{id} \) and id* does not belong to any user in \(U^a \)): The simulator \(B \) sets the group public key \(Y \) using \(\widehat{id} \) and the given SIS instance \(\bar{A} = [\bar{A}_1|\bar{A}_2] \), \(\bar{A}_1, \bar{A}_2 \in \mathbb{Z}_q^{n \times m} \), \(m = 2n \lceil \log q \rceil \) as follows.

- **Setup:** The simulator \(B \) runs the algorithm \(\text{TrapGen}(1^n, 1^m, q) \rightarrow (L, T_L) \) with \(||T_L|| \leq \mathcal{O}(\sqrt{n \log q}) \). It samples \((\mu + 2)\) Gaussian matrices \(\{L_k\}_{k=0}^{\mu}, L_D \in \mathbb{Z}^{m \times m} \) with each matrix having its columns sampled independently from \(D \) where \(\sigma \) is of size \(\Omega(\sqrt{n \log q \log n}) \) and sets the matrices \(\{A_k\}_{k=0}^{\mu}, D \) and \(A \) as

\[
A_0 = \bar{A}_1 L_0 + \left(\sum_{k=1}^{\mu} \widehat{id}[k] \cdot L \right) \quad (15)
\]

\[
A_k = \bar{A}_1 \cdot L_k + (-1)^{\widehat{id}[k]} \cdot L \quad \text{for} \ k \in [1, \mu] \quad (16)
\]

\[
D = \bar{A}_1 \cdot L_D, \quad (17)
\]

\[
A = A_1.
\]

Next, \(B \) picks \(h_u \leftarrow D_{Z^m, \sigma} \) and sets the vector \(u \) as

\[
u = \bar{A}_1 \cdot h_u \in \mathbb{Z}_q^n.
\]

It sets the error bound \(\gamma \) of size \(\sqrt{n} \omega(\log n) \) for encryption scheme GPV-IBE, chooses matrices

\[
M_0, M_1 \leftarrow U(\mathbb{Z}^{n \times m}), \quad D_0, D_1 \leftarrow U(\mathbb{Z}^{2n \times 2m}), \quad F \leftarrow U(\mathbb{Z}^{4n \times 4m})
\]

at random, selects three hash functions

\[
H : \{0,1\}^* \rightarrow \{1,2,3\}^s, \quad H_0 : \{0,1\}^* \rightarrow \mathbb{Z}_q^{n \times 2m}, \quad H_2 : \{0,1\}^* \rightarrow \mathcal{I}
\]

and a one time signature \(\text{OTS}=(\mathcal{G}, \mathcal{S}, \mathcal{V}) \). Here \(s \) is an integer of size \(\omega(\log n) \) and \(\mathcal{G}, \mathcal{S}, \mathcal{V} \) are the key generation, signing and verification algorithms respectively of \(\text{OTS} \). The simulator \(B \) generates signing-verification key pair \((\text{us}k[i], \text{uv}k[i]) \) for each user \(U_i \), \(i \in [N] \), by running the key generation algorithm \(\text{DSig.KeyGen} \) of a digital signature scheme \(\text{DSig}=(\text{KeyGen}, \text{Sign}, \text{Verify}) \). The simulator sends \(\text{us}k[i] \) to \(U_i \) secretly and \(\text{uv}k[i] \) is made public. Finally, \(B \) honestly generates the master secret key \(S_{OA} = T_B \) of the opening authority \(OA \) by running \(\text{TrapGen}(1^n, 1^m, q) \rightarrow (B, T_B) \). The simulator \(B \) sets the group public key

\[
Y = (M_0, M_1, A, \{A_k\}_{k=0}^{\mu}, B, D, D_0, D_1, F, u, \text{OTS}, \text{DSig}, H, H_0, \beta, \gamma, \sigma)
\]

and initializes the public state \(St = (St_{\text{users}}, St_{\text{trans}}) = (\emptyset, \epsilon) \).

- **Query Phase:** The simulator \(B \) answers to the queries \(Q_{pub}, Q_{read}, Q_{keyOA}, \) hash and \(Q_{a \rightarrow join} \) made by \(A \) as follows:

 - \(Q_{pub} \): In response to this query, \(B \) returns \(Y \) to \(A \).

 - \(Q_{read} \): On this query, \(A \) gets access to the current state \(St \).

 - \(Q_{keyOA} \): This query enables the adversary \(A \) to receive the secret key \(T_B \) of the opening authority from \(B \).
- **Hash Queries**: To respond hash queries, B maintains two lists for the hash functions H and H_0. These lists store records of the form $(x, H(x))$ and $(y, H_0(y))$ for some $x, y \in \{0, 1\}^*$. Fresh hash value is generated on a string $x \in \{0, 1\}^*$ if it is not already been queried and stored in the corresponding hash list. Otherwise, responses are given utilizing the respective hash lists.

- **Q$_a$-join**: Simulation of this query by B is as follows:

 (i) To introduce a malicious user $U_i \in U^n$, the adversary A chooses a vector $v_i^{(0)} \in \mathbb{Z}_q^n$ and computes $\text{sig}_i = \text{DSig}.\text{Sign}(usk[i], v_i^{(0)})$. Here $usk[i]$ is the signing key of user U_i issued by B and as user U_i is adversarially controlled, A has the knowledge of $usk[i]$. The adversary A sends $(v_i^{(0)}, \text{sig}_i)$ to B.

 (ii) To answer A’s query, B acts as the GM. The simulator B proceeds for the following steps only if $\text{DSig}.\text{Verify}(uvk[i], \text{sig}_i, v_i^{(0)}) = 1$ where $uvk[i]$ is the verification key of user U_i.

 (a) It chooses a fresh μ-bit identifier $id_i \in \{0, 1\}^\mu$ such that $id_i \neq \hat{id}$ and a time interval $[t_1, t_2]$ where $t_1, t_2 \in \{1, 2, \ldots, T\}$.

 (b) It sets the matrix A_{id_i} as

 $$A_{id_i} = \left[\tilde{A}_1 | \tilde{A}_1 \left(L_0 + \sum_{k=0}^{\mu} id_i[k]L_k \right) + h_{id_i} \cdot L \right]$$

 where

 $$h_{id_i} = \sum_{k=1}^{\mu} (id[k] + (-1)^{\hat{id}[k]}id_i[k])$$

 (18)

 is the Hamming distance between id_i and \hat{id} as

 $$\hat{id}[k] + (-1)^{\hat{id}[k]}id_i[k] = \begin{cases} 1, & \hat{id}[k] \neq id_i[k] \\ 0, & \hat{id}[k] = id_i[k] \end{cases}$$

 The matrix A_{id_i} has the same distribution as in the real protocol since

 $$A_{id_i} = \left[\tilde{A}_1 | \tilde{A}_1 \left(L_0 + \sum_{k=0}^{\mu} id_i[k]L_k \right) + h_{id_i} \cdot L \right]$$

 $$= \left[\tilde{A}_1 | \tilde{A}_1 \left(L_0 + \sum_{k=0}^{\mu} id_i[k]L_k \right) + \sum_{k=0}^{\mu} (id[k] + (-1)^{\hat{id}[k]}id_i[k]) \cdot L \right]$$

 $$= \left[\tilde{A}_1 \left(L_0 + \sum_{k=0}^{\mu} \hat{id}[k] \cdot L \right) + \sum_{k=0}^{\mu} id_i[k] \left(\tilde{A}_1 L_k + (-1)^{\hat{id}[k]} \cdot L \right) \right]$$

 $$= \left[A | A_0 + \sum_{k=0}^{\mu} id_i[k]A_k \right].$$
The simulator \mathcal{B} finds the basis $T_{A_{\tilde{i}}}$ of $\Lambda_q^+(A_{\tilde{i}}) = \{x : A_{\tilde{i}}x = 0 \mod q\}$ for $\tilde{i} \neq \tilde{d}$ using the knowledge of T_L as follows. Note that
\[x \in \Lambda_q^+(L) \Rightarrow Lx = 0 \mod q \Rightarrow h_{\tilde{i}}Lx = 0 \mod q \Rightarrow x \in \Lambda_q^+(h_{\tilde{i}}L) \]
Therefore, the basis T_L of $\Lambda_q^+(L) = \{x : Lx = 0 \mod q\}$ serves as a basis $T_{h_{\tilde{i}},L}$ of $\Lambda_q^+(h_{\tilde{i}}L) = \{x : h_{\tilde{i}}Lx = 0 \mod q\}$.

It runs the randomized algorithm $Sample_{Right}(\tilde{A}_1, h_{\tilde{i}}, L, (L_0 + \sum_{k=0}^\mu id_i[k]L_k)$, $T_{h_{\tilde{i}},L}, \sigma, 0) \rightarrow b \in \mathbb{Z}^{2m}$ as in Lemma 1.1(b) of Section 2 where $b \in \mathbb{Z}^{2m}$ satisfies
\[\left[\tilde{A}_1 | \tilde{A}_1 \left(L_0 + \sum_{k=0}^\mu id_i[k]L_k \right) + h_{\tilde{i}}L \right] b = 0 \mod q \quad \text{i.e.,} \quad A_{\tilde{i}}b = 0 \mod q \]

A maximal set of linearly independent such vectors $b \in \mathbb{Z}^{2m}$ forms a basis of $T_{A_{\tilde{i}}}$.

(c) Next as in the original protocol \mathcal{B} samples $s_i \leftarrow D_{\mathbb{Z}^{2m},\sigma}$ and uses $T_{A_{\tilde{i}}}$ to compute a short vector $d_i = [d_{i,1}, d_{i,2}] \in \mathbb{Z}^{2m}$, with $||d_i||_2 \leq \sqrt{2m}$, $d_{i,1}, d_{i,2} \in \mathbb{Z}^m$ such that $A_{\tilde{i}}d_i = u + D \cdot r_i \mod q$ where $r_i = \bin(D_0 \bin(v_i^{(0)}) + D_1 \cdot s_i)$

(d) Also for each $w = (w_{\text{num}}, w_{\text{dep}}) \in \text{SubsetHN} \leftarrow \text{Nodes}(t_1 + 1, t_2, G)$, the simulator \mathcal{B} computes the matrix
\[A_{t,w} = [A_{\tilde{i}}, \tilde{A}_w] \text{ with } \tilde{A}_w = \left[M_0 + \text{wt}(w_{\text{num}})M_1 | A_0 + \sum_{k=1}^\mu \alpha_k A_k \right] \]

Here G is a binary tree of height l with $T = 2^l$ leaves indicating time periods, $w_{\text{num}} \in \{0, 1\}^*$ is the label of the node w, w_{dep} is its depth where $0 \leq w_{\text{dep}} \leq l$, and $\alpha_1 \alpha_2 \ldots \alpha_\mu = 0^{\mu-\eta} |\bin(w_{\text{dep}})|$, $\alpha_k \in \{0, 1\}$, $\eta = \text{len}(\bin(w_{\text{dep}}))$ denotes the length of $\bin(w_{\text{dep}})$ and $\text{wt}(w_{\text{num}})$ represents the Hamming weight of w_{num}.

As in the real protocol, \mathcal{B} samples $s_{i,w}^{(0)} \leftarrow D_{\mathbb{Z}^{2m},\sigma}$ and uses $T_{A_{\tilde{i}}}$ to compute a short vector $x_{i,w}^{(0)} = [x_{i,w,1}^{(0)}, x_{i,w,2}^{(0)}, x_{i,w,3}^{(0)}]^t \in \mathbb{Z}^4$, $||x_{i,w}^{(0)}||_2 \leq \sqrt{4m}$, $x_{i,w,1}^{(0)} \in \mathbb{Z}^{2m}$, $x_{i,w,2}^{(0)}, x_{i,w,3}^{(0)} \in \mathbb{Z}^m$ such that
\[A_{i,w}x_{i,w}^{(0)} = u + D \cdot m_{i,w} \]
where
\[m_{i,w} = \bin(D_0 \cdot \bin(v_i^{(0)}) + D_1 \cdot s_{i,w}^{(0)}) \mod q \]

(e) For the delegation purpose, \mathcal{B} uses the algorithm $Sample_{Right with Basis}(A) \rightarrow (R_i^{(0)}, T_{C_i^{(0)}})$ described in Lemma (1.1)b(vii) of Section 2 where $H_2(id_i|0) = R_i^{(0)} \in \mathbb{Z}_q^{n \times m}$, $C_i^{(0)} = A(R_i^{(0)})^{-1}$ and $T_{C_i^{(0)}}$ is the basis of the lattice $\Lambda_q^+(C_i^{(0)}) = \{x : C_i^{(0)}x = 0 \mod q\}$.

(iii) The simulator B issues the certificate,
\[\text{cert}_{i,t_1 \rightarrow t_2} = \left(\text{id}_i, \text{d}_i, \text{s}_i, \{ \text{x}_{i,w}^{(0)}, \text{s}_{i,w}^{(0)} \}_{w \in \text{SubsetHN}\rightarrow \text{Nodes}}(t_1 + 1,t_2,G), \text{C}^{(0)}, \text{T}^{(0)}, [t_1, t_2] \right) \]
to the adversary A as a response to $Q_{a-\text{join}}$ query.

The simulator B finally updates the public state St by storing i in St_{users} and transcript
\[\text{trans}_{i} = (\text{v}_i^{(0)}, \text{i}, \text{uvk}[i], \text{sig}_i, [t_1, t_2]) \]
in St_{trans}.

- **Forgery:** At the end, A outputs the forgery (M^*, σ^*, t^*) for a user $U \notin U^a$ where
\[\sigma^* = (\text{VK}^*, \text{c}_{\sigma^*}, \Pi^*, \text{osig}^*, \text{C}^*_R, [t_1^*, t_2^*]) \]
such that $\text{FSGS}.\text{Verify}(\sigma^*, t^*, M^*, \mathcal{Y}) = 1$ with $t^* \in [t_1^*, t_2^*]$ where

VK^* : verification key generated by $\text{OTS} \cdot \mathcal{G}$.
c_{σ^*} : ciphertext generated by running the algorithm $\text{GPV-IBE} \cdot \text{Enc}(B, \text{VK}^*, y^*) \rightarrow \text{c}_{\sigma^*} \in \mathbb{Z}_q^m \times \mathbb{Z}_q^{2m}$ where B is extracted from \mathcal{Y} and $y^* = \text{bin}(v^*) \in \{0, 1\}^{2m}$

for some $v^* \in \mathbb{Z}_q^{2m}$.
Π^* : zero knowledge proof for $\text{PK} = v \mod q$ equivalent to the system of equation similar to Eq [12]
osig^* : one time signature generated by running $\text{OTS} \cdot \text{S}(\text{SK}^*, \text{c}_{\sigma^*}, \Pi^*)$ where SK^* is the signing key corresponding to the verification key VK^* generated by $\text{OTS} \cdot \mathcal{G}$.

$[t_1^*, t_2^*]$: a subset of time interval $[1, T]$.

We explain below how B can construct a knowledge extractor for Π^* using the improved forking lemma stated in Theorem [2.3] in Section [2.5].

Parse the proof of knowledge Π^* as ($\{\text{COM}^*_i\}_{i=1}^s, \text{Ch}^*, \{\text{RSP}^*_i\}_{i=1}^s$) where $\text{Ch}^* = H(M^*, \text{VK}^*, \text{c}_{\sigma^*}, \{\text{COM}^*_i\}_{i=1}^s) \in \{1, 2, 3\}^s$. With high probability, A must have invoked random oracle H and with probability at least $\epsilon' = \epsilon - 3^{-s}$, the tuple $(M^*, \text{VK}^*, \text{c}_{\sigma^*}, \{\text{COM}^*_i\}_{i=1}^s)$ coincides with the k^*-th random oracle query of H for some $k^* \leq Q_H$ where Q_H is the number of \mathcal{H}-queries of A and ϵ is the non-negligible advantage of A in breaking our FSGS group signature scheme.

Following the improved forking lemma, B runs A up to $(1+24Q_H \log(2l))/\epsilon' \times l = 2$ and $\epsilon' = 3(\epsilon - 3^{-s})$. The adversary A will receive the same answer from the list corresponding to H maintained by B for the initial run of first $k^* - 1$ queries of H with the same random tape and input. From k^*-th query onwards, A will get fresh values of H. The improved forking lemma ensures that B can obtain a $(l + 1)$-fork i.e., 3-fork involving the same tuple $(M^*, \text{VK}^*, \text{c}_{\sigma^*}, \{\text{COM}^*_i\}_{i=1}^s)$ with pairwise distinct answers $\text{Ch}^*, \tilde{\text{Ch}}^*, \hat{\text{Ch}}^* \in \{1, 2, 3\}^s$ with probability at least $1/2$. This in turn implies that there exists at least one index $j \in \{1, 2, ..., s\}$ for which the j-th bits of $\text{Ch}^*, \tilde{\text{Ch}}^*, \hat{\text{Ch}}^*$ differ with probability $1 - (21/27)s = 1 - (7/9)s$. Consequently, B has three distinct responses on the same tuple, indicating existence of a knowledge extractor Π^* for B. From the corresponding responses, B is able to extract witnesses $(\text{d}_1^*, \text{d}_2^*) \in \mathbb{Z}^m \times \mathbb{Z}^m, \text{id}^* \in \{0, 1\}^k, \text{r}^* \in \{0, 1\}^m$ from the proof of knowledge Π^* with $\|\text{d}_1^*\|_2 \leq \sigma \sqrt{m}, \|\text{d}_2^*\|_2 \leq \sigma \sqrt{m}, \|\text{r}^*\|_2 \leq \sigma \sqrt{m}$ satisfying
\[
A_{id^*} \begin{bmatrix} d_1^* \\ d_2^* \end{bmatrix} = u + D \cdot r^* \mod q \tag{19}
\]

where \(r^* = \text{bin}(D_0 \cdot \text{bin}(v^*)) + D_1 \cdot s^* \)

The simulator \(\mathcal{B}\) declares failure if either (i) \(id^*\) is any user in \(U^a\) or (ii) \(id^* \neq \hat{id}\). We denote the event by \(\text{fail}\) when any one of the above circumstances occur. With a prediction that \(\text{fail}\) does not occur, \(\mathcal{B}\) can solve the given \(\text{SIS}\) instance as follows:

As \(\mathcal{B}\) samples the short vector \(h_u \leftarrow D_{\mathbb{Z}^m, \sigma}\), in setting the vector \(u\) as \(u = \tilde{A}_1 \cdot h_u \mod q\), and \(\{L_k\}_{k=0}^\mu\), \(L_D\) are sampled by \(\mathcal{B}\) itself in the \textbf{Setup} phase, it can compute the vector

\[
h = d_1^* + (L_0 + \sum_{k=1}^\mu \hat{id}[k]L_k)d_2^* - L_D \cdot r^* - h_u \in \mathbb{Z}^m
\]

where \(d_1^*, d_2^*\) and \(r^*\) are extracted by \(\mathcal{B}\) from the knowledge extractor. Then we have

\[
\tilde{A}_1 h = \tilde{A}_1 d_1^* + \left(\tilde{A}_1 L_0 + \sum_{k=1}^\mu \hat{id}[k] \tilde{A}_1 L_k\right) d_2^* - \tilde{A}_1 L_D r^* - \tilde{A}_1 h_u
\]

\[
= \tilde{A}_1 d_1^* + \left(A_0 - \sum_{k=1}^\mu \hat{id}[k] \cdot L \right) + \sum_{k=1}^\mu \hat{id}[k] (A_k - (-1)^{\hat{id}[k]} \hat{L}) \right) d_2^* - L_D r^* - u
\]

\[
= \tilde{A}_1 d_1^* + A_0 d_2^* + \sum_{k=1}^\mu \hat{id}[k] A_k d_2^* - \sum_{k=1}^\mu \left(\hat{id}[k] + (-1)^{\hat{id}[k]} \hat{id}[k] \right) L d_2^* - L_D r^* - u
\]

\[
= \tilde{A}_1 d_1^* + A_0 d_2^* + \sum_{k=1}^\mu \hat{id}[k] A_k d_2^* - \hat{h}_id \cdot L d_2^* - L_D r^* - u \text{ (from Eq 18)}
\]

\[
= \tilde{A}_1 d_1^* + A_0 d_2^* + \sum_{k=1}^\mu \hat{id}[k] A_k d_2^* - L_D r^* - u
\]

\[
= A d_1^* + A_0 d_2^* + \sum_{k=1}^\mu \hat{id}^*[k] A_k d_2^* - L_D r^* - u
\]

\[
= \left[A \middle| A_0 + \sum_{k=1}^\mu \hat{id}^*[k] A_k \right] \begin{bmatrix} d_1^* \\ d_2^* \end{bmatrix} - L_D r^* - u
\]

\[
= A_{id^*} \begin{bmatrix} d_1^* \\ d_2^* \end{bmatrix} - L_D r^* - u
\]

\[
= 0 \mod q \text{ (from Eq 19)}
\]

Thus \(h\) is a short nonzero vector satisfying \(\tilde{A}_1 \cdot h = 0 \mod q\) with

\[
||h||_2 \leq ||d_1^* + (L_0 + \sum_{k=1}^\mu \hat{id}[k]L_k)d_2^* - L_D \cdot r^* - h_u||_2
\]
\[
\leq ||d^*_i||_2 + ||L_0 + \sum_{k=1}^{\mu} \id[k]L_k||_2 \cdot ||d^*_i||_2 + ||L_D||_2 \cdot ||r^*||_2 + ||h_u||_2
\]
\[
\leq \sigma \sqrt{m} + \{m \times (\mu + 1)\sigma \sqrt{m}\} \sigma \sqrt{m} + (m \times \sigma \sqrt{m}) \sigma \sqrt{m} + \sigma \sqrt{m}
\]
\[
\leq 2\sigma \sqrt{m} + (\mu + 2)m^2\sigma^2
\]

Furthermore, \((h^t|0^m)^t\) is a short non-zero vector in \(\Lambda_q^+(\hat{A})\) and hence serves as a solution of the given SIS instance.

\((B)\) Case II(id* = \(\hat{\id}\)) and id* belongs to certain group member in \(U^a\) but \(t^* \notin [t_1, t_2]\) where \([t_1, t_2]\) is the time period for which \(\hat{\id}\) has been issued certificate

Subcase I(\(r^* \neq r_{t^*}\)): The simulator \(\mathcal{B}\) performs the following steps to set the group public key \(\mathcal{Y}\) using the given SIS instance \(\hat{A} = [\hat{A}_1 \mid \hat{A}_2], \hat{A}_1, \hat{A}_2 \in \mathbb{Z}_q^{m \times m}, m = 2n[\log q]\) and pre selected \(\hat{\id} \in \{0, 1\}^\mu, i^* \in U([1, \delta]), \hat{t} \in [1, T]\).

Setup: The simulator \(\mathcal{B}\) chooses an interval \([t_1, t_2] \subset [1, T]\) such that \(\hat{t} \in [t_1, t_2]\), picks \(\delta - 1\) distinct identifiers \(\id_1, \id_2, \ldots, \id_{i^*-1}, \id_{i^*+1}, \ldots, \id_\delta \in \{0, 1\}^\mu\) and sets \(\id_{i^*} = \hat{\id}\). It also chooses randomly \(d_0, d_1, \ldots, d_\delta \in \mathbb{Z}_q\) such that
\[
d_{i^*} = d_0 + \sum_{k=1}^{\mu} \id[k]d_k = 0 \mod q \text{ iff } i = i^*, \text{ for } i \in \{1, 2, \ldots, \delta\}
\]

(20)

This in turn implies that \(d_{\hat{\id}} = d_{i^*} = 0 \mod q\). Here \(\id_i = \id[i[1]\id[i[2] \ldots \id[i[\mu]\) will be utilized to respond the \(\mathcal{Q}_{a \rightarrow \mathcal{J}}\) query for the adversarially controlled user \(\mathcal{U}_t \in \{1, 2, \ldots, \delta\}\). Next \(\mathcal{B}\) runs \(\text{TrapGen}(1^n, 1^m, q) \rightarrow (C, T_C), \text{TrapGen}(1^{2n}, 1^{2m}, q) \rightarrow (D_1, D_{1 \hat{A}_1}), \text{TrapGen}(1^n, 1^m, q) \rightarrow (B, T_B)\). It samples matrices \(D_0 \leftrightarrow U(\mathbb{Z}_q^{2n \times 2m}), M_0, M_1 \leftrightarrow U(\mathbb{Z}_q^{n \times m})\). It also selects Gaussian matrices \(S_0, S_1, \ldots, S_\mu \leftrightarrow U(\mathbb{Z}^{m \times m})\) whose columns are sampled from the distribution \(D_{\mathbb{Z}_q^{m \times m}}\) where \(\sigma\) is of size \(\Omega(\sqrt{n \log q \log n})\), also selects \(S \leftrightarrow U(\mathbb{Z}^{m \times m})\) such that \(S^{-1}\) has low norm and sets the matrices \(D, A, A_0, \{A_k\}_k\) as
\[
D = \hat{A}_1
A = \hat{A}_1 \cdot S
A_0 = \hat{A}_1 \cdot S_0 + d_0 \cdot C
A_k = \hat{A}_1 \cdot S_k + d_k \cdot C, \text{ for } k = 1, 2, \ldots, \mu.
M_0 = (A_0 + \sum_{k=1}^{\mu} \id[i][k]A_k)S \text{ and } M_1 = C.
\]

The simulator \(\mathcal{B}\) then finds a vector \(u \in \mathbb{Z}_q^n\) as follows:

- It computes \(A_{i^*} = [A | A_0 + \sum_{k=1}^{\mu} \id[i][k]A_k]\)

- Now \(\mathcal{B}\) chooses two short vectors \(d_{i^*-1}, d_{i^*-2} \in D_{\mathbb{Z}_q^{m \times m}}, \) sets \(d_{i^*} = [d_{i^*-1}|d_{i^*-2}]^t\) and picks
\(r_i \ast = \text{bin}(c_M) \in \{0,1\}^m \) and thus it sets
\[
u = A_{id_i} d_i \ast - D \cdot \text{bin}(c_M)
\] (21)
\[\text{i.e., } A_{id_i} d_i \ast = u + D \cdot r_i \ast
\] (22)
The distribution of \(u \) is statistically close to \(U(\mathbb{Z}_q^n) \) since \(A \) is statistically uniform and \(d_i \ast, 1 \rightarrow D_{\mathbb{Z}^m, \sigma} \) and \(d_i \ast, 2 \rightarrow D_{\mathbb{Z}^m, \sigma} \).

The remaining parameters \(F \rightarrow \mathbb{Z}^{4n \times 4m}, H : \{0,1\}^s \rightarrow \{1,2,3\}^s, H_0 : \{0,1\}^s \rightarrow \mathbb{Z}^{n \times 2m}, H_2 : \{0,1\}^s \rightarrow I \), error bound \(\gamma \) of size \(\sqrt{n} \omega (\log n) \), one time signature \(\text{OTS} = (G, S, V) \), digital signature \(\text{DSig} = (\text{KeyGen}, \text{Sign}, \text{Verify}) \) are generated faithfully as in the original protocol. Also \(B \) runs the key generation algorithm \(\text{DSig.KeyGen} \) of a digital signature scheme \(\text{DSig} \) to generate signing-verification key pair \((\text{usk}[i], \text{uvk}[i])\). The simulator sends \(\text{usk}[i], i \in [N] \) to \(U_i \) secretly and \(\text{uvk}[i] \) is made public.

The simulator \(B \) sets the public key
\[
\mathcal{Y} = (M_0, M_1 A, \{A_\ast\}_{k=0}^\mu, B, D, D_0, D_1, F, u, \text{OTS}, \text{DSig}, H, H_0, \beta, \gamma, \sigma)
\]
and initializes the public state \(S_t = (S_{\text{users}}, S_{\text{trans}}) = (\emptyset, \epsilon) \).

Query Phase (when \(i \neq i^* \)): The queries \(Q_{\text{pub}}, Q_{\text{read}}, Q_{\text{keyOA}}, \) and hash queries made by \(A \) are answered by \(B \) as in Case I. The response to \(Q_{\text{a-join}} \) query is as follows:

(i) To introduce a malicious user \(U_i \in U^a \), the adversary \(A \) chooses a vector \(v_i(0) \in \mathbb{Z}_q^n \) and computes \(\text{sig}_i = \text{DSig.Sign}(\text{usk}[i], v_i(0)) \). Here \(\text{usk}[i] \) is the signing key of user \(U_i \) issued by \(B \) and as user \(U_i \) is adversarially controlled, \(A \) has the knowledge of \(\text{usk}[i] \). The adversary \(A \) sends \((v_i(0), \text{sig}_i)\) to \(B \).

(ii) To answer \(A \)'s query, \(B \) acts as the \(\text{GM} \) and proceeds for the following steps only if \(\text{DSig.Verify(uvk}[i], \text{sig}_i, v_i(0)) = 1 \) where \(\text{uvk}[i] \) is the verification key of user \(U_i \).

(a) It selects a time interval \([t_1, t_2] \subset [1, T]\) and chooses the \(i \)-th identifier \(id_i \in \{0,1\}^\mu \) from the preselected identifiers in the \(\text{Setup} \) phase such that \(id_i \neq id_i^* \).

(b) It sets the matrix \(A_{id_i} \) as
\[
A_{id_i} = \left[A_1 S | A_1 S \left\{ S^{-1} \left(S_0 + \sum_{k=0}^\mu id_i[k] S_k \right) \right\} + d_{id_i}, C \right]
\]
The matrix A_{id_i} has the same distribution as in the real protocol since

$$A_{id_i} = \left[\bar{A}_1 S | \bar{A}_1 S \left\{ S^{-1} \left(S_0 + \sum_{k=0}^{\mu} id_i[k] S_k \right) \right\} + d_{id_i} C \right]$$

$$= \left[A | \bar{A}_1 \left(S_0 + \sum_{k=0}^{\mu} id_i[k] S_k \right) + \left(d_0 + \sum_{k=1}^{\mu} id_i[k] d_k \right) C \right]$$

$$= \left[A | \bar{A}_1 S_0 + d_0 \cdot C + \sum_{k=1}^{\mu} id_i[k] (\bar{A}_1 S_k + d_k C) \right]$$

$$= \left[A | A_0 + \sum_{k=1}^{\mu} id_i[k] A_k \right]$$

The simulator B finds the basis $T_{A_{id_i}}$ of $\Lambda^+_q(A_{id_i}) = \{ x : A_{id_i} x = 0 \mod q \}$ for $id_i \neq \hat{id}$ using the knowledge of T_C as follows. Note that

$$x \in \Lambda^+_q(C) \Rightarrow Cx = 0 \mod q$$

$$\Rightarrow d_{id_i} Cx = 0 \mod q \Rightarrow x \in \Lambda^+_q(d_{id_i} C)$$

Therefore, the basis T_C of $\Lambda^+_q(C) = \{ x : Cx = 0 \mod q \}$ serves as a basis $T_{d_{id_i} C}$ of $\Lambda^+_q(d_{id_i} C) = \{ x : d_{id_i} Cx = 0 \mod q \}$.

It runs the randomized algorithm $\text{SampleRight}(\bar{A}_1 S, d_{id_i} C, S^{-1} (S_0 + \sum_{k=0}^{\mu} id_i[k] S_k), T_{d_{id_i} C}, \sigma, 0) \rightarrow b \in \mathbb{Z}^{2m}$ as in Lemma 1.1(b)(v) of Section 2 where $b \in \mathbb{Z}^{2m}$ satisfies

$$\left[\bar{A}_1 | \bar{A}_1 \left(S_0 + \sum_{k=0}^{\mu} id_i[k] S_k \right) + d_{id_i} C \right] b = 0 \mod q \quad \text{i.e., } A_{id_i} b = 0 \mod q$$

A maximal set of linearly independent such vectors $b \in \mathbb{Z}^{2m}$ forms a basis of $T_{A_{id_i}}$.

(c) Next as in the original protocol B samples $s_i \leftarrow D_{\mathbb{Z}^{2m}, \sigma}$ and uses $T_{A_{id_i}}$ to compute a short vector $d_i = [d_{i,1} | d_{i,2}]^t \in \mathbb{Z}^{2m}$, with $||d_i||_2 \leq \sigma \sqrt{2m}$, $d_{i,1}$, $d_{i,2} \in \mathbb{Z}^m$ such that $A_{id_i} d_i = u + D \cdot r_i \mod q$ where $r_i = \text{bin}(D_0 \text{bin}(v_i^{(0)}) + D_1 \cdot s_i)$

(d) Also for each $w = (w_{\text{num}}, w_{\text{dep}}) \in \text{SubsetHN} \leftarrow \text{Nodes}(t_1 + 1, t_2, G)$, the simulator B computes the matrix

$$A_{i,w} = [A_{id_i} | \bar{A}_w] \text{ with } \bar{A}_w = \left[M_0 + \text{wt}(w_{\text{num}}) M_1 | A_0 + \sum_{k=1}^{\mu} \alpha_k A_k \right]$$

Here G is a binary tree of height l with $T = 2^l$ leaves indicating time periods, $w_{\text{num}} \in \{0, 1\}^*$ is the label of the node w, w_{dep} is the depth of w with $0 \leq w_{\text{dep}} \leq l$, and $\alpha_1 \alpha_2 \ldots \alpha_\mu = 0^{\mu - \eta} ||\text{bin}(w_{\text{dep}})\|$, $\alpha_k \in \{0, 1\}$, $\eta = \text{len}(\text{bin}(w_{\text{dep}}))$ denotes the length of $\text{bin}(w_{\text{dep}})$ and $\text{wt}(w_{\text{num}})$ represents the Hamming weight of w_{num}.
As in the real protocol, \(B \) samples \(s_{i,w}^{(0)} \leftarrow D_{Z^{2m},\sigma} \) and uses \(T_{A_{id_i}} \) to compute a short vector \(x_{i,w}^{(0)} = [x_{i,w,1}^{(0)}, x_{i,w,2}^{(0)}, x_{i,w,3}^{(0)}]_{\mathbb{Z}^{4m}} \) such that \(\|x_{i,w}^{(0)}\|_2 \leq \sigma \sqrt{4m} \), \(x_{i,w,1}^{(0)} \in \mathbb{Z}^{2m}, x_{i,w,2}^{(0)}, x_{i,w,3}^{(0)} \in \mathbb{Z}^{m} \). Let

\[
A_{i,w}x_{i,w}^{(0)} = u + D \cdot m_{i,w}
\]

where

\[
m_{i,w} = \text{bin}(D_0 \cdot \text{bin}(v_i^{(0)}) + D_1 \cdot s_{i,w}^{(0)}) \mod q.
\]

(iii) The simulator \(B \) issues the certificate,

\[
\text{cert}_{i,t_1 \rightarrow t_2} = (id_i, d_i, s_i, \{x_{i,w}^{(0)}, s_{i,w}^{(0)}\}_{w \in \text{SubsetHN}}, \text{Nodes}(t_1+1,t_2,G), C_i^{(0)}, T_{C_i^{(0)}}, [t_1, t_2])
\]

to the adversary \(A \) as a response to \(Q_{a-join} \) query and updates the public state \(St \) by storing \(i \) in \(St_{users} \) and transcript \(i = (v_i^{(0)}, i, uvk[i], \text{sig}_i, [t_1, t_2]) \) in \(St_{trans} \).

Query Phase (when \(i = i^* \)): Here \(id_i = id_{i^*} = \widehat{id} \). The queries \(Q_{pub}, Q_{read}, Q_{keyOA} \), and hash queries made by \(A \) are answered by \(B \) as in Case I. The response to \(Q_{a-join} \) query is as follows:

(i) To introduce the malicious user \(U_{i^*} \in U^a \), the adversary \(A \) chooses a vector \(v_{i^*}^{(0)} \in \mathbb{Z}_q^n \) and computes \(\text{sig}_{i^*} = DSig.SignKey(usk[i^*], v_{i^*}^{(0)}) \) using the signing key \(usk[i^*] \) of user \(U_{i^*} \) issued by \(B \). A user \(U_{i^*} \) is adversarially controlled, \(A \) has the knowledge of \(usk[i^*] \). The adversary \(A \) sends \((v_{i^*}^{(0)}, \text{sig}_{i^*}) \) to \(B \).

(ii) To answer \(A \)'s query, \(B \) acts as the GM. The simulator \(B \) proceeds for the following steps only if \(DSig.Verify(uvk[i^*], (v_{i^*}^{(0)}, \text{sig}_{i^*})) = 1 \) where \(uvk[i^*] \) is the verification key of the user \(U_{i^*} \).

(a) It selects a time interval \([t_1, t_2] \) where \(t_1, t_2 \in \{1, 2, \ldots, T\} \) and chooses the \(i \)-th identifier \(id_i \in \{0, 1\}^\mu \) such that \(id_{i^*} = \widehat{id} \) as set in the Setup phase.

(b) It sets the matrix \(A_{id_{i^*}} \) as

\[
A_{id_{i^*}} = [\hat{A}_1 S | \bar{A}_1 \left(S_0 + \sum_{k=0}^{\mu} id_{i^*}[k] S_k \right)]
\]
The matrix A_{id_i} has the same distribution as in the real protocol since

$$
\tilde{A}_1 \left(S_0 + \sum_{k=0}^{\mu} id_i [k] S_k \right) = \tilde{A}_1 \left(S_0 + \sum_{k=0}^{\mu} id_i [k] S_k \right) + d_{id_i} \cdot C
$$

$$= \tilde{A}_1. \left(S_0 + \sum_{k=0}^{\mu} id_i [k] S_k \right) + \left(d_0 + \sum_{k=1}^{\mu} id_i [k] d_k \right) C
$$

$$= \tilde{A}_1. S_0 + d_0 \cdot C + \sum_{k=1}^{\mu} id_i [k] (\tilde{A}_1 S_k + d_k C)
$$

and consequently,

$$A_{id_i} = \left[\tilde{A}_1. S | \tilde{A}_1. S_0 + d_0 \cdot C + \sum_{k=1}^{\mu} id_i [k] (\tilde{A}_1 S_k + d_k C) \right]
$$

(c) As A_{id_i} is independent of C, the simulator B generates the certificate by making use of the vectors $d_i = [d_{i,1}, d_{i,2}]^T$, where $d_{i,1}, d_{i,2} \leftarrow D_{\mathbb{Z}^q, c}, c_M \in \mathbb{Z}_q^2$.

On receiving $v_i^{(0)}$ from A, the simulator B computes

$$c_i = c_M - D_0 \cdot \text{bin}(v_i^{(0)}) \pmod q$$

It runs

$$\text{SamplePre}(D_1, T_{D_1}, c_{i}, \sigma) \rightarrow s_{i} \in \Lambda^{c_{i}}_q (D_1)$$

using T_{D_1} to sample short vectors $s_i \leftarrow D_{\Lambda^{c_{i}}_q (D_1), \sigma}$ satisfying $D_1 s_{i} = c_{i} \pmod q$ i.e.,

$$D_1. s_{i} = c_M - D_0 \cdot \text{bin}(v_i^{(0)}) \pmod q$$

Note that in the Setup phase, we set r_i as

$$r_i = \text{bin}(c_M) = \text{bin}(D_0 \cdot \text{bin}(v_i^{(0)}) + D_1 s_{i})$$

(d) Also, $A' = \left[A_0 + \sum_{k=1}^{\mu} id_i [k] A_k | M_0 + \text{wt}(w_{num}) M_1 \right]$, where

$$M_0 = (A_0 + \sum_{k=1}^{\mu} id_i [k] A_k) S \quad \text{and} \quad M_1 = C.$$
Independent set of such vectors \(b \in \mathbb{Z}_{2m} \) forms a basis of \(T_{A'} \). The algorithm

\[
\text{ExtBasis}(A_{id^*}, A', T_{A'}) \rightarrow T_{A_{id^*}}|_{A'} = T_{A_{id^*}}|_{w'}.
\]

Now, for each \(w = (w_{num}, w_{dep}) \in \text{SubsetHN} \leftrightarrow \text{Nodes}(t_1 + 1, t_2, G) \), the simulator \(\mathcal{B} \) computes the matrix

\[
A_{i^*, w} = [A_{id^*} | \bar{A}_w] \quad \text{with} \quad \bar{A}_w = \begin{bmatrix} M_0 + \text{wt}(w_{num})M_1 | A_0 + \sum_{k=1}^{\mu} \alpha_k A_k \end{bmatrix}
\]

Here \(G \) is a binary tree of height \(l \) with \(T = 2^l \) leaves indicating time periods, \(w_{num} \in \{0,1\}^\ast \) is the label of the node \(w \), \(w_{dep} \) is the depth of the \(w \) with \(0 \leq w_{dep} \leq l \), and \(\alpha_1 \alpha_2 \ldots \alpha_\mu = 0^{\mu - \eta} \bin(w_{dep}) \), \(\alpha_k \in \{0,1\} \), \(\eta = \text{len}(\bin(w_{dep})) \) denotes the length of \(\bin(w_{dep}) \) and \(\text{wt}(w_{num}) \) represents the Hamming weight of \(w_{num} \).

As in the real protocol, \(\mathcal{B} \) samples \(s_{i^*, w} \sim D_{\mathbb{Z}^{2m} \sigma} \) and uses \(T_{A_{id^*}, w'} \) to compute a short vector

\[
x^{(0)}_{i^*, w} = \left[x^{(0)}_{i^*, w, 1}, x^{(0)}_{i^*, w, 2}, x^{(0)}_{i^*, w, 3} \right] \in \mathbb{Z}^{4m}, \quad \|x^{(0)}_{i^*, w, 1}\|_2 \leq \sigma \sqrt{4m}, \quad x^{(0)}_{i^*, w, 1} \in \mathbb{Z}^{2m}, \quad x^{(0)}_{i^*, w, 2}, x^{(0)}_{i^*, w, 3} \in \mathbb{Z}^m
\]

such that

\[
A_{i^*, w} x^{(0)}_{i^*, w} = u + D \cdot m_{i^*, w}
\]

where

\[
m_{i^*, w} = \bin(D_0 \cdot \bin(v^{(0)}_{i^*}) + D_1 \cdot s^{(0)}_{i^*, w}) \mod q.
\]

(c) For the delegation purpose, \(\mathcal{B} \) finds \(R_{i^*}^{(0)} = H_2(id_||0) \) and uses the algorithm

\[
\text{SampleRwithBasis}(A) \rightarrow (R_{i^*}^{(0)}, T_{C^{(0)}}) \quad \text{described in Lemma (1.1)b(viii) of Section}
\]

\[
\text{ExtBasis}(A_{id^*}, A', T_{A'}) \rightarrow T_{A_{id^*}}|_{A'} = T_{A_{id^*}}|_{w'} = \text{basis of the lattice}
\]

\[
\Lambda_q^{-1}(C^{(0)}) = \{ x : C^{(0)}_i x = 0 \mod q \}.
\]

Finally, \(\mathcal{B} \) returns the certificate,

\[
\text{cert}_{i^*, t_1 \rightarrow t_2} = \left(\text{id}_{i^*}, d_{i^*}, s_{i^*}, \{ x^{(0)}_{i^*, w}, s^{(0)}_{i^*, w} \}_{w \in \text{SubsetHN} \leftrightarrow \text{Nodes}(t_1 + 1, t_2, G)}, \ C_{i^*}, \ T_{C^{(0)}}, \ [t_1, t_2] \right)
\]

to the adversary \(\mathcal{A} \) and updates the public state \(\text{St} \) by storing \(i^* \) in \(\text{St}_{\text{users}} \) and \(\text{transcript}_{i^*} = (v^{(0)}_{i^*}, i^*, \text{uvk}[i^*], \text{sig}_{i^*}, [t_1, t_2]) \) in \(\text{St}_{\text{trans}} \).

Forgery: At the end, \(\mathcal{A} \) outputs the forgery \((M^*, \sigma^*, t^*) \) for a user \(U \notin U^a \) where

\[
\sigma^* = (\text{VK}^*, c_{\sigma^*}, \Pi^*, \text{osig}^*, C_{R^*}, [t^*_1, t^*_2])
\]

such that \(\text{FSGS.Verify}(\sigma^*, t^*, M^*, Y) = 1 \) with \(t^* \in [t^*_1, t^*_2] \) but \(t^* \notin [t_1, t_2] \) when \([t_1, t_2] \) is the time period for which \(\text{id}^* = \hat{\text{id}} \) has been issued a certificate. The notations \(\text{VK}^*, c_{\sigma^*}, \Pi^*, \text{osig}^*, [t^*_1, t^*_2] \) are as described in Case I. As \(\mathcal{B} \) can construct a knowledge extractor for the proof of knowledge \(\Pi^* \) as explained in Case I, the simulator \(\mathcal{B} \) is able to extract witnesses

\[
(d^*_1, d^*_2) \in \mathbb{Z}^m \times \mathbb{Z}^m, \text{id}^* \in \{0,1\}^\mu, \text{r}^* \in \{0,1\}^m \text{ from } \Pi^* \text{ with } \|d^*_1\|_2 \leq \sigma \sqrt{m}, \|d^*_2\|_2 \leq \sigma \sqrt{m},
\]
\[\| r^* \|_2 \leq \sigma \sqrt{m} \text{ satisfying Eq } 19. \]

The simulator \(B \) declares failure in the following situations:

(i) No membership certificate is issued by \(B \) for the identifier \(id^* \in \{0,1\}^\mu \) on the \(Q_{a \rightarrow join} \) query by \(A \) i.e., \(id^* \) does not belong to any user in \(U^a \).

(ii) The identifier \(id^* \in \{0,1\}^\mu \) belongs to some user \(i \) in \(U^a \), but this user is not the one introduced at the \(i^* \)-th \(Q_{a \rightarrow join} \) query i.e., \(i^* \neq i \) and \(id^* \neq \hat{id} \).

(iii) The knowledge extractor reveals vectors \(\bin(v^*) \in \{0,1\}^{2m} \) and \(s^* \in \mathbb{Z}^{2m} \) with \(r^* = r_{i^*} \), where \(\bin(v) \) and \(s_i^* \) are the vectors involved in the \(i^* \)-th \(Q_{a \rightarrow join} \) query i.e., \(id^* = \hat{id} \) and \(r^* = r_{i^*} \).

We denote the event by \text{fail} when any one of the above circumstances occur. With a prediction that \text{fail} does not occur, in which case \(id^* = \hat{id} = id_{i^*} \) belongs to user \(i^* \in U^a \), but \(r^* \neq r_{i^*} \). \(B \) can solve the given SIS instance as follows:

The simulator \(B \) computes the vector

\[
\mathbf{h} = S(d^*_1 - d_{i^*,1}) + (S_0 + \sum_{k=1}^\mu \hat{id}[k]S_k)(d^*_2 - d_{i^*,2}) + (r_{i^*} - r^*)
\]

using \(\hat{id} \) pre selected by \(B \) before the Setup and \(S \), \(\{S_k\}_{k=0}^\mu \), \(d_{i^*,1} \), \(d_{i^*,2} \), \(r_{i^*} \) set by \(B \) itself during the Setup phase and \(d^*_1 \), \(d^*_2 \), \(r^* \) are extracted by \(B \) using the knowledge extractor from the witness \(x \) of the proof of knowledge \(\Pi^* \) of \(Px = v \) associated in the forgery \(\sigma^* \) on message \(M^* \) at time \(t^* \). Also \(\|d^*_1\|_2 \leq \sigma \sqrt{m}, \|d^*_2\|_2 \leq \sigma \sqrt{m} \) and \(\|r^*\|_2 \leq \sigma \sqrt{m} \). Then

\[
\tilde{A}_1 \mathbf{h} = \tilde{A}_1 S(d^*_1 - d_{i^*,1}) + \tilde{A}_1(S_0 + \sum_{k=1}^\mu \hat{id}[k]S_k)(d^*_2 - d_{i^*,2}) + \tilde{A}_1(r_{i^*} - r^*)
\]

\[
= A(d^*_1 - d_{i^*,1}) + \left(A_0 + \sum_{k=1}^\mu \hat{id}[k]A_k \right) (d^*_2 - d_{i^*,2}) + \tilde{A}_1(r_{i^*} - r^*)
\]

(from Eq 20 and \(id^* = \hat{id} = id_{i^*} \))

\[
= \left[A_0 + \sum_{k=1}^\mu \hat{id}[k]A_k \right] [d^*_1, d^*_2]^t - \left[A_0 + \sum_{k=1}^\mu \hat{id}[k]A_k \right] [d_{i^*,1}, d_{i^*,2}]^t + \tilde{A}_1(r_{i^*} - r^*)
\]

\[
= A_{id^*} \left[\begin{bmatrix} d^*_1 \\ d^*_2 \end{bmatrix} - A_{id^*} \begin{bmatrix} d_{i^*,1} \\ d_{i^*,2} \end{bmatrix} \right] + \tilde{A}_1(r_{i^*} - r^*)
\]

\[
= (u + Dr^*) - (u + Dr_{i^*}) + \tilde{A}_1(r_{i^*} - r^*) \quad \text{(from Eq 19)}
\]

\[
= D(r^* - r_{i^*}) + \tilde{A}_1(r_{i^*} - r^*)
\]

\[
= 0 \mod q
\]
Thus h is short vector satisfying $\mathbf{A}_1 \cdot h \equiv 0 \mod q$ with

$$||h||_2 \leq ||S(d_1^* - d_{i^*}) + (S_{0} + \sum_{k=1}^{\mu} \hat{d}[k]S_{k})(d_2^* - d_{i^*})||$$

$$\leq 2m\sigma^2 + m^{3/2}\sigma(\mu + 1)2\sigma\sqrt{m} + 2\sigma\sqrt{m}$$

$$\leq 2m\sigma^2(1 + m(\mu + 2)) + 2\sigma\sqrt{m}.$$

Note that $r^* \neq r_{i^*}$, ensures that $h \neq 0$ with probability. It gives, $(h' | 0^n)$ is a short vector in $\Lambda_q^+ (\mathbf{A})$ and hence a solution of the given SIS instance.

Subcase II ($r^* = r_{i^*}$ but $(\text{bin} (v^*), s^*) \neq (\text{bin} (v_{i^*}), s_{i^*})$):

Setup: The simulator \mathcal{B} generates the group public key

$$\mathcal{Y} = (M_0, M_1, A, \{A_k\}_{k=0}^{\mu}, B, D, D_0, D_1, F, u, OTS, D\text{Sig}, H, H_0, \beta, \gamma, \sigma)$$

faithfully as in the original protocol except the matrices $D_0, D_1 \leftarrow U(\mathbb{Z}_q^{2n \times 2m})$ which are set by \mathcal{B} as follows: It samples $\mathbf{A}' \leftarrow U(\mathbb{Z}_q^{n \times 2m})$, randomly selects $Q \leftarrow \mathbb{Z}^{2m \times 2m}$ whose columns are sampled from $D_{2m, o}$ and sets $D_0 = [\mathbf{A}'] \in \mathbb{Z}_q^{2n \times 2m}$ and $D_1 = D_0 \cdot Q \mod q$. The distribution of each of the matrices D_0, D_1 is statistically close to $U(\mathbb{Z}_q^{2n \times 2m})$. The simulator initializes the public state $St = (St_{\text{users}}, St_{\text{trans}}) = (\emptyset, \epsilon)$.

Query Phase: The respond to \mathcal{A}’s queries for $Q_{\text{pub}}, Q_{\text{read}}, Q_{\text{key OA}}$, and hash queries are simulated by \mathcal{B} as in Case I whereas $Q_{\text{a-join}}$ queries are answered as in the original protocol.

Forgery: Let (M^*, σ^*, t^*) be the forgery of \mathcal{A} for a user $\mathcal{U} \notin U^a$ where

$$\sigma^* = (VK^*, c_{v^*}, \Pi^*, \text{osig}^*, C_R^*, [t_1^*, t_2^*])$$

such that $\text{FSGS}.\text{Verify}(\sigma^*, t^*, M^*, \mathcal{Y}) = 1$ with $t^* \in [t_1, t_2]$ where $VK^*, c_{v^*}, \Pi^*, \text{osig}^*, [t_1^*, t_2^*]$ are as described in Case I.

Using improved forking lemma explained in Theorem 2.3 of Section 2, the simulator \mathcal{B} has access to a knowledge extractor as described in case I. From the knowledge extractor \mathcal{B} extracts $\text{bin}(v^*) \in \{0, 1\}^{2m}, s^* \in \mathbb{Z}^{2m}, r^* \in \{0, 1\}^m$.

The simulator \mathcal{B} declares failure if $r^* \neq r_{i^*}$.

We denote the event by fail when the above situation occurs. When fail does not occur, \mathcal{B} solves the given SIS instance by computing the vector

$$h = \text{bin}(v^*) - \text{bin}(v_{i^*}) + Q_{\mathcal{S}} (s^* - s_{i^*}) \in \mathbb{Z}^{2m}.$$

Observe that $h \in \Lambda_q^+ (D_0)$ is a short vector and

$$D_0 \cdot h = (D_0 \cdot \text{bin}(v^*) + D_0 \cdot Q \cdot s^*) - (D_0 \cdot \text{bin}(v_{i^*}) + D_0 \cdot Q \cdot s_{i^*})$$

$$= (D_0 \cdot \text{bin}(v^*) + D_1 \cdot s^*) - (D_0 \cdot \text{bin}(v_{i^*}) + D_1 \cdot s_{i^*}) \quad \text{(as by Setup $D_1 = D_0 \cdot Q$)}$$

$$= 0 \bmod q \quad \text{(as $r^* = r_{i^*}$)}.$$
which in turn implies that
\[
\begin{bmatrix}
\bar{A} \\
A
\end{bmatrix} h = 0 \mod q
\]
\[
\Rightarrow \begin{bmatrix}
\bar{A} h \\
A h
\end{bmatrix} = 0 \mod q
\]
\[
\Rightarrow \bar{A} h = 0 \mod q
\]
\[
\Rightarrow h \in \Lambda_q^+(\bar{A})
\]

Further \(h \in \mathbb{Z}^{2n} \) is nonzero with high probability since \(\text{bin}(v^*) \neq \text{bin}(v_{i^*}) \) and
\[
||h||_2 \leq ||\text{bin}(v^*) - \text{bin}(v_{i^*}) + Q \cdot (s^* - s_{i^*})||_2
\]
\[
\leq (||\text{bin}(v^*)||_2 + ||\text{bin}(v_{i^*})||_2 + ||Q||_2(||s^*||_2 + ||s_{i^*}||_2)
\]
\[
\leq 2^{2 \frac{3}{2} m^2 \sigma} + 2 \frac{3}{2} m^2 \sigma^2
\]

Given the type of attack is completely independent of \(i^* \leftarrow U([1, \delta]) \), pre selected by \(B \) from adversary’s view, the probability of correct attack is \(1/3 \). In Case I, the correctly guess of \(\hat{\text{id}} \in \{0, 1\}^n \) has probability \(1/(N - \delta) \geq 1/N \) and for Case II, the probability of correctly guess \(i^* \in \{1, 2, \ldots, \delta\} \) is \(1/\delta \). Hence \(\Pr[-\text{fail}] \geq 1/(3\text{Max}(N, \delta)) \geq 1/(3TN) \).

Theorem 6.2. The group signature FSGS scheme described in Section 4 is secure against framing attack as per the security framework given in Algorithm 3 of Section 3.2 under the SIS assumption in the random oracle model.

Proof: Let \(A \) be any PPT adversary to our group signature scheme FSGS with non-negligible advantage \(\epsilon \). We show that there exists a simulator \(B \) that solves the SIS problem using the non-negligible advantage of \(A \) i.e., given \(\bar{A} = [\bar{A}_1|\bar{A}_2] \in \mathbb{Z}_q^{4n \times 4m}, \bar{A}_1, \bar{A}_2 \in \mathbb{Z}_q^{4n \times 2m}, m = 2n[\log q], \) a real number \(\beta \), the simulator \(B \) finds a vector \(z \in \Lambda_q^+(\bar{A}) \) such that \(||z|| \leq \beta \) using \(A \) as a subroutine.

Setup: The simulator \(B \) acts as the KGC and honest users while the adversary \(A \) acts as the group manager. First, \(B \) chooses \(i^* \leftarrow U(\{1, 2, \ldots, q_b\}) \) with a guess that the forged signature produced by \(A \) reveals \(\text{bin}(v^*) \) coincides with \(\text{bin}(v_{i^*}) \) of \(i^* \)-th user in \(U^b \) and also chooses \(\hat{t} \leftarrow U(\{1, 2, \ldots, T\}) \) where \(q_b \) is the cardinality of the set \(U^b \) of honest users with \(A \) as the dishonest group manager and \(T = 2^l \) is allowable time periods with \(T \leq q \) and \(N = 2^u \) is maximum number of group members with \(\mu \geq \log l \).

Also \(B \) has access to a knowledge extractor for every cheating prover for ZK AoK of the relation \(Px = v \mod q \) associated in \(A \)’s forgery \((M^*, \sigma^*, t^*) \) where \(\sigma^* \) is a forged signature \(\sigma^* \) on a message \(M^* \) at time \(t^* \).

The simulator \(B \) faithfully generates the group public key
\[
\mathcal{Y} = (M_0, M_1A, \{A_k\}_{k=0}^u, B, D, D_0, D_1, F, u, OTS, DSig, H, H_0, \beta, \gamma, \sigma)
\]
as in the original protocol except the matrix \(F \leftarrow U(\mathbb{Z}_q^{4n \times 2m}) \) which is set by \(B \) as \(F = \bar{A} \in \mathbb{Z}_q^{4n \times 2m} \). It also initializes the public state \(St = (St_{users}, St_{trans}) = (\emptyset, \epsilon) \) and sets \(SOA = T_B, SGM = T_A \) where \(T_A, T_B \) are the secret keys of the group manager and the opening authority.
respectively.

- **Query Phase**: The adversary A queries the oracles Q_{pub}, Q_{keyGM}, Q_{b-join}, Q_{sig}, $Q_{corrupt}$, Q_{write}, Q_{read} and Q_{KeyOA} which are simulated by B as follows:

 - Q_{pub}: In response to this query, B returns Y to A.
 - Q_{keyGM} and Q_{keyOA}: If A chooses to corrupt the group manager and the opening authority, B passes S_{GM} and S_{OA} generated honestly in the Setup phase to A.
 - Q_{b-join}: To introduce a new member in $U_i \in U^b$, the adversary A acting as the dishonest group manager B and handles the Turing machine J_{GM} of FSGS.Join while the simulator B faithfully runs the Turing machine J_{user} of FSGS.Join on behalf of the user. If the protocol successfully terminates, then B increments U by 1, adds user index i to both U^b and S_{users}, and updates S_{trans} as $S_{trans} = S_{trans} \langle i, t_1, t_2; transcript \rangle$. The simulator B finally stores the membership certificate $cert_{i,t_1 \rightarrow t_2}$ in a private part of State.

 - Q_{sig}: On querying a tuple (M, i, t) consisting of a message M, an index i, and a time period t, the simulator B first checks if $state_{pri}$ contains $sec_{i,t_1 \rightarrow t_2}, cert_{i,t_1 \rightarrow t_2}$ for some $t_1, t_2 \in \{1, 2, ..., T\}$ with $t_1 \leq t \leq t_2$ and $U_i \in U^b$. If so, B calls $FSGS.Update(Y, k, t_2, sec_{i,k \rightarrow t_2}, cert_{i,k \rightarrow t_2})$ for $k = t_1, t_1 + 1, ..., t$ to generate the pair $(cert_{i,t \rightarrow t_2}, sec_{i,t \rightarrow t_2})$, returns a signature $\sigma \leftarrow FSGS.Sign(sec_{i,t \rightarrow t_2}, cert_{i,t \rightarrow t_2}, Y, M)$ to A on behalf of user U_i for the period t and updates $Sigs = Sigs \langle i, t, M, \sigma \rangle$. Otherwise, the simulator B returns \bot to A.

 - $Q_{corrupt}$: On receiving query (i, t), where $i \in S_{users}$ and $t \in \{1, 2, ..., T\}$ from A, the simulator B checks if $U_i \in U^b$ and S_{trans} has a record of the form $\langle i, t_1, t_2; transcript \rangle$ for some $t_1, t_2 \in \{1, 2, ..., T\}$ with $t_1 \leq t \leq t_2$. If not, returns \bot. Else, B extracts $cert_{i,t_1 \rightarrow t_2}, sec_{i,t_1 \rightarrow t_2}$ from $state_{pri}$ and iteratively call algorithm $FSGS.Update(Y, k, t_2, sec_{i,k \rightarrow t_2}, cert_{i,k \rightarrow t_2})$ for $k = t_1, t_1 + 1, ..., t - 1$ to generate $cert_{i,t \rightarrow t_2}$ and $sec_{i,t \rightarrow t_2}$ for $t > t_1$. It provides all these information to the adversary and stores (i, t) in S_{corr}.

 - Q_{read} and Q_{write}: On access to these queries, A can read and write state $S = (S_{users}, S_{trans})$ without altering, removing or reusing the already existing certificates.

- **Forgery**: With access to all the above queries, A outputs the forgery (M^*, t^*, σ^*) for a user $U \in U^b$ where σ^* is a forged signature on the message M^* at time t^*. Parsing σ^* as

$$\sigma^* = (VK^*, c_{v^*}, \Pi^*, osig^*, C_{R^*}^*, [t_1^*, t_2^*])$$

such that $FSGS.Verify(\sigma^*, t^*, M^*, Y) = 1$ where $VK^*, c_{v^*}, \Pi^*, osig^*, [t_1^*, t_2^*]$ is as explained in Case I of Theorem 6.1.

The simulator B declares failure if $v^* \neq v_{i^*}$. The opening of σ^* reveals $bin(v^*) = bin(v_{i^*}) \in \{0, 1\}^{2m}$ and as B has all the collection of short $z_i \in Z^{4m}$ for each user $U_i \in U^b$ with $|z_i| \leq 2\sigma \sqrt{m}$, the simulator B can find a z_{i^*} such that $v_{i^*} = F \cdot z_{i^*} \mod q$. Now, B finds another short vector \tilde{z} satisfying $v_{i^*} = F \cdot \tilde{z} \mod q$ by invoking improved forking lemma explained in Theorem 2.3 of Section 2.3.

Hence B has z_{i^*}, \tilde{z} such that $v^* = v_{i^*} = F \cdot z_{i^*} = F \cdot \tilde{z} \mod q$. Due to the statistical witness
indistinguishability ZK AoK to generate signature, \(\hat{z} \neq \mathbf{z}_{i^*} \) with overwhelming probability. Also the distribution of \(\mathbf{z}_{i^*} \) is \(D_{\Lambda_q^\perp(F)}(\sigma) \). Thus \(B \) has

\[
F \cdot \mathbf{z}_{i^*} = F \cdot \hat{z} \mod q \Rightarrow F(\mathbf{z}_{i^*} - \hat{z}) = 0 \mod q
\]

\[
\Rightarrow \mathbf{A}(\mathbf{z}_{i^*} - \hat{z}) = 0 \mod q \quad \text{(by Setup)}
\]

\[
\Rightarrow \mathbf{z}_{i^*} - \hat{z} \in \Lambda_q^\perp(\mathbf{A})
\]

with

\[
||u|| \leq ||\mathbf{z}_{i^*}|| + ||\hat{z}|| \leq 2\sigma\sqrt{m} + 2\sigma\sqrt{m} = 4\sigma\sqrt{m}
\]

is a short vector of \(\Lambda_q^\perp(\mathbf{A}) \) i.e., a short solution to the given SIS instance.

Theorem 6.3. The FSGS scheme described in Section 4 is fully anonymous as per the security framework given in Algorithm 4 of section 3.2 under the LWE, SIS assumption and the unforgeability of one time signature OTS.

Proof: The proof of this theorem is structured as a sequence of seven computationally indistinguishable games. In the first game, each query is answered as in the real protocol. We then progressively change each game, show that each game is indistinguishable from the previous one, and finally prove that our FSGS construction is secure in the security model of Algorithm 4. Let \(E_i = \text{Adv}^{\text{anon}}(\mathcal{A}) \) in Game \(i \) for \(i = 0, 1, \ldots, 6 \). The game transition is described below.

- **Game 0:** Let \(\mathcal{A} \) be the adversary and \(\mathcal{B} \) be the simulator.

Setup: The challenger \(\mathcal{B} \) runs

\[
\text{FSGS.Setup}(\lambda, T) \to (\mathcal{Y}, S_{\text{GM}}, S_{\text{OA}}, \text{St})
\]

where \(\mathcal{Y} = (M_0, M_1, \mathcal{A}, \{A_k\}_{k=0}^\nu, B, D, D_0, D_1, F, u, \text{OTS}, \text{DSig}, H, H_0, \beta, \gamma, \sigma) \), \(S_{\text{GM}} = T_A \in \mathbb{Z}^{m \times m} \), \(S_{\text{OA}} = T_B \in \mathbb{Z}^{m \times m} \) and initializes the public state \(\text{St} = (\text{St}_{\text{users}}, \text{St}_{\text{trans}}) = (\emptyset, \epsilon) \).

Query Phase: The challenger \(\mathcal{B} \) responds to \(Q_{\text{pub}}, Q_{\text{keyGM}}, Q_{\text{open}}, Q_{\text{read}}, Q_{\text{write}} \) and hash queries made by \(\mathcal{A} \) as follows:

- **Qpub:** In response to this query, \(\mathcal{B} \) returns \(\mathcal{Y} \) to \(\mathcal{A} \).
- **QkeyGM:** If \(\mathcal{A} \) chooses to corrupt the group manager, \(\mathcal{B} \) passes \(S_{\text{GM}} \) to \(\mathcal{A} \).
- **Qopen:** On access to this query, \(\mathcal{A} \) asks \(\mathcal{B} \) to open the message-signature pair \((M, t, g\text{sig}) \) with the current state \(\text{St} \) where \(g\text{sig} \) is a group signature on a message \(M \) at time \(t \).

The challenger \(\mathcal{B} \) uses the opening authority key \(T_A \in \mathbb{Z}^{m \times m} \) to answer this query by running \(\text{FSGS.Open}(g\text{sig}, t, M, \mathcal{Y}, S_{\text{OA}}, \text{St}) \to (i \lor \bot) \)

- **Qread** and **Qwrite:** On access to these queries, \(\mathcal{A} \) can respectively read and write state \(\text{St} \) without altering, removing or reusing the already existing certificates.
Hash Queries: To respond hash queries, B maintains two lists for the hash functions H and H_0. These lists store records of the form $(x, H(x))$ and $(y, H_0(y))$ for some $x, y \in \{0, 1\}^*$. Fresh hash value is generated on a string $x \in \{0, 1\}^*$ if it is not already been queried and stored in the corresponding hash list. Otherwise, responses are given utilizing the respective hash lists.

Play Phase: With access to all the above queries, A sends $(M^*, t^*, (\text{sec}_{i_0, t^* \to t_0^*}, \text{cert}_{i_0, t^* \to t_0^*}))$ with $b \in \{0, 1\}$ to B. The challenger B aborts if either $([\text{cert}_{i_0, t^* \to t_0^*} = y \cdot \text{sec}_{i_0, t^* \to t_0^*}])$ or $[\text{cert}_{i_0, t^* \to t_0^*} = \text{cert}_{i_1, t^* \to t_1^*}]$.

Challenge Phase: In this phase, the challenger B flips a coin and selects a bit $d \in \{0, 1\}$ to sign the message M^* at time t^*. The challenger B computes the challenge signature $\text{gsig}^* \leftarrow \text{FSGS.SignKey}(t^*, \text{cert}_{id, t^* \to t_0^*}, Y, M^*)$

and sends it to A where $\text{gsig}^* = (\text{VK}^*, \text{c}_{\text{v}^*}, \Pi^*, \text{osig}^*, C_R^*, [\hat{t}_1, \hat{t}_2])$ such that $\text{FSGS.Verify}((\text{sigma}^*, t^*, M^*, Y)) = 1$ with $t^* \in [\hat{t}_1, \hat{t}_2]$ where

VK^* : verification key generated by $\text{OTS} \cdot \mathcal{G}$.
$c_{\mathbf{v}^*}$: ciphertext generated by running the algorithm $\text{GPVIBE} \cdot \text{Enc}(B, \text{VK}^*, \mathbf{v}^*) \rightarrow c_{\mathbf{v}^*} \in \mathbb{Z}_q^m \times \mathbb{Z}_2^{2m}$ where B is extracted from Y and $\mathbf{v}^* = \text{bin}(\mathbf{v}^*) \in \{0, 1\}^{2m}$
for some $\mathbf{v}^* \in \mathbb{Z}_2^{2m}$.
Π^* : zero knowledge proof for $\text{exmod} \mathbf{v} = \mathbf{v} \mod q$ equivalent to the system of equation
similar to Eq 12
osig^* : one time signature generated by running $\text{OTS.Sign}(\text{VK}^*, \text{c}_{\mathbf{v}^*}, \Pi^*)$ where SK^* is the signing key corresponding to the verification key VK^* generated by $\text{OTS} \cdot \mathcal{G}$.
$[\hat{t}_1, \hat{t}_2]$: a subset of time interval $[1, T]$.

Guess Phase: With access to the queries $Q_{\text{pub}}, Q_{\text{keyGM}}, Q_{\text{open}}$, $Q_{\text{read}}, Q_{\text{write}}$, the adversary A guesses a bit d' and wins the game if $d' = d$. The experiment returns 1 if $d' = d$, else returns 0.

Game 1: It is similar to the above game with a slight modification. At the beginning of the game, the challenger B generates a OTS key pair $(\text{VK}^*, \text{SK}^*)$ before query phase starts. This is used by B in the challenge query. The challenger B aborts if following two cases occur:

- The adversary A asks Q_{open} query to B for the signature $\text{gsig} = (\text{VK}, \text{c}_{\mathbf{v}}, \Pi, \text{osig}, C_R, [t_1, t_2])$ with $\text{VK} = \text{VK}^*$.

- The adversary A produces a signature $\text{gsig} = (\text{VK}, \text{c}_{\mathbf{v}}, \Pi, \text{osig}, C_R, [t_1, t_2])$ with $\text{VK} = \text{VK}^*$ after knowing the challenge signature gsig^*.

Since both the cases have negligible probability as they contradict the strong unforgeability of one time signature OTS, Game 0 and Game 1 are identical with high probability from
A's point of view. That is, $|E_0 - E_1| = \epsilon_1$ where $\epsilon_1 > 0$ is negligible.

- **Game 2**: This game explains the simulation of the hash queries. Firstly, choose a random matrix $G^*_0 \in \mathbb{Z}_q^{n \times 2m}$ uniformly and define $H_0(\mathcal{VK}^*) = G^*_0$. Observe that the distribution of G^*_0 is still statistically close to that in the real game. To answer other queries for $\mathcal{VK} \neq \mathcal{VK}^*$, the challenger B selects a small norm matrix $K_{\mathcal{VK}} \leftarrow D_{\mathbb{Z}_q^{n \times n}}^{2m}$ and defines $H_0(\mathcal{VK}) = B \cdot K_{\mathcal{VK}}$. The matrix $K_{\mathcal{VK}}$ is stored for further usage. If any query is repeated for \mathcal{VK}, the stored value will be produced. Note that in the real protocol, $K_{\mathcal{VK}}$ is generated using the trapdoor T_B. As SIS is hard, finding $K_{\mathcal{VK}}$ is difficult without T_B and hence difficult to decide whether $K_{\mathcal{VK}}$ is generated using T_B or uniformly chosen, for all fixed choices of B. Thus $H_0(\mathcal{VK})$ is statistically close to uniform. Also distinguishing between the pair $(B, B \cdot K_{\mathcal{VK}})$ generated using T_B, and the uniformly generated pair $(B, H_0(\mathcal{VK}))$ is a decisional LWE problem. Hence Game 1 and Game 2 are statistically indistinguishable. In other words, $|E_1 - E_2| = \epsilon_2$ where $\epsilon_2 > 0$ is negligible.

- **Game 3**: This game includes the modification in the opening algorithm. At the outset of the game, B samples a uniformly random matrix $B^* \in \mathbb{Z}_q^{n \times m}$ to use in place of B to response H_0-queries. Hence to answer Q_{open} queries, B does not use T_B but recalls the stored $K_{\mathcal{VK}}$ matrices used for H_0-queries. This experiment is indistinguishable from the real one, under the LWE assumption. Thus Game 2 and Game 3 are statistically indistinguishable and $|E_2 - E_3| = \epsilon_3$ where $\epsilon_3 > 0$ is negligible.

- **Game 4**: Statistical zero knowledge states that the simulator can generate the proof that is statistically close to the real distribution \mathcal{D}_1. Thus, B simulates the zero knowledge argument of knowledge $\Pi = \{\{\text{COM}_k\}_{k=1}^s, \text{Ch}, \{\text{RSP}_k\}_{k=1}^s\}$ where $\text{Ch} = H(M, \mathcal{VK}, c_v, \{\text{COM}_k\}_{k=1}^s) \in \{1, 2, 3\}^s$ instead of using the real witnesses. It is made possible by programming the hash queries according to the underlying interactive protocol by running the simulator for each $k \in \{1, 2, \ldots, s\}$. The interactive proof Π is statistically zero knowledge as stated in Theorem 1.2 and thus Game 3 and Game 4 are statistically indistinguishable. Consequently, $|E_3 - E_4| = \epsilon_4$ where $\epsilon_4 > 0$ is negligible.

- **Game 5**: Here the modification is made on the ciphertext $c_{v^*_i}$ of the challenge phase. The challenger B does not use the real GPV-IBE for encryption of $\text{bin}(v^*_i)$ but returns truly random ciphertext by setting
\[
c_{v^*_i} = \left[z_1, z_2 + \text{bin}(v^*_i)[q/2] \right]
\]
where $\text{bin}(v^*_i) = F \cdot z^*_i$, and $z_1 \leftarrow U(\mathbb{Z}_q^m)$, $z_2 \leftarrow U(\mathbb{Z}_q^{2m})$ are randomly chosen. Note that in Game 0 to Game 5, $c_{v^*_i}$ is set as
\[
c_{v^*_i} = \left[z^*_i, B'e_0 + e_1 + \text{bin}(v^*_i)[q/2] \right]
\]
where $e_0 \leftarrow \chi^n$, $x_1 \leftarrow \chi^m$, $x_2 \leftarrow \chi^{2m}$ and χ is a γ bounded distribution. If A can distinguish between $B^t e_0 + x_1$ from z_1 and $G^* t e_0 + x_2$ from z_2, which would break the decisional LWE assumption. Thus Game 4 and Game 5 are computationally indistinguishable under the security of GPV-IBE. Hence, $|E_4 - E_5| = \epsilon_5$ where $\epsilon_5 > 0$ is negligible.

Game 6: This is the final game where B selects $z'_1 \leftarrow U(Z_m q)$, $z'_2 \leftarrow U(Z_{2m} q)$ uniformly and sets

$$c^*_{v_{id}} = \begin{bmatrix} z'_1 \\ z'_2 \end{bmatrix}$$

instead of using $\text{bin}(v^*)$. Observe that $c^*_{v_{id}}$ follows the same distribution as in Game 5. Also $c^*_{v_{id}}$ does not depend on $d \in \{0, 1\}$, giving zero advantage to the adversary A. Thus, $|E_5 - E_6| = |E_5| = \epsilon_6$ where $\epsilon_6 > 0$ is negligible. Thus the advantage of the adversary is

$$|Adv(A)| \leq |E_0 - E_1| + |E_1 - E_2| + |E_2 - E_3| + |E_3 - E_4| + |E_4 - E_5| + |E_5 - E_6| = \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4 + \epsilon_5 + \epsilon_6 < \epsilon.$$ Hence the result.

7 Conclusion

In this work, we have proposed the first forward secure dynamic group signature scheme whose security relies on hard problems of lattices. The scheme achieves the strongest notion of security currently available in the literature. Our scheme is the first quantum resistant group signature scheme achieving forward secrecy in dynamic setting.

References

general statistical zero-knowledge. In: Proceedings of the thirtieth annual ACM sym-

assumptions. In: International Conference on the Theory and Application of Cryptology

cs.jhu.edu/~susan/600.641/scribes/lecture11.pdf

with logarithmic signature size. In: International Conference on the Theory and Appli-

efficient protocols and dynamic group signatures from lattice assumptions. In: Advances
in Cryptology–ASIACRYPT 2016: 22nd International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Hanoi, Vietnam, December 4-8,

[27] Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowl-
dge for the isis problem, and applications. In: Public-Key Cryptography–PKC 2013,

[28] Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,

[29] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. Journal of the ACM (JACM) 60(6), 43 (2013)

(2011)

(2015)
