
TruSpy: Cache Side-Channel Information Leakage from the Secure World on ARM
Devices

Ning Zhang∗, Kun Sun†, Deborah Shands‡ Wenjing Lou∗‡, Y. Thomas Hou∗
∗Virginia Polytechnic Institute and State University, VA

{ningzh, wjlou, thou}@vt.edu
†George Mason University, Fairfax, VA

{ksun3}@gmu.edu
‡National Science Foundation, Arlington, VA

{deborah.shands}@gmail.com

Abstract—As smart, embedded devices are increasingly in-
tegrated into our daily life, the security of these devices
has become a major concern. The ARM processor family,
which powers more than 60% of embedded devices, intro-
duced TrustZone technology to offer security protection via
an isolated execution environment called secure world. Caches
in TrustZone-enabled processors are extended with a non-
secure (NS) bit to indicate whether a cache line is used by the
secure world or the normal world. This cache design improves
system performance by eliminating the need to perform cache
flush during world switches; however, it also enables cache
contention between the two worlds.

In this work, we present TruSpy, the first study of timing-
based cache side-channel information leakage of TrustZone.
Our proposed attack exploits the cache contention between
normal world and secure world to recover secret information
from secure world. Two attacks are proposed in TruSpy,
namely, the normal world OS attack and the normal world
Android app attack. In the OS-based attack, the attacker is
able to access virtual-to-physical address translation and high
precision timers. In the Android app-based attack, these tools
are unavailable to the attacker, so we devise a novel method
that uses the expected channel statistics to allocate memory
for cache probing. We also show how an attacker might use
the less accurate performance event interface as a timer.

Using the T-table based AES implementation in OpenSSL
1.0.1f as an example, we demonstrate that it is possible for
a normal world attacker to steal a fine-grained secret from
the secure world using a timing-based cache side-channel.
We can recover the full AES encryption key via either the
OS-based attack or the Android app-based attack. Since our
zero permission TruSpy attack is based on the cache design
in TrustZone enabled ARM processors, it poses a significant
threat to a wide array of devices. To mitigate the newly
discovered threat, we also propose both application-based and
system-oriented countermeasures.

1. Introduction

With the continuous growth in network capabilities,
more and more embedded devices are connected. Having
a smart home is no longer a story from science fiction
movies [1]. On the other hand, the sheer volume of cyber
attacks nowadays has been unsettling. Security is now one of
the major concerns in adopting these smart technologies [2].

ARM family processors have been deployed in more
than 60% of the embedded devices [3]. To enhance the
security of mobile systems, ARM introduced a security
extension called TrustZone [4], which offers the ability to
protect security sensitive tasks within an isolated execution
environment. TrustZone has been adopted in a wide variety
of commercial products [5], [6] and academic projects [7],
[8], [9], [10] to enable secure processing. The protected
environment is called secure world, and the normal environ-
ment is called normal world or nonsecure world. In order
to provide isolation of resources between the two worlds,
hardware components in TrustZone-enabled platforms are
augmented with an additional NonSecure (NS) flag bit to
indicate the security domain.

Processor cache is one of the basic components in mod-
ern memory architecture to bridge the gap between the fast
processor operation and relatively slower memory access.
To support memory isolation in the TrustZone architecture,
both instruction and data cache lines are extended with the
NS flag bit [4] to mark the security domain of these lines.
Even though the secure cache lines are not accessible by the
normal world, both worlds are equal when competing for
the use of cache lines. In other words, when the processor
is running in one world, it can evict the cache lines used
by the other world due to cache contention. The goal of
this cache design is to improve the system performance
by maximizing the usable cache space and eliminating the
need for cache flush during a world switch. We observe that
though the contents of processor cache are protected by the
hardware extension, the access pattern to these cache lines
is not protected, leaving TrustZone vulnerable to cache side-
channel attacks.

Unlike software exploitations that target vulnerabilities
in the system, side-channel attacks target information leak-
age of a physical implementation due to various interactions
with its execution environment. Side-channel information
can be obtained from different types of physical features,
such as power [11], electromagnetic wave [12], acoustic [13]
and time [14], [15], [16]. Among these side-channels, the
cache-based timing attack is one of the most active areas of
research [15], [16], [17], [18], [19], [20], [21], [22], [23]. A
cache timing side-channel exists because the memory access
delay from the processor cache is significantly less than
that from DRAM. Bernstein [23] recovered the AES key
by timing the execution of cryptographic operations. Osvik
et al. [18] proposed the general technique called prime and
probe. It captures fine-grained cache access information of
the victim by observing changes to known cache states due
to the execution of a cryptographic algorithm. Recently, it
has also been shown that the shared memory pages of OS
libraries can be exploited by attackers to enable a powerful
cache side-channel attack called flush and reload [17], [16],
[21].

In this paper, we present TruSpy, a cache-based timing
side-channel attack. To the best of our knowledge, this is
the first study on cache timing-based information leakage of
ARM TrustZone. TruSpy circumvents TrustZone protection
to extract sensitive information in the secure world using
less privileged normal world processes. Since the memory
separation between the normal world and the secure world
is strictly enforced by the TrustZone hardware, the more
efficient flush and reload attack cannot be used. This is
because memory sharing is one of the requirements for flush
and reload attack. As a result, our proposed attack adopts
the prime and probe technique [18] to exploit the cache
contention between the normal world and the secure world.

There are two key requirements for applying the TruSpy
attack to recover secrets from the secure world. First, the
attacker must be able to fill the cache with memory contents
that will cause cache contention with the victim. Second,
the attacker must be able to detect changes in the cache
state. More specifically, an attacker needs access to a high
precision timer to distinguish data retrieval from different
levels in the memory hierarchies. In TruSpy, we show how
these conditions can be met under different levels of access
privileges to the system resources.

Two attacks are presented in this paper, the normal world
OS attack and the normal world Android app attack. In the
first attack, the attacker has full control of the normal world
operating system. It can obtain detailed virtual-to-physical
address translation via the page table. The ability to obtain
such translation is crucial in allocating memory for the prime
and probe attack. Furthermore, the attacker can use the cycle
counter in the performance unit as a high precision timer.
The cycle counter can only be accessed in the privilege
mode. In the second attack, we challenge ourselves further
to ask if it is possible to launch TruSpy attack from a non-
privileged Android app with no special permissions. For an
app running in the user space, neither the virtual-to-physical
address translation nor the cycle counter is available. To

allocate the memory for prime and probe in the app, we
propose statistical matching, in which memory page for
probing is identified by comparing the channel statistics
to the expected statistics of the cryptographic algorithm.
Furthermore, we use a common kernel performance measure
function via system call to replace the high precision timer
that is only accessible in the OS kernel.

We implement our attack on a Freescale i.MX53 devel-
opment board running CortexA-8 processor. We demonstrate
the side-channel information leakage of TrustZone using
a T-table-based AES implementation as an example, since
side-channel attack on AES is widely used in the literature as
example for fine-grained information extraction [15], [19],
[18], [23], [24]. The attack from the normal world kernel
can recover the full AES128 secret key using 3000 rounds
of observed encryption in 2.5 seconds. Despite significant
noise from the timer, the user space Android app can still
recover the full AES128 secret key with 9000 rounds of
observed encryption within 14 minutes.

In summary, we make the following contributions.

• We identify the side-channel information leakage
from the design of dynamic cache allocation be-
tween the normal world and the secure world in
TrustZone. The leakage is due to a fundamental
design choice of the TrustZone-enabled cache archi-
tecture, which aims to improve system performance
by allowing two worlds to share the same cache
hardware.

• Though prime and probe is a well-known method
on x86, we present the first detailed adoption of
the technique on ARM processor. There are new
challenges such as random cache replacement policy,
inability to interrupt encryption, and lack of inclu-
sive or exclusive cache.

• For the first time, we show that even an unprivi-
leged Android app can launch side-channel attacks
on TrustZone. We tackle two more challenges -
finding virtual-to-physical mapping and lack of high
precision timer. Without direct access to virtual-to-
physical address translation, the Android app attack
allocates memory by using statistical properties of
the channel itself or correlating to kernel function
with known addresses. Furthermore, the app is able
to use the less accurate, common OS performance
event function to replace the high precision perfor-
mance register.

• We show the practicality of our attack by implement-
ing and testing the proposed side-channel attacks on
a hardware platform. The kernel space attack can
extract a full 128 bit AES key within 3000 rounds
of encryption, while the user space attack can extract
the full AES key within 9000 rounds of encryption.
We discuss potential mitigations against this new
side-channel attack on secure world of TrustZone.

In the rest of the paper, we first present background
information on ARM TrustZone, cache architecture, and an
overview of cache side-channel attacks in section 2. The

threat model is presented in section 3. The design of TruSpy
attack is presented in section 4. The details of applying the
attack to recover AES secret key are described in section 5.
We then present potential countermeasures in section 6.
Lastly, a discussion is given in section 7, followed by the
conclusion in section 8.

2. Background

In this section, we summarize the hardware protection
offered by TrustZone, then give an overview of the memory
architecture of TrustZone enabled ARM processors. Finally
we provide an overview of cache side-channel attacks.

2.1. ARM TrustZone Architecture

TrustZone is a security extension to the ARM archi-
tecture with modifications to the processor, memory, and
I/O devices [4]. TrustZone provides a system-wide isolated
execution environment for secure workloads. Many of the
recent ARM processors support this security extension [25],
[26]. The traditional operating domain is called normal
world, non-secure world, or rich OS, while the protected
domain is called secure world. Resources in the secure
world cannot be accessed by normal world processes. The
processor security state is captured by the NS bit in the
security configuration register (SCR). When the bit is clear,
the processor is in the secure world. When the bit is set, the
processor is in the normal world. The SCR is only accessible
while the processor is in the secure privileged mode. While
the processor is in secure monitor mode, the security context
is always secure regardless of the NS bit value.

2.2. Processor Memory Hierarchy

Figure 1 shows a typical memory hierarchy of modern
computer systems. Programs run in virtual address space.
When the processor needs to fetch a value in memory, it
passes the virtual address to the memory management unit
(MMU). The MMU first attempts to retrieve the virtual
address to physical address translation from the translation
lookaside buffer (TLB). If there is no hit, the MMU then
parses the page table for the translation and places it inside
the TLB. Parsing of the page table is often referred to as a
page walk. Once the physical address is obtained, the MMU
goes through the system memory hierarchy to retrieve the
value at that address.

Modern processors often have multiple levels of caches
to enable faster memory access. Higher levels of caches are
faster and placed closer to the processor core. Because of
the limited on-die space, processor cache is usually small in
size compared to the physical DRAM. Modern caches are
usually organized with N-way associative table. The basic
unit of memory allocation in cache is called a line, or cache
line. In most processors, a line is often 64 bytes. A cache
line can be virtually indexed, virtually tagged (VIVT), virtu-
ally indexed, physically tagged (VIPT), physically indexed,

Figure 1. TrustZone Enabled Processor Memory Hierarchy

physically tagged (PIPT) or physically indexed, virtually
tagged (PIVT). Many modern processors have a large TLB
and adopt PIPT for all levels of data and unified cache. As a
result, the physical memory address determines the set index
inside the cache table. The ARM Cortex-A8 processor has
two levels of caches. Its level one (L1) cache consists of
two 32 KB 4-way 128-set caches, for caching instruction
and data, respectively. The level two cache (L2) is a 256
KB 8-way 512-set unified cache. Both L1 data cache and
L2 unified cache adopt PIPT.

With the addition of TrustZone, each cache line has been
extended with an NS bit, which specifies the security state of
the cache line [4]. The goal of this design to use the NS bit
to distinguish cache lines of the normal world from those of
the secure world, eliminating the need to flush cache during
the world switch. The content of the caches, with regard to
the security state, is dynamic. Any cache line can be evicted
to make space for new data, regardless of its security state.
In other words, it is possible for a secure cache line fill to
evict a non-secure cache line, and vice versa. This cache
design is the key enabler for launching side-channel attack
against the protected execution in TrustZone.

2.3. Cache Side-Channel Attack

Traditional cryptanalysis focuses on the cryptographic
algorithm and develops attacks exploiting theoretical weak-
ness. On the other hand, side-channel attacks focus on
information leaked through hardware or software features
of a cryptographic implementation.

Side-channel attacks are well-studied in computer se-
curity [14], [11], [22]. With significant research on cache
side-channel attacks [14], [11], [27], [28], [29], [30], [13],
[23], [31], [32], [33], [16], [17], [34], [21], [18], [20], [15]
and defenses [35], [36], [37], [38], [39], [40], [41], [42].
The concept of using side-channel information as a means
to attack cryptographic schemes first appeared in a seminal
paper by Kocher [14]. In [14], Kocher exploited differences

TABLE 1. COMPARISON OF TRUSPY TO OTHER ACCESS-BASED CACHE SIDE-CHANNEL ATTACKS ON ARM

Attacker Privilege Target Protection Attack Type
Attacks App Kernel OS TrustZone Evict+Reload Flush+Reload Prime+Probe Cache Storage
TruSpy X X X X
Armageddon [19] X X X
Alias-Driven [24] X X X
ROP-based [45] X X X

in computation times to break implementations of RSA and
discrete logarithm-based cryptographic algorithms. Besides
time, other physical attributes such as electromagnetic emis-
sion [12], power consumption [11] or acoustic noise [13]
have been investigated as viable sources for side-channel at-
tacks. Bernstein [23] was the first one to show the existence
of timing dependencies introduced by the data cache, which
allows key recovery for the modern T-table implementation
of AES [23]. There are three main categories of cache-based
side-channel attacks: time driven [23], trace driven [43], and
access driven [44], [31], [15], [19], [20]. The differences be-
tween them are the attackers’ capabilities, with time driven
attacks the least restrictive.

Osvik et al. [18] proposed two techniques for attackers to
determine which cache set is accessed by the victim, namely,
evict and time and prime and probe. In evict and time,
the attacker modifies a known cache set and observes the
changes in the execution time of the victim’s cryptographic
operation. In prime and probe, the attacker fills the cache
with known states before the execution of the cryptographic
operation and observes the changes in these cache states.
Gullasch et al. [17] identified another powerful cache side-
channel attack enabled by system memory deduplication.
The attacker flushes the memory shared between the ma-
licious process and the victim process, such as a crypto
library, with kernel samepage merging (KSM) enabled. After
the victim executes the cryptographic algorithm, the attacker
measures the time to load the memory into a register to
determine if the memory has been accessed by the victim
process. This new method was later named by Yarom et al.
as flush and reload in [16]. With the growing interests in
Cloud computing, another line of research [22], [46], [15],
[20] focuses on recovering secrets from neighboring virtual
machines rather than processes on the local machine.

Most of the current research focuses on side-channel
investigation of the Intel [47] x86 architecture processors,
but little has addressed the ARM [48] platform. The Bern-
stein attack was first tested by Weiss et al. [32] in ARM
processors. Besides Bernstein’s timing attack, evict and time
was used in [49], [19] to attack the T-table implementation
of AES. Memory duplication was also used in [45] to launch
a flush and reload attack to track the execution path of shared
libraries. Compared to [45], [19], the protection of our target
is different. Due to the memory protection by TrustZone, it
is impossible to use the evict and reload [19] or flush and
reload [45]. Instead, we have to use the less reliable prime
and probe approach, which is further complicated by the
random replacement policy of the processor cache. Though
the feasibility of prime and probe was briefly discussed

in [19], it provides limited details and assumes that the
physical page number can be retrieved from pagemap. We
assume that the attacker has no knowledge of the physical
memory layout.

In addition to cache timing side-channel, a recent study
demonstrated a new cache storage side-channel based on
unexpected cache hit in cache incoherence [24]. The attack
can recover secrets from the secure domain in the Cortex-A7
processor [24]. Compared to the storage-based side-channel
that requires the root privilege to cause programming faults
at the hardware level, we implement the first timing-based
side-channel attack that exploits the high-performance de-
sign of the ARM system. Unlike the storage side-channel,
our attack does not require kernel privilege and can be
launched with a zero permission Android app. Moreover,
the storage based side-channel relies on faults that can be
easily removed by eliminating the mismatched cacheability
attribute in future ARM designs. By contrast, the cache-
timing side-channel we exploit is based on the basic design
of TrustZone to fasten the context switching between two
worlds. It is difficult to remove the side-channel without
causing performance impact.

Table 1 compares our work with recent access-based
cache side-channel attacks on ARM devices [24], [19], [45].
In summary, we are the first to demonstrate fine-grained
side-channel information leakage from TrustZone in user
space with no permission app.

3. Threat Model and Assumptions

Figure 2. TruSpy Threat Model

TrustZone technology has been widely used in both
academic projects [50], [9], [51], [10], [52], [53], [7] and
commercial products [6], [5], [8]. As recommended in the
ARM TrustZone whitepaper [4], it is often used to protect
security sensitive workloads, such as cryptographic oper-
ations, in an isolated execution environment. In [53], [7],
[54], [55], cryptographic libraries are protected in the secure
world from a potentially compromised normal world OS
running in the normal world. The threat model for our work
is shown in Figure 2. We assume that a cryptographic library
is implemented in the secure world and provides services to
the OS in the normal world. Meanwhile, an attacker in the
normal world can execute a spy process, which can be either
a malicious Android app or the compromised normal world
OS, targeting at the cryptographic module in the secure
world. Though we demonstrate that it is possible to recover
the full AES128 key using only the app level attack, the
attacker that has compromised the normal world OS has
access to more controls in the system and thus can recover
the key in a shorter time.

Similar to previous works [15], [19], [33], [18], [23], we
assume the attacker (i.e. the spying process) can trigger the
encryption in the victim process. In our OS level attack,
we assume that there are vulnerabilities in the OS that
allow arbitrary code execution with kernel privilege. This
assumption is common for launching attacks on hardware-
enforced Trusted Execution Environments [56], [54]. For our
app level attack, we make no assumption of vulnerabilities
or hardware design flaws. Moreover, the Android app does
not require any Android permission to run the attacking
code. Therefore, the malicious code can be embedded into
all types of applications and remains stealthy. Our attack
can work in the user space as an unprivileged application.
Thus, it works on non-rooted systems. Our attack does not
assume specific Android functionality other than Java native
invocation (JNI). Lastly, we make use of the performance
event module in the kernel, which is included in most of
the mainstream Android systems after Android 1.0.

4. TruSpy Attack

ARM TrustZone [4] aims to provide hardware-based
system-wide security protection. Besides processor protec-
tion, TrustZone also provides isolation of memory and I/O
devices. In the ARM TrustZone cache architecture, an NS
flag is inserted into each cache line to indicate its security
state (normal vs secure). When the processor is running
in the normal world, the secure cache lines are not ac-
cessible. However, when there is cache contention, a non-
secure cache line can evict a secure cache line and vice
versa. This cache design improves the system performance
by eliminating the need to perform cache flush during a
world switch; however, the cache contention also leaks side
channel information [14].

TruSpy attack exploits the cache contention between the
normal world and the secure world as a cache timing side
channel to extract sensitive information from the secure
world. Though the flush and reload approach [16], [17],

[45] has recently gained considerable attention due to its
simplicity and efficiency, it cannot be applied here. Memory
sharing between attacker and victim is the key enabler
for flush and reload attack, but the memory protection of
TrustZone prevents such shared memory. Instead, our attack
follows the general technique of prime and probe [18] to
learn the cache access pattern of the victim process.

There are two requirements for a successful TruSpy
attack.

• First, the attacking process has to be able to fill in
cache lines at individual cache sets that will cause
cache contention with the victim process.

• Second, the attacker has to be able to detect changes
in the cache state. This is often accomplished by
measuring the time it takes to load a particular
memory address into register using a high precision
timer. Other methods include using cache perfor-
mance counter and cache incoherence [24].

In the rest of the section, we present the details of
how these two requirements are met in TruSpy. In 4.1, we
first present the overall workflow of launching a TruSpy
attack. We then present two TruSpy attacks with different
assumptions on the attacker’s capability. The first attack
presented in 4.2 assumes that the adversary has full control
of the operating system in the normal world. It has access to
various OS-level controls such as virtual-to-physical address
mapping and a high precision timer. We then relax the
assumption that the normal world OS kernel is compromised
and develop a more sophisticated attack that is capable
of recovering the secrets in the secure world from a non-
privileged Android app. The Android app attack presented in
5.4 runs in user space, and it does not require root privilege
or special Android permissions.

4.1. TruSpy Attack Workflow

The TruSpy attack flow consists of five major steps, as
shown in Figure 3. The first step is to identify the memory
to use for cache priming. The key is to find the memory that
will be filled in cache sets that are also used by the victim
process in the secure world. This step is often accomplished
by working out the mapping from virtual address to cache
sets [18], [15].

The second step is to fill the cache. In this step, the
spy process fills the cache with its own memory so that
each cache line that can be used by the victim is filled with
memory contents from the address space of the attacker.
This step will allow the attacker to obtain a known cache
state before handing the control flow to victim process to
spy on.

The third step is to trigger the execution of the victim
process in the secure world. When the victim process is
running, cache lines that were previously occupied by the
attackers are evicted to the DRAM. As a result, the cache
configuration from the attacker’s perspective has changed
because of the execution of the victim process. Since this
step is non-interruptible due to the protection of TrustZone,

Figure 3. TruSpy Attack Flow

it is more challenging for this attack to succeed without fine-
grained information on the victim process cache access.

The fourth step is to measure the change in cache con-
figuration after the victim finishes its execution in the secure
world. For each cache line that was previously primed in the
second step, the time to execute memory load instruction
ldr is measured. If the time it takes to load the memory
into register is short, then cache set of which the memory
is mapped to was not evicted by the victim process. In
other words, the victim did not execute a particular path
or did not make use of a particular data that is indexed
into this cache set. Once the results are recorded for all the
memory locations that were primed, the attack goes back to
the second step and continues to collect more side-channel
information.

The fifth step is the last step. The collected channel
information is analyzed to recover secret information such
as cryptographic keys within the secure domain.

4.2. Attacking from Normal World Kernel

Resources in the normal world are isolated from the
secure world under the protection of ARM TrustZone. The
memory separation between the two worlds is enforced
by the hardware. As a result, there is no shared memory
between secure world cryptographic module and the normal
world attacking process. Therefore, the more efficient flush
and reload approach [16], [17] is not applicable in this

setting. Despite the isolation of memory between the two
worlds, the cache system for both the secure world and
the normal world is implemented on common hardware
and allows resource contention between the two worlds.
Therefore, our attack follows the general approach of prime
and probe [18] to capture the side-channel information from
this resource contention on the shared cache between the two
worlds.

When the normal world OS of the embedded device is
compromised, attackers have access to a variety of resources
to facilitate the execution of the timing side-channel attack
against security sensitive processes in the secure world.
Among these resources, the capability to obtain virtual-
to-physical address mapping as well as the access to an
accurate timer is crucial in TruSpy.

4.2.1. Mitigating Cache Random Replacement. In mod-
ern ARM architecture, memory system generally has mul-
tiple levels. Cache is the top level memory system, and
there are multiple levels of caches as described earlier in
the background section. Many previous attacks [15], [16],
[17] exploit the inclusive cache design in Intel processors.
However, the cache in many ARM processors, such as
Cortex-A8, is neither inclusive nor exclusive. This implies
that the presence of a cache line in the top level cache
does not necessarily indicate its presence or absence in the
lower level caches. Furthermore, many cache controllers in
ARMv7 family use random replacement policy. Therefore,

when there is cache contention, a cache line from the n
cache way is chosen at random to fill the newly allocated
memory. This cache random replacement policy in ARM
processors adds additional noise when there are multiple
levels of caches in the hierarchy. As a result, the cache
architecture in ARM devices makes it a challenging task
to accurately assess changes in cache state.

Even though it is easier to distinguish memory access
from cache, lack of inclusiveness and random replacement
makes probing the lower level cache a lot less desirable.
In the OS level attack, due to the access to processor
tick level timer through the performance counter registers,
cache access to different levels can be reliably determined.
Therefore, in TruSpy, the top level L1 cache is used to
capture information leakage from the cache contention.

4.2.2. Allocating Memory for Prime and Probe. In order
to gain fine-grained information on cache access of the
victim process, an attacker must accurately fill its controlled
memory into specific cache areas so that it will cause cache
contention with the victim process. More specifically, the
attacker needs to find memory that will be mapped to the
same cache sets as the memory used by victim process.
As described previously in the background section, modern
cache controllers often use physical address for tagging and
indexing so that tasks can switch without the need to purge
cache contents.

To determine the cache set index that a memory address
maps to, it is necessary to obtain the physical address of
the memory. However, in modern computer architectures,
processor executions use virtual computer addresses. Mem-
ory access is translated from the virtual address to the
physical address by the MMU unit in the processor using the
page table configured by the operating system. This address
translation makes memory allocation that will cause cache
contention with the victim process more challenging.

An attacker who controls the OS can perform a page
table walk to figure out the physical address of any virtual
address. In fact, if the memory is allocated from the kernel
space, the physical address and the virtual address are offset
by a constant value 0x10000000 in many systems. In the
TruSpy attack, instead of using fragmented memory, we
make use of the section mapping in the ARM kernel. Many
modern processors come with cache for page translation
besides instruction and data cache. This cache is called the
translation lookaside buffer. Each page translation occupies
one entry in the translation buffer. Larger mapping such as
section paging is introduced by ARM to use the TLB more
efficiently. This functionality is also used in the ARM Linux
kernel to make large memory mappings.

Each memory section in ARMv7 has a size of 1 MB.
The lower 20 bits of all virtual memory addresses in a
mapped section are offsets in the section. Therefore, the
lower 20 bits of all virtual memory match their physical
address counterparts. The upper 12 bits are the section based
address, and those bits are different between the physical
address and virtual address. In Cortex-A8, each cache line
has a length of 64 bytes. The L1 cache is divided into two 4-

way 128-set caches. The level two cache is a unified 8-way
512-set cache of size 256 KB. The offset of memory section
spans 20 bits, which covers more address space than L1 and
L2 caches, therefore, we are able to use a single memory
section to fill all the cache lines in the Cortex-A8 cache,
eliminating the need to work out the physical address for
individual memory.

4.2.3. Priming the Cache. Once the prime and probe
memory is allocated, the attacker needs to fill in the cache.
However, as shown in Figure 3, prime and probe forms a
cycle that needs to be repeated many times. At the beginning
of prime step, the cache could be filled with secure cache
lines. Due to the security protection of TrustZone, secure
cache lines are not affected by cache maintenance operations
in the normal world [57]. Therefore, our first step is to
repeatedly load memory that is indexed into targeted cache
sets to drive out the secure cache lines using cache con-
tention. In our implementation, we reload enough memory
to refill the cache sets across all ways in all levels of cache
hierarchy. More specifically, in order to make sure that all
of the secure cache lines are evicted, we use eight distinct
physical memory ranges that map back to the same L2
cache sets to perform the secure line eviction since there are
eight cache ways in the Cortex-A8 L2 cache. By repeatedly
loading them, all secure cache lines are evicted and then
replaced with non-secure cache lines. With all the secure
cache lines being driven out, we issue a clean and invalidate
cache instruction to clean out the cache. The L1 cache is
then filled with our prime memory.

4.2.4. Probing the Cache with Cycle Counter. After the
execution of the victim’s sensitive function in step three,
the control flow is redirected back to the attacker. The
changes in the processor cache states due to secure world
execution have to be measured and recorded in this step.
More specifically, the attacker needs to determine if the
cache lines filled in the prime step are still in the cache.
We extract side-channel information from cache contentions
on the top level cache, L1 cache, in order to reduce the
noise added by the random replacement policy of the cache
controller. Therefore, a high precision timer is needed to
distinguish cache hits on L1 cache or lower level memory.
In x86 system, rdtsc instruction can be used to provide
sub-nanosecond resolution timestamps. However, on ARM
processors, such a timer is not available. Instead, ARMv7
architecture provides a performance monitoring unit, which
has a cycle count register (PMCCNTR). TruSpy makes use
of this cycle count register to measure the time it takes
to load memory into register to distinguish cache hits at
different levels of cache hierarchy.

A code snippet to measure the cache set is shown in
Listing 1. Instruction pipelining is a technique used in many
modern processors to realize instruction-level parallelism. It
enables higher processor throughput. On the other hand, it
could influence the measurement of memory load instruction
time. In order to measure only the memory load time,
isb instruction (instruction barrier) is used to finish all

instructions in the pipeline before the cycle count register is
read. Furthermore, in order to avoid other memory operation
affecting the timer measurement, a dmb (data memory bar-
rier) instruction is used to finish all the memory operations
before the timer measurement. The ldr instruction is then
used to load the memory address stored in r3 into r0.
dmb instruction is used to force the completion of memory
access before the cycle counter is read again. The difference
between the two timer readings is then stored into memory
address pointed in r9, which is an array used to store the
time results of loading individual cache sets. The result array
is pre-allocated before the execution of the prime and probe
attack. We configure the cache attribute of the memory page
to be no-write-allocate. Thus, when str instruction is used,
the value in register goes directly to the memory without
causing a cache fill. This ensures that execution of the
measurement function does not change the cache state itself.

1 . . .
i s b

3 dmb
mrc p15 , 0 , r1 , c9 , c13 , 0

5 l d r r0 , [r3]
dmb

7 mrc p15 , 0 , r2 , c9 , c13 , 0
sub r0 , r2 , r1

9 s t r r0 , [r9]
. . .

Listing 1. Probing Cache

Once the time is recorded, it can be compared to the
known value of the platform to classify the level of the
memory access. Memory access at different levels (L1,
L2, DRAM) can be distinguished reliably using the cycle
count register in the performance unit on Cortex-A8. Cache
hit on L1 cache has an average of 90 clock ticks, while
loading from L2 cache uses 107 clock ticks and loading
from memory takes 311 clock ticks. Thus, the performance
counter register, accessible only in privilege code, allows
the attacker to not only reliably tell the difference between
cache miss and cache hit, but also the cache level in the
cache hit.

4.3. Attack from Android App

It is significantly more challenging to launch TruSpy
attack from an Android app. Unlike x86, many architecture
features such as high precision timer and cache flush in-
struction are not available to a user space application on
ARM processors [48]. We will present our solution to these
challenges in the following paragraphes.

4.3.1. Obtaining Prime and Probe Set. The first challenge
is obtaining the memory that will cause cache contention
with the victim process in the secure world. We refer to this
memory as the probing memory, i.e. the memory used for
probing the victim. When the OS kernel is compromised,
virtual-to-physical address mapping is used to identify the
memory for cache probing. However, since the address
space of a user program is configured by the kernel, an

application only has access to virtual memory addresses, and
the virtual-to-physical address translation is not available to
a user process. Lack of access to this translation poses a
significant challenge, because most modern processor caches
are physically indexed and physically tagged. Without the
physical address of the memory, the attacker would not be
able to target specific cache lines during the prime and probe
attack.

All previous prime and probe based attacks [18], [20],
[15] focus on resolving the translation from virtual address
to physical address. Using this translation along with the
cache indexing scheme from physical address to cache set,
the attacker can identify memory that will map to a specific
cache location known to be used by the victim. In [20], [15],
the large offset within a huge page is used to gain insight
of the mapping from virtual memory address to cache set.
However, huge page support has not yet been incorporated
in the mainstream Linux kernels for ARM processors. Al-
ternatively, the unprotected Linux proc file system may be
used to figure out the process memory address mapping [19].
However, this address mapping information is protected in
many mainstream kernels [58] due to the severity of the
rowhammering attack [59]. Our memory allocation strategy
in TruSpy takes a different approach. Instead of extracting
the virtual-to-physical address mapping from unprotected
OS functions [19], TruSpy obtains the probing memory
without address translation. We present two complementary
methods for allocating the probing memory as follows.

Statistical Matching: With the statistical matching,
TruSpy identifies the probing memory page by observing
its correlation to the victim process. The intuition behind
our allocation method is that, for the memory page that
can cause contention with the victim, it is often possible to
observe patterns of victim’s footprint on the memory.

Using AES as an example, the memory of interest in
the victim process is the T-table, which has a size of 4 KB.
When a sensitive function, such as a cryptographic routine,
executes, it will pollute some portion of the L1 cache with
its access to T-table entries. Most modern systems use 4 KB
memory page. Without loss of generality, let’s assume the
T-table is split into two different virtual 4 KB pages. The
first half of the T-table will be mapped to higher addresses
of one page, while the second half of the T-table will be
mapped to lower addresses of another page. Furthermore, we
know that the table access during the encryption will cause
cache contentions with other processes that are mapped to
the same cache area. The attacker should be able to observe
the cache pollution pattern to determine if the page can
be used for probing. More specifically, when a user page
shows pollution in the higher addresses, we can conclude it
correlates to the first part of the T-table. On the other hand, if
the pollution is in the lower addresses of the page, then this
page maps to the second part of the T-table. The heat map
for cache pollution of two memory pages on our platform is
shown in Figure 4. The color shows the number of times that
the cached probing memory is evicted, therefore the darker
the color, the more pollution there is. The cache pollution
pattern of the two pages can be distinguished by observing

Figure 4. Cache Heat Map after AES Encryption

Figure 5. Cache Heat Map for Kernel Function Tracing

the color difference at the higher cache sets of the page.
Page 1 shows significantly more pollution at higher offsets.
Using this method, an attacker can reliably determine if
a memory page correlates to the first part of the T-table
or the second part of the T-table. Our implementation of
the attack uses mmap interface to allocate a large trunk
of memory (e.g., 2MB in our experiments) and use the
aforementioned method to determine the relative position of
the memory page with respect to the T-table by observing
the cache pollution. The labeled allocated memory can then
be used for prime and probe. Even though our illustrated
example is on T-table based implementation of AES for
the evaluation platform, the presented approach applies a
wide range of software and platforms, as long as the victim
process exhibits statistical properties.

Kernel Function Correlation: Even though statistical
matching offers unique opportunities to allocate probing
memory without resolving the virtual-to-physical memory
translation, it can be limited when there are too few samples
to be statistically significant or when there is no inherent
statistical property that can be exploited. We propose a
complementary method called kernel function correlation
when statistical matching does not apply. The basic idea
behind kernel function correlation is that it is possible to
determine the cache set of the virtual user memory page
by observing the caching pollution when a kernel function
with known physical offset is invoked. The first step is to
identify kernel functions that will map to different parts of
the targeted cache. In the second step, for any given virtual
memory page obtained in the attacker process, the cache
pollution statistics is collected when each of these kernel
functions is invoked. Kernel functions that are mapped to
the same cache area with the virtual user page should
cause the most cache line evictions. In the last step, the
physical address offset of the kernel function can be used to
determine the physical address offset as well as the cache
set number of the user page.

Figure 5 shows the cache pollution levels of two memory
pages when the same kernel function is invoked. Page 1
maps to the same portion of cache as the kernel function,
while page 2 maps to a different part of the cache. We can

see that they are clearly distinguishable. The cache pollution
at the offset of the kernel function that is invoked can be
clearly observed.

4.3.2. Probing the Cache with Performance Event Sys-
tem Call. As previously discussed, an accurate timer is
required to distinguish memory access from L1 cache, L2
cache or DRAM memory. In x86 systems, rdtsc is accessible
to both user space programs and the kernel. However, read-
ing the performance monitoring cycle counter in ARM is a
privileged operation that is only accessible to the kernel.
For an Android app on a protected (non-rooted) mobile
device, it is impossible to access cycle counter with the
MCR instructions. However, since Linux kernel version 2.6,
a performance event system call has been added to the kernel
for user space applications to access the cycle counter.

To use the performance event interface provided by the
kernel, the user space process first calls the perf event open
function with a perf event attr struct as a parameter. The
struct specifies the process id, CPU id and the type of
performance event to monitor. Upon successful registration,
the kernel returns a file descriptor for further control and
communication. Using the IOCTRL function, the perfor-
mance monitoring event can be reset and enabled. Now an
app can use system calls to obtain a 64-bit hardware cycle
counter from the performance monitoring unit in the ARM
processor.

Though the performance event function in the kernel
allows user space programs to access hardware timer using
file descriptor operations, the handling of system call still
introduces a significant amount of noise in the measurement.
This is especially true when the timer is used to measure
a single memory load operation, which is on the scale
of microseconds. The relative scale of the noise can be
observed using the L1 cache access time measurement as
an example. The mean of L1 cache access time measured
in kernel is 90.7 us and the standard deviation from a sample
of 1000 measurements is only 3.91. On the other hand, the
mean of L1 access measured with the performance event
system call interface is 1745 us and the standard deviation
is 1166.31, more than half of the mean. While L1 access can
be clearly distinguished with memory access in the kernel,

Figure 6. Memory LDR Operation Time using perf event read

distinguishing cache access from memory access using the
performance event interface as a timer is not a trivial task.
Differentiating access to the top level cache from access to
the secondary level cache is even more challenging with this
amount of noise. A probability distribution of memory load
time is shown in Figure 6 for cache hit and cache miss.
In a cache miss, memory content is filled into the caches
from the DRAM, then loaded into the processor register. In
a cache hit, the content is loaded into the register directly
from the fast processor cache. Therefore, ldr instruction is
significantly faster if it is a cache hit. However, as shown
in Figure 6, the two distributions overlap significantly due
to the added noise from the system call.

Due to the lack of inclusiveness or exclusiveness guar-
antee and the random replacement policy on cache in ARM
processors, TruSpy resortes to probing the L1 cache. In order
to use L1 cache for probing, it is necessary to distinguish
access to L1 cache and access to L2 cache. The timing
difference between access to different levels of cache is
significantly smaller than that between cache and physical
memory. This small difference in timing can be difficult to
measure due to the system call noise depicted in Figure 6.
Furthermore, there is no architecture support method to
fill memory only into L2 cache lines from the user space.
Though it is possible to use the write allocation trick [7]
to write only to L2, write alloc is not enabled by default
when memory pages are mapped to the user space process,
and the page caching attributes cannot be modified from the
user space. It becomes impossible for an attacker without
root privilege to fill only L2 cache lines to even measure
the L2 access time.

To tackle this challenge, we make an assumption on
the L2 access time distribution and use the value that will
maximize the probability of correctly labeling samples to
L1 cache access and L2 cache access in two steps.

First, we assume that the access time distribution of
L2 is similar to the access time distribution of memory.
We make this assumption because memory access from L2
will often cause cache eviction from L1. Due to lack of
inclusiveness in the cache hierarchy, the cache line evicted
from L1 is most likely not cached in L2. In order to make

space for the newly evicted L1 cache line, a line in L2 has
to be randomly selected for eviction out into the memory,
and the evicted line from L1 is now stored in L2. This
chained cache line eviction also applies when contents are
loaded from memory. Though the exact strategy in cache
miss handling varies in different processor implementations,
almost all of them involve filling the cache line in one or
more levels of cache. This cache fill is accompanied by
cache eviction as described above. As a result, we use the
probability distribution of memory access to estimate the
probability distribution of L2 cache access. This estimation
is not perfect, and it can always be improved with better
models by incorporating details in the cache miss handling
algorithm and the cache replacement algorithm for the spe-
cific processor model.

The next step is to estimate the population mean. We
assume that despite of the noise in the measurement pro-
cess, the population mean of access time from different
levels of the memory hierarchy (L1, L2, DRAM) using
perf event read should follow the general patterns mea-
sured by directly utilizing the performance counter. This
measurement is hardware specific, and can be obtained by
the attacker on a test system or from hardware datasheets.
We shift the mean of the population of memory access
time proportionally as those values measured using the raw
performance counter to compensate the fact that the line fill
is from L2 instead of DRAM.

With the estimated population of L2 cache access time,
we are able to calculate an optimal cut-off value to maximize
the probability of correctly asserting the cache access level.
This optimal cut-off value is key to enabling fine-grained
access-based timing side-channel given a noisy timer. Our
approach to obtain the optimal cut-off value is not restricted
to the performance event timer. If the performance event
timer is not available, we can still apply the same technique
to get an estimate using less accurate timers such as POSIX
real-time clock or another thread that keeps an incrementing
variable.

5. Extracting Fine-Grained Secret
- Applying TruSpy to AES

To demonstrate the capability of TruSpy on extracting
fine-grained secrets from the secure world, we apply TruSpy
to recover the AES secret key protected by TrustZone.
Though there are new hardware accelerators for AES [47],
[48] that do not use T-tables in memory, we select AES as
the target victim since the side-channel information leakage
of AES is well-studied and has been used as a benchmark in
other studies on side-channel information leakage of isolated
containers [31], [18], [19], [15], [24].Thus, our experimental
results, such as bits correctly recovered, can be compared
with other related works. Furthermore, AES is representative
for all table based cryptographic implementations. The same
attack on the C implementation of AES applies to other table
based implementations.

In the rest of the section, we will present the evaluation
of TruSpy on AES encryption. The section is organized

as follows. The side-channel vulnerability of table based
AES implementation is introduced in 5.1. The evaluation
platform is then presented in 5.2. Lastly, the detail results
and methods for the attack from kernel and from normal
world app are presented in 5.3 and 5.4 respectively.

5.1. AES Side-Channel

Advanced Encryption Standard (AES) [60] is one of the
most widely used symmetric key cryptographic algorithm. In
this section, we show how TruSpy can be applied to recover
the full AES key protected in the secure world of TrustZone.
More specifically, our attack targets the software-based AES
implementation in the OpenSSL 1.0.1f. The latest version
of OpenSSL is currently 1.0.1h, which has the same AES
implementation as 1.0.1f in our demonstration.

Figure 7. The Last Round of AES Algorithm

As shown in Figure 7, AES is built on top of four basic
operations, substitution bytes, shift rows, mix columns, and
add round key. When a block needs to be encrypted, the
secret key is first expanded into N round keys. In the case
of AES128, it is 10 rounds. If we denote the plaintext input
block to be X , the round number be i, round key to be Ki,
mix column to be MC(), substitution bytes be SB(), and
lastly shift rows be SR(), then we can rewrite the process
described in Figure 7 mathematically as,

Xi + 1

Xi ⊗Ki i = 0

MC(SR(SB(Xi)))⊗Ki 0 < i < imax

SR(SB(Xi)))⊗Ki imax

To speed up the Galois field (GF) operations, modern
software-based AES implementations, including the latest
OpenSSL, use precomputed values stored in a large table.
There are four tables in the OpenSSL, T0 to T4, each
has 256 integers and occupies 1 KB memory. Therefore,
the total size of all four tables is 4 KB. The entire table
can often fit in the top level processor cache. With this
technique, GF operations are translated into simple table

lookups in cache and bit shifts, significantly improving the
performance. Unfortunately, this table-based implementation
also offers an opportunity to extract the secret key based on
access patterns of the table.

While there are various ways to utilize this access pattern
to extract keys [33], [18], [31], our attack focuses on the last
round of the AES [33], [15]. In AES-128, it is possible to
deduce the original encryption key with any one of the round
keys, since the key schedule is invertible [33]. Let C[j]
denote the jth byte of the ciphertext C after the encryption,
and the last round can be written as

C[j] = Tl[Ximax
]⊗Kimax

[j] (1)

From Equation 1, we notice that the last round key can
be recovered by taking the XOR of the T-table entry and
the cipher text value. In our system model, cryptographic
processing is executed in the secure world. A normal world
process provides plaintext to the secure world and receives
the ciphertext as result from the secure world. Therefore,
the ciphertext is known to the attacker. The other variable
in the equation is the T-table entry, which can be guessed
from the cache access pattern obtained from the prime and
probe.

Each cache line in Cortex-A8 has 64 bytes. Each entry
in the T-table is an integer. Therefore, each cache line
holds 16 T-table entries. During the TruSpy attack, when
a cache line previously occupied by the attacker is evicted
during the execution of AES by the victim, the attacker can
deduce that 1 out of the 16 possible entries in the cache
line was used in the encryption process, and thus producing
16 possible candidates for the jth key byte. Ideally, the
attacker needs to interrupt the encryption process and use
only the cache profile changed in the last round to deduce
the key. Unfortunately, since secure world is protected by
the TrustZone and is not interruptible, a cache miss in the
probing step does not necessarily indicate that the victim
in the secure world used that particular T-table entry on the
last round. Such uncertainty can be compensated with larger
samples. Assuming AES is used in the CBC mode, the input
blocks to the AES algorithm can then be considered random
bits. Under random input, each T-table entry should have
(1− Prob(no access)) ≈ 92% probability of being used in
each round of encryption. However, when the T table entry
is used in the last around, cache probing would show it is
always used. Therefore, by probing more samples, it is still
possible to deduce the value of the key byte.

In our implementation, since the AES key has 16-byte
length and each byte can be any of the 0 to 255 values,
we set up a 256 by 16 two-dimensional array to store the
statistics. After each round of prime and probe, for each of
cache lines evicted by the encryption process, we increment
the counter value at result[j][ki]. In the end, we use the
counter value at result[j][ki] as the probability of jth key
byte equal to ki.

5.2. Evaluation Platform Configuration

We build a prototype of TruSpy on the FreeScale
i.MX53 development board. It is equipped with a single
ARM Cortex-A8 processor with 1GB DDR3 DRAM. ARM
Cortex-A8 has two levels of cache. The top level one (L1)
cache has two 4-way 128-set caches, one for data and one
for instruction. The level two (L2) cache is an 8-way 512-set
unified cache. The Android system is ported from Adeneo
Embdedded [61], running Android 2.3.4 platform with a
2.6.33 Linux kernel. The security monitoring code is approx-
imately 800 source lines of code (SLOC). To demonstrate
the attack, we port the C reference AES functionality in
OpenSSL 1.0.1f [62] into TrustZone. The AES C reference
implementation is the default solution when no-hw and no-
asm options are specified. Lastly, since the security monitor
code size is small for minimizing the trust computing base
(TCB), there is no file system support in the secure world.
Once the AES code is loaded into secure memory along
with the rest of the security monitor system, it stays at a
fixed location in the physical memory. This implies that the
four T-tables have a fixed physical memory address.

Figure 8. Platform Software Deployment

To use a TrustZone function from an Android app, we
implement a full stack service framework based on the
design published in the ARM TrustZone whitepaper [4].
More specifically, we write a simple secure execution driver
that allows a user space app to interact with the crypto-
graphic module in the secure world. The software architec-
ture diagram is shown in Figure 8. The TZ library exposes
three types of functions to the user application, set key,
encrypt, and decrypt. Upon receiving a request from the
user process, the TZ library prepares the memory buffers
and structures and then invokes the system call using the
swi instruction. Next, the TZ driver in the kernel space
copies the user buffer into kernel and switches into the
security monitor via smc instruction. Once the AES crypto
module receives the request from the TZ service manager,
it processes the request. When the request is to encrypt, the

crypto module operates on the normal world memory for
reading in plaintext and writing out ciphertext. The code
and data of the cryptographic module are stored within the
secure world memory and thus protected from the normal
world. Cache is enabled in all components, including stack,
code, and data of all secure components.

In our attack demonstration, the encryption key is chosen
at random by the TZ service manager in the secure world.
Following the design philosophy of TrustZone, we assume
that most of the I/O and content consumers reside in the nor-
mal world. Therefore, the AES crypto module in the secure
world offers encryption and decryption service to processes
in the normal world. Each user level process can trigger an
encryption via the TZ support library. Therefore, the user-
level process knows the start and the end of encryption as
well as the resulting ciphertext.

5.3. TruSpy Attack from Normal World OS

We implement the OS-level attack as a kernel module.
The prime and probe steps are implemented in assembly
to avoid cache pollution during the probing process. We
assume that the physical address of the AES T-table is
known through reverse engineering. Memory section is used
to map memory into cache sets. We then search for memory
that can cause cache contention with the victim using the
large offsets in memory section.

Once the memory to be used for prime and probe is
identified, the attack repeatedly invokes the AES encryption
function with random plaintext, and record cache changes
after each encryption. After a fixed number of encryptions,
it attempts to guess the key. The effectiveness of the attack
is shown in Figure 9. The x-axis shows the number of
encryptions observed, and the y-axis shows the number of
key bytes correctly guessed. For AES128, the key length is
16 bytes (128 bits). Each data point is an average of 100
experiments. We can see from the graph that it takes roughly
3000 rounds of encryption for the attacker to correctly
guess the entire key. It takes approximately 2.5 seconds
to execute and analyze 3000 rounds of AES encryption on
our embedded processor. Note that when one or two bytes
are not guessed correctly, the correct key byte is often the
second or third on the list. Therefore, if the result analysis
is done on a different machine with more computing power,
the number of encryptions required can be further reduced.

5.4. TruSpy Attack from Normal World App

It is significantly more challenging to attack processes
in the secure world from a non-privileged Android app in
the normal world. First, due to lack of access to virtual-
to-physical address mapping, we have to use the statistical
matching method introduced earlier in the paper to allocate
the memory pages used to probe the T-table access. For the
TruSpy attack on our evaluation platform, since the memory
allocation of the table is pre-compiled in the data section
of the binary and it remains fixed and contiguous within
the secure domain, we can identify the offset of the table

Figure 9. Attack from Normal World OS

through reverse engineering. We know that the T-table starts
off at 0x1780, therefore the T-table is mapped to 0x0 to
0x780 and 0x1780 to 0x2000 in the L1 cache as shown in
Figure 10. Given that each memory page has 0x1000 bytes,
a memory page will either have cache pollution from 0x0
to 0x780 or from 0x780 to 0x1000. If we observe that the
memory page has cache pollution at offset 0x780 to 0x1000,
then we know that this page correlates to the first part of the
T-table, and resides in the upper L1. On the other hand, if we
observe cache pollution from offset 0x0 to 0x780, then we
know it most likely correlates to second part of the T-table
and maps to the lower part of L1. Ideally, we would want
to use memory pages that are mapped to the same L2 cache
area as the T-table for more accurate priming. Unfortunately,
using statistical matching, we can only gain knowledge if the
memory page is suitable to use for probing, which is most
likely determined by its offset in the L1 cache. Given the
noise level of perf event read system calls, random cache
replacement in the cache hierarchy, and inability to directly
write to L2 in user space, it is very difficult to identify the L2
mapping a memory page based on the timing side-channel
itself.

Figure 10. TruSpy Probing Memory Allocation

The second challenge is the lack of access to an accurate
timer. In order to distinguish L1 cache access from memory
access to other levels of memory, we need to pinpoint the

tiny difference between L1 access time and L2 access time.
However, there is no architectural support to write directly
to L2. Therefore we use the estimated L2 access time as
discussed in 4.3.2. Even though we can choose the optimal
cut-off value to maximize the probability of correctly differ-
entiating L1 access from L2 access, the inaccurate timer still
causes a significant amount of noise in the probing process.

Despite the two aforementioned challenges, we are still
able to steal the full AES key within 9000 rounds of
encryption. The results of attack from Android app is shown
in Figure 11. The x-axis shows the number of encryptions
observed, and the y-axis shows the number of key bytes
correctly guessed. It takes approximately 9000 encryptions
to correctly guess all the key bytes. It takes approximately 14
minutes to run and analyze 9000 rounds of AES encryption
on our test platform. Much of this time is used in loading a
large amount of memory in order to evict the secure cache.
Since user space does not have access to the translation
from virtual-to-physical address to optimally evict secure
cache lines, we use the naive approach of loading significant
amount of memory to increase the probability of evicting all
secure cache lines.

Figure 11. Attack from Normal World Application

6. Countermeasure

Since the first cache-based timing side-channel at-
tack [14] proposed nearly two decades ago, much research
has been done to advance the attack and defense on cache
information side-channel. Similar to the previous work, the
ultimate goal of this study is to further our understanding
in side-channel information leakage in secure containers
and improve future designs. Defense against side-channel
attacks generally follows two directions. The first direction
attempts to work on the implementation of the cryptographic
operation itself [63], while the second direction focuses on
hardening the system on which the cryptographic operations
runs on to eliminate the timing side-channel [64], [37], [65],
[36], [66].

6.1. Application Oriented Defense Approach

Among the general approaches to improve the software
implementation of the cryptographic algorithm, the most
straight forward approach is to focus on the cryptographic
algorithm itself. Hardware-based cryptographic implemen-
tations such as AES-NI instruction [47] can be used to re-
place the software-based implementation and thus eliminate
the side-channel information leaked from the execution of
software. OpenSSL also adopts one mitigation to preload
the AES T-table [62], so that the access to the table can no
longer be detected by attackers, assuming that the execution
of the cryptographic algorithm cannot be interrupted. On the
other hand, Cock et al. [67] demonstrate that despite the
constant time fix in OpenSSL 1.0.1e, it still exhibits a con-
siderable side-channel on the ARM Exynos4412 processor.

There are also defense efforts to randomize the software
control flow [63] so that there is no fixed relation between
the execution path and the cache set. Without grasping
such mapping information, it would be impossible for the
attacker to deduce secrets from the cache profile. Similar
techniques can be applied to randomize T-table entries. This
way, TruSpy will not be able to aggregate the statistics to
deduce the key.

6.2. System Oriented Defense Approach

This general direction focuses on breaking the two re-
quirements of cache timing side-channel attacks, including
TruSpy. First, an attacker has to be able to fill memory into
cache to cause resource contention with the victim process,
a line of research focuses on eliminating this resource
contention. In [64], memory allocations are crafted by the
kernel so that attacker memory will never be mapped to the
same cache set as the victim memory. It can successfully
thaw our Android app level attacker; however, the OS level
attacker, who has full control of all non-secure memory, can
still succeed. The defender can also preload the sensitive
binary in the cache before execution [7] or flush sensitive
secure cache to memory to eliminate the information on the
table access. However, this approach has high performance
impacts on TrustZone-enabled ARM platforms that are de-
signed to share the cache between two worlds without the
need to flush cache during world switching. Lastly, there
are also secure cache hardware designs that can eliminate
the cache timing side-channels with moderate performance
penalty [68], [69].

The second requirement of creating a cache timing side-
channel is the ability to detect changes in the cache states.
Thus, the attacker needs a high precision timer to distinguish
memory access from different levels of memory system.
If we can constrain the access of the kernel performance
event interface to only privileged processes, we can prevent
the access to perf event from Android apps in non-rooted
mobile phones.

7. Discussion and Future Work

7.1. Applicability to Other Target Victims

In this work, we use AES as a demonstration to show
that TruSpy is capable of extracting fine-grained informa-
tion, such as secret keys, from the secure world of Trust-
Zone. However, the applicability is by no means limited to
AES. The same method that tracks T-table access in AES
can be applied to other table based cryptographic implemen-
tation [15], [19], [20]. The methods presented in TruSpy can
also be applied to trace the execution of sensitive input-
dependent function in the secure world as demonstrated
in [22], [19]. Lastly, when KASLR is implemented in the
secure world, it is plausible to use cache side-channel to
break it [70].

7.2. Applying TruSpy on Other Platforms

Though the principle of TruSpy is not restricted to single
core processor, since our current implementation makes use
of the top level L1 cache to reduce noise, some further study
needs to be performed to extend our mechanism on multi-
core processors. In many modern multi-core processors,
each individual processor core has its own dedicated L1
cache. In order to continue using cache contention on L1 as
the source of side-channel information, the attack needs to
be scheduled to run on the same processor core right after
the victim core, which could often be difficult to achieve.
On the other hand, the last level cache is usually shared
by all cores, and a number of previous works focus on
using the last level cache as the source for side-channel
information [15], [19], [22], [20]. When extending TruSpy
to work on multi-core processors such as ARM Cortex-
A9 [26], the attack will need to use the last level shared
cache to apply the prime and probe technique. Fortunately,
on some ARM processors such as CortexA-9, the cache
controller enforces inclusiveness to make sure any cache
line present in a higher level cache is also present in the
lower level cache. However, there will be additional noise in
the lower level cache due to the random cache replacement
policy. It also is possible to exploit cache locking [25], [26]
to prevent cache fill into specific cache ways and thus reduce
noise in the channel.

8. Conclusions

In this work, we propose the first timing based cache
side-channel attack capable of extracting secrets from the
hardware-protected secure world in TrustZone. We develop
two attacks, one in the kernel space and one in the user space
of the normal world, respectively. When the normal world
OS is compromised, it takes approximately 3000 rounds of
observed AES encryption in 2.5 seconds to extract the full
AES encryption key from the secure world. For a malicious
Android app that does not have the root privilege, despite
the lack of access to virtual-to-physical translation as well

as an accurate timer, our attack can correctly extract the full
AES key with around 9000 rounds of observed encryption
in a couple of minutes. Since our attack relies on one basic
design of TrustZone enabled cache architecture and does not
use any unique functionalities from a particular version of
Android, it has impacts on a wide range of ARM processors
running various Android versions.

Disclaimer

The opinions expressed in this article are the authors’
own and do not reflect the view of the National Science
Foundation or any agency of the U.S. government.

References

[1] “Google i/o 2016.” https://events.google.com/io2016/. Accessed:
2016-07-27.

[2] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity internet of things
devices,” 2016.

[3] “Arm holdings and qualcomm: The winners in mo-
bile.” http://www.forbes.com/sites/darcytravlos/2013/02/28/
arm-holdings-and-qualcomm-the-winners-in-mobile/.

[4] “ARM Security Technology, Building a Secure System using Trust-
Zone Technology,” apr 2009.

[5] “Samsung knox.” https://www.samsungknox.com/en.

[6] “Sierraware.” http://www.sierraware.com/
open-source-ARM-TrustZone.html.

[7] N. Zhang, K. Sun, W. Lou, and Y. T. Hou, “Case:cache-assisted secure
execution,” in IEEE Symposium on Security and Privacy, 2016.

[8] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen, “Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 90–102, ACM, 2014.

[9] Y. Zhou, X. Wang, Y. Chen, and Z. Wang, “Armlock: Hardware-based
fault isolation for ARM,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pp. 558–569, 2014.

[10] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure
channel between rich execution environment and trusted execution
environment,” in Proceedings of the Network and Distributed System
Security Symposium, NDSS’15, 2015.

[11] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology-CRYPTO’99, pp. 388–397, Springer, 1999.

[12] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“Ecdsa key extraction from mobile devices via nonintrusive physical
side channels.” Cryptology ePrint Archive, Report 2016/230, 2016.
http://eprint.iacr.org/.

[13] D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via
low-bandwidth acoustic cryptanalysis,” in Advances in Cryptology–
CRYPTO 2014, pp. 444–461, Springer, 2014.

[14] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Advances in Cryptology-CRYPTO’96,
pp. 104–113, Springer, 1996.

[15] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack
that works across cores and defies vm sandboxing – and its application
to aes,” in 2015 IEEE Symposium on Security and Privacy, pp. 591–
604, May 2015.

[16] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise,
l3 cache side-channel attack,” in 23rd USENIX Security Symposium
(USENIX Security 14), pp. 719–732, 2014.

[17] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing
access-based cache attacks on aes to practice,” in Security and Privacy
(SP), 2011 IEEE Symposium on, pp. 490–505, IEEE, 2011.

[18] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: the case of aes,” in Topics in Cryptology–CT-RSA 2006,
pp. 1–20, Springer, 2006.

[19] M. Lipp, D. Gruss, R. Spreitzer, and S. Mangard, “Armageddon: Last-
level cache attacks on mobile devices,” CoRR, vol. abs/1511.04897,
2015.

[20] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in 2015 IEEE Symposium
on Security and Privacy, pp. 605–622, May 2015.

[21] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant
side-channel attacks in paas clouds,” in 21st ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’14, (New
York, NY, USA), pp. 990–1003, ACM, 2014.

[22] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security, pp. 199–212, ACM, 2009.

[23] D. J. Bernstein, “Cache-timing attacks on aes.” https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf, 2005.

[24] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache storage
channels: Alias-driven attacks and verified countermeasures,” in IEEE
Symposium on Security and Privacy, 2016.

[25] ARM Cortex-A8 Processor Technical Reference Manual, June 2012.

[26] ARM Cortex-A9 Processor Technical Reference Manual, June 2012.

[27] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults,” in Advances in
Cryptology-EUROCRYPT’97, pp. 37–51, Springer, 1997.

[28] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology-CRYPTO’97, pp. 513–
525, Springer, 1997.

[29] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on ssh.,” in USENIX Security Symposium,
vol. 2001, 2001.

[30] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks with-
out memory disclosures: Remote side channel attacks on diversified
code,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, (New York, NY,
USA), pp. 54–65, ACM, 2014.

[31] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on
aes, and countermeasures,” Journal of Cryptology, vol. 23, no. 1,
pp. 37–71, 2010.

[32] M. Weiss, B. Heinz, and F. Stumpf, “A cache timing attack on aes
in virtualization environments,” in Financial Cryptography and Data
Security, pp. 314–328, Springer, 2012.

[33] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute!
a fast, cross-vm attack on aes,” in Research in Attacks, Intrusions and
Defenses, pp. 299–319, Springer, 2014.

[34] A. C, R. P. Giri, and B. Menezes, “Highly efficient algorithms for aes
key retrieval in cache access attacks,” in IEEE European Symposium
on Security and Privacy, 2016.

[35] B. A. Braun, S. Jana, and D. Boneh, “Robust and efficient elimination
of cache and timing side channels,” arXiv preprint arXiv:1506.00189,
2015.

[36] S.-J. Moon, V. Sekar, and M. K. Reiter, “Nomad: Mitigating arbitrary
cloud side channels via provider-assisted migration,” in Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’15, (New York, NY, USA), pp. 1595–1606,
ACM, 2015.

[37] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in
cloud computing,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 406–418, March
2016.

[38] Q. Xiao, M. K. Reiter, and Y. Zhang, “Mitigating storage side
channels using statistical privacy mechanisms,” in 22nd ACM SIGSAC
Conference on Computer and Communications Security, (New York,
NY, USA), pp. 1582–1594, ACM, 2015.

[39] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-
channels through obfuscated execution,” in 24th USENIX Security
Symposium (USENIX Security 15), (Washington, D.C.), pp. 431–446,
USENIX Association, Aug. 2015.

[40] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box
mitigation of timing channels,” in 17th ACM Conf. on Computer and
Communications Security (CCS), pp. 297–307, October 2010.

[41] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“Secdcp: Secure dynamic cache partitioning for efficient timing chan-
nel protection,” in 53rd Design Automation Conference (DAC), June
2016.

[42] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C.
Myers, “Sharing mobile code securely with information flow control,”
in IEEE Symp. on Security and Privacy, pp. 191–205, May 2012.

[43] O. Acıiçmez and Ç. K. Koç, “Trace-driven cache attacks on aes (short
paper),” in Information and Communications Security, pp. 112–121,
Springer, 2006.

[44] C. Percival, “Cache missing for fun and profit,” 2005.

[45] X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented flush-reload side
channels on arm and their implications for android security,” in
Proceedings of the 15th ACM Conference on Computer and Com-
munications Security, CCS ’16, 2016.

[46] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM conference on Computer and communications security,
pp. 305–316, ACM, 2012.

[47] Intel 64 and IA-32 Architectures Software Developer’s Manual, Sep
2013.

[48] ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition,
Dec 2011.

[49] R. Spreitzer and T. Plos, “Cache-access pattern attack on disaligned
aes t-tables,” in Constructive Side-Channel Analysis and Secure De-
sign, pp. 200–214, Springer, 2013.

[50] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Cap-
kun, “Smartphones as practical and secure location verication tokens
for payments,” in Proceedings of the Network and Distributed System
Security Symposium, NDSS’14, 2014.

[51] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure online mobile
advertisement attestation using trustzone,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys 2015, Florence, Italy, May 19-22, 2015,
pp. 75–88.

[52] J. Winter, “Trusted computing building blocks for embedded linux-
based arm trustzone platforms,” in Proceedings of the 3rd ACM
workshop on Scalable trusted computing, pp. 21–30, ACM, 2008.

[53] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone
to build a trusted language runtime for mobile applications,” in ACM
SIGARCH Computer Architecture News, vol. 42, pp. 67–80, ACM,
2014.

[54] D. Rosenberg, “Reflections on trusting trustzone,” 2014.

[55] “Drm fusion downloadable and embedded drm solutions for ios,
android and linux.” http://www.insidesecure.com/content/download/
2682/18371/version/4/file/A4 FLYER DRM Fusion Agent Gene
250315 2P HD.PDF. Accessed: 2016-04-27.

[56] R. Thomas, “Next generation mobile rootkits,” Black Hat Europe,
2013.

[57] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, “Cachekit: Evading
memory introspection using cache incoherence,” in IEEE European
Symposium on Security and Privacy, 2016.

[58] “Linux archive - patch 3.14 00.79.” http://lwn.net/Articles/637892/.
Accessed: 2016-04-30.

[59] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” in Black Hat conference, https://www. black-
hat. com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-
Rowhammer-Bug-To-Gain-Ker nel-Privileges. pdf, 2015.

[60] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[61] “Reference bsps for freescale i.mx53 quick start board.” http:
//www.adeneo-embedded.com/Products/Board-Support-Packages/
Freescale-i.MX53-QSB. Accessed: 2015-04-30.

[62] E. A. Young, T. J. Hudson, and R. Engelschall, “Openssl: The open
source toolkit for ssl/tls,” 2011.

[63] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Thwarting cache side-channel attacks through dynamic software
diversity.,” in NDSS, 2015.

[64] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: system-level
protection against cache-based side channel attacks in the cloud,” in
Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12), pp. 189–204, 2012.

[65] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box
mitigation of timing channels,” in Proceedings of the 17th ACM
conference on Computer and communications security, pp. 297–307,
ACM, 2010.

[66] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach
to defeating side channels in last-level caches,” arXiv preprint
arXiv:1603.05615, 2016.

[67] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile: An
empirical study of timing channels on sel4,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 570–581, ACM, 2014.

[68] F. Liu and R. B. Lee, “Random fill cache architecture,” in Mi-
croarchitecture (MICRO), 2014 47th Annual IEEE/ACM International
Symposium on, pp. 203–215, IEEE, 2014.

[69] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ACM SIGARCH Computer
Architecture News, vol. 35, pp. 494–505, ACM, 2007.

[70] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space aslr,” in Security and Privacy (SP), 2013
IEEE Symposium on, pp. 191–205, IEEE, 2013.

