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Abstract

In the paper, we study the security of 3-line generalized Feistel network,
which is a considerate choice for some special needs, such as designing a 96-bit
cipher based on a 32-bit round function. We show key recovery attacks on 3-
line generic balanced Feistel-2 and Feistel-3 based on the meet-in-the-middle
technique in the chosen ciphertext scenario. In our attacks, we consider the
key size is as large as one-third of the block size. For the first network,
we construct a 9-round distinguisher and launch a 10-round key-recovery
attack. For the second network, we show a 13-round distinguisher and give
a 17-round attack based on some common assumptions.
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1. Introduction

With the widely applications of intelligent devices, how to design securi-
ty lightweight symmetric ciphers is an important subject for cryptographers.
Substitution-permutation network (SPN) [1, 2, 3] and Feistel network [4, 5]
are two common choices as the structures, but some ciphers use the gener-
alized Feistel network (GFN) [6]. Most of GFN applications adopt the state
with four branches (GFN4), but 3-line GFN (GFN3) is also an interesting
choice to design block ciphers with 48- or 96-bit block size. In 2010, Bogdanov
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Figure 1: 3-line Feistel-2
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Figure 2: 3-line Feistel-3

showed the upper bounds on the differential and linear trail probabilities for
3-line contracting unbalanced Feistel networks [7]. The next year Bogdanov
et al. gave an 8-round impossible differential distinguisher for 3-line GFNs
with bijective functions [8]. To the best of our knowledge, no block cipher
uses GFN3 as the structure so far. The reason may be that people have not
yet clear about its security bounds for common attacks, which is the right
meaning of our work.

Meet-in-the-middle attack was proposed from cryptanalysis of block ci-
phers [9]. In recent years, a series of results about the attack are emerging,
e.g. in the block cipher IDEA [10], in AES [11, 12, 13], and in GOST [14].
For the two-branch generic Feistel construction, Guo et al. gave a 6-round
attack for single-key size on Feistel-2 and a 14-round attack on Feistel-3 in
2014 with the meet-in-the-middle technique [15]. Lin et al. presented an
effective searching algorithm to obtain the best improved meet-in-the-middle
distinguisher, and utilize it on GFN4 [16] and other GFNs [17]. In 2017, Guo
attacked 4-branch contracting Feistels and expanding Feistels [18].

Our Contributions. In this paper, we show key-recovery attacks on GFN3 ci-
phers in the chosen-ciphertext scenario by the meet-in-the-middle technique.

In the case of 3-line Feistel-2, we give a 10-round attack based on a 9-
round distinguisher. It is a general Feistel structure with three branches,
and thus can be applicable broadly. For 3-line Feistel-3, we can attack more
rounds because of the special properties of the structure. With the common
assumption that the branch number of the P-layer reaches maximum, we
give a 17-round attack based on a 13-round distinguisher. We launch the
chosen-ciphertext attack because the internal state value of the branch we
find is not in consecutive rounds.
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Table 1: Comparison of previous results and ours

Target
Round
functions

Rounds Data Time Attack Reference

Feistel-2
Bijective 8 - - distinguisher [8]

- 9 - - distinguisher Section3
- 10 22n/3 22n/3 key-recovery Section3

Feistel-3
- 13 - - distinguisher Section4
- 17 2n−c 2n−c + 2n/3+5c key-recovery Section4

2. Preliminaries

In this paper, we assume that the block size and the key length are n bits,
the size of each branch is n/3 bits. The subkey length is equal to the size of
each branch. The value of each branch is denoted by vi and the n-bit plaintext
and ciphertext are denoted by m0∥m1∥m2 and c0∥c1∥c2, respectively.

The networks of 3-line Feistel-2 and Feistel-3 are described in Figure 1
and Figure 2. The 3-line Feistel-2 network is a structure in which the round
functions are composed of an XOR of a subkey followed by an application of a
public function or permutation [19]. The round function of a 3-line Feistel-3
consists of a subkey XOR, an S-layer, and a P-layer. We recover the subkey
by choosing ciphertexts based on the properties of GFN3.

A b-δ-set is a set that b active bits are all different and other bits are
fixed [15]. We define some notations as follows: Fi is the round function of
round i, and F I

i and FO
i are its input and output. We use ∆α to represent

the difference of α.

3. Key-Recovery Attacks on 3-Line Feistel-2

In this section, we present a 9-round distinguisher of the 3-line gener-
alized Feistel-2 structure using the meet-in-the-middle technique, and then
to launch a 10-round key-recovery attack based on it. We do not give the
restriction that round functions are bijective, while we assume that given a
large set of fixed input and output differences of Fi there is one value pair
match them on average.

3.1. The 9-Round Differential Characteristic

We consider a construction of GFN3 with 9 rounds. Let a pair of ci-
phertexts (c, c′) with the difference 0 ∥ X ′ ∥ 0 corresponding to a pair of
plaintexts (m,m′) with the difference 0 ∥ 0 ∥ X, where both X and X ′ are
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non-zero, described in Figure 3. Based on the structure we can deduce that
∆vi+3 = X and ∆vi+4 = ∆vi+7 = X ′, and then we have ∆FO

i+3 = X ′, and
∆FO

i+5 = X. Let ∆FO
i+4 = ∆, thus we get ∆vi+5 = ∆FO

i+7 = ∆. The input
and output differences of F functions at round i+3, i+4, i+5, and i+7 are
determined when ∆ is fixed. As a result, there exists one state pair satisfying
the input-output difference in each of the four rounds. We use bold lines to
denote the states whose values are fixed.

Note that n/3-bit round key is added in each round, thus there are 2n/3

possible internal state pairs through the F function in each round. As a
result, there are 24n/3 possible state pairs for round i + 3, i + 4, i + 5, and
i + 7. However, the state pairs in these rounds have 2n/3 possibilities on
average as ∆ have 2n/3 different values.

3.2. The Construction of the Differential Sequence

If we find a plaintext pair (m,m′) with the difference 0 ∥ 0 ∥ X and the
corresponding ciphertext difference c ⊕ c′ = 0 ∥ X ′ ∥ 0, a chosen ciphertext
distinguisher can be constructed beginning with a b-δ-set shown in Figure 4.
Note that selecting a value of ∆, we can obtain the fixed state pairs of F I

i+7,
F I
i+5, F

I
i+4, and F I

i+3. Denote the values corresponding the ciphertext c at
the above four states by ti+7, ti+5, ti+4, and ti+3.

Modify the difference of the ciphertext to be 0 ∥ δj ∥ 0 = c⊕ c′′, and we
have ∆vi+7 = ∆F I

i+7 = δj. Since the value corresponding c at F I
i+7 is ti+7,

we can get the value of ∆FO
i+7 by ∆FO

i+7 ← Fi+7(ti+7)
⊕

Fi+7(ti+7

⊕
δj), and

denote it by ∗( ∗ represent a state difference whose value is computable, and
we do not distinguish them in the following analysis), so that ∆vi+5 = ∗.
Similarly, ∆FO

i+5 can be obtained by ∆FO
i+5 ← Fi+5(ti+5)

⊕
Fi+5(ti+5

⊕
∗),

and then we have ∆vi+3 = ∗. With the knowledge of ∆vi+4 = δj, we can get
∆FO

i+4 by ∆FO
i+4 ← Fi+4(ti+4)

⊕
Fi+4(ti+4

⊕
δj). Hence, the value of ∆vi+2

can be computed by the equation ∆vi+2 = ∆FO
i+4

⊕
∆vi+5. Likewise, ∆vi+1

can be calculated by ∆vi+1 = ∆FO
i+3

⊕
δj, which we also denote by ∗. When

we traverse all the values of δj, where j = 1, 2, 3, · · · , 2b− 1, we get a special
sequence of b-δ-set corresponding to a fixed ∆. Since ∆ has 2n/3 different
values, we can obtain at most 2n/3 different differential sequences. Whereas,
there are (2n/3)2

b
= 22

bn/3 differential sequences if we modify the 9-round
3-line Feistel-2 to be an ideal function.
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Figure 3: 9-round differential char-
acteristic
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Figure 4: b-δ-set construction

3.3. 10-Round Key-Recovery Attack

Based on the above 9-round distinguisher, we add one round after it to
launch a 10-round chosen-ciphertext key-recovery attack illustrated in Figure
5. It includes the precomputation and online part.

In precomputation part, we choose many pairs based on X and X ′, where
X ′ is fixed and the last x bits ofX are relaxed to be any possible nonzero value
while other bits are zero. The value of x will be determined in the sequel to
reach the best time/data/memory complexities. The tables T7, T5, T4, T3, T10

and Tδ can be computed according to the method in the reference [15], where
Tδ stores all of the output differential sequences of ∆m0 (plaintext m =
m0∥m1∥m2).
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Figure 5: 10-round key-recovery

In online part, first of all, in order to collect enough data to ensure one of
them can meet the 9-round differential characteristic, we construct a struc-
ture of 2n/3+1 ciphertexts with two lists and query the decryption oracle to get
corresponding plaintexts. Denote c by c0∥c1∥c2, and c0 and c2 are fixed while
c1 are pairwise distinct. Then compute the other list by (c0⊕X ′)∥c1∥c2. We
obtain about 22n/3 pairs of (c, c′) in total with the difference value X ′ ∥ A ∥ 0
in the above structure, where A is a nonzero difference. We want to pick up
the ciphertext pairs of (c, c′) which correspond to the plaintext differences
0 ∥ 0 ∥ X whose last x bits can be arbitrary. Therefore the ciphertex-
t structure provides about 22n/3 · 2−(n−x) = 2x−n/3 pairs conforming to the
plaintext difference requirements. Furthermore, we need to cancel the dif-
ferences of FO

i+10 and c1 holding with probability 2n/3. Hence we construct
22n/3−x structures by repeating the above steps for different values of c0 and
c2. As a result, we expect 22n/3−x · 2x−n/3 · 2−n/3 = 1 pair to follow the whole
characteristic.

Secondly, we recover the subkey K10. Now we have 22n/3−x ·2x−n/3 = 2n/3

candidate pairs with a ciphertext difference X ′∥∆c1∥0 and an appropriate
plaintext difference. We match against the precomputed table T10 to find
the corresponding value of F I

10, and compute the subkey candidate by K10 ←
F I
10 ⊕ c0. Then we construct a b-δ-set for c0 to find the correct k10 from 2n/3

candidates. When we modify c0, compute FO
10 with the knowledge of K10 and

modify c1 to make the value of v8 unchanged. Query the ciphertext to get the
corresponding plaintext, and calculate the differential sequence of m0. If the
sequence is included in Tδ, the guess of K10 is right with a high probability,
otherwise it is wrong.
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The data complexity is about 2n/3+1 ·22n/3−x = 2n−x+1 chosen ciphertext,
the time complexity is 2x · 2b · 2n/3 = 2n/3+x+b encryptions to construct Tδ

and 2n−x+1 memory access to query the decryption oracle. The memory
complexity is 2n/3+x+b n/3-bit blocks for storing Tδ. When x = n/3, the
data complexity become about 22n/3 chosen ciphertext, the time complexity
becomes about 22n/3 encryptions, and the memory complexity is about 22n/3

n/3-bit blocks, i.e. the time and memory reach tradeoff.

4. Key-Recovery Attacks against Feistel-3 Construction

In this section, we present a 17-round chosen ciphertext key-recovery at-
tack on the 3-line Feistel-3 structure based on a 13-round non-ideal behavior.
We assume that the S-boxes in the network have good differential uniformity
and each P-layer has the maximum of the branch number. In other words,
there is one value matching the fixed input and output differences on average
for an S-box, and the minimum of the sum of the active words at the input
and output of a P-layer.

The block size of 3-line Feistel-3 is n bits, and each branch has n/3 bits.
An S-box consists of c bits and there are r parallel S-boxes in an S-layer so
that rc = n/3. For the branch-wise difference, 1 represents that only one
word in the branch is active, and 0 represents a branch in which there is
no active bit. Without loss of generality, we all take the first word active
for 1. We assume the branch number of P-layer reach the maximum r + 1.
Namely, the state with an active word becomes the state in which all bits
are active after passing through the P-layer, and we denote the latter one by
P. Similarly, the state after an inverse transformation of the P-layer from
an active word state is denoted by P−1.

As described in the previous section, F I
i and ∆F I

i denote the input value
and input difference of the round function in the round i, respectively, and F I

i

is also the input of the S-layer in Fi. Similarly, FM
i and ∆FM

i denote the in-
put value and input difference to the P-layer in Fi , and FO

i and ∆FO
i denote

the output value and output difference of the P-layer in Fi, respectively.

4.1. The construction of 13-round differential characteristic

The chosen ciphertext difference is (0,1,0) and the corresponding plain-
text difference is (0,0,1). Afterwards, we select a set of parameters which
include six nonzero differences in six c-bit words (marked by colored circles
in Figure 7) and the values of n/3− c inactive bits of F I

i+7 (marked by a blue
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star ′⋆′ in Figure 7), in total n/3 + 5c bits. Hence, we can construct a 13-
round differential characteristic as shown in Figure 7, in which the P-layer of
the third round is removed and replaced with an equivalent form. The detail
is described as follows.

Fixed a set of values of the parameters, we can obtain the internal state
values in the round 4, 5, 6, 7, and 9, marked by the red lines in Figure 7.
We also get the one-word values in the round 3, 8, and 11, marked by the
blue lines in Figure 7. Specifically, if the 1-word differences of F I

i+3 and FM
i+3

are fixed, we expect the values for the corresponding words are determined.
Use the same method to obtain the one-word values of F I

i+8, F
M
i+8, F

I
i+11, and

FM
i+11. ∆FM

i+3 passes through the inverse P-layer and a full-active branch can
be obtained. For the full-active F I

i+4 and FO
i+4, we expect one value on average

to be matched. The values of F I
i+5, F

I
i+6, and F I

i+9 can be also determined in
the same way. Besides, it seems that we can only get one-word value of F I

i+7,
but the full state value is determined since the values of n/3− c inactive bits
are also fixed before. As a result, when we fix a set of values of n/3+5c bits,
we can determine a set of values of the (part of) internal state values in the
round 3, 4, 5, 6, 7, 8, 9, and 11.

Note that it needs some conditions about our differential path, for in-
stance, 1⊕ P should be a full active difference in round i + 7. It leads to a
minor reduction of the probability of the truncated difference path from one,
but this do not affect our attack.

Then we can determine a sequence of the 1-word difference denoted by
*[1] in Figure 8 based on the b-δ-set for the ciphertexts. If we change the
difference of the active word of the ciphertext, the one-word difference of
F I
i+11 is also changed. We can get the one-word difference of FM

i+11 based on
the one-word value of F I

i+11 we obtained before. Hence, the difference of F I
i+9

is fixed. Utilize its value we can compute the difference of FO
i+9. The steps

of determining differences can be launched until the round i + 3. Since the
P-layer is removed, the difference of the first word in the leftmost branch in
the round i+1 can be computed. For some selecting rule of the differences of
the b-δ-set, we can determine a difference sequence of v′i+2[1], which denotes
the first word of v′i+2 in Figure 8. Therefore, we can obtain at most 2n/3+5c

difference sequences here.

4.2. The key-recovery of 17-round

Based on the 13-round distinguisher, we consider the 17-round chosen
ciphertext attack extended by three rounds at the beginning and one round
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Figure 6: 17-round key-recovery

at the end as shown in Figure 6. The attack is composed of precomputation,
collecting pairs, and detecting subkeys.

Precomputation. The primary workload for precomputation is the construc-
tion of the internal meet tables Tδ which include all the sequences of ∆v′6[1]
generated by traversing δj, j = 1, 2, · · · , 2b−1. For each of the 2n/3+5c values
of the parameters, hence the precomputation costs about 2n/3+5c encryptions
as the parameter b is relatively small and we consider only a small fraction
of all the rounds. Storing Tδ requires 3c/n× 2n/3+5c+b blocks of n/3 bits, as
the sequences contains 2b elements of c bits.

Collecting pairs. To launch the attack, we need a pair of ciphertexts whose
difference satisfies the 13-round differential characteristic in Figure 7 at least.
Then, the ciphertext difference (1,P,0) should propagate to the plaintext dif-
ference (P,A,1), where A is a truncated difference. The probability that the
ciphertext difference (1,P,0) after inversion of the last round becomes (0,1,0)
is 2−c. The probability that the plaintext difference (P,A,1) after the first
round becomes (0,1,1) is 2−n/3, and the probability that the difference (1,1,0)
after the third round becomes (0,0,1) is 2−c. Therefore, we need to collect

2n/3+2c pairs of ciphertexts conforming the differential (P,A,1)
17R←−−(1,P,0).
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We choose a structure of ciphertexts c ⊕ c′ =(1,P,0) consisting of 24c

ciphertexts when we fix the inactive bits, and expect about 24c× 2−2n/3+2c =
2−2n/3+6c corresponding plaintexts satisfying the difference (P,A,1). Con-
structing 2n−4c structures by releasing the inactive bits, there are 2n−4c ×
2−2n/3+6c = 2n/3+2c pairs conforming the difference (P,A,1)

17R←−−(1,P,0). The
data complexity is approximately 2n−4c+2c = 2n−2c chosen ciphertexts. We
also cost 2n−2c times decryption, and the memory is about 2n/3+2c blocks of
n/3 bits.

Detecting subkeys. We first guess 1-branch value of F I
2 and assume that they

all satisfy the 17-round differential, i.e. ∆v3 = 0, ∆v′5 = 0, and ∆v16 = 0.
Since we know the difference of plaintexts, we can determine the value of all
the bits of F I

1 and FO
1 and then the value of k1 can be obtained as m0⊕F I

1 .
Compute v3 = FO

1 ⊕m1 and then we get the value of k2 based on the guessed
value of F I

2 as v3 ⊕ F I
2 . Besides, we can compute k3[1] and k17[1] by the 1-

word matched differences at the S-boxes of the third and seventeenth rounds.
As a result, based on the guessed value of FM

2 we derive 2n/3 candidates of
k1, k2, k3[1], and k17[1].

In final, we construct the difference sequence of ∆v′5[1] by modifying v18,
and remain v16 unchanged by modifying c1. With the knowledge of k1, k2,
and k3[1], we can calculate 2b difference values of ∆v′5[1]. If they match with
one of sequences in the middle meet table Tδ, then the guessed subkeys k1,
k2, k3[1], and k17[1] are correct with a high probability, otherwise they are
wrong.

The key-recovery phase costs 2n/3+2c×2n/3×2b = 22n/3+2c+b for computing
∆v′5[1], which is upper bounded by 22n/3+3c decryptions.

Complexity Analysis. As a result, the data complexity requires 2n−2c chosen
ciphertexts, the memory complexity is 2n/3+6c blocks of n/3 bits and the time
cost is 2n−2c+2n/3+6c+22n/3+3c encryptions, which is balanced for n/3c = 2, 4,
or 5 S-Boxes per branch. Note that in order to make the attack effective, a
branch must have at least 4 S-Boxes so that n/3+6c < n and 2n/3+3c < n,
it is coincident with most block ciphers.

5. Conclusion

We have shown the 10 rounds chosen ciphertext attack on 3-line gener-
ic Feistel-2 structure and the 17 rounds chosen ciphertext attack on 3-line
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generic Feistel-3 structure for the case of k = n, with the meet in the mid-
dle technique. In our analysis, we have just small constrain on the round
function and its property, so the attack is applicable to any 3-line Feistel
structure. Interested readers can use this method to analyze the structure of
a larger key size.
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Figure 7: 13-round differential
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