You are looking at a specific version 20160907:140220 of this paper. See the latest version.

Paper 2016/847

On the smallest ratio problem of lattice bases

Jianwei Li

Abstract

Let $(\mathbf{b}_1, \ldots, \mathbf{b}_{n})$ be a lattice basis with Gram-Schmidt orthogonalization $(\mathbf{b}_1^{\ast}, \ldots, \mathbf{b}_{n}^{\ast})$, the quantities $\|\mathbf{b}_{1}\|/\|\mathbf{b}_{i}^{\ast}\|$ for $i = 1, \ldots, n$ play important roles in analyzing lattice reduction algorithms and lattice enumeration algorithms. In this paper, we study the problem of minimizing the quantity $\|\mathbf{b}_{1}\|/\|\mathbf{b}_{n}^{\ast}\|$ over all bases $(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n})$ of a given $n$-dimensional lattice. We first prove that there exists a basis $(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n})$ for any lattice $L$ of dimension $n$ such that $\|\mathbf{b}_1\| = \min_{\mathbf{v} \in L\backslash\{\mathbf{0}\}} \|\mathbf{v}\|$, $\|\mathbf{b}_{1}\|/\|\mathbf{b}_{i}^{\ast}\| \leq i$ and $\|\mathbf{b}_{i}\|/\|\mathbf{b}_{i}^{\ast}\| \leq i^{1.5}$ for $1 \leq i \leq n$. This leads us to introduce a new NP-hard computational problem, that is, the smallest ratio problem (SRP): given an $n$-dimensional lattice $L$, find a basis $(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n})$ of $L$ such that $\|\mathbf{b}_{1}\|/\|\mathbf{b}_{n}^{\ast}\|$ is minimal. The problem inspires the new lattice invariant $\mu_{n}(L) = \min\{\|\mathbf{b}_1\|/\|\mathbf{b}_n^{\ast}\|: (\mathbf{b}_1, \ldots, \mathbf{b}_n) \textrm{ is a basis of } L\}$ and new lattice constant $\mu_{n} = \max \mu_{n}(L)$ over all $n$-dimensional lattices $L$: both the minimum and maximum are justified. The properties of $\mu_{n}(L)$ and $\mu_{n}$ are discussed. We also present an exact algorithm and an approximation algorithm for SRP. To the best of our knowledge, this is the first sound study of SRP. Our work provides a new perspective on both the quality limits of lattice reduction algorithms and complexity estimates of enumeration algorithms.

Note: The paper was submitted to Information and Computation.

Metadata
Available format(s)
PDF
Publication info
Preprint. MINOR revision.
Keywords
lattice reductionlattice enumeration algorithmssmallest ratio problem
Contact author(s)
lijianwei2015 @ amss ac cn
History
2022-03-18: last of 3 revisions
2016-09-07: received
See all versions
Short URL
https://ia.cr/2016/847
License
Creative Commons Attribution
CC BY
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.