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Abstract. The Extended Access Control (EAC) protocol allows to create a shared cryptographic key
between a client and a server. While originally used in the context of identity card systems and machine
readable travel documents, the EAC protocol is increasingly adopted as a universal solution to secure
transactions or for attribute-based access control with smart cards. Here we discuss how to enhance
the EAC protocol by a so-called zero-round trip time (0RTT) mode. Through this mode the client can,
without further interaction, immediately derive a new key from cryptographic material exchanged in
previous executions. This makes the 0RTT mode attractive from an efficiency viewpoint such that the
upcoming TLS 1.3 standard, for instance, will include its own 0RTT mode. Here we show that also
the EAC protocol can be augmented to support a 0RTT mode. Our proposed EAC+0RTT protocol
is compliant with the basic EAC protocol and adds the 0RTT mode smoothly on top. We also prove
the security of our proposal according to the common security model of Bellare and Rogaway in the
multi-stage setting.

1 Introduction
The Extended Access Control (EAC) protocol establishes an authenticated key between a client’s smart
card (also called chip in this context) and a server (or, terminal) over a public channel. For this, both
parties run a sophisticated Diffie-Hellman key exchange protocol in which either party deploys its certified
long-term key. While originally deployed in the German identity card systems [9] and referenced by the
International Civil Aviation Organization for machine readable travel documents [23], the EAC protocol
is increasingly adopted as a potent solution in related scenarios, for example to secure transactions [28]
and for attribute-based physical access control with smart cards [27].

Especially for access control, if deployed in situations where user experience hinges on fast response
times, reducing the latency is important. A concrete example, as discussed in a FIPS 201-2 workshop in
2015 [18], is turnstile access in subway stations. This requirement has led for instance to the development
of the ISO/IEC 24727-6 and ANSI 504-1 standardized “Open Protocol for Access Control Identification
and Ticketing with privacY” (OPACITY) for smart cards [32], which uses persistent binding for speeding
up the key generation process. Unfortunately—and also underlining the importance of rigor—OPACITY
has been shown to display cryptographic weaknesses [14].1

In this paper we show that the EAC protocol can be augmented by a low-latency mode, called zero
round-trip time (0RTT). This mode enables efficient re-establishment of secure channels for returning
clients. A rigorous security proof for the resulting augmented protocol completes the enhancement. We

1Remarkably, the publication of this analysis pre-dates the latest version of SP800-73-4 [11], dated May 2015, which lists
OPACITY as a suitable solution for key establishment.
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emphasize that the design choices of the original EAC protocol are beyond our discussion here. Our goal
is to show that a 0RTT version can be implemented based on the existing infrastructure.

1.1 Striving for Zero Round-Trip Time

The EAC protocol consists of two connected phases, the terminal authentication (TA), followed by the chip
authentication (CA). Both steps require only a small number of message exchanges to establish a session
key. At the same time, recent efforts in the area of key exchange protocols aim at modes of operations which
allow for even faster data delivery. More precisely, it should be possible for a party to re-use cryptographic
data from a previous connection to derive a fresh session key without further interaction, thus allowing
the party to transmit data immediately. Such a mode is called zero round-trip time (0RTT).

The first proposal for a 0RTT-supporting protocol came from Google with its QUIC protocol [19].
The 0RTT mode allows the client to send data to a known server without having to wait for the server’s
response. This idea was then quickly adopted for the drafts of the new TLS version 1.3, and has been
included in the latest drafts in various versions [29, 30, 31]. Even on a network layer level, the Windows
Networking Team recently announced to support 0RTT for TCP connections in order to reduce latency
(see [10] for TCP Fast Open description).

The rough idea of the approach taken by QUIC and TLS (for the Diffie-Hellman version [29])2 is that,
upon the first encounter, the server also sends a semi-static public key gs as part of the authenticated key
exchange. Unlike an ephemeral key, which is used only within a single session, and a long-term key which
spans over a large amount of sessions, such a semi-static key is valid for a very limited time only. This
time period may range from a few seconds to a couple of days. In particular, the semi-static key may be
used in multiple sessions.

The next time the client contacts the server, the client may combine a fresh ephemeral key gc with the
server’s semi-static key gs to immediately compute a Diffie-Hellman key gcs and derive an intermediate
session key. The client can now send gc and already deliver data secured under the intermediate session
key, without round trip. For both QUIC and TLS the parties then continue the key exchange protocol to
switch to full session keys.

It is obvious that the non-interactive derivation of the 0RTT session key comes at a price in terms of
security: Since the server cannot contribute to such a key in a per-session manner, an adversary can replay
the client’s protocol message and data to the server. This is inevitable, but accepted by the designers of
QUIC and TLS 1.3 as worthwhile to achieve the desired level of efficiency.

1.2 Contribution

As briefly mentioned before, we show that the EAC protocol can also be augmented to support a 0RTT
mode. Interestingly, the extension can be added on top with minimal changes to the original protocol. As
in the proposal of QUIC and TLS 1.3 we let the terminal include an additional semi-static key pksemi

T in
the regular EAC execution. The key is transmitted as part of the auxiliary data field of the original EAC
description, and is thus also authenticated through the terminal’s signature in the TA phase.

In the full run of the EAC protocol the semi-static key is still ignored for the session key derivation.
Instead, and as in the original EAC description, the chip then receives the terminal’s ephemeral key
and derives a session key from its certified long-term key and this ephemeral key. The client authenticates
through a message authentication code under the session key. In this regard, the slightly modified protocol
complies with the original EAC protocol, using the auxiliary data field to transfer an additional key.

2The latest version of the TLS draft [31] focuses on a pre-shared key 0RTT version and has for now dropped the Diffie-
Hellman based version; the main EAC protocol only supports a Diffie-Hellman based key exchange, though.
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If a chip later wants to reconnect to a terminal for which it already holds the semi-static key, it only
runs the CA phase again. But instead of receiving a fresh ephemeral key from the terminal, it uses the
semi-static key to build the session key. Note that the semi-static key is already authenticated through
the previous execution of the EAC protocol. Omitting the transmission of the terminal’s ephemeral key
turns this step into a non-interactive protocol.

A straightforward idea to improve efficiency further may be to use the terminal’s ephemeral key once
more for 0RTT, instead of using the semi-static key. The downside is that the terminal would need to store
all ephemeral keys in a certain time frame. This is why, both we here as well as TLS [29], use semi-static
keys instead. Nonetheless we discuss some potential variations of our basic designs in Section 5.

We then show that our EAC+0RTT protocol, which consists of the (augmented) EAC protocol run fol-
lowed by any number of subsequent 0RTT EAC protocol executions, meets the common security properties
of an authenticated key exchange protocol.

But we, of course, need to account for the possibility of replay attacks on the 0RTT data. Furthermore,
it is convenient to model the possibly many 0RTT EAC handshakes following a single EAC execution in
a so-called multi-stage setting. To this end we adopt the multi-stage extension of the Bellare-Rogaway
model in [16].

The proof of security for the EAC+0RTT protocol does not rely on previous results. Nevertheless,
we wish to mention the many security analyses of the German identity card protocols and certain eIDAS
extensions [4, 13, 26, 12, 3, 2, 21, 5, 22]. Also, we remark that general approaches to build low-latency
protocols such as [20] cannot be applied in the context of the EAC protocol without major changes to the
protocol.

2 Protocol Description
We next present the Extended Access Control protocol and its extension to support 0RTT. The 0RTT
extension should be seen as a particular mode or sub protocol which co-exists with the original EAC
protocol. In particular, many instances of 0RTT EAC may follow a single full EAC protocol run (until
pksemi

T changes, in which case the terminal will most likely reject).

2.1 The Extended Access Protocol

The Extended Access Control protocol establishes a secure channel between a chip and a terminal. It
is divided in two phases: the Terminal Authentication (TA) and Chip Authentication (CA) as depicted
in Figure 1. We integrate the 0RTT EAC protocol to the existing EAC protocol smoothly by using the
pre-specified auxiliary data field in which any data can be sent in an authenticated manner to the chip
during the TA phase. The auxiliary data field has originally been included to pass further information to
the chip such as the current date, and the original EAC protocol ignores any such data if sent under an
unknown object identifier. In our case, the terminal can utilize this field to transmit its semi-static key
pksemi

T to the chip to enable future 0RTT EAC executions.

2.1.1 Terminal Authentication

The terminal authentication lets the chip C verify the terminal T ’s identity and its permissions to access
sensitive data. This is achieved via the certificate certT held by T . This certificate contains not only
the terminal’s signed public key but also its granted access rights. We assume that each certificate cert
contains some unique identifier certID which can either be the serial number or an identifier like CertID
or CertUID, and that certID allows to determine the user identity. Furthermore, as mentioned earlier, the
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terminal authentication can be used to distribute the terminal’s public semi-static key to the chip, thereby
permitting future 0RTT EAC executions.

Chip : Terminal :
key pair skC , pkC key pair skT , pkT

certificate certC for pkC certificate certT for pkT

card identifier idC card identifier idC

semi-static key pair sksemi
T , pksemi

T

Setup: domain parameters DC , certification key pkCVCA
Terminal Authentication (TA)

certT←−−−−−−−−−−−−−−
check certT with pkCVCA
abort if certT invalid
extract pkT from certT generate (eskT , epkT ) for domain DC

Compr(epkT )
←−−−−−−−−−−−−−−

pick rC ← {0, 1}n
rC−−−−−−−−−−−−−−→ sT ←

Sig(skT , idC ||rC ||Compr(epkT ) ||pksemi
T )

sT , pksemi
T

←−−−−−−−−−−−−−−
abort if
SVf(pkT , sT , idC ||rC ||Compr(pkT ) ||pksemi

T ) = 0

Chip Authentication (CA)

pkC , certC , DC−−−−−−−−−−−−−−→ check pkC , certC with pkCVCA
abort if invalid

epkT←−−−−−−−−−−−−−−
check epkT against Compr(epkT )
abort if invalid
pick r′C ← {0, 1}n
k = DHDC

(skC , epkT )
(Kenc,Kmac,K

′
mac) = KDF(k, r′C)

τ = MAC(K ′mac, epkT )
τ, r′C−−−−−−−−−−−−−−→ k = DHDC

(pkC , eskT )
(Kenc,Kmac,K

′
mac) = KDF(k, r′C)

abort if MVf(K ′mac, τ, epkT ) = 0

K = (Kenc,Kmac) K = (Kenc,Kmac)
sid = (EAC, pkC , epkT , rC , r

′
C , certIDC , certIDT , DC , pksemi

T ) sid = (EAC, pkC , epkT , rC , r
′
C , , certIDC , certIDT , DC , pksemi

T )
pid = certIDT pid = certIDC

store (pksemi
T , certT )

accept accept

Figure 1: Terminal Authentication (TA) and Chip Authentication (CA). All operations are modulo q
resp. over the elliptic curve. The gray part shows the 0RTT support inserted in the (optional) auxiliary
data field.

In a first step, the terminal sends its certificate for verification to the chip, which can then either abort,
in case of an invalid certificate, or proceed by extracting the terminal’s public key pkT from the valid
certificate. If the session was not aborted by C, T generates its ephemeral key pair (epkT , eskT ) and sends
the compressed version of the ephemeral key epkT to C. This initiates a challenge-response mechanism.
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The chip replies with a nonce rC chosen uniformly at random. The terminal authentication is complete,
if the chip can then successfully verify the received signature sT ← Sig(skT , idC ||rC ||Compr(epkT )||pksemi

T )
over the chip’s identity, chosen nonce and the compressed ephemeral key. Depending on whether the
terminal offers support for 0RTT executions, the signature may contain the terminal’s semi-static public
key pksemi

T .

2.1.2 Chip Authentication

In the second part of the EAC protocol, the chip is authenticated to the terminal and a session key for
subsequent encrypted and integrity-protected communications between chip and terminal is established.
The chip transmits its credentials to the terminal and receives in response the ephemeral public key epkT

(if the terminal did not abort due to an invalid certificate). After checking epkT against the compressed
value received during the TA phase, the chip can compute the Diffie-Hellman value k from epkT and its
own long-term secret key skC . Together with a uniformly random value r′C , the DH value k is used to
derive an encryption key Kenc, as well as two authentication keys Kmac,K

′
mac.3 For final authentication,

the chip uses K ′mac to compute a tag τ over the ephemeral public key of the terminal. The tag is then
transmitted to the terminal, alongside the random value r′C used in the key derivation. The terminal is
now able to derive the DH key k and subsequently the keys (Kenc,Kmac,K

′
mac), where the session key

K is given by (Kenc,Kmac). The terminal aborts the CA phase prematurely if it is not able to verify τ .
Otherwise the session identifier and partner identifier are generated on both sides. If C has received a
semi-static key, it saves this key along with the terminal’s certificate certT for further reference. The EAC
protocol execution is completed successfully if both parties terminate in accepting state.

2.2 The 0RTT EAC Protocol

Figure 2 shows the modified protocol supporting 0RTT between a chip C and a terminal T . The chip
now holds additional information in form of the semi-static public key pksemi

T , which it obtained during a
previous EAC protocol interaction with T . In the 0RTT extension of the EAC protocol, C and T perform
the following actions, corresponding to a non-interactive version of the CA protocol since the pksemi

T is
used instead of epkT . Thus, the extra communication round in the CA protocol in which T sends the
(uncompressed) ephemeral key becomes obsolete.

At first, the chip C picks a random nonce r′′C and computes the DH shared value k = DHDC
(skC , pksemi

T ).
Using these two values, C then derives the keys (Kenc,Kmac,K

′
mac) where, as in the EAC protocol, K ′mac is

an additional authentication key used internally in the 0RTT EAC key exchange (see [13] for a discussion).
The session key is then given by K = (Kenc,Kmac). Finally, C computes the MAC-value over the semi-static
public key

τ = MAC(K ′mac, pksemi
T )

and sends its first (and only) flight of data to T consisting of

• the authentication token τ ,

• the previously chosen nonce r′′C ,

• its public key pkC , as well as its certificate certC ,

• the domain parameter DC , and

• early application data encrypted under the previously derived key.
3For the necessity of K′

mac in a proof in the Bellare-Rogaway-style we refer to the discussion in [13].
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Upon receiving the chip’s message, T verifies the validity of pkC and certC , and aborts if the verification
is unsuccessful. Otherwise, T uses the public key, its semi-static secret sksemi

T and the random nonce r′′C to
derive K ′mac and the 0RTT EAC session key K. T can then check the validity of the authentication token
τ and aborts if the tag cannot be verified. If τ is valid, T decrypts the attached early application data.
This completes the 0RTT EAC execution.

If the terminal does not support 0RTT, or the semi-static key provided by the chip is outdated or
otherwise invalid, the process is aborted and the chip must initiate a fresh execution of the full EAC
protocol in order to establish an authenticated secure channel with the terminal. There are, of course,
several conceivable ways to recover from failures in the 0RTT handshake. Possible alternatives are described
in Section 5.3.

Chip : Terminal :
key pair skC , pkC key pair skT , pkT

certificate certC for pkC certificate certT for pkT

card identifier idC card identifier idC

semi-static public key (pksemi
T , certT ) semi-static key pair sksemi

T , pksemi
T

Setup: domain parameters DC , certification key pkCVCA
Zero Round-Trip Time (0RTT)

pick r′′C ← {0, 1}n
k = DHDC

(skC , pksemi
T )

(Kenc,Kmac,K
′
mac) = KDF(k, r′′C)

τ = MAC(K ′mac, pksemi
T )

τ, r′′C , pkC , certC , DC−−−−−−−−−−−−−−→ check pkC , certC with pkCVCA
abort if invalid
k = DHDC

(pkC , s)
(Kenc,Kmac,K

′
mac) = KDF(k, r′′C)

abort if MVf(K ′mac, τ, pksemi
T ) = 0

K = (Kenc,Kmac) K = (Kenc,Kmac)
sid = (0RTT, r′′C , pkC , pksemi

T , certIDC , certIDT , DC) sid = (0RTT, r′′C , pkC , pksemi
T , certIDC , certIDT , DC)

pid = certIDT pid = certIDC

accept accept

Figure 2: 0RTT EAC. All operations are modulo q resp. over the elliptic curve. Note that the fields sid
and pid are used within the security proof and describe partnered sessions and intended communication
partners.

2.3 Discussion

As mentioned before, the design choices of the original EAC protocol are beyond our discussion here. We
demonstrated that a 0RTT version can be implemented based on the existing infrastructure. In particular,
it is important that such a solution is “non-invasive” in the sense that it does not require major changes to
the existing protocol but is added “on top”. Of course, any extension brings some modifications, e.g., in our
case both the chip and the terminal must now implement the 0RTT EAC protocol and store semi-static
keys. Yet, our proposal for the augmented EAC protocol complies with the original EAC description by
using the auxiliary data field for the semi-static key. Furthermore, the 0RTT mode is identical to the
plain execution of the CA phase, only that the semi-static key identifier is used instead of the one for the
ephemeral key.

We also stress that we do not comment on the security-efficiency trade-off concerning 0RTT modes,
but rather offer the option to have such a mode for the EAC protocol in principle. Whether chips and
terminals eventually support this mode and tolerate for example the replay problem, is case dependent.
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Still, the examples of QUIC and TLS 1.3 indicate that, from an engineering perspective, the desire to have
such modes exists, and we provide a potential technical solution for EAC.

Finally, let us point out that 0RTT transfers inherently include the small risk that the transmitted data
cannot be recovered by the receiver, e.g., if the receiver has switched the semi-static key in the meantime.
For common client-server scenarios the client may thus have to re-transmit the data. This problem is often
outweighed by the efficiency gain in the regular cases. For smart card applications it may be preferable
to have the terminal first signal its support of 0RTT and to communicate the current identifier of the
semi-static key, thus saving the card from performing unnecessary operations. This can be done with the
transmission of the certificate in the first step of the TA protocol, allowing the card to decide which mode
to execute. Strictly speaking, this would effectively support a “lightweight 1RTT” protocol mode, still
with significant efficiency advantages.

3 Security Model
In this section we present the security model underlying our analysis. As a basis we use the common
real-or-random model of Bellare and Rogaway [1] which provides strong security guarantees against active
attacks. To capture the notion of zero round-trip time in a multi-stage setting we adapt the model proposed
for the analysis of Google’s QUIC protocol by Fischlin and Günther [16]. The model will be suitable for
protocols which have a special 0RTT mode in which the initiator of a previous session can use a semi-static
key of a responder to create a shared session key with a single message.

3.1 Overview

As mentioned beforehand, the security model is situated within the game-based approach of Bellare and
Rogaway (BR) [1] in which an adversary, with full control over the network, must be able to distinguish
real session keys from independently drawn keys. To this end, the adversary can interact with protocol
participants and instances via oracles. To initiate a new session the adversary can call the NewSession
oracle, which takes a label to determine which of the two modes (full EAC or 0RTT EAC) to execute.
The adversary can query the Send oracle to send protocol message to an instance, immediately getting
the party’s reply in return. The adversary is furthermore permitted to learn the long-term secret keys of
parties through a Corrupt oracle.

Leakage of session keys and semi-static secret keys, which are used to derive 0RTT session keys, is
modeled through Reveal and RevealSemiStaticKey queries, respectively. To engage with the BR game, the
adversary may perform Test queries for some session(s) of the protocol, resulting in either the receipt of the
corresponding session key or of an independently and uniformly chosen key, the choice made at random.
In order to win the game, the adversary must now distinguish which kind of key it received. A detailed
overview over the queries is given in Section 3.4.

In order to avoid trivial attacks, some restrictions concerning the Test queries apply. Foremost, the
party of a tested session must not be corrupt, or else the adversary is trivially able to compute the session
key. Analogously, neither the tested session key has been revealed to the adversary nor the party’s semi-
static secret key in case of the 0RTT mode. Since both communication parties are supposed to derive
the same session key in a key exchange protocol, we must also rule out similar trivial attacks on the
communication partner of a tested session. Here, communication partners are usually identified through
session identifiers which determine sessions belonging together. Details follow.
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3.2 Multi-Stage Key Exchange

A single execution of EAC between a chip and a terminal may be followed by multiple 0RTT handshakes
between the parties. To model this situation, we adopt the notion of multi-stage key exchange as originally
introduced in the related QUIC analysis of Fischlin and Günther [16]. This model allows for multiple keys
to be established within a single session. As opposed to the multi-stage setting encountered in e.g. QUIC,
we can make use of a simplified setting here, since no key derived within a session is used to secure
communications in further stages of the same session. Thus, all keys derived in a single session can be
seen as independent.

3.3 Preliminaries

In order to describe sessions formally, the subsequent notations are used, essentially, as mentioned before,
following [16]. The participants in the key exchange protocol are given by elements in the set U . Often,
parties fulfill different roles, acting as clients and servers, or in the EAC context both chips and terminals.

Chips are usually denoted by C ∈ U and terminals by T ∈ U . Each party U ∈ U holds a long-term
public key pkU with corresponding secret key skU and certificate certU (under the certification authority’s
public key pkCVCA). Additionally, terminals T can hold semi-static key pairs (pksemi

T , sksemi
T ). Since the

semi-static key may change during the attack (where we even let the adversary determine the point in time
when the key is refreshed, via NewSemiStaticKey queries) it is useful to introduce an identifier sskid for the
current value. As the semi-static keys can also be revealed to the adversary through a RevealSemiStaticKey
query we also introduce a flag stssk,sskid ∈ {fresh, revealed} to mark the current state of the semi-static key
sskid.

Each participant can run multiple instances of the key exchange protocol in parallel. In the EAC+0RTT
case each of these sessions is usually composed out of one execution of the EAC protocol, followed by an
arbitrary number of 0RTT EAC executions. We call each of these sub protocol execution a stage. For
simplicity we assume that M is the maximum number of stages.4

Each session can be uniquely referred to by an administrative identifier label = (U, k) ∈ LABELS, where
U ∈ U denotes the owner of the session label and k ∈ N is used to determine which of the potentially
multiple sessions of U is considered.

During the attack a list of sessions ListS is kept which contains a record for any existing session. Each
record is updated during the attack and holds the following information:

- label ∈ LABELS is the (administrative) session label.

- role ∈ {initiator, responder} is the session owner’s role in this session. For the EAC protocol this corre-
sponds to the distinction between chip (= initiator) and terminal (= responder).
5

- stage ∈ {1, . . . ,M} specifies the current stage, where M is the maximum stage.
The stage changes from i − 1 to i once the state of execution stexec,i−1 changes to either accepted or
rejected.

- mode describes the order of the session’s sub protocols to be executed and this vector with M entries is
initialized upon creation of the session. For EAC+0RTT case mode can either be (EAC, 0RTT, 0RTT, . . . )
4As in [16], the constant M for the maximum stage is introduced to facilitate the notation. In fact, M may be arbitrarily

large.
5This is the point of view from the cryptographic protocol flow, although the terminal may technically first need to power

the card, of course.
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or it can be (0RTT, 0RTT, 0RTT, . . . ) to cover the cases that the session should first execute the EAC
protocol and then 0RTT EAC runs, or start with 0RTT EAC executions right away (e.g., if the chip
already knows the semi-static key from some other session). Each new EAC execution is captured by
opening a new session.

- pidi specifies the intended communication partner in stage i. The default value is (⊥, . . . ,⊥) and for
each stage the value may be set to an actual identifier once during the execution.

- ownid identifies, similar to pid, the session owner but remains unchanged between stages.

- sskid is the key identifier for the semi-static key pair used in a session. Default is ⊥. Note that we let
the sskid remain identical among stages of a session since we assume that the key is stored by the party
throughout the session.

- stexec,i ∈ {running, accepted, rejected} denotes the current state of execution in stage i. The default value
upon creation of the session and after an increment in stage is running

- sid ∈ ({0, 1}∗ ∪ {⊥})M indicates the session identifiers where sidi indicates the session identifier for stage
i ∈ {1, . . . ,M}. The default value is (⊥)M.

- stkey ∈ {fresh, revealed}M indicates the state of the session key Ki for stage i ∈ {1, . . . ,M}. The default
value for each stage is fresh.

- K ∈ ({0, 1}∗∪{⊥})M where Ki indicates the established session key for stage i ∈ {1, . . . ,M}. The default
value for each stage is ⊥.

- tested ∈ {true, false}M keeps track of tested session keys, where testedi indicates whether Ki has been
tested or not. Default value for each key is false.

In order to be able to refer to a specific entry within the tuple for a session in ListS, we use the notation
label.〈entry〉. For example, label.ownid specifies the owner of the session with unique identifier label. If we
compare two sessions with labels label, label′ then, if clear from the context, we sometimes simply write
sid, sid′ instead of label.sid and label′.sid, and similar for other entries.

Partnering of Sessions and Correctness. We call the session label owned by U partnered with the
session label′ owned by V (and vice versa), if

• the sessions share the same session identifier, i.e., for each stage i ∈ {1, . . . ,M} sidi = sid′i,

• the partner identifiers of both sessions reflect the partnered instances accordingly, e.g., in the EAC
protocol C has set pid = certIDT and T has set pid′ = certIDC .

The pairing of partnered sessions is defined via the session identifiers. We require that any execution
between honest instances, that was not interfered with, is correctly partnered. Furthermore, as a correct-
ness criterion, partnered sessions should have derived the same session key. We will later demand this
explicitly as part of the Match security property. Note, that the own id ownid as well as the partner id
pid is set in the EAC+0RTT protocol according to the identities given in the certificates certC and certT ,
respectively.
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3.4 Adversary Model

We model the adversary by a probabilistic polynomial time (PPT) Turing machine denoted by A. The
adversary is active and in full control over the network. This implies in particular that— additional to the
interception of messages—the adversary can schedule when (and if) message delivery occurs. Furthermore,
the adversary may alter and inject messages. We assume the adversary learns if a participant in the protocol
has terminated and/or accepted.

Forward Secrecy. The leakage of a party’s long-term secret(s) may result in the insecurity of session
keys that were derived using the then compromised key material. Session keys that remain secure, even
in the event of a long-term secret compromise, are called forward secure. We note that in the 0RTT EAC
protocol the corruption of a terminal T and thereby the leakage of its long-term secret key has no impact
on the security of session keys derived by T (or its intended partners). This is due to the fact that the
long-lived secret skT is only involved in the authentication when signing the ephemeral and semi-static
key. The long-term secrets of chips, however, are explicitly used to derive session keys, and therefore these
keys cannot support forward security. To reflect this one-sided forward security we say that the 0RTT
EAC protocol provides terminal forward secrecy. More abstractly, we speak of responder forward secrecy
in our model.

Authentication. The authentication property of the EAC+0RTT protocol is mutual in the sense that
both parties authenticate themselves via certificates. Put differently, none of the parties stays anonymous
(as clients in some TLS sub protocol versions do).

Adversarial Queries. As indicated before, in order to break key secrecy, the goal of the adversary is to
distinguish real from random-looking session keys. Not all interactions of the adversary with the protocol
are admissible at any point. In particular, there are conditions under which the adversary trivially loses
the game, e.g. when both revealing and testing session keys of partnered sessions as mentioned before.
To keep track if one these cases has occurred, a flag lost is introduced with initial value false. In order to
interact with the protocol, the adversary can issue the following queries to the oracles:

NewSession(U, role, prot): Establishes a new session with unique new label label for U , stores the role value
in label.role← role, and stores the specified type of session prot to be established in label.mode, e.g.,
for EAC+0RTT we have prot ∈ {EAC,0RTT} × {0RTT}M−1. Returns label.

NewSemiStaticKey(T ): Generates a fresh semi-static key pair (pksemi
T , sksemi

T ) for terminal T ∈ U along with
corresponding new unique identifier sskid. In particular, stssk,sskid ← fresh is set. Returns pksemi

T and
sskid. We conservatively assume that the adversary may still run executions with previous semi-static
keys, e.g., if servers in a distributed setting do not update the keys perfectly simultaneously.

Send(label,m): Causes the message m to be sent to the session label. If there exists no session with label
label, the query outputs ⊥. Else the response of the session owner U upon receipt of message m is
returned, and the state of execution stexec is updated.

- Should stexec,i change to accepted for some i, the current execution of the protocol is suspended
and accepted is returned. The adversary can now, for example, decide whether to test the session
key or not, and can later resume the session by sending a special Send(label, cont) command.

- Should stexec,i change to accepted for some i and there exists a session label′ with sidi = sid′j and
st′key,j = revealed for some j with (label′, j) 6= (label, i), then stkey,i is also marked as revealed.
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This captures for example replay attacks in another session or even within this session here at
a different stage.

- Should stexec,i change to accepted for some i while there exists a session label′ with sidi = sid′j
such that tested′j = true for some j with (label′, j) 6= (label, i), set label.Ki ← label′.Kj and
testedi ← true.

- Should stexec,i change to accepted for some i with an intended communication partner pidi that
was previously corrupted, then set stkey,i ← revealed.

Reveal(label, i): Returns the session key Ki of the session with label label.

- If there exists no session labeled label, or if i > stage, or if the session key Ki has already been
tested, or if stexec,i 6= accepted, then return ⊥. Otherwise, set stkey,i to revealed and return Ki

to the adversary.
- If there exists a session with label label′ in ListS with sidi = sid′j for some j, then set st′key,j ←

revealed.

RevealSemiStaticKey(sskid): If there exists a semi-static key pair (pksemi
T , sksemi

T ) corresponding to the
identifier sskid, then sksemi

T is output and stssk,sskid is set to revealed. To reflect the impact of the
revealed semi-static key on sessions that used this key, set label.stkey,i to revealed for all i ∈ {1, . . . ,M}
and for each session label with label.sskid = sskid.

Corrupt(U): Returns the long-term secret key skU of U to the adversary. Sessions owned by U may not
be queried any further.

- If U is a chip, forward secrecy is not given and all session keys must be regarded as exposed.
Therefore, label.stkey,i ← revealed for each session label owned by U and for all i ∈ {1, . . . ,M}.

- If, on the other hand, U is a terminal, terminal forward secrecy is still granted and, thus, no
further measures need to be taken.

Test(label, i): Tests the session key of stage i in the session corresponding to label. The oracle receives the
test bit btest as state. This bit btest is chosen randomly at the outset and then considered permanently
set during the game execution.

- If there exists no session with label label or if label.stexec,i 6= accepted, the query returns ⊥.
- If stage i of the session with label label has been tested previously, i.e., if testedi = true for this
session, the session key Ki is returned once more.

- In any other case, testedi is set to true. If btest = 0, a key K $←− D is sampled at random from
the session key distribution D. If btest = 1, on the other hand, K is set to the actual session key
label.Ki of stage i. Additionally, for a partnered session label′ with sidi = sid′j (if existent) set
label′.Kj ← label.Ki and label′.testedj ← true. Return K.

3.5 Multi-Stage BR Security of 0RTT Key Exchange Protocols

We adopt the approach of Brzuska et al. [8, 7] and, Fischlin et al. [16], and therefore separate the required
security properties into Match security and BR security. While the conditions on Match security guarantee
that the session identifiers sid enable the correct identification of partnered sessions, Multi-Stage BR security
refers to Bellare-Rogaway-like key secrecy as introduced earlier in the multi-stage setting.

The subsequent analysis of the EAC+0RTT protocol is based on the following security notions as
described in [15] and adapted to our particular setting:
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3.5.1 Match Security

The Match security game GMatch
KE,A is defined as follows.

Definition 3.1 (Match security). Let n be the security parameter. Furthermore let KE be a key exchange
protocol and A a PPT adversary interacting with KE via the queries defined in Section 3.4 in the following
game GMatch

KE,A (n):

Setup. The challenger generates long-term public/private-key pairs with certificates for each participant
U ∈ U .

Query. The adversary A receives the generated public keys and has access to the queries NewSession,
NewSemiStaticKey, Send, Reveal, RevealSemiStaticKey, and Corrupt.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GMatch
KE,A (n) = 1, if at least one of the following conditions hold:

1. There exist two labels label, label′ and stages i, j ∈ {1, . . . ,M} such that (label, i) 6= (label′, j) but
sidi = sid′j 6= ⊥, label.stage ≥ i, label′.stage ≥ j and stexec,i 6= rejected, and st′exec[j] 6= rejected, but
Ki 6= K′i. (Different session keys in partnered sessions, either within the same session at different
stages or across two sessions.)

2. There exist two labels label, label′ such that sidi = sid′j 6= ⊥ for some stages i, j ∈ {1, . . .M}, role =
initiator, and role′ = responder, but label.ownid 6= label′.pid or label.pid 6= label′.ownid. (Different
intended partner.)

3. There exist at least three labels label, label′ and label′′ and stages i, j, k such that (label, i), (label′, j),
(label′′, k) are pairwise distinct, but sidi = sid′j = sid′′k 6= ⊥ and for any two of the three sessions with
role responder and mode 0RTT it holds that the owners are distinct.
(More than two sessions share a session id for some stage and this event was not caused by a simple
replay attack on the 0RTT protocol for the same responder.)

We say KE is Match-secure if for all PPT adversaries A the following advantage function is negligible in
the security parameter n: AdvMatch

KE,A := Pr
[
GMatch

KE,A (n) = 1
]
.

3.5.2 Multi-Stage BR Key Secrecy

Next is the key secrecy in the multi-stage setting:

Definition 3.2 (BR Key Secrecy). Let n be the security parameter. Furthermore let KE be a key exchange
protocol with key distribution D and let A be a PPT adversary interacting with KE via the queries defined
in Section 3.4 within the following game GBR,D

KE,A(n):

Setup. The challenger generates long-term public/private-key pairs and certificate for each participant
U ∈ U , chooses the test bit btest

$←− {0, 1} at random, and sets lost← false.

Query. The adversary A receives the generated public keys and has access to the queries NewSession,
NewSemiStaticKey, Send, Reveal, RevealSemiStaticKey, Corrupt, and Test. Note that these queries
may set lost to true.

Guess. At some point, A stops and outputs a guess bguess.
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Finalize. The challenger sets the ‘lost’ flag to lost ← true if there exist two (not necessarily distinct)
labels label, label′ and stages i, j ∈ {1, . . . ,M} such that sidi = sid′j, label.stkey,i = revealed, and
label′.testedj = true. (Adversary has tested and revealed the key in a single session or in two partnered
sessions.)

A wins the game, denoted by GBR,D
KE,A = 1, if bguess = btest and lost = false. We say that Multi-Stage BR key

secrecy holds for KE if for all PPT adversaries A the advantage function

AdvBR,D
KE,A(n) := Pr

[
GBR,D

KE,A(n) = 1
]
− 1

2

is negligible in the security parameter n. A key exchange protocol KE is further called Multi-Stage BR-secure
if KE is both Match-secure and BR key secrecy for KE holds.

We note that the winning conditions are independent of the forward secrecy property of the KE protocol.
Forward secrecy is already taken into account in the formulation of the Reveal and Corrupt queries and the
finalization step of the game.

4 Security of the EAC+0RTT Protocol
In this section we will first describe the security assumptions on which we will base the following proof of
the EAC+0RTT protocol.

4.1 Security Assumptions

In the following we will provide definitions of the basic cryptographic assumptions underlying the security
proof of the EAC+0RTT protocol. In particular, we will introduce a double-sided (or symmetric) variant
of the PRF-ODH assumption, further referred to as mmPRF-ODH. We start by recalling what it means for
signatures and certificates to be existentially unforgeable under chosen message attacks:

Definition 4.1 (EUF-CMA assumption). Let n be the security parameter. Furthermore let S = (SKG,Sig, SVf)
be a signature scheme and let A be a PPT algorithm. We define the following EUF-CMA security game
GEUF-CMA

Sig,A (n):

Setup. Generate a key pair (pk, sk) $←− SKG(1n) and give pk to the adversary A.

Query Phase. In the next phase A can adaptively query messages m1,m2, . . . ,mq ∈ {0, 1}∗ with q ∈
N arbitrary, which the signing oracle answers with σ1 ← Sig(sk,m1), σ2 ← Sig(sk,m2), . . . , σq ←
Sig(sk,mq).

Output. At some point, A outputs a messagem∗ and a potential signature σ∗. Output 1 iff SVf(pk,m∗, σ∗) =
1 and m∗ 6= mi for all i = 1, 2, . . . , q.

We define the advantage function

AdvEUF-CMA
S,A (n) := Pr

[
GEUF-CMA

Sig,A (n) = 1
]

We say that a signature scheme S is EUF-CMA secure, if for any A the advantage function is negligible
(as a function in n).
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The definitions for certification schemes work analogously. That is, a certification scheme consists of
three algorithms C = (CKG,CA,CVf) for creating the authority’s key pair, the certification of a public
key, and for verifying a public key with respect to a certificate. We allow for multiple certifications of the
same public key but assume that each certification requests is accompanied by an identifier id which will be
included in certID. Then we can define unforgeability as for signatures, implying that the adversary cannot
forge a valid certificate for a new public key or for a previously certified key under a new identity. We
write AdvEUF-CMA

C,A for the advantage of an adversary in the EUF-CMA game against a certification scheme.
In the EAC protocol the authority’s public key is given by pkCVCA and the key generation, certificate
creation and certificate verification are often described implicitly only.

Furthermore, we can define message authentication codes (MACs)M = (MKG,MAC,MVf) analogously,
except that the key generation algorithm only outputs a single secret key and the adversary does not receive
any initial input in the attack. We write AdvEUF-CMA

M,A for the advantage of an adversary A in this game.
Finally, we need that the compression function Compr is collision-resistant. That is, for an adversary

A it should be infeasible to find group elements X 6= Y such that Compr(X) = Compr(Y ). We write
AdvCR

Compr,A to denote the advantage of such an adversary A. We remark that we actually need a weaker
requirement from Compr, resembling second preimage resistance, namely that for a random group element
X it should be hard to find a colliding different Y , when given the discrete logarithm of X with respect
to the group.

Next, we define our version of the PRF-ODH assumption as a slight extension to the original definition
given in [24, 25]. In accordance with the systematic study of the PRF-ODH assumption by Brendel et
al. [6], we term our notion mmPRF-ODH, which corresponds to the strongest variant with multiple queries
to both ODH oracles.

Definition 4.2 (mmPRF-ODH assumption). Let G = 〈g〉 be a cyclic group of prime order q with gen-
erator g, and let PRF : G × {0, 1}∗ → {0, 1}n be a pseudorandom function with keys K ∈ G, input
strings x ∈ {0, 1}∗, and output strings y ∈ {0, 1}n, i.e., y ← PRF(K,x).

We define the following mmPRF-ODH security game GmmPRF-ODH
PRF,A between a challenger C and a proba-

bilistic polynomial-time (PPT) adversary A.:

Setup. The challenger C samples u $←− Zq and provides G, g, and gu to the adversary A.

Query Phase 1. A can issue arbitrarily many queries to the following oracle ODHu.

ODHu oracle. On a query of the form (A, x), the challenger first checks if A /∈ G and returns ⊥ if
this is the case.
Otherwise, it computes y ← PRF(Au, x) and returns y.

Challenge. Eventually, A issues a challenge query x?. On this query, C samples v $←− Zq and a bit b $←−
{0, 1} uniformly at random. It then computes y?

0 = PRF(guv, x?) and samples y?
1

$←− {0, 1}n uniformly
random. The challenger returns (gv, y?

b ) to A.

Query Phase 2. Next, A may issue (arbitrarily many and interleaved) queries to the following ora-
cles ODHu and ODHv.

ODHu oracle. On a query of the form (A, x), the challenger first checks if A /∈ G or (A, x) = (gv, x?)
and returns ⊥ if this is the case. Otherwise, it computes y ← PRF(Au, x) and returns y.

ODHv oracle. On a query of the form (B, x), the challenger first checks if B /∈ G or (B, x) = (gu, x?)
and returns ⊥ if this is the case. Otherwise, it computes y ← PRF(Bv, x) and returns y.

Guess. Eventually, A stops and outputs a bit b′.
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We say that the adversary wins the mmPRF-ODH game if b′ = b and define the advantage function

AdvmmPRF-ODH
PRF,A (n) := 2 ·

(
Pr[b′ = b]− 1

2

)
and, assuming a sequence of groups in dependency of the security parameter, we say that a pseudo-
random function PRF with keys from (Gn)n provides mmPRF-ODH security if for any A the advantage
AdvmmPRF-ODH

PRF,A (n) is negligible in the security parameter n.

4.2 Match Security

In this section we show that the EAC+0RTT protocol achieves Match security, satisfying basic partnering
properties. Recall that we defined the session identifiers in the main EAC protocol to be

sid = (EAC, pkC , epkT , rC , r
′
C , certIDC , certIDT , DC , pksemi

T ).

and in the 0RTT EAC protocol as

sid = (0RTT, r′′C , pkC , pksemi
T , certIDC , certIDT , DC).

Theorem 4.3. The EAC+0RTT protocol is Match-secure. For any efficient adversary A we have

AdvMatch
EAC,A ≤ q2

p ·min{2−|nonce|, 1
q}

where qp is the maximum number of sub protocol executions, |nonce| is the bit-length of each of the nonces
rC , r

′
C , r

′′
C , and q is the order of the group from which (ephemeral) keys are chosen.

Note that qp ≤ M · qs for the maximal number M of stages and the maximal number qs of sessions.

Proof. In order to achieve Match Security (cf. Definition 3.1), we need to show that the following three
conditions hold:

(i) Partnered sessions derive the same session key in all stages.

(ii) Sessions are partnered correctly, i.e., with the intended communication partner in all stages.

(iii) No more than two sessions share a session identifier for some stage.

Ad (i): Since partnered sessions share the same session identifiers sid by definition, and in particular the
matching sub protocol mode, they necessarily also agree on the session key. This is due to the fact that
the session identifier already determines all inputs for key derivation: The entries epkT (in case of EAC)
resp. pksemi

T (in case of 0RTT EAC), and pkC and DC . These values ensure the correct computation of
the DH key k on either side by specifying the Diffie-Hellman shares for computation in the domain DC .
This DH key k is then used as input to the key derivation function, along with the nonce r′C (for EAC)
resp. r′′C (for 0RTT EAC). Since the corresponding nonce is also contained in the session identifier, and
thereby guaranteed to be identical in both the chip’s and terminal’s key derivation, both sides will output
the same value for the session key K = (Kenc,Kmac).
Ad (ii): Both certificate identifiers certIDC and certIDT are included in the session identifier. Therefore,
agreement on the session identifier yields agreement on the intended partner’s identity, as reflected in the
respective certificate.
Ad (iii): We distinguish two cases, according to the sub protocol. If all three session identifiers agree
for the EAC protocol, then it must be that any combination of two sessions of honest users with identical
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identifiers yields a third collision only if the honest chip or honest terminal in the third session picks its
random value rC , r

′
C (in case of a chip) resp. epkT (in case of a terminal) such that it collides. This can

only happen with probability at most min{2−2n, 1/q} for the length n of rC and r′C resp. the group size q.
Since there are at most q2

p many combinations of the initial two sessions, where qp denotes the maximal
number of sub protocol executions, we derive a bound of q2

p ·min{2−2n, 1/q} in this case.
The other case is when the threefold collision is for 0RTT EAC sessions. Note that the adversary can

only win if at least two of the three sessions are owned by a chip (with role = initiator). However, the
probability that any two sub executions in chip sessions match on r′′C is at most q2

p · 2−n.

4.2.1 Multi-Stage BR Key Secrecy

Theorem 4.4. The EAC+0RTT protocol provides key secrecy (with responder forward secrecy). That is,
for any efficient adversary A there exists efficient adversaries B3,B4,B5,B10/11 such that

AdvBR,D
KE,A(n) ≤ 3q2

p ·max{2−|nonce|, 1
q}+ AdvCR

Compr,B3

+ AdvEUF-CMA
C,B4 + qT · AdvEUF-CMA

S,B5

+ 4qp · qC ·max{qp, qsskid} · AdvmmPRF-ODH
B10/11

where qp is the maximum number of sub protocol executions, qs is the maximal number of sessions, qC is
the maximal number of chips, qT is the maximal number of terminals, |nonce| is the bit-length of each of
the nonces rC , r

′
C , r

′′
C , and q is the order of the group from which (ephemeral) keys are chosen.

Proof. In the proof it is convenient to make a restriction on the adversary to make a single Test query only,
and then distinguish between the cases that the now unique test session is for a chip or for a terminal,
and whether it happens in an EAC execution or a 0RTT EAC execution. However, since all cases share a
common structure we first exclude some general attack strategies with a game-hopping technique, starting
with the original BR key secrecy.

Game 0 The original BR key secrecy game.

Game 1 As the original game, but this time abort the game, declaring the adversary to lose, if there
exist two stages in chip sessions with the same session identifier. In particular, it follows that no chip
sessions in mode EAC coincide for rC , r

′
C , and in mode 0RTT EAC match on r′′C .

Similar to Match security we obtain

AdvG0
KE,A ≤ AdvG1

KE,A + q2
p · 2−|nonces|.

Game 2 Is identical to the previous game, only that the adversary this time loses immediately, if
there exist two stages in sessions of honest terminals picking the same ephemeral key epkT or the same
semi-static key pksemi

T .
Similar to Match security and considering the two options for collisions, we obtain

AdvG1
KE,A ≤ AdvG2

KE,A + 2 · q2
p · 1

q .

Game 3 As the previous game, but this time the adversary loses if a stage in a session of an honest
terminal sends Compr(epkT ) for some ephemeral key epkT , but such that a session of an honest chip receives
a value epk′T 6= epkT with Compr(epkT ) = Compr(epk′T ).
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Any such incidence can be used to break the collision-resistance of Compr. To this end we construct
an adversary B3 which runs a black-box simulation of the key exchange attack of A according to game
G2, generating all parameters with known secrets. If the above happens, then B3 can easily output such
a collision. It follows that

AdvG2
KE,A ≤ AdvG3

KE,A + AdvCR
Compr,B3 .

Game 4 As the previous game, but this time we abort the game with a loss for the adversary if a
stage of a session of an honest party accepts a certificate for a long-term key pkC or pkT and identifier
certID as valid, even though the certificate authority has not issued a certificate for that pair.

This can be straightforwardly used to mount a successful attack against the certificate scheme. That
is, one builds via a black-box reduction an adversary B4 against the certificate scheme C by letting this
adversary B4 simulate all other steps of the key exchange protocol internally, and only using the scheme’s
public key pkCVCA and the oracle to create certificates. If there is some session where a new pair (pk, id)
for cert is verified as valid, then we have B5 output the corresponding certificate as a forgery. It follows
that

AdvG3
KE,A ≤ AdvG4

KE,A + AdvEUF-CMA
C,B4 .

Game 5 As the previous game, but this time we abort if a stage of a chip session accepts a signature
for value idC ||rC ||Compr(epkT )||pksemi

T which has not yet been signed by an honest terminal at this point.
This time we construct an adversary B5 against the unforgeability of the underlying signature scheme.

Adversary B5 receives a public key pk as input and initially guesses the index of a terminal for which a
forgery should happen. It creates all other parameters for the key exchange internally, but sets pkT = pk
for the guessed index. Any signature creation for this terminal is performed by querying the signature
oracle, all other steps can be carried out by B5 itself. If at some point a chip accepts a signature for a
previously unsigned message, then B5 outputs this message-signature pair as a forgery attempt. With
probability 1/qT this will be for the predicted index of the terminal, such that

AdvG4
KE,A ≤ AdvG5

KE,A + qT · AdvEUF-CMA
S,B5 .

Game 6 Identical to the previous game but in which the adversary makes only a single Test query
and announces the stage and index of the only test session according to the order of NewSession queries at
the beginning of its attack; if the adversary later tests a different session we declare a loss for the adversary.

A straightforward hybrid argument, guessing the index in advance, shows that this can decrease the
adversary’s success probability by a factor 1/qp of the total number of stages in sessions. Hence, we have

AdvG5
KE,A ≤ qp · AdvG6

KE,A.

Game 7 As the previous game, but this time let the adversary also announce in advance if the unique
Test query is for an EAC execution or for a 0RTT EAC execution.

Since we can guess which of the two cases happens with probability at least 1
2 we obtain

AdvG6
KE,A ≤ 2 · AdvG7

KE,A.

Game 8 As the previous game, but this time let the adversary also announce in advance a chip (and
thus its long-term public key) such that a stage key of a session of the chip is tested, or partnered with a
terminal stage which is tested.

Since we can guess the right chip index with with probability at least 1
qC

we obtain

AdvG7
KE,A ≤ qC · AdvG8

KE,A.
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Game 9 As the previous game, but this time let the adversary also announce the following in advance:

• In case it declares at the beginning to test an EAC execution (according to game G7), the adversary
announces the stage and index of a terminal session (hence determining the terminal’s ephemeral
key) which is tested, or partnered with the tested chip session; and

• In case it declares to test a 0RTT EAC execution, the index of semi-static key of a terminal according
to the order of NewSemiStaticKey queries such that the terminal’s session is tested or partnered to a
tested session.

Once more, a guessing strategy yields

AdvG8
KE,A ≤ max{qp, qsskid} · AdvG9

KE,A.

Now we can make our case distinction. Note that at this point A makes a single Test query and
announces in advance the corresponding key indices and the type of session. By the above games, if a chip
session gets tested, then it has at most one (honest) partner. If it is a terminal session, it may have more
than one partner, in case of a replay attack on a terminal. However, the partnered sessions all compute
the same session key due to the identical session identifiers. Also, the adversary cannot make a Reveal
query to either of the partnered sessions without forcing a loss. In this sense we say that each test session
has at most one partner, meaning that all partners compute the same secret key.

Furthermore, if the owner of the tested session is an (at that point uncorrupt) terminal, then we may
assume that the partnered chip, if existing, is not corrupt either. The reason is that, otherwise, the chip’s
session key would be set to revealed through the Corrupt query and the adversary would lose the game. It
follows that the Diffie-Hellman key used to compute the session key is based on an uncorrupt long-term
chip key pkC and a genuine ephemeral key epkT resp. semi-static key pksemi

T of the honest terminal. The
latter holds by the above game hopping, since the adversary can no longer at this point have sent an invalid
epkT (since the signature in the TA phase ranges over Compr(epkT ) and one can only transmit the actual
epkT in the CA phase), nor an invalid pksemi

T (which is signed in clear in the TA phase). Moreover, any
RevealSemiStaticKey query for pksemi

T would set the session key to be revealed (and ephemeral keys cannot
be leaked).

Analogously, if the owner of the tested session is an honest chip then the partnered terminal (if existing)
must have honestly completed its execution, else the session identifier on the terminal side would not have
been set. In particular, the contribution to the deployed Diffie-Hellman key is an authenticated key epkT

or pksemi
T . Note that a subsequent corruption of the terminal does not reveal either of the two types of

keys, and a RevealSemiStaticKey for the semi-static key would cause the adversary to lose anyway.
In summary, the shares of the Diffie-Hellman key in the test session (and the potentially partnered

sessions) are picked by honest parties and are never revealed in the course of the attack. This allows us
now to replace the key triple (Kenc,Kmac,K

′
mac) in the at most two sessions by random elements via the

mmPRF-ODH assumption. We start with the case that the test session is in a 0RTT EAC execution.

Case A: Test of a session key in a 0RTT EAC execution.

Game A.10 As Game 9, but in this step we replace the tuple (Kenc,Kmac,K
′
mac) in the tested stage

of the session and in any partnered session by the same independent random values (K̃enc, K̃mac, K̃
′
mac).

We show that if there exists an adversary A that can distinguish Game 9 from Game A.10, then there
necessarily exists an adversary B10 which can win the mmPRF-ODH game with non-negligible advantage.
The mmPRF-ODH adversary B10, which will simulate the BR challenger for A, is constructed as follows:
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• Algorithm B10 first obtains a group element gu in the mmPRF-ODH game. Algorithm B10 skips
the first query phase and directly asks a challenge query x? = r′′C for random r′′C . It receives the
mmPRF-ODH challenge (gv, y?

b ) where y?
0 = PRF(guv, x?) and y?

1
$←− {0, 1}n and b $←− {0, 1} are chosen

uniformly at random by the challenger.

• To simulate the environment for A, algorithm B10 must provide the long-term public keys of all
participants. To this end, B10 generates keys (including pkCVCA) and corresponding certificates for
all users U ∈ U . For the partnered chip identity which was output by A at the outset, algorithm B10
sets the respective public key to the previously received value gu.

• A has now access to the queries specified in Definition 3.2. In particular, Amay trigger the generation
of semi-static keys for any terminal T via NewSemiStaticKey(T ). Algorithm B10 uses gv as the semi-
static key of the tested session announced by A.

• Whenever B10 then has to execute a key derivation, i.e., to answer a Reveal query of A, or to compute
or verify the final MAC with K ′mac —the case of a Test query is dealt with below— then B10 acts
as follows. If B10 holds at least one of the secret keys for computing the Diffie-Hellman key of the
session, then B10 computes the keys locally and performs the requested action.
If it lacks knowledge of both secret keys then it must be either the case that they correspond to the
keys gv, gu from the challenge, or one or both of the keys have been picked by the adversary A. In
the first case, if the nonce in the session also equals x? then B uses the challenge value y?

b as keys.
In any other case it can query the corresponding mmPRF-ODH oracle to get the actual value for the
keys.
We remark that the following inconsistency of an unpartnered session, which “accidentally” derives
the same keys but where B10 falsely uses the possibly random challenge value y?

b , cannot happen: If
the session is not partnered then it must be because of the certificate identifier certIDC or certIDT

and then the (verified) certificate is for a different party. In this case, however, adversary B10 has
chosen the secret key itself (which happens to coincide with the challenge key) and uses the secret
key to correctly compute the session keys.

• At some point, the BR adversary A issues a Test(label, i) query to the BR challenger (simulated
by B10). The mmPRF-ODH adversary B10 forwards its previously received challenge y?

b (with K ′mac
removed) as challenge to A.

• Eventually, A stops and outputs a guess bguess. Algorithm B10 outputs 1 if and only if bguess = btest
(for the random value btest chosen by B10 as part of the attack on the key exchange protocol) as its
output in the mmPRF-ODH game.

Since we presumed that A can efficiently distinguish between Game 9 and Game A.10, adversary A is
able to detect whether y?

b is a random value or the output of a pseudorandom function. Thus, by simply
running A and simulating all other involved parties faithfully, algorithm B10 will be able to efficiently win
the mmPRF-ODH game with non-negligible advantage. Hence, we can bound the advantage by

AdvG9
KE,A ≤ AdvGA.10

KE,A + AdvmmPRF-ODH
B10

The final step is now to “undo” the replacement of the extra MAC key K ′mac—recall that we only aim
to replace the actual session keys Kenc,Kmac by random values. This requires another game hop, as before:
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Game A.11 As Game A.10, but in this step we replace only the pair (Kenc,Kmac) in the tested stage
of the session and by any partnered session by the same independent random values (K̃enc, K̃mac).

We construct another adversary B11 as in the previous game, only this time we let B11 always replace
the components for Kenc and Kmac in the challenge value y?

b by random values K̃enc, K̃mac. If y?
b is random

then we still get random values (as in Game A.10), else we now get only random entries in Kenc,Kmac (as
in Game A.11). It follows again by the mmPRF-ODH assumption that

AdvGA.10
KE,A ≤ AdvGA.11

KE,A + AdvmmPRF-ODH
B11

We recall that in this game, tested and partnered session key pairs (only) are consistently replaced
by independent random values. This implies in particular, that the adversary A can gain no additional
information on the bit btest encoded in the challenge as the response to the Test query is independent of it.
Thus, A can perform no better than to guess, i.e., AdvGA.11

KE,A ≤ 0, which completes the proof for this case.

Case B: Test of a session key in an EAC execution. The case of a test happening in an EAC sub
protocol execution is almost identical to 0RTT EAC case. The only difference is that A now announces the
terminal’s ephemeral key and we inject the challenge key in the mmPRF-ODH assumption as an ephemeral
key.

AdvG9
KE,A ≤ 2 · AdvmmPRF-ODH

B10/11

This proofs the bound for the other case and therefore the bound for the overall protocol.

Remark. It may come as a surprise that the unforgeability of the MAC does not enter the security
bound. This is due to the fact that we are “only” interested in key secrecy in the above theorem, stating
that at most the intended partner can compute the session key and that seeing other session keys does not
facilitate this task. The former is ensured by the certification of the chip’s long-term key and the fact that
one cannot corrupt the chip, and the latter is already captured by the mmPRF-ODH assumption, saying
that learning related values of the PRF does not help to distinguish the challenge value from random.

Remark. Note that our analysis does not provide any form of key confirmation nor entity authentication.
Indeed, the final MAC can be seen as providing exactly these properties [17].

5 Variations
There exist several alternatives to implement 0RTT executions. For example, the 0RTT keys may be
established either in the fashion of a Diffie-Hellman key exchange or—forgoing forward secrecy— rather
from pre-shared keys (derived as additional key material in the previous round). It is also interesting to
investigate different ways of handling negotiation failures in the 0RTT case. In the following, we therefore
present different choices for the 0RTT flow.

5.1 Diffie-Hellman Variant

The 0RTT EAC extension presented in Section 2.2 is based on a Diffie-Hellman style key agreement.
Similar implementations can also be found in Google’s QUIC protocol and in earlier draft versions of TLS
1.3 (draft 12 [29] and earlier).
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5.2 Pre-Shared Key Variant

From draft 13 [30] onward, TLS 1.3 replaces the DH-based variant of 0RTT handshakes by a pre-shared
key (PSK) alternative. The pre-shared key is established either out of band or, more commonly, in a
preceding interaction between server and client. Once a full handshake has been completed, the client
receives a so-called PSK identity from the server. The PSK was derived in the initial handshake and can
then be used by the client to derive keys for future (0RTT) handshakes. To initiate a 0RTT handshake, the
client simply incorporates the early_data and pre_shared_key extension in the ClientHello, followed
by the application data. After the successful processing of the data, the server then responds with the
ServerHello and a forward-secret key is then derived as in the ordinary handshake.

In principle, one could also imagine a similar approach for the EAC protocol, using the pre-shared
keying material instead of the shared Diffie-Hellman key. Note, however, that this may require further
changes to the EAC protocol (for the additional keying material) and that, unlike the Diffie-Hellman
version, this does not provide any (terminal) forward secrecy.

5.3 Error Handling

Zero round-trip time may not be supported by all servers, or there may occur errors in trying to decrypt
the early data. Here we discuss how such problems are dealt with in other settings, and how one can
proceed in the EAC case.

Google’s QUIC Protocol. From a design perspective, all handshakes in QUIC are also 0RTT hand-
shakes, of which some may fail. The server replies with a ServerHello if all necessary information to
complete the handshake was contained in the preceding ClientHello. If this was not the case, the server
sends a rejection message encompassing information that allows the client to make progress in a next
handshake attempt. The type and extent of information sent along with the rejection message can be
chosen individually by the server but must not prevent clients from establishing a valid handshake within
a reasonable time frame.

TLS 1.3 Draft 20. Upon receiving a 0RTT handshake request with encrypted early data, the server
can answer in three ways: It may either disregard the 0RTT extension and return no response, causing
the client to fall back to the standard 1RTT handshake. Or it may return the empty extension, thereby
signalling to the client that prior validation checks were successful and that the server intends to process
the received early data. Furthermore, the server may send a HelloRetryRequest to the client asking it
to send a ClientHello without the early_data extension.

0RTT EAC. In case of failure, we expected the client to fall back to a full EAC protocol execution con-
sisting of terminal and chip authentication. This may seem like an expensive step in view of performance,
especially if the semi-static key used by the client is simply outdated. If the terminal does not support
0RTT, fall back to full EAC is clearly inevitable.

Furthermore, we emphasize that it is in general not possible for terminals to identify outdated keys. In
order for a terminal to detect this (i.e., to distinguish unknown keys from outdated keys), it must keep at
least the last used value of pksemi

T when updating to a new value pksemi
T
′. Keeping state is commonly seen

as not recommendable, if not infeasible, in most use cases. However, we note that a chip receives all the
data it needs to initiate future 0RTT handshakes with a 0RTT-supporting terminal during the terminal
authentication phase of the EAC protocol. Therefore, it is sufficient for the chip to carry out the TA phase
before the 0RTT handshake can be re-tried. In light of this, it is also conceivable for terminals to proceed
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similarly to the mechanism deployed in the QUIC protocol and to reply with the current authenticated
semi-static key, i.e., to send certT , pksemi

T , sT where sT ← Sig(skT , pksemi
T ).

6 Conclusion
The Extended Access Control (EAC) protocol is a universal solution for key establishment between two
parties. In this work, we presented a 0RTT mode for the EAC protocol which allows to reduce the
latency of recurring connections. It is noteworthy that this 0RTT mode can be added as an extension
with minimal changes to the original protocol. We further showed that EAC+0RTT can be proven secure
in the multi-stage setting of the Bellare-Rogaway model. Thus, the modified protocol still achieves the
common security properties of an authenticated key exchange protocol.
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