
Looting the LUTs : FPGA Optimization of AES
and AES-like Ciphers for Authenticated

Encryption

Mustafa Khairallah1, Anupam Chattopadhyay1,2, and Thomas Peyrin1,2

1 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

2 School of Computer Science and Engineering
Nanyang Technological University, Singapore

mustafam001@e.ntu.edu.sg,anupam@ntu.edu.sg,thomas.peyrin@ntu.edu.sg

Abstract. In this paper, we investigate the efficiency of FPGA im-
plementations of AES and AES-like ciphers, specially in the context of
authenticated encryption. We consider the encryption/decryption and
the authentication/verification structures of OCB-like modes (like OTR

or SCT modes). Their main advantage is that they are fully parallelis-
able. While this feature has already been used to increase the through-
put/performance of hardware implementations, it is usually overlooked
while comparing different ciphers. We show how to use it with zero area
overhead, leading to a very significant efficiency gain. Additionally, we
show that using FPGA technology mapping instead of logic optimization,
the area of both the linear and non linear parts of the round function of
several AES-like primitives can be reduced, without affecting the run-time
performance. We provide the implementation results of two multi-stream
implementations of both the LED and AES block ciphers. The AES imple-
mentation in this paper achieves an efficiency of 38 Mbps/slice, which is
the most efficient implementation in literature, to the best of our knowl-
edge. For LED, achieves 2.5 Mbps/slice on Spartan 3 FPGA, which is
2.57x better than the previous implementation. Besides, we use our new
techniques to optimize the FPGA implementation of the CAESAR can-
didate Deoxys-I in both the encryption only and encryption/decryption
settings. Finally, we show that the efficiency gains of the proposed tech-
niques extend to other technologies, such as ASIC, as well.

Keywords: AES, FPGA, Authenticated Encryption, Logic Optimization, Tech-
nology Mapping, Deoxys, LED

1 Introduction

In September 2016, the CAESAR competition committee announced the selec-
tion of 15 Authenticated Encryption with Associated Data (AEAD) schemes as



candidates for round 3 of the CAESAR competition [1]. This competition signi-
fies the current need for practical, secure and efficient AEAD schemes. An AEAD
scheme typically consists of two routines. The first one is encryption EK(AD,M)
which takes as input a shared key K, public associated data AD and the mes-
sage to be encrypted M and returns a tagged ciphertext C. The second one is
decryption/verification DK(AD,C), which either returns an invalid symbol ⊥
if the received ciphertext, associated data and the authentication data do not
match, or the decrypted message M , otherwise.

An important aspect of the study of AEAD schemes is the evaluation of their
hardware performance, which clearly needs more efforts. So far, nearly all candi-
dates have been supported with a basic hardware implementation [2]. However,
the implementations are done on various platforms, for different interfaces and
thus, a comprehensive evaluation is still missing. Furthermore, several designs
have unique advantages to offer in some platforms, e.g., Field Programmable
Gate Array (FPGA), which is not fully exploited. This is one of the prime mo-
tivations for this manuscript.

In the survey presented in [3], the authors classified the round 2 candidates of
the CAESAR competition into five families according to their base constructions:
block cipher-based, stream cipher-based, key-less permutations, hash-function-
based and dedicated schemes. In this paper, we focus on the block cipher-based
family. Specifically, we focus on optimizations for algorithms that allow block-
level parallelism while using the underlying block cipher, such as the Offset Code
Book mode (OCB) [4–6], the Synthetic Counter-in-Tweak mode (SCT) [7] and the
Offset Two-Round mode (OTR) [8].

All the available hardware implementations of the CAESAR competition
candidates on the ATHENa hardware evaluation website [2] are fully sequential
implementations, i.e. to start processing a new block, all the previous blocks
have to be finished. These implementations do not take full advantage of the
specific characteristics of the schemes based on the aforementioned modes.

Generally, circuit optimization consists of two phases: logic synthesis and
technology mapping. For certain target technologies, such as FPGA, logically
optimized circuits do not provide the optimal mapping to the underlying technol-
ogy, leaving behind a lot of under-utilized hardware resources. This phenomenon
is obvious in the AES Sbox circuits proposed by Boyar [9, 10], which are logical
optimizations of the circuit proposed by Canright [11]. These circuits are much
smaller than the straight-forward ROM-based Sbox in terms of gate count and
circuit depth. These two features make them the natural choice for low area
Application-Specific Integrated Circuits (ASIC) implementations of AES. Inter-
estingly, on the other hand, practical results show that one can achieve a smaller
area on FPGA by using the ROM approach [12]. By analyzing this result, it
appears that due to the specific details of these circuits [9–11], it is hard to map
them efficiently to look-up tables (LUTs) that the FPGA is constructed from,
leading to a lot of under-utilized/unusable logic gates inside the FPGA.

In Figure 1, the number of LUTs required for implementing two 8-bit to
8-bit ROM-based Sboxes (which are both the forward and inverse AES Sboxes)

2



Fig. 1: Evolution of the AES Sbox/ISbox area vs. Xilinx FPGA families

is compared with the implementation of Boyar’s shared encryption/decryption
Sbox [9]. These results are plotted against the technology evolution of Xilinx
FPGAs as an example. Analysing the chart, it is clear that after the intro-
duction of the Virtex 5 family, logic optimization of the Sbox stopped being
beneficial. The reason for that was the introduction of the 6-input LUTs, which
enabled implementing an 8-to-1 look-up table using only four 6-input LUTs and
three dedicated multiplexers, or five 6-input LUTs. In other words, the ROM-
based Sbox has become both faster and smaller than the logic-based Sbox, even
when both encryption and decryption are implemented using a shared data path.
While the technology seems to be saturated around the 6-input LUT structure,
a hypothetical family has been added to the chart assuming 8-input LUT struc-
ture, showing that such a family will make the cost of both logic-based and
ROM-based implementations exactly the same (8 LUTs). While these results
may seem specific to Xilinx FPGAs, other vendors, e.g. Altera, also use 6-input
LUTs as their building blocks and will follow the same trend. Besides, the FPGA
industry seems to be saturated around this building block and we believe that
the same trend will follow for the upcoming years.

In a nutshell, the current implementations for multiple designs in the CAE-
SAR contest do neither exploit the underlying block-level parallelism and nor
consider the FPGA-specific optimizations. Both of these shortcomings are ad-
dressed in the current manuscript, achieving significant gain in area-efficiency,
run-time performance or both.

3



Our Contributions. In this article, we propose new improvements for FPGA
implementations of AEAD schemes based on AES-like primitive. These improve-
ments are twofold.

Firstly, we provide a new efficient hardware architecture for OCB-like AEAD
modes (Section 2). The architecture uses a generic multi-stream AES-like cipher,
such as AES or Deoxys-BC (the tweakable block cipher used in CAESAR compe-
tition candidate Deoxys [13]) as an underlying primitive. This architecture can
be easily modified to support the OTR or SCT AEAD modes for example.

Secondly, we improve the implementation efficiency of several AES-like ci-
phers, such as AES, LED and Deoxys-BC. In particular, the problem of FPGA
mapping and under-utilized hardware discussed earlier is studied in details for
two applications (Section 3):

– we show how to design low-area logic primitives optimized for FPGA LUTs
instead of the number of logic gates (Section 3.2).

– we explain how to select the locations of pipelining registers to accommodate
as many independent streams as possible without any additional area cost
compared to the single stream architecture (Section 3.3).

Eventually, as practical results, following these implementation strategies we
obtained very efficient LED and AES implementations (Section 4). For example,
our AES implementation achieves an efficiency of 38 Mbps/slice, which is the
most efficient AES FPGA implementation in the literature to the best of our
knowledge. We also applied our techniques to Deoxys, and we obtained the
current best Deoxys-I FPGA implementation, improving their efficiency by a
factor ∼1.7 with almost the same area. Table 1 shows a summary of our results
compared to state of the art implementations.

2 OCB Multi-stream Architecture

2.1 OCB Mode Description

Notation. mi is the ith plaintext message block. ci is the ith ciphertext block.
ADi is the ith AD block. Ti is the tweak value related to the ith block of the
message or AD. K is the shared secret key. EK,Ti

is the bock cipher used by the
AEAD algorithm.

∑
mi is the XOR checksum of the message.

This section includes a simplified description of the OCB mode. An interested
reader may refer to [4] for a full description. The OCB AEAD mode consists of two
parts, shown in Figures 2 and 3. In the original proposal [4–6], first the associated
data is processed using the PMAC [19] structure shown in Figure 3. Second, the
message is encrypted using the structure in Figure 2, computing the message
checksum in parallel. Finally, the message checksum in encrypted and XOR-ed
to the associated data tag to produce the final tag. These two structures, with
minor changes, appear also in other encryption modes, such as OTR, SCT, CTR
etc. Therefore, the ideas and techniques presented in this paper can be also to
beneficial for these other modes. Before describing the architecture, we present
observations that inspired the architecture:

4



Table 1: Summary of our results compared to the state-of-the-art implementa-
tions

Algorithm Family Impl.
Throughput

Slices
Efficiency

(Gbps) (Mbps/slice)

AES Encryption

Virtex 5

Section 4.1 8.0 347 23.00

[14] 4.5 400 11.20

[15] 46.0 3,579 12.88

Virtex 6
Section 4.1 9.5 247 38.46

[15] 64.1 3.121 20.55

AES Decryption Virtex 5
Section 4.1 6.1 294 20.7

[14] 4.5 550 7.6

Deoxys-I-128 Virtex 6
Section 4.2 3.8 861 4.5

[16] 2.2 946 2.57

Deoxys-I-128
Virtex 6

Section 4.2 3.5 566 6.2

Encryption Only [17] 1 920 1.12

LED Spartan 3
Section 4.3 0.51 204 2.5

[18] 0.19 204 0.97

EK,T0

m0

c0

EK,T1

m1

c1

EK,T2

m2

c2

· · · · · · EK,Tn

mn

cn

Fig. 2: The parallel encryption structure

ADn

EK,Tn

Tag

· · · · · ·

AD1

EK,T1

AD0

EK,T0

∑
mi

EK,T ′

Fig. 3: The encrypt-then-xor construction

1. The first and second parts of execution do not depend on each other. Con-
sequently, following the implementation from Poschmann and Stöttinger on

5



the ATHENa website [2], the order can be reversed. This enables one to use
the same storage for both the checksum and tag computation.

2. In Figure 2 the computations are completely independent, while in Figure 3,
there is an output dependency between different blocks. Since there is no
input dependency, both the structures are fully parallelisable. Additionally,
a small temporal shift saves the temporary storage needed. For example, the
first block starts at time t = 0 and the second block starts at t = ∆t. At
t = T the first block is finished and stored in the tag storage. Finally, at
time t = T +∆t the second block is finished and XOR-ed with tag, in-place.

2.2 Related Work

The Cryptographic Engineering Research Group (CERG) at George Mason Uni-
versity (GMU), USA, runs and maintains the online platform ATHENa [16]
aimed at fair, comprehensive, and automated evaluation of hardware crypto-
graphic cores targeting FPGAs, All Programmable Systems on Chip, and ASICs.
One of their on-going projects is the comparison of FPGA implementations of the
CAESAR competition candidates. They have also provided high-speed round-
based implementations of round 2 candidates. Among these candidates, several
use OCB-like modes: OCB v1.1[20] and AES-OTR v3.1 [21] (which use AES as under-
lying cipher), and Deoxys-I v1.41[13] (which uses an AES-like tweakable block
cipher Deoxys-BC). Deoxys-BC uses the same data path as AES but defines a
new tweak/key-schedule that requires a smaller number of gates to evaluate
when compared to AES (but with an additional 128-bit tweak input). It also
requires a higher number of rounds compared to AES.

The implementations provided by the CERG team are round-based imple-
mentations that compute one cipher round per cycle. These implementations are
compliant with the CAESAR Hardware API [22], developed for fair comparison
among CAESAR candidates. On the other hand, a round-based implementation
of Deoxys-I (encryption only) was provided by Poschmann and Stöttinger, that
is not compliant with the required API. One of the requirements of the CAE-
SAR Hardware API is to load the encryption/decryption key into the hardware
core at most once per message. Since the implementation from Poschmann and
Stöttinger [17] does not follow the API, it permits loading the key again with
every message block, allowing the designers to get rid of the master key storage,
saving 128 flip-flops. They also save 128 extra flip-flops by noticing that during
the tag computation, the encryption of checksum can be computed before the
associated data. This enables using the same storage for the message checksum
and the intermediate tag value, saving 128 more flip flops. We follow the later
approach in our implementation due to its obvious area advantage. We will see
later in Section 4.2 that even though we target the CAESAR Hardware API
compliance, our implementation of the Deoxys-I-128 encryption-only algorithm
has better results compared to both the previous implementations.

6



2.3 Proposed Architecture

The proposed high level architecture is shown in Figure 4. For simplicity, only
the encryption data path is drawn. However, a similar data path for decryption
can also be included. The architecture consists of a single round of the under-
lying block cipher, which is divided into N stages, each stage takes one cycle
to be processed. If the block cipher requires r rounds, the architecture loads
and processes N blocks, every r ·N rounds, which leads an average latency of r
cycles, equivalent to a simple single round implementation. The selection of N
depends on several considerations:

Stage 0

Stage 1

Stage 2

· · ·

Stage N

Tag
Management

Tweak
Stage 0

Tweak
SRLN

Key Stage 0

Key
SRLN

Fig. 4: Multi-stream OCB Hardware Architecture

1. This architecture is intended for high speed over long messages. It is notice-
able that any number of blocks less than N requires the time to be encrypted.
Consequently, a very large N leads to a huge overhead for short messages or
for messages whose block length is not divisible by N .

2. In order to minimize the key scheduling overhead, it is performed in only one
pipeline stage and then shifted N cycles. This is based on the SRL feature
of the FPGA LUTs, which allows the utilization of very compact serial shift
registers using logic LUTs. For most FPGAs, a single LUT can implement
either a 16-bit or 32-bit SRL, which we consider as the upper bound on the
value of N .

7



3. The pipeline registers can add a huge overhead over the simple round im-
plementation. Therefore, in Section 3.3 we describe a technique to select the
optimal locations of the pipeline registers in the FPGA implementation.

From these three considerations, we concluded that the optimal value for N
is between 2 and 4, neglecting the control overhead. This leads to a speed-up be-
tween 2x and 4x. Additionally, for applications that require ultra high speed over
very long messages, e.g. disk encryption, high speed multimedia interfaces, etc.,
and do not care about the area, the same architecture can be unrolled into a fully
pipelined implementation. This can lead to a huge increase of the throughput.
Specifically, the single round multi-stream architecture requires about r ·N · dBN e
cycles to compute B blocks. On the other hand, a fully unrolled architecture
has an initial latency of r · N and a new block is generated every cycle, lead-
ing to a total number of cycles of r · N + B − 1. The speed up over the round
implementation is given by

G =
r ·B

r ·N +B − 1

and for very long messages, the unrolled architecture has a speed up of r times.
Since the area increases less than r times (only the round part is replicated
while the tag and control part almost have the same area), the efficiency remains
unchanged. In Section 4.1 we show that an AES round can be implemented with a
clock frequency greater than 700 MHz on FPGA, with almost the same number
of slices/LUTs. Therefore, we estimate that this variant can be suitable for
applications that require very high speed authenticated encryption.

3 Multi-Stream AES-like Ciphers

3.1 AES Data Path State-of-the-Art FPGA Implementations

AES [23] is a 128-bit block cipher, standardized in 2001 by NIST. It is based
on the Substitution-Permutation Network (SPN). The internal state of the ci-
pher can be viewed as a 4 × 4 matrix of bytes. It consists of 10 SPN rounds.
Each round includes a SubBytes operation for the non-linear part, ShiftRows
and MixColumns for the linear permutation and AddRoundKey for key addition.
SubBytes consists of 16 independent 8-bit Sboxes, ShiftRows shifts the bytes
in each row, independently, and MixColumns applies a diffusion matrix to each
column, independently. All byte operations are done in GF(28).

In this section, we quickly review state-of-the-art high speed AES-128 FPGA
implementations (we only discuss full width round-based and unrolled implemen-
tations). A detailed survey on AES data paths for FPGA is provided in [12]. Full-
width FPGA implementations of AES are either unrolled implementations [15],
round-based single stream [24, 25] or round-based multi-stream [14]. Although
the scope of this paper is round-based multi-stream implementations, the opti-
mizations described in this section can be used for any of the aforementioned

8



implementations. In [14], the authors proposed the AES data path shown in Fig-
ure 5. Each box in Figure 5 represents a pipeline stage, and it can be noticed that
the selection of the pipeline stages is based on the functionality of each stage,
which leads to two very fast stages in the beginning, then two slow stages after-
wards. This limits the maximum possible frequency. In the next sections, we will
show why this architecture might not be optimal and describe a new four-stream
data path designed for FPGA to achieve higher performance efficiency.

Input Selection

Add Key

Sbox

MixColumns

Fig. 5: The AES encryption data path from [14]

3.2 LUT-based Optimization of Linear Transformations

Notation. a, b, c and d are the four bytes that compose one column of the AES

state. ai is the ith bit of a, where a0 is the least significant bit. Upper-case letters
A,B,C,D,E, F are the hexadecimal representations of the decimal values 10,
11, 12, 13, 14 and 15, respectively. · and ⊕ are multiplication and addition over
GF(28).

The AES MixColumns circuit is a matrix multiplication operation of the AES

state byte matrix by a constant matrix M given by
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


which is a circulant MDS matrix. For AES 128-bit architectures, the MixColumns

operation can be viewed as 16 dot-products of the vector
[
2 3 1 1

]
and a vec-

tor composed by a permutation of 4 state words. It can also be viewed as four
32-bit to 32-bit mappings (four matrix-vector products over state vectors). The
later view is favorable for ASIC implementations, as it allows reducing the re-
quired number of gates by sharing many intermediate results of the computation.

9



Specifically, only 108 XOR gates are required for implementing the 32-bit map-
ping [26]. However, as discussed earlier, since modern FPGAs use big 6/5 input
LUTs to implement logic circuits, having a lot of small shared 2/3-input gates
is not the most efficient solution. Synthesizing the circuit used in [26] or [27] for
Virtex-6 FPGA requires 41 LUTs for low area and 44 LUTs for high speed. On
the other hand, the dot-product view is given by

p = 2 · a⊕ 3 · b⊕ c⊕ d

which can be decomposed into



a6 a5 a4 a3 a2 a1 a0 0
0 0 0 a7 a7 0 a7 a7
b6 b5 b4 b3 b2 b1 b0 0
0 0 0 b7 b7 0 b7 b7
b7 b6 b5 b4 b3 b2 b1 b0
c7 c6 c5 c4 c3 c2 c1 c0
d7 d6 d5 d4 d3 d2 d1 d0


(1)

where the elements of each column represent the inputs of one output function.
From this perspective, it can be seen that 5 outputs can be implemented using
one 5-input LUT, while 3 outputs can be implemented using 7-input LUT, which
can be implemented using two 6-input LUTs. That sums to a total of 11 LUTs
per output coefficient, 44 LUTs per output column. This shows that logic opti-
mization does not offer much gain over the straightforward implementation of the
transformation. Besides, a deeper look at the view given by the decomposition
in (1) shows that the three outputs that need 7-input LUTs share two inputs
bits, namely a7&b7. Decomposition (1) can be written as decomposition (2),
where x = a7 ⊕ b7. This decomposition can be implemented using eight 6-input
LUTs and one 2-input LUT, a total of 9 LUTs per output coefficient, 36 LUTs
per output column (which is smaller than the best-reported implementations)
or 1.125 LUTs per output bit. It is worth mentioning that this number is near-
optimal for any linear transformation over 32 bits, as the optimal number is 1
LUT/bit, which corresponds to transformation where each output bit depends
on n bits, where 2 ≤ n ≤ 6 (the case where n = 1 corresponds to an identity
function and can be neglected, w.l.o.g.)3.

3 In fact, each 6:1 LUT can be implemented as a 5:2 LUT with shared inputs. Using
this feature, our circuit can be indeed implemented using only 8 LUTs, which is
the optimal figure. However, in this paper we are handling the optimization at the
front-end stage and this feature is incorporated automatically by the placement and
routing tool.

10




a6 a5 a4 a3 a2 a1 a0 a7
b6 b5 b4 b3 b2 b1 b0 b7
0 0 0 x x 0 x 0
b7 b6 b5 b4 b3 b2 b1 b0
c7 c6 c5 c4 c3 c2 c1 c0
d7 d6 d5 d4 d3 d2 d1 d0

 (2)

The optimization of the AES inverse MixColumns circuit is less straightfor-
ward, as M−1 includes larger coefficients. M−1 is given by

E B D 9
9 E B D
D 9 E B
B D 9 E


A lot of work has been done on how to reuse the same circuit from M

to implement M−1 with minimal overhead. This is done by using any of the
following relations M−1 = M3, M−1 = M · N or M−1 = M ⊕ K, where N
and K are matrices with low coefficients. In that direction, the circuit given by
decomposition (2) will also be the smallest and the same reasoning can be used to
achieve small area for both K and N . However, this approach is most useful for
low area serial implementations with shared encryption/decryption data path.
They do not achieve the best results for high speed round implementations with
dedicated decryption data path. For example, using M−1 = M3 requires 3.375
LUTs/bit and produces a large-depth circuit (low performance), while using
M−1 = M ⊕K is even larger. The most promising approach is M−1 = M · N
which requires 288 LUTs/block, corresponding to 2.25 LUTs/bit, which is still
far from optimal. On the other hand, the straightforward implementation of
M−1 leads to output functions that include 19 input bits, which can lead to
very low performance. Here, we give a circuit that requires 60 LUTs per output
column, corresponding to 1.875 LUTs/bit. First, we use the same dot product
view mentioned earlier, which is given by equation (3).

p′ = E ·a⊕B ·b⊕D ·c⊕9 ·d = F ·(a⊕b⊕c⊕d)⊕(a⊕4 ·b⊕2 ·c⊕4 ·d⊕2 ·d) (3)

Second, two observations are made

1. F · (a⊕ b⊕ c⊕ d) is constant across any output column.
2. 4 ·(a⊕c) is shared by two output coefficients. The same is valid for 4 ·(b⊕d).

Using these two observations, a circuit that requires only 60 LUTs per output
column can be implemented. The circuit diagram is given in Figure 6. This is
17% smaller than the best reported implementation. Given that MixColumns

is the main difference between the AES encryption and decryption data paths,
optimizing this primitive is crucial. On the other hand, since 1.875 LUTs/bit is
still far from the optimal 1 LUT/bit figure, there may be some room for further
optimization.

11



a

c

b

d

F

a

c
b

d

4

a 2 · c 2 · d

b 2 · d 2 · a

c 2 · a 2 · b

d 2 · b 2 · c

Fig. 6: FPGA-friendly inverse MixColumns circuit

3.3 Zero Area Overhead Pipelining

Pipelining has been used by hardware designers/architects as a tool to increase
throughput/run-time performance for a long time. However, a fully pipelined
block cipher implementations can be costly, due to the large area requirements.
A more realistic approach is to use multi-stream implementations. These imple-
mentations start from a sequential implementation that processes one block in
C cycles, and divides it into N pipeline stages. This leads to computing x blocks
in N ·C cycles, where x ∈ {1, 2, ..., N}. x depends on the number of independent
block streams the user can leverage. However, this is a double-edged weapon,
due to the following reasons:

1. The time required to process one block in a sequential implementation is
∼ C · T , where T is the critical path delay of the implementation. If the N
pipeline stages divide the critical path evenly into segments of T

N delay, the
time required to process N blocks becomes T+t, where t is a small overhead,
leading to ∼ Nx speed-up. Unfortunately, the critical path is usually not
evenly divided, leading to a sub-optimal speed-up (< N).

2. Modern FPGA families consist of a basic building block called LUT6, which
is a 6-input single-output look-up table. Additionally, each unit of this build-
ing block has an associated Flip-Flop, which the designer/synthesis tool can
choose to either use it or not. In Figure 7, we show the optimal utilization
of a LUT6 unit in a pipelined architecture, where it is used to implement a
6-input circuit followed by storing the output. On the other hand, in Fig-
ure 8, a poor selection of the location of pipeline stage is in-place, leading
to the utilization of 3 look-up tables, instead of 1 in the case of Figure 7. In
other words, the poor choice of where to place the pipeline registers leads to
a significant increase in area.

While the impact of moving the flip-flops 1 logic level forward in the previous
example is obvious, the designers usually do not have an accurate estimation of
the exact LUT utilization before synthesis. Consequently, the designers choose

12



Logic
Circuit 1

Logic
Circuit 2

Logic
Circuit 3

Logic
Circuit 4

Storage
Element

Fig. 7: Optimal pipeline selection

Logic
Circuit 1

Logic
Circuit 2

Storage
Element 1

Logic
Circuit 3

Storage
Element 2

Logic
Circuit 4

Fig. 8: Sub-optimal pipeline selection

the pipeline stages based on the logical functions, e.g. Sbox, MixColumns, input
selection, etc. In our work, we follow a different approach. First, we synthesize
a single stream sequential implementation of the required block cipher. Second,
we study the output layout to to determine the precise distribution of pipeline
stages without affecting the structure of the utilized LUTs.4.

4 Implementations and Results

4.1 Two-Stream and Four-Stream AES Implementations

Using the techniques described in Sections 3.2 and 3.3, we have implemented
two multi-stream AES data path (two and four streams), shown in Figure 9. In
addition to the use of the low area MixColumns circuit and ROM-based Sbox,
the locations of the pipelining registers have been selected specifically to ensure
as efficient LUT utilization as possible. In other words, both the two-stream and
four-stream implementations use the same number of logical LUTs (944 LUTs,
without key scheduling), out of which 95% (896 LUTs) are 6-input LUTs. The

4 The term zero overhead refers to the number of LUT-FF pairs, as this is the impor-
tant metric, not the number of LUTs or FFs.

13



Input Selection/
Addkey/Sbox1

Sbox 2/
MixColumns

Input Selection/
Addkey

Sbox 1

Sbox 2

MixColumns

Fig. 9: Two/Four-Stream AES round data path implementation

results are given in Table 2. The comparison is restricted to full-width imple-
mentations that do not utilize any BRAMs. For that reason, the implementation
in [28] is not included. While it has a very high efficiency (yet smaller than ours,
∼ 30 Mbps/slice), this number is biased due to the use of BRAMs to reduce the
number of slices. It can be observed that our data path, with only two-streams,
outperforms the data path from [14] (with four streams) in terms of both effi-
ciency and area and reaches the same throughput. This result is achieved due
to more than one factor:

1. The critical path in the implementation from [14] consists of three levels
of logic inside the Sbox used (one LUT6 followed by MUX7 and MUX8).
In our design, the critical path also consists of three levels of logic (Sbox
part 2 (LUT6) and the MixColumns circuit proposed in Section 3.2 (LUT3
+ LUT6)).

2. The MixColumns circuit used is smaller.
3. The first two pipeline stages in Figure 5 necessitate the use of 256 LUTs.

The two stages altogether can be viewed as a 6-input function, which can be
easily merged into a single stage of 128 LUTs (of type LUT6).

This implies that our proposed implementation achieves the same perfor-
mance as [14] for lower latency and using only independent two streams (easier
to achieve). In fact, following the architecture in Section 2, it can be used even
for slightly dependent streams (even and odd blocks of an OCB message). Addi-
tionally, by choosing to add two more stages at the output of the Sbox 2 and key
addition circuits, the performance and efficiency can be further enhanced with-
out any additional increase in the area occupied, as shown in Table 2. The results
shows that our four-stream implementation outperforms all the AES FPGA im-
plementations in the literature in terms of efficiency, to the best of our knowledge.
In Table 2, we show the implementation results of the AES decryption data path.

14



It is shown that it has a speed-up of around 2x over the similar implementation
from [14].

Table 2: Implementation results of AES on Virtex-5/6 FPGA (encryption only)

Family Implementation
Key Number Max. freq Throughput Efficiency

schedule of Slices (MHz) (Gbps) (Mbps/slice)

Virtex 5

Ours/2 streams Offline 347 350 4.5 12.90

Ours/4 streams Offline 347 625 8.0 23.00

[14]/4 streams Offline 400 350 4.5 11.20

[15]/ unrolled Offline 3579 360 46.0 12.88

Virtex 6

Ours/4 streams Offline 347 752 9.6 27.66

Ours/4 streams No 247 752 9.5 38.46

[15]/ unrolled Offline 3121 501 64.1 20.55

Table 3: Implementation results of AES on Virtex-5 FPGA (decryption only)

Implementation
Key Number Max. freq Throughput Efficiency

schedule of Slices (MHz) (Gbps) (Mbps/slice)

Ours/4 streams No 294 477 6.1 20.7

Ours/4 streams Offline 445 477 6.1 13.7

[14]/4 streams Offline 550 350 4.5 7.6

4.2 Round-based Two-Block Deoxys-I-128

As mentioned earlier, the Deoxys-I CAESAR candidate uses an underlying
tweakable block cipher called Deoxys-BC. This cipher is similar to AES, with
three major differences:

1. It consists of 14 rounds instead of 10.
2. The final round includes a MixColumns operation, as opposed to AES.
3. It uses a different key schedule, which is smaller than the AES key schedule,

but uses an extra public tweak value.

Based on the architecture proposed in Section 2 and the AES data paths
proposed in Section 4.1, we have implemented two complete data paths for
Deoxys-I. They include two and four pipeline stages, respectively. They also
consist of four parts: the encryption data path, the decryption data path, the

15



key schedule and the tweak schedule. Using the pipeline selection technique,
both implementations consume the same area, except for the decryption data
path which we implement only for 4 streams. In Table 4, it is shown that the
bottleneck of the design, not considering the control overhead, is the decryption
data path.

Table 4: Results of the Deoxys-I-128 data path implementation on Virtex-6
FPGA

Block
Number of Max. Freq. Max. Freq.

LUT-FF pairs (2-stream) (4-stream)

Enc. data path 1455 492 MHz 785 MHz

Dec. data path 1170 - 665 MHz

Key Schedule 442 724 MHz 724 MHz

Tweak Schedule 413 620 MHz 620 MHz

Based on this datapath, a full implementation of Deoxys-I-128 has been
implemented on Xilinx Virtex-6 FPGA (xc6vlx75tff784-3). The overall utiliza-
tion is ∼ 3800 LUT-FF pairs and maximum operating frequency is 454 MHz.
This 27% performance degradation from the datapath estimated clock frequency
comes from two reasons:

1. While the datapath is very fast, there is still optimization required to the
control unit to cope with such speed.

2. Although we choose a small FPGA from the Virtex 6 family, the design
is still small compared to the FPGA size, which leads to it becoming I/O
dominated. leading to a lot of wiring delays related to the I/O pins. This will
not be applicable if the design is used as a part of a larger on-chip system.

To verify the second problem as part of the reason for performance degrada-
tion, we also implemented the design for the small Spartan-6 (xc6slx9ftg256-3)
FPGA. The maximum operating frequency is 273 MHz vs. 333 MHz pre-layout
(only 18% degradation). The results of the Virtex-6 implementation are sum-
marized in Table 5. For fair comparison, we have also downloaded and imple-
mented the Deoxys-I-128 implementation reported on the ATHENa website [2]
by CERG team. We only compare the cipher circuits without the overhead of the
hardware API. Our results show an efficiency gain of 75% (1.75x) for Virtex 6
and 74% (1.74x) for Spartan-6. Table 5 shows the results for the encryption-only
implementation. Our implementation is 5.536x more efficient than the implemen-
tation by (Poschmann and Stöttinger).

16



Table 5: Post-layout results of the Deoxys-I-128 implementation on FPGA

FPGA Impl.
Number of Max. Freq. Throughput Efficiency

Slices (MHz) (Mbps) (Mbps/Slice)

Virtex 6
Ours 861 454 3,874 4.5

[16] 946 285 2,432 2.57

Spartan 6
Ours 1,010 273 2,329 2.31

[16] 1,032 161 1,373 1.33

Table 6: Post-layout results of the Deoxys-I-128 encryption only implementation
on Virtex 6 FPGA

Impl.
Number of Max. Freq. Throughput Efficiency

Slices (MHz) (Mbps) (Mbps/Slice)

Ours 566 416 3,549 6.2

[17] 920 161 1.030 1.12

Relevance to the CAESAR Competition The goal of this section is not
to show that Deoxys-I is faster than other CAESAR candidates. The goal is to
show that parallelism can actually increase the efficiency of parallelisable ciphers
by significant factors. Since we are comparing two different architectures and
implementations of the same cipher, it makes more sense to focus the comparison
on the cipher itself. While the API provides a fair methodology for comparing
different ciphers, it can hide the potential of enhancement for a certain cipher.
This is exactly true for FPGA in our case, as a custom control unit that is
both compliant with the CAESAR API and the 4-stream architecture has to
be designed. This leads to 50% decrease in the performance of the proposed
architecture during the CAESAR Competition Round 3 benchmarking stage.
We emphasize that this is not the goal of the proposed architecture, as in real-
life applications faster APIs can be designed, such as the one we used in the
previous comparison.

Extending the results to other technologies (ASIC) Since it can be ar-
gued that the techniques and optimizations in this paper are limited because
they are limited to a certain technology (Xilinx FPGA), we have synthesized
both the proposed implementation and the implementation from [16] for ASIC
using Synopsys Design Compiler and the TSMC 65nm technology. The results
show that even with full API compliance, the proposed implementation has 54%
higher throughput and is 38% more efficient. These results are summarized in

17



Table 7. We are currently in the process of preparing the HDL code to be pro-
vided publicly soon so that other researchers can verify our results.

Table 7: Synthesis results of the Deoxys-I-128 implementation using TSMC
65nm technology

Impl.
Area Max. Freq. Throughput Efficiency

(KGE) (MHz) (Mbps) (Mbps/KGE)

Ours 59.53 847 7,227 121.40

[16] 53.37 549 4,684 87.76

4.3 Three-Stream LED Implementation

Input Selection/
Addkey

Sbox

MixColumns

Fig. 10: Three-Stream (χ4) LED-64 round implementation

LED [29] is a 64-bit block cipher based on an AES-like SPN. Its state is a 4×4
matrix of 4-bit nibbles. In this paper we focus on the 64-bit key version LED-64.
However, the same results can extend to the other variants of LED, since the
only difference is the key scheduling part, which can be easily adjusted for this
architecture. The (χ4) round implementation from [18], Section 3.1, has been
replicated for Spartan-3 Xilinx FPGA. Using the guidelines from Section 3.3, we
have been able to add two extra pipeline stages at the outputs of the Sbox and
the MixColumns operations, as shown in Figure 10. In Table 8, it is shown that
almost all the available flip-flops has been used, increasing both the throughput
and efficiency by 2.57x at no additional area cost.

18



Table 8: Results of the three-stream LED-64 implementation compared to the
single stream counterpart on Spartan 3 FPGA.

Implementation
Number Number Max. freq Throughput Efficiency

of Slices of FFs (MHz) (Mbps) (Mbps/slice)

[18]/1 stream 204 74 98.7 197.35 0.97

Ours/3 streams 204 202 257 514 2.5

Acknowledgments

The authors would like to thank the anonymous referees for their helpful com-
ments. This work is partly supported by the Singapore National Research Foun-
dation Fellowship 2012 (NRF-NRFF2012-06).

References

1. CAESAR Competition: CAESAR submissions.
https://competitions.cr.yp.to/caesar-submissions.html (2016)

2. George Mason University: ATHENa: Automated Tools for Hardware EvaluatioN.
https://cryptography.gmu.edu/athena/ (2017)

3. Abed, F., Forler, C., Lucks, S.: General classification of the authenticated encryp-
tion schemes for the CAESAR competition. Computer Science Review (2016)

4. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Transactions on Information and System
Security (TISSEC) 6(3) (2003) 365–403

5. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Springer (2004) 16–31

6. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: International Workshop on Fast Software Encryption, Springer (2011)
306–327

7. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. In: Annual Cryptology Conference. (2016)

8. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: EUROCRYPT, Springer (2014) 275–292

9. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: International Symposium on Experimental Algo-
rithms, Springer (2010) 178–189

10. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES s-box. In: IFIP
International Information Security Conference, Springer (2012) 287–298

11. Canright, D.: A very compact s-box for AES. In: International Workshop on
Cryptographic Hardware and Embedded Systems, Springer (2005) 441–455

12. Resende, J.C., Chaves, R.: AES Datapaths on FPGAs: A State of the Art Analysis.
In: Hardware Security and Trust. Springer (2017) 1–25

19



13. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Technical report,
Nanyang Technological University, Singapore/ANSSI, Paris, France (2016)

14. Bulens, P., Standaert, F.X., Quisquater, J.J., Pellegrin, P., Rouvroy, G.: Imple-
mentation of the AES-128 on Virtex-5 FPGAs. In: International Conference on
Cryptology in Africa, Springer (2008) 16–26

15. Liu, Q., Xu, Z., Yuan, Y.: A 66.1 gbps single-pipeline aes on fpga. In: 2013
International Conference on Field-Programmable Technology (FPT). (Dec 2013)
378–381

16. : Deoxys-I-128 implementation by cerg team.
https://cryptography.gmu.edu/athena/ (2016)

17. Poschmann, A., Stöttinger, M.: Deoxys-I-128 implementation by poschmann and
Stöttinger. https://cryptography.gmu.edu/athena/ (2016)

18. Anandakumar, N.N., Peyrin, T., Poschmann, A.: A very compact FPGA imple-
mentation of LED and PHOTON. In: International Conference in Cryptology in
India, Springer (2014) 304–321

19. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: International Conference on the Theory and Applications of
Cryptographic Techniques, Springer (2002) 384–397

20. Krovetz, T., Rogaway, P.: Ocb (v1. 1). (2016)
21. Minematsu, K.: AES-OTR v3.1. Technical report, (NEC Corporation, Japan

(2016)
22. Homsirikamol, E., Diehl, W., Ferozpuri, A., Farahmand, F., Yalla, P., Kaps, J.P.,

Gaj, K.: CAESAR Hardware API. Cryptology ePrint Archive, Report 2016/626
(2016)

23. NIST: National Institute of Standards and Technology: Advanced Encryption
Standard AES (2001)

24. El Maraghy, M., Hesham, S., El Ghany, M.A.A.: Real-time efficient fpga im-
plementation of aes algorithm. In: SOC Conference (SOCC), 2013 IEEE 26th
International, IEEE (2013) 203–208

25. Chaves, R., Kuzmanov, G., Vassiliadis, S., Sousa, L.: Reconfigurable memory based
aes co-processor. In: Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, IEEE (2006) 8–pp

26. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES v 2.0. Cryptology ePrint
Archive, Report 2016/1005 (2016)

27. Ghaznavi, S., Gebotys, C., Elbaz, R.: Efficient technique for the FPGA implemen-
tation of the aes mixcolumns transformation. In: Reconfigurable Computing and
FPGAs, 2009. ReConFig’09. International Conference on, IEEE (2009) 219–224

28. Resende, J.C., Chaves, R.: Compact dual block aes core on fpga for ccm protocol.
In: Field Programmable Logic and Applications (FPL), 2015 25th International
Conference on, IEEE (2015) 1–8

29. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, Springer
(2011) 326–341

20


