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Abstract

We describe a lightweight protocol for oblivious evaluation of a pseudorandom function (OPRF) in
the presence of semi-honest adversaries. In an OPRF protocol a receiver has an input r; the sender gets
output s and the receiver gets output F (s, r), where F is a pseudorandom function and s is a random seed.
Our protocol uses a novel adaptation of 1-out-of-2 OT-extension protocols, and is particularly efficient
when used to generate a large batch of OPRF instances. The cost to realize m OPRF instances is roughly
the cost to realize 3.5m instances of standard 1-out-of-2 OTs (using state-of-the-art OT extension).

We explore in detail our protocol’s application to semi-honest secure private set intersection (PSI).
The fastest state-of-the-art PSI protocol (Pinkas et al., Usenix 2015) is based on efficient OT extension.
We observe that our OPRF can be used to remove their PSI protocol’s dependence on the bit-length of
the parties’ items. We implemented both PSI protocol variants and found ours to be 3.1–3.6× faster
than Pinkas et al. for PSI of 128-bit strings and sufficiently large sets. Concretely, ours requires only 3.8
seconds to securely compute the intersection of 220-size sets, regardless of the bit length of the items.
For very large sets, our protocol is only 4.3× slower than the insecure näıve hashing approach for PSI.

1 Introduction

This work involves OT, OPRF and PSI constructions. We start by reviewing the three primitives.

Oblivious Transfer. Oblivious Transfer (OT) has been a central primitive in the area of secure compu-
tation. Indeed, the original protocols of Yao [Yao86] and GMW [Gol04, GMW87] both use OT in a critical
manner. In fact, OT is both necessary and sufficient for secure computation [Kil88]. Until early 2000’s,
the area of generic secure computation was often seen mainly as a feasibility exercise, and improving OT
performance was not a priority research direction. This changed when Yao’s Garbled Circuit (GC) was first
implemented [MNPS04] and a surprisingly fast OT protocol (which we will call IKNP) was devised by Ishai
et al. [IKNP03].

The IKNP OT extension protocol [IKNP03] is truly a gem; it allows 1-out-of-2 OT execution at the cost of
computing and sending only a few hash values (but a security parameter of public key primitives evaluations
were needed to bootstrap the system). IKNP was immediately noticed and since then universally used in
implementations of the Yao and GMW protocols. It took a few years to realize that OT extension’s use
goes far beyond these fundamental applications. Many aspects of secure computation were strengthened and
sped up by using OT extension. For example, Nielsen et al. [NNOB12] propose an approach to malicious
two-party secure computation, which relates outputs and inputs of OTs in a larger construction. They
critically rely on the low cost of batched OTs. Another example is the application of information-theoretic
Gate Evaluation Secret Sharing (GESS) [Kol05] to the computational setting [KK12]. The idea of [KK12]
is to stem the high cost in secret sizes of the GESS scheme by evaluating the circuit by shallow slices, and
using OT extension to efficiently “glue” them together. Particularly relevant for our work, efficient OTs
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were recognized by Pinkas et al. [PSZ14] as an effective building block for private set intersection, which we
discuss in more detail later.

The IKNP OT extension, despite its wide and heavy use, received very few updates. In the semi-honest
model it is still state-of-the-art. Robustness was added by Nielsen [Nie07], and in the malicious setting it
was improved only very recently [ALSZ15, KOS15]. Improvement for short secret sizes, motivated by the
GMW use case, was proposed by Kolesnikov and Kumaresan [KK13]. We use ideas from their protocol, and
refer to it as the KK protocol. Under the hood, KK [KK13] noticed that one core aspect of IKNP data
representation can be abstractly seen as a repetition error-correcting code, and their improvement stems
from using a better code. As a result, instead of 1-out of-2 OT, a 1-out of-n OT became possible at nearly
the same cost, for n up to approximately 256.

Oblivious PRFs. An oblivious pseudorandom function (OPRF) [FIPR05] is a protocol in which a sender
learns (or chooses) a random PRF seed s while the receiver learns F (s, r), the result of the PRF on a single
input r chosen by the receiver. While the general definition of an OPRF allows the receiver to evaluate the
PRF on several inputs, in this paper we consider only the case where the receiver can evaluate the PRF on
a single input.

The central primitive of this work, an efficient OPRF protocol, can be viewed as a variant of Oblivious
Transfer (OT) of random values. We build it by modifying the core of OT extension protocols [IKNP03,
KK13], and its internals are much closer to OT than to prior works on OPRF. Therefore, our presentation
is OT-centric, with the results stated in OPRF terminology.

OT of random messages shares many properties with OPRF. In OT of random messages, the sender
learns random m0,m1 while the receiver learns mr for a choice bit r ∈ {0, 1}. One can think of the function
F ((m0,m1), r) = mr as a pseudorandom function with input domain {0, 1}. Similarly, one can interpret
1-out-of-n OT of random messages as an OPRF with input domain {1, . . . , n}.

In this work, we propose a novel extension to the IKNP and KK protocols. At almost the same cost as
1-out-of-2 IKNP and KK OTs, we are able to achieve an 1-out-of-n OT of random messages for arbitrarily
large n. This can be viewed as an OPRF with unbounded input domain {0, 1}∗. That is, the receiver has an
input r ∈ {0, 1}∗ and learns the value R(r), while the sender obtains the ability to evaluate R(r′) for any
string r′, where R is a pseudorandom function.

We call our main protocol batched, related-key OPRF (BaRK-OPRF) since it achieves a large
number of OPRF instances, with keys that are related (in a way we describe later). This is a new primitive,
which nevertheless suffices for the application to private set intersection that we consider.

Application to Private Set Intersection (PSI). Private set intersection (PSI) refers to the setting
where two parties each hold sets of items and wish to learn nothing more than the intersection of these
sets. Today, PSI is a truly practical primitive, with extremely fast cryptographically secure implementa-
tions [PSSZ15]. Incredibly, these implementations are only a relatively small factor slower than than the
näıve and insecure method of exchanging hashed values. Among the problems of secure computation, PSI is
probably the one most strongly motivated by practice. Indeed, already today companies such as Facebook
routinely share and mine shared information [Ops13, Yun15]. In 2012, (at least some of) this sharing was
performed with insecure naive hashing. Today, companies are able and willing to tolerate a reasonable per-
formance penalty, with the goal of achieving stronger security [Yun15]. We believe that the ubiquity and
the scale of private data sharing, and PSI in particular, will continue to grow as big data becomes bigger
and privacy becomes a more recognized issue. We refer reader to [PSSZ15, PSZ14] for additional discussion
and motivation of PSI.

In our work, we significantly improve state-of-the-art PSI protocol of [PSSZ15] by replacing one of its
components with BaRK-OPRF. This change results in a factor 2.3–3.6× performance improvement for PSI of
moderate-length strings (64 or 128 bits) and reasonably large sets. We substantiate our algorithmic results
with implementation and detailed evaluation. Our largest improvement is for the case of larger sets (224

items each) of long strings (128 bits), which requires only one minute in our protocol but 214 seconds using
[PSSZ15].
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1.1 Related work

Oblivious transfer. Our BaRK-OPRF protocol can be seen as an OPRF protocol as well as a variant of
oblivious transfer in the paradigm of IKNP [IKNP03]. As mentioned in Section 1, given its critical importance
in secure computation, the IKNP OT extension has a surprisingly short list of follow up improvements,
extensions and generalizations.

Most relevant prior work for us is the KK protocol [KK13], which views the IKNP OT from a new
angle and presents a framework generalizing IKNP. More specifically, under the hood, players in the IKNP
protocol encode Receiver’s selection bit b as a repetition string of k copies of b. KK generalized this and
allowed the use of an error-correcting code (ECC) with large distance as the selection bit encoding. For a
code consisting of n codewords, this allowed to do 1-out of-n OT with consuming a single row of the OT
extension matrix. In this work, we take the coding-theoretic perspective to the extreme. We observe that we
never need to decode codewords, and by using (pseudo-)random codes we are able to achieve what amounts
to a 1-out-of-poly OT by consuming a single row of the OT matrix, which for the same security guarantee
is only about 3.5× longer than in the original IKNP protocol.

Our work is strictly in the semi-honest security model. Other work on OT extension extends the IKNP
protocol to the malicious model [ALSZ15, KOS15] and the PVC (publicly verifiable covert) model [KM15].

Oblivious PRF. Oblivious pseudorandom functions were introduced by Freedman, Ishai, Pinkas, & Rein-
gold [FIPR05]. In general, the most efficient prior protocols for OPRF require expensive public-key operations
because they are based on algebraic PRFs. For example, an OPRF of [FIPR05] is based on the Naor-Reingold
PRF [NR04] and therefore requires exponentiations. Furthermore, it requires a number of OTs proportional
to the bit-length of the PRF input. The protocol of [CNs07] constructs an OPRF from unique blind signature
schemes. The protocol of [JL09] obliviously evaluates a variant of the Dodis-Yampolskiy PRF [DY05] and
hence requires exponentiations (as well as other algebraic encryption components to facilitate the OPRF
protocol).

Private set intersection. Oblivious PRFs have many applications, but in this paper we explore in depth
the application to private set intersection (PSI). We consider only the semi-honest security model. Our PSI
protocol is most closely related to that of Pinkas et al. [PSSZ15], which is itself an optimized variant of a
previous protocol of [PSZ14]. We describe this protocol in great detail in Section 5.

We refer the reader to [PSZ14] for an overview of the many different protocol paradigms for PSI. As we
have mentioned, the OT-based protocols have proven to be the fastest in practice. We do, however, point
out that the OT-based protocols do not have the lowest communication cost. In settings where computation
is not a factor, but communication is at a premium, the best protocols are those in the Diffie-Hellman
paradigm introduced in [HFH99]. In the semi-honest version of these protocols, each party sends only 2n
group elements, where n is the number of items in each set. However, these protocols require a number of
exponentiations proportional to the number of items, making their performance slow in practice. Concretely,
[PSSZ15] found Diffie-Hellman-based protocols to be over 200× slower than the OT-based ones.

While we closely follow the paradigm of [PSZ14], we abstract parts of their protocol in the language
of oblivious PRFs (OPRF). The connection between OPRF and PSI was already pointed out in [FIPR05].
However, the most straightforward way of using OPRF to achieve PSI requires an OPRF protocol in which
the receiver can evaluate the PRF on many inputs, whereas our OPRF allows only a single evaluation point
for the receiver. OPRFs have been used for PSI elsewhere, generally in the malicious adversarial model
[JL09, HL10, Haz15].

Other applications of OPRF. Just like a standard OPRF, our BaRK-OPRF variant immediately and
efficiently implies the keyword search functionality of [FIPR05] (also called “string-select OT (SOT)” in
[KK12]). Keyword search allows the receiver R to select the received secret via a string. In SOT the sender
S has a mapping of keywords to secret values. R receives the secret corresponding to the keyword string it
selected. In [KK12], SOT for k-bit selection strings is built by executing k 1-out of-2 OTs, and this technique
is also essentially what is used in the PSI protocol of [PSZ14]. Using BaRK-OPRF, we can achieve keyword
search by consuming only a single row of the OT extension matrix.
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Oblivious PRFs can be used for secure pattern matching [HL10, FHV13], where one party holds a long
text T and the other party holds a short pattern string p. The parties learn the location of all occurrences
of p within T .

2 Technical Overview of Our Results

We start with the OT-extension paradigm of Ishai, Kilian, Nissim & Petrank (IKNP) [IKNP03]. The goal
of OT extension is to use a small number k of “base-OTs,” plus only symmetric-key operations, to achieve
m � k “effective OTs.” Here, k is chosen depending on the computational security parameter κ; in the
following we show to what value k should be set. Below we describe an OT extension that achieves m
1-out-of-2 OTs of random strings, in the presence of semi-honest adversaries.

We follow the notation of [KK13] as it explicates the coding-theoretic framework for OT extension.
Suppose the receiver has choice bits r ∈ {0, 1}m. He chooses two m×k matrices (m rows, k columns), T and
U . Let tj ,uj ∈ {0, 1}k denote the j-th row of T and U , respectively. The matrices are chosen at random, so
that:

tj ⊕ uj = rj · 1k
def
=

{
1k if rj = 1

0k if rj = 0

The sender chooses a random string s ∈ {0, 1}k. The parties engage in k instances of 1-out-of-2 string-
OT, with their roles reversed, to transfer to sender S the columns of either T or U , depending on the sender’s
bit si in the string s it chose. In the i-th OT, the receiver gives inputs ti and ui, where these refer to the
i-th column of T and U , respectively. The sender uses si as its choice bit and receives output qi ∈ {ti,ui}.
Note that these are OTs of strings of length m � k — the length of OT messages is easily extended. This
can be done, e.g., by encrypting and sending the two m-bit long strings, and using OT on short strings to
send the right decryption key.

Now let Q denote the matrix obtained by the sender, whose columns are qi. Let qj denote the jth row.
The key observation is that

qj = tj ⊕ [rj · s] =

{
tj if rj = 0

tj ⊕ s if rj = 1
(1)

Let H be a random oracle (RO). We have that the sender can compute two random strings H(qj) and
H(qj ⊕ s), of which the receiver can compute only one, via H(tj). Note that tj equals either qj or qj ⊕ s,
depending on the receiver’s choice bit rj . Note that the receiver has no information about s, so intuitively
he can learn only one of the two random strings H(qj), H(qj ⊕ s). Hence, each of the m rows of the matrix
can be used to produce a single 1-out-of-2 OT.

As pointed out by [IKNP03], it is sufficient to assume that H is a correlation-robust hash function, a
weaker assumption than RO. A special assumption is required because the same s is used for every resulting
OT instance. See Section 3 for definition of correlation-robustness.

Coding interpretation. In IKNP, the receiver prepares secret shares of T and U such that each row of
T ⊕ U is either all zeros or all ones. Kolesnikov & Kumaresan [KK13] interpret this aspect of IKNP as a
repetition code and suggest to use other codes instead.

Consider how we might use the IKNP OT extension protocol to realize 1-out-of-2` OT. Well, instead of
a choice bit ri for the receiver, ri will now be an `-bit string. Let C be a linear error correcting code of
dimension ` and codeword length k. The receiver will prepare matrices T and U so that tj ⊕ uj = C(rj).

Now, generalizing Equation 1 the sender receives

qj = tj ⊕ [C(rj) · s] (2)

where “·” now denotes bitwise-AND of two strings of length k. (Note that when C is a repetition code, this
is exactly Equation 1.)

For each value r′ ∈ {0, 1}`, the sender associates the secret value H(qj ⊕ [C(r′) · s]), which it can

compute for all r′ ∈ {0, 1}`. At the same time, the receiver can compute one of these values, namely, H(tj).
Rearranging Equation 2, we have:

H(tj) = H(qj ⊕ [C(rj) · s])
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Hence, the value that the receiver can learn is the secret value that the sender associates with the receiver’s
choice string r′ = rj .

At this point, OT of random strings is completed. For OT of chosen strings, the sender will use each
H(qi ⊕ [C(r) · s]) as a key to encrypt the r’th OT message. The receiver will be able to decrypt only one of
these encryptions, namely one corresponding to its choice string rj .

To argue that the receiver learns only one string, suppose the receiver has choice bits rj but tries to learn
also the secret H(qj ⊕ [C(r̃) · s]) corresponding to a different choice r̃. We observe:

qj ⊕ [C(r̃) · s] = tj ⊕ [C(rj) · s]⊕ [C(r̃) · s]
= tj ⊕ [(C(rj)⊕ C(r̃)) · s]

(3)

Importantly, everything in this expression is known to the receiver except for s. Now suppose the
minimum distance of C is κ (the security parameter). Then C(rj) ⊕ C(r̃) has Hamming weight at least
κ. Intuitively, the adversary would have to guess at least κ bits of the secret s in order to violate security.
The protocol is secure in the RO model, and can also be proven under the weaker assumption of correlation
robustness, following [IKNP03, KK13].

Finally, we remark that the width k of the OT extension matrix is equal to the length of codewords in
C. The parameter k determines the number of base OTs and the overall cost of the protocol.

Pseudorandom codes. The main technical observation we make in this work is pointing out that the
code C need not have many of the properties of error-correcting codes. In particular,

• We make no use of decoding, thus our code does not need to be efficiently decodable.

• We require only that for all possibilities r, r′, the value C(r) ⊕ C(r′) has Hamming weight at least
equal to the computational security parameter κ. In fact, it is sufficient even if the Hamming distance
guarantee is only probabilistic — i.e., it holds with overwhelming probability over choice of C (we
discuss subtleties below).

For ease of exposition, imagine letting C be a random oracle with suitably long output. (Later we will
show that C can be instantiated from a pseudorandom function in a straight-forward way.) Intuitively, when
C is sufficiently long, it should be hard to find a “near-collision.” That is, it should be hard to find values
r and r′ such that C(r)⊕C(r′) has low (less than a computational security parameter κ) Hamming weight.
Later in Table 2 we compute the parameters more precisely, but for now we simply point out that a random
function with output length k = 4κ suffices to make near-collisions negligible in our applications.

We refer to such a function C (or family of functions, in our standard-model instantiation) as a pseu-
dorandom code (PRC), since its coding-theoretic properties — namely, minimum distance — hold in a
cryptographic sense.

By relaxing the requirement on C from an error-correcting code to a pseudorandom code, we remove the
a-priori bound on the size of the receiver’s choice string! In essence, the receiver can use any string as its
choice string; the sender can associate a secret value H(qj⊕ [C(r′) · s]) for any string r′. As discussed above,
the receiver is only able to compute H(tj) = H(qj ⊕ [C(r) · s]) — the secret corresponding to its choice
string r. The property of the PRC is that, with overwhelming probability, all other values of qj ⊕ [C(r̃) · s]
(that a polytime player may ever ask) differ from tj in a way that would require the receiver to guess at
least κ bits of s.

Interpretation as an oblivious PRF variant. As discussed in Section 1, we can view the functionality
achieved by this protocol as a kind of oblivious PRF. Intuitively, r 7→ H(q⊕ [C(r) · s]) is a function that the
sender can evaluate on any input, whose outputs are pseudorandom, and which the receiver can evaluate
only on its chosen input r.

In Section 3 we give a formal definition of the functionality that we achieve. The main subtleties of the
definition are:

1. the fact that the receiver learns slightly more than the output of this “PRF” — in particular, the
receiver learns t = q ⊕ [C(r) · s] rather than H(t);
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2. the fact that the protocol realizes many instances of this “PRF” but with related keys — s and C are
shared among all instances.

We prove our construction secure assuming C is a pseudorandom code and that H satisfies a natural gener-
alization of the “correlation robust” assumption from [IKNP03].

Summary & cost. With our new variant of the IKNP protocol, we can obtain m OPRF instances effi-
ciently, using only k base OTs plus symmetric-key operations. Compared to IKNP-paradigm OT extension
for 1-out-of-2 OTs, the main differences in cost are:

• Cost associated with the increased width of the OT extension matrices. In our case, the matrix has
width k rather than κ — concretely 3κ < k < 4κ in our applications. Note that the parameter k
controls the number of base OTs required.1

• Computational costs associated with the pseudorandom code C. While in IKNP C is a repetition
code, and in [KK13] C is a short Walsh-Hadamard code, in our protocol C is cryptographic. However,
we are able to instantiate C using a PRF. In practice, we use AES as the PRF, and the associated
hardware acceleration for AES in modern processors makes the cost of computing C minimal.

Application to private set intersection. Private set intersection (PSI) refers to a computation in which
Alice has a set A of items, Bob has a set B of items, and the two learn only A ∩B and nothing more.

We show how BaRK-OPRF can be used to significantly reduce the cost of semi-honest-secure PSI. The
current fastest protocol for the task is that of Pinkas et al. [PSSZ15]. The protocol relies heavily on efficient
OT extension (for standard 1-out-of-2 OTs).

Looking closely at the PSI protocol of [PSSZ15], we see that they use a number of OTs that is proportional
to N`, where N is the number of items in the parties’ sets and ` is the length (in bits) of those items. We
can replace their use of 1-out-of-2 OTs with a suitable use of BaRK-OPRF and remove the dependence on `.
Our protocol uses a number of BaRK-OPRF instances that is proportional only to N .

We implemented our BaRK-OPRF-based PSI protocol and compared its performance to that of [PSSZ15].
For PSI on strings of length ` ∈ {64, 128} and sufficiently large sets, our protocol is 2.3–3.6 times faster.
This is a significant achievement in the already very polished PSI state of the art!

3 Technical Preliminaries

We write ‖x‖H to denote the hamming weight of a binary string x. Our computational security parameter
is κ and statistical security parameter is σ.

3.1 Correlation Robustness

The OT extension protocol of IKNP [IKNP03] is proven secure under a so-called correlation robustness
assumption on the underlying hash function. Our protocol makes use of the following generalization of this
notion:

Definition 1. Let H be a hash function with input length n. Then H is d-Hamming correlation ro-
bust if, for any strings z1, . . . , zm ∈ {0, 1}∗, a1, . . . , am, b1, . . . , bm ∈ {0, 1}n with ‖bi‖H ≥ d, the following
distribution, induced by random sampling of s← {0, 1}n, is pseudorandom:

H(z1‖a1 ⊕ [b1 · s]), . . . ,H(zm‖am ⊕ [bm · s])

As in the overview, “·” denotes bitwise-AND.
The definition generalizes previous ones in the following way:

1In our instantiation, we actually use IKNP to extend κ base OTs to k OTs, and then use those k OTs as base OTs for
BaRK-OPRF instances. Hence, the number of public-key OT operations is unchanged. Still, the total communication cost
remains proportional to km in our protocol rather than κm.
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• If d = n, then the only legal choice of bi is 1n, and H(zi‖ai ⊕ [bi · s]) simplifies to H(zi‖ai ⊕ s).
Restricting the definition in this way, and taking zi = i corresponds to the IKNP notion of correlation
robustness.

• If the bi values are required to be elements of a linear error correcting code C, then the resulting
definition is one under which the construction of [KK13] is secure (for simplicity they prove security
in the random oracle model).

3.2 Pseudorandom Codes

We now formalize the notion of a pseudorandom code, motivated in Section 2.

Definition 2. Let C be a family of functions. We say that C is a (d, ε) pseudorandom code (PRC) if
for all strings x 6= x′,

Pr
C←C

[
‖C(x)⊕ C(x′)‖H < d

]
≤ 2−ε

That is, a (d, ε)-PRC guarantees that the hamming distance of two codewords is less or equal to d with
probability at most 2−ε.

The reader may find it convenient to think of C as a random oracle. However, it suffices for C to be a
pseudorandom function instantiated with random seed:

Lemma 3. Suppose F : {0, 1}κ × {0, 1}∗ → {0, 1}n is a pseudorandom function. Define C = {F (s, ·) | s ∈
{0, 1}κ}. Then C is a (d, ε)-pseudorandom-code where:

2−ε = 2−n
d−1∑
i=0

(
n

i

)
+ ν(κ).

and ν is a negligible function.

Proof. Consider the following game. An adversary has strings x and x′ hard-coded. It queries its oracle O
on x and x′ and outputs 1 if O(x) and O(x′) are within Hamming distance d.

When O is instantiated as a random function, a simple counting argument shows that the adversary
outputs 1 with probability 2−n

∑d−1
i=0

(
n
i

)
.

When O is instantiated as a PRF F with random seed, the probability must be within ν(κ) of the above
probability, where ν is negligible. The adversary’s output probability in this instantiation is exactly the
probability specified in the PRC security definition, so the lemma follows.

Note that in our typical usage of PRCs, the choice of C (in this case, the seed to the PRF) is a public
value. But in both the security definition for PRC and in this analysis, the values x and x′ are fixed before
the PRF key is chosen. Whether or not F (s, x) and F (s, x′) are within Hamming distance d is not affected
by making the PRF seed public.

3.3 Our Oblivious PRF Variant

As outlined in Section 2, our main construction is a variant of OT-extension which associates a pseudorandom
output R(x) for every possible input r ∈ {0, 1}∗. The sender can compute R(r) for any r, while the
receiver learns R(x) for only a single value r. This functionality is reminiscent of an oblivious PRF
(OPRF) [FIPR05]. In this section we describe how our construction can be interpreted as a variant OPRF
functionality.

In an OPRF functionality for a PRF F , the receiver provides an input2 r; the functionality chooses a
random seed s, gives s to the sender and F (s, r) to the receiver.

In our protocol, the sender knows qj and s. We can consider these values as keys to a PRF:

F ((qj , s), r) = H(j‖qj ⊕ [C(r) · s])

Intuitively, the sender can evaluate this PRF at any point, while the receiver can evaluate it on only one.
However, we point out some subtleties:

2More general OPRF variants allow the receiver to learn the PRF output on many inputs — here it suffices to limit the
receiver to one input.
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• In our protocol, the receiver learns tj = qj⊕[C(r∗)·s] for his chosen input r∗, which is more information
than the “PRF output” H(j‖tj). However, even knowing tj , the other outputs of the “PRF” still look
random. This common feature of an OPRF protocol leaking slightly more than the PRF output is
called relaxed OPRF in [FIPR05].

• In our protocol, we realize many “OPRF” instances with related keys. In particular, all instances have
the same component s (and C).

We encapsulate these properties in the following definitions.

3.3.1 Our PRF variant

We refer to F as a relaxed PRF if there is another function F̃ , such that F (k, r) can be efficiently computed

given just F̃ (k, r). We then define the relevant notion of security with respect to an adversary who can query

the relaxed function F̃ rather than just F .

Definition 4. Let F be a relaxed PRF with output length v, for which we can write the seed as a pair (k∗, k).
Then F has m-related-key-PRF (m-RK-PRF) security if the advantage of any PPT adversary in the
following game is negligible:

1. The adversary chooses strings x1, . . . , xn and m pairs (j1, y1), . . . , (jm, ym), where yi 6= xji .

2. Challenger chooses random values appropriate for PRF seeds k∗, k1, . . . , kn and tosses a coin b← {0, 1}.

(a) If b = 0, the challenger outputs {F̃ ((k∗, kj), xj)}j and {F ((k∗, kji), yi)}i.

(b) If b = 1 the challenger chooses z1, . . . , zm ← {0, 1}v and outputs {F̃ ((k∗, kj), xj)}j and {zi}i,

3. The adversary outputs a bit b′. The advantage of the adversary is Pr[b = b′]− 1/2. ♦

Intuitively, the PRF is instantiated with n related keys (sharing the same k∗ value). The adversary
learns the relaxed output of the PRF on one chosen input for each key. Then any m additional PRF outputs
(corresponding to any seed) are indistinguishable from random by the adversary.

Lemma 5. Let C be a (d, ε + log2m)-PRC, where 1/2ε is a negligible function, Let H be a d-Hamming
correlation robust hash function. Define the following relaxed PRF, for C ∈ C:

F
(

((C, s), (q, j)), r
)

= H(j‖q ⊕ [C(r) · s])

F̃
(

((C, s), (q, j)), r
)

= (j, C, q ⊕ [C(r) · s])

Then F has m-RK-PRF security.

Proof. In the m-RK-PRF game with this PRF, we can rewrite the adversary’s view as in Section 2 as:

(C, {tj}j , {H(ji‖tji ⊕ [(C(xji)⊕ C(yi)) · s])}i)

There are m terms of the form C(xji) ⊕ C(yi) for xji 6= yi. Each of these terms has Hamming weight at
least d with probability at least 1 − 2−ε−log2m over the choice of C. By a union bound, all m terms have
Hamming weight at least d with probability 1− 2−ε. Conditioning on this (overwhelmingly likely) event, we
can apply the d-Hamming correlation robust property of H to see that the H-outputs are indistinguishable
from random.

3.3.2 Our BaRK-OPRF functionality

In Figure 1 we formally describe the variant OPRF functionality we achieve. It generates m instances of the
PRF with related keys, and allows the receiver to learn the (relaxed) output on one input per key.
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The functionality is parameterized by a relaxed PRF F , a number m of instances, and two parties: a
sender and receiver.

On input (r1, . . . , rm) from the receiver,

• Choose random components for seeds to the PRF: k∗, k1, . . . , km and give these to the sender.

• Give F̃ ((k∗, k1), r1), . . . , F̃ ((k∗, km), rm) to the receiver.

Figure 1: Batched, related-key OPRF (BaRK-OPRF) ideal functionality.

4 Main construction

We present our main construction, which is a semi-honest secure protocol for the functionality in Figure 1,
instantiated with the relaxed PRF defined in Lemma 5.

4.1 Notation

We use the notation OTkm to denote k instances of 1-out-of-2 string-OT where the strings are m bits long.
Let S denote the sender, and let R denote the receiver. In OTkm, the sender’s input is {(xj,0, xj,1)}j∈[k], i.e.,
m pairs of strings, each of length m, and the receiver holds input {rj}j∈[k], where each rj is a choice bit.

Note that if S provides input {(xj,0, xj,1)}j∈[k] to OTkm, and if R provides input {rj}j∈[k] to OTkm, then R
receives back {xj,rj}j∈[k], while S receives nothing.

Following the convention in IKNP, we denote vectors in bold, and matrices in capitals. For a matrix A,
we let aj denote the j-th row of A, and ai denote the i-th column of A. If a = a1‖ · · · ‖ap and b = b1‖ · · · ‖bp
are two vectors, then we define ⊕ and · operations as follows. We use the notation a ⊕ b to denote the
vector (a1⊕ b1)‖ · · · ‖(ap⊕ bp). Similarly, the notation a ·b denotes the vector (a1 · b1)‖ · · · ‖(ap · bp). Finally,
suppose c ∈ {0, 1}, then c · a denotes the vector (c · a1)‖ · · · ‖(c · ap).

We note that to simplify notation via indexing, in the following we will refer to the OT matrices as T0
and T1, rather than as T and U , as we did when presenting high-level overview of our work.

4.2 The BaRK-OPRF construction

Our BaRK-OPRF protocol is presented in Figure 2. It closely follows the high-level overview. Recall that
we are considering a PRF whose seed is of the form ((C, s), (j, qj)) and whose relaxed output is of the form
t0,j = qj ⊕ (C(rj) · s).

Theorem 6. The BaRK-OPRF protocol in Figure 2 securely realizes the functionality of Figure 1, instanti-
ated with the relaxed PRF defined in Lemma 5, in the presence of semi-honest adversaries, where κ is the
computational security parameter.

Proof. When using the abstraction of our OPRF functionality, the proof is elementary.

Simulating S. The simulator receives output from the OPRF ideal functionality consisting of related PRF
seeds: a common (C, s) and a qj for each j ∈ [m]. Let Q be a matrix whose rows are the qj . Let qi denote
the ith column of Q.

The simulator simulates an execution of the protocol in which S chooses C in step 0, chooses s in step
1, and receives output {qi}i∈[k] as OT output in step 3.

Simulating R. The simulator has input (r1, . . . , rm) and receives output from the OPRF ideal functionality
consisting of a relaxed PRF output (j, C, tj) for each j ∈ [m].

The simulator simulates an execution of the protocol in whichR receives C in step 0 and samples t0,j = tj
in step 2.

In both cases it is straightforward to check that the simulation is perfect.
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Input of R: m selection strings r = (r1, . . . , rm), ri ∈ {0, 1}∗.

Parameters:

• A (κ, ε)-PRC family C with output length k = k(κ).

• A κ-Hamming correlation-robust H : [m]× {0, 1}k → {0, 1}v.
• An ideal OTkm primitive.

Protocol:

0. S chooses a random C ← C and sends it to R.

1. S chooses s← {0, 1}k at random. Let si denote the i-th bit of s.

2. R forms m× k matrices T0, T1 in the following way:

• For j ∈ [m], choose t0,j ← {0, 1}k and set t1,j = C(rj)⊕ t0,j .

Let ti0, t
i
1 denote the i-th column of matrices T0, T1 respectively.

3. S and R interact with OTkm in the following way:

• S acts as receiver with input {si}i∈[k].
• R acts as sender with input {ti0, ti1}i∈[k].
• S receives output {qi}i∈[k].

S forms m× k matrix Q such that the i-th column of Q is the vector qi. (Note qi = tisi .) Let qj
denote the j-th row of Q. Note, qj = ((t0,j ⊕ t1,j) · s)⊕ t0,j . Simplifying, qj = t0,j ⊕ (C(rj) · s).

4. For j ∈ [m], S outputs the PRF seed ((C, s), (j, qj)).

5. For j ∈ [m], R outputs relaxed PRF output (C, j, t0,j).

Figure 2: The BaRK-OPRF protocol

5 Improving Private Set Intersection

The main application of BaRK-OPRF is to improve the performance of semi-honest-secure private set
intersection (PSI). Pinkas et al. [PSZ14] give a thorough summary of many different paradigms for PSI
in this model.

For our purposes, we summarize only the most efficient PSI protocol, which is the OT-based paradigm
of [PSZ14] including the optimizations suggested in follow up work [PSSZ15]. Hereafter we refer to their
protocol as the “PSSZ” protocol.

5.1 The OPRF Implicit in PSSZ

The main building block of PSSZ, private equality test, can be viewed as a relaxed OPRF based on random
OTs (i.e., oblivious transfers of random messages), which can be obtained efficiently from OT extension.
The protocol is as follows, where Bob has input r, with ` = |r|.

• The parties perform ` 1-out-of-2 OTs of random messages, with Alice as receiver. Bob acts as receiver
and uses the bits of r as his choice bits. In the ith OT, Alice learns random strings mi,0 and mi,1,
while Bob learns mi,r[i].

• Define the mapping F (x) = H
(⊕

imi,x[i]

)
, where H is a random oracle. One can then view F as a

PRF whose keys are the mi,b values (known to Alice). Bob learns the output of F on r only. More
precisely, he learns relaxed output {mi,r[i]}i, for which all other outputs of F are pseudorandom.
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In this description, we have treated r as a string of bits, and therefore use 1-out-of-2 (random) OTs.
However, when using the OT extension protocol of [KK13], the cost of a 1-out-of-2 random OT is essentially
the same as a 1-out-of-256 random OT. Hence, PSSZ interpret r as strings of characters over {0, 1}8. The
protocol uses one instance of 1-out-of-256 ROT for each byte (not bit) of r.

Regardless of whether one uses 1-out-of-2 or 1-out-of-256 OT, this OPRF protocol has cost that scales
with length of the input r, whereas ours has cost independent of the input length. Our main improvement
to PSSZ consists of replacing their OPRF with ours. The rest of the protocol is largely unchanged.

5.2 PSI from OPRF

We now describe how the PSSZ paradigm achieves PSI using an OPRF. This part of the overall PSI pro-
tocol is nearly identical between our implementation and that of [PSSZ15] (we include an additional small
optimization). For concreteness, we describe the parameters used in PSSZ when the parties have roughly
the same number n of items.

The protocol relies on Cuckoo hashing [PR04] with 3 hash functions, which we briefly review now. To
assign n items into b bins using Cuckoo hashing, first choose random functions h1, h2, h3 : {0, 1}∗ → [b] and
initialize empty bins B[1, . . . , b]. To hash an item x, first check to see whether any of the bins B[h1(x)],
B[h2(x)], B[h3(x)] are empty. If so, then place x in one of the empty bins and terminate. Otherwise, choose
a random i ∈ {1, 2, 3}, evict the item currently in B[hi(x)], replacing it with x, and then recursively try to
insert the evicted item. If this process does not terminate after a certain number of iterations, then the final
evicted element is placed in a special bin called the stash.

PSSZ use Cuckoo hashing for PSI in the following way. First, the parties choose 3 random hash functions
h1, h2, h3 suitable for 3-way Cuckoo hashing. Suppose Alice has a set X of inputs and Bob has a set Y ,
where |X| = |Y | = n. Bob maps his items into 1.2n bins using Cuckoo hashing and a stash of size s. At this
point Bob has at most one item per bin and at most s items in his stash — he pads his input with dummy
items so that each bin contains exactly 1 item and the stash contains exactly s items.

The parties then run 1.2n+ s instances of an OPRF, where Bob plays the role of receiver and uses each
of his 1.2n + s items as OPRF input. Let F (ki, ·) denote the PRF evaluated in the ith OPRF instance.
If Bob has mapped item y to bin i via cuckoo hashing, then Bob learns F (ki, y); if Bob has mapped y to
position j in the stash, then Bob learns F (k1.2n+j , y).

On the other hand, Alice can compute F (ki, ·) for any i. So she computes sets of candidate PRF outputs:

H = {F (khi(x), x) | x ∈ X and i ∈ {1, 2, 3}}
S = {F (k1.2n+j , x) | x ∈ X and j ∈ {1, . . . , s}}

She randomly permutes elements of H and elements of S and sends them to Bob. Bob can identify the
intersection of X and Y as follows. If Bob has an item y mapped to the stash, he checks whether the
associated OPRF output is present in S. If Bob has an item y not mapped to the stash, he checks whether
its associated OPRF output is in H.

Intuitively, the protocol is secure against a semi-honest Bob by the PRF property. For an item x ∈ X \Y ,
the corresponding PRF outputs F (ki, y) are pseudorandom. It is easy to see that security holds even if
Bob learns relaxed PRF outputs and the PRF achieves RK-PRF security, Definition 4 (i.e., Alice’s PRF
outputs are pseudorandom to an adversary who learns relaxed PRF outputs). Similarly, if the PRF outputs
are pseudorandom even under related keys, then it is safe for the OPRF protocol to instantiate the PRF
instances with related keys.

The protocol is correct as long as the PRF does not introduce any further collisions (i.e., F (ki, x) =
F (ki′ , x

′) for x 6= x′). Below we discuss the parameters required to prevent such collisions.

An Optimization. In the protocol summary above, Bob must search for each of his OPRF outputs, either
in the set H or the set S. Furthermore, |H| = 3n and |S| = sn. Even when using a reasonable data structure
for these comparisons, they have a non-trivial effect on the protocol’s running time. We now describe an
optimization that reduces this cost (by approximately 10% in our implementation). The full protocol is
described in Figure 3.

Our modification works as follows. First, Bob keeps track of a hash index z ∈ {1, 2, 3} for each item
y ∈ Y that is not mapped to the stash. For example, if Bob’s Cuckoo hashing maps y to bin #h2(y), then
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Bob associates z = 2 with y. If for example y is mapped to bin by two hash functions #h1(y) = #h2(y)
then Bob may choose either z = 1 or z = 2 arbitrarily.

Then in the first 1.2n OPRF instances, Bob uses input y‖z. For the OPRF instances associated with the
stash, he does not need to append the index z. Summarizing, if Bob has mapped item to position j in the
stash, then Bob learns F (k1.2n+j , y). If he has not mapped y to the stash, then he learns F (khz(x), y‖z) for
exactly one z.

Then Alice computes the following sets:

Hi = {F (khi(x), x‖i) | x ∈ X}, for i ∈ {1, 2, 3}
Sj = {F (k1.2n+j , x) | x ∈ X}, for j ∈ {1, . . . , s}

She randomly permutes the contents of each Hi and each Sj and sends them to Bob. For each item y of Bob,
if y is not mapped to the stash then Bob can whether F (khz(y), y‖z) ∈ Hz, for the associated hash-index z.
If his Cuckoo hashing maps item y to position j in the stash, he can check whether F (k1.2n+j , y) ∈ Sj .

The reason for appending the hash-index z to the PRF input is as follows. Suppose h1(x) = h2(x) = i,
which is indeed can happen with noticeable probability, since the output range of h1, h2 is small ([1.2n]).
Without appending z, both H1 and H2 would contain the identical value F (ki, x). This would leak the fact
that a collision h1(x) = h2(x) occurred. Such an event is input-dependent so cannot be simulated.3

With our optimization: (1) All of the calls to the PRF made by Alice (to compute the Hi’s and Sj ’s)
invoke the PRF on distinct key-input pairs. This ensures that the contents of these sets can be easily
simulated; (2) Bob searches for each of his PRF outputs within only one set (either an Hi or an Sj) of n
items. Contrast this with the approach described previously, where Bob must find each OPRF output in
either a set of size 3n or sn (depending on whether the item is in the stash or not).

Recall that the protocol is correct as long as there are no spurious collisions among PRF outputs. Since
there are at most n2 opportunities for a spurious collision (Bob searches each time for a PRF output in a
set of n items), we can limit the overall probability of a spurious collision to 2−σ by using PRF outputs of
length σ + log2(n2).

5.3 Comparing OPRF Subprotocols

When comparing our protocol to that of PSSZ, the major difference is the choice of OPRF subprotocols.
Later in Section 6 we give an empirical comparison of the protocols. For now, we derive an analytical
comparison of the costs of the two OPRF subprotocols, to give a better sense of our improvement.

We focus on the communication cost associated with the OT primitives. Communication cost is an
objective metric, and it often reflects the bottleneck in practice (especially in these protocols where essentially
all of the cryptographic computations are precomputed). Although the computation costs of our protocols
are different (e.g., ours requires computing the pseudorandom code, which is a cryptographic operation),
communication cost is nonetheless a good proxy for computation costs in OT extension protocols. The data
that is communicated in these protocols is a large matrix that must be transposed, and this transposition is
the primary contributor to the computational cost.

The main benefit of our protocol is that its cost does not scale with the size of the items being compared.
Each instance of OPRF consumes just one row of the OT extension matrix. The width of this OT extension
matrix is exactly the length of the pseudorandom code (PRC). In Section 6.1 we describe how to compute an
appropriate length of PRC. For the range of parameters we consider, this parameter is 424–448 bits. Hence
the OT-cost of one instance of our OPRF protocol is 424–448 bits. The specific numbers are in Table 1.

The PSSZ OPRF protocol uses several instances of 1-out-of-256 ROT. With security parameter 128, the
cost of such a random OT is 256 bits using the OT extension of [KK13].

The main optimization of [PSSZ15] allows for the OPRF subprotocols to be performed on items of length
`∗ = ` − log n (n is the number of items in the overall PSI protocol) rather than length `. Let `∗ denote
this effective item length. Then `∗/8 instances of 1-out-of-256 ROT are needed for one OPRF instance. The
total OT-cost of their OPRF protocol is therefore 256`∗/8 = 32`∗ bits.

3The protocol and implementation of PSSZ do not account for such collisions among the Cuckoo hash functions. Duplicate
values will appear in H in such an event.
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Parameters: Alice has input X; Bob has input Y , with |X| = |Y | = n. s is an upper bound on the
stash size for Cuckoo hashing.

1. Bob specifies random hash functions h1, h2, h3 : {0, 1}∗ → [1.2n] and tells them to Alice.

2. Bob assigns his items Y into 1.2n bins using Cuckoo hashing. Let Bob keep track of z(y) for each
y so that: if z(y) = ⊥ then y is in the stash; otherwise y is in bin hz(y)(y). Arrange the items in
the stash in an arbitrary order.

Bob selects OPRF inputs as follows: for i ∈ [1.2n], if bin #i is empty, then set ri to a dummy
value; otherwise if y is in bin #i then set ri = y‖z(y). For i ∈ [s], if position i in the stash is y,
then set ri = y; otherwise set ri to a dummy value.

3. The parties invoke 1.2n+ s OPRF instances, with Bob the receiver with inputs (r1, . . . , r1.2n+s).
Alice receives (k1, . . . , k1.2n+s) and Bob receives F (ki, ri) for all i.

4. Alice computes:

Hi = {F (khi(x), x‖i) | x ∈ X}, for i ∈ {1, 2, 3}
Sj = {F (k1.2n+j , x) | x ∈ X}, for j ∈ {1, . . . , s}

and sends a permutation of each set to Bob.

5. Bob initializes an empty set O and does the following for y ∈ Y : If z(y) = ⊥ and y is at position j
in the stash and F (k1.2n+j , y) ∈ Sj , then Bob adds y to O. If z(y) 6= ⊥ and F (khz(y)(y), y‖z(y)) ∈
Hz(y) then Bob adds y to O.

6. Bob sends O to Alice and both parties output O.

Figure 3: Our optimization to the PSSZ PSI protocol, written in terms of an OPRF functionality.

Hence, we see that our protocol has lower communication cost whenever `∗ > 448/32 = 14. Among the
different parameter settings reported in [PSSZ15], the only configuration with `∗ < 14 is for PSI of n ≥ 220

items of length 32 bits. For all other configurations, our PSI protocol has lower communication cost, with
the savings increasing as the items become longer. See Table 1.

Remark on pre-hashing long PSI inputs. Our improvements to PSI are most significant for PSI of
long items. Yet, if the parties have items which are very long strings (say, thousands of bits), they can agree
on a random hash function, hash their items locally, and perform PSI on the shorter hashes instead. The
reader may rightfully wonder whether this idea make our improvements irrelevant!

For this approach (hash-then-PSI) to work, we must ensure that the hashing introduces no collisions
among the parties’ items. If the parties have n items each, and we wish to limit the probability of a collision
to 2−σ, then we must choose a hash function whose length is σ + 2 log n. When using the optimizations of
[PSSZ15], the effective item length can be reduced from σ + 2 log n to σ + log n bits.

We see that pre-hashing the items cannot reduce their effective length below σ bits, where σ is a sta-
tistical security parameter. Standard practice suggests σ ≥ 40, and yet our protocol outperforms [PSSZ15]
whenever the effective item length is at least 14 bits. Hence hash-then-PSI does not allow one to bypass our
improvement to [PSSZ15].

On a similar note, in our experimental results we report performance of the protocols only for PSI inputs
up to 128 bits long. For statistical security parameter σ = 40, as long as the parties have at most 234 (17
billion) items, they can use hash-then-PSI with a 128-bit hash.
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OT cost
n ` `∗ PSSZ our BaRK-OPRF ratio

28 32 24 768 424 0.54
28 64 56 1792 424 0.24
28 128 120 3840 424 0.11
212 32 20 640 432 0.68
212 64 52 1664 432 0.26
212 128 116 3712 432 0.12
216 32 16 576 440 0.76
216 64 48 1536 440 0.29
216 128 112 3584 440 0.12
220 32 12 384 448 1.17
220 64 44 1408 448 0.32
220 128 108 3456 448 0.13
224 32 8 256 448 1.75
224 64 40 1280 448 0.35
224 128 104 3328 448 0.13

Table 1: Comparing the OT-cost of PSSZ-paradigm OPRF subprotocol and ours, for various parameters.
The entries in the table refer to the contribution (in bits) to the size of the OT-extension matrices. ` is the
item length (in bits), n is the total number of items in the parties’ sets, and `∗ is the effective item length
when using the optimizations of [PSSZ15].

6 Implementation & Performance

We implemented our PSI protocol and report on its performance in comparison with the state-of-the-art
PSI protocol of [PSSZ15]. Our complete implementation is available on GitHub: https://github.com/

osu-crypto/BaRK-OPRF.
In our implementation we used parameter settings consistent with PSSZ or stricter, and ran their and

our code on our system so as to obtain meaningful comparisons. As do PSSZ, we use matrix transposition
code from [ALSZ13] and several other optimizations.

6.1 Choosing Suitable Parameters

In this section we discuss concrete parameters used in our implementation. We use a computational security
parameter of κ = 128 and a statistical security parameter of σ = 40.

The other parameters are:

s: the maximum size of the stash for Cuckoo hashing, when hashing n items into 1.2n using 3 hash
functions.

k: length of the pseudorandom code (and hence the width of the OT extension matrix) in the BaRK-OPRF
protocol.

v: output length of the PRF realized by the BaRK-OPRF protocol.

A summary of our concrete parameter choices is given in Table 2. Below we describe how these parameters
were derived.

Hashing parameters. Bob uses Cuckoo hashing with 3 hash functions to assign his n items into 1.2n
bins (and a stash). For the appropriate choice of the stash size s, we use the numbers given in [PSSZ15],
which limit the probability of hashing failure to 2−40.
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n s k v
28 12 424 56
212 6 432 64
216 4 440 72
220 3 448 80
224 2 448 88

Table 2: Parameters used in our implementation. n is the size of the parties’ input sets; s is the maximum
stash size for Cuckoo hashing; k is the width of the pseudorandom code (in bits); v is the length of OPRF
output (in bits).

set size n
Setting Protocol Bit length ` 28 212 216 220 224

LAN

(insecure) näıve hashing {32, 64, 128} 1 6 75 759 13,529

PSSZ
32 306 380 770 4,438 42,221
64 306 442 1,236 10,501 137,383
128 307 443 1,352 13,814 213,597

BaRK-OPRF-PSI {32, 64, 128} 192 211 387 3,780 58,567

WAN

(insecure) näıve hashing {32, 64, 128} 97 101 180 1,422 22,990

PSSZ
32 609 701 1,425 8,222 81,234
64 624 742 2,142 18,398 248,919
128 624 746 2,198 23,546 381,913

BaRK-OPRF-PSI {32, 64, 128} 556 585 1,259 7,455 106,828

Table 3: Running time in ms for PSI protocols with n elements per party

set size n
Setting Phase 28 212 216 220 224

LAN
Offline 171 171 216 601 7,615
Online 21 40 171 3,179 50,952

WAN
Offline 291 313 316 758 7,482
Online 265 272 943 6,697 99,346

Table 4: Running time of our BaRK-OPRF protocol in ms in offline and online phases

set size n
Protocol Bit length ` 28 212 216 220 224 Asymptotic [bit]

näıve hashing {32, 64, 128} 0.01 0.03 0.56 10.00 176.00 nv

PSSZ
32 0.06 0.77 9.18 142.80 1,574.40

64 0.09 1.37 18.78 296.40 4,032.00 2κ(1.2n+ s)dmin(v′,`)−log(n)
8

e+ (3 + s)nv′

128 0.10 1.52 23.58 411.60 6,489.60
BaRK-OPRF-PSI {32, 64, 128} 0.04 0.53 8.06 127.20 1,955.20 k(1.2n+ s) + (3 + s)nv

Table 5: Communication in MB for PSI protocols with n elements per party. Parameters k, s, and v refer to
those in Table 2 / Section 6.1. PSSZ requires slightly long OPRF outputs: v′ = σ+log(3n2). Communication
costs for PSSZ and for our protocol ignore the fixed cost of base OTs for OT extension.

Size of pseudorandom code. Our BaRK-OPRF protocol requires a pseudorandom code achieving min-
imum distance κ = 128. In our protocol, Alice evaluates the PRF on (3 + s)n values. In order to argue
that these values can be collectively pseudorandom, so we require the underlying PRF to have m-RK-PRF
security (Definition 4) for m = (3 + s)n.

From Lemma 5, this means we must choose a pseudorandom code with parameters (d = κ, ε = σ+logm).
Using Lemma 3, we calculate the minimum length of such a pseudorandom code; the results are column k
in Table 2. We round up to the nearest multiple of 8 so that protocol messages will always be whole bytes.
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Length of OPRF outputs. The length of OPRF output controls the probability of a spurious collision
in the PSI protocol. In Section 5.2 we argued that output length of σ + log2(n2) is sufficient to bound the
probability of any spurious collision to 2−σ.

Using σ = 40, we compute the appropriate length in column v of Table 2. We round up to the nearest
multiple of 8 so that protocol messages will always be whole bytes.

6.2 Environment settings

All of our experiments were implemented on a server with Intel(R) Xeon(R) CPU E5-2699 v3 2.30GHz CPU
and 256 GB RAM. We run both clients on the same machine, but simulate a LAN and WAN connection using
the Linux tc command. In the WAN setting, the average network bandwidth and the average (round-trip)
latency are set to be 50 MB/s and 96 ms, respectively. In the LAN setting, the network has 0.2ms latency.
All of our experiments use a single thread for each party.

6.3 Implementation Details

In our BaRK-OPRF protocol, the offline phase is conducted to obtain an OT extension matrix of size (1.2n+
s) × k by using the IKNP OT extension. Specifically, first we use the Naor-Pinkas construction [NP01] to
get 128 base-OTs, which are then extended to a k × 128 matrix by utilizing the pseudorandom generator.
The transpose of this matrix yields the k base OTs for the BaRK-OPRF extension protocol. We extend to
1.2n+ s OPRF instances.

We hash all inputs of both client and server at the beginning of the online phase. Following Lemma 3,
we use a PRF with suitably long output as our pseudorandom code. More concretely, the parties agree on
an AES-128 key sk, which is independent of their inputs, and then extend the output of AES via:

C(x) = AESsk(1‖x)‖AESsk(2‖x)‖AESsk(3‖x)‖AESsk(4‖x)

to obtain the desired k random output bits. Furthermore, to reduce the waiting time at the server side,
the client will constantly send a new packet encompassing multiple code words to the server. Based on
trail-and-error approach, the packet size of 212 × k bits is selected to minimize the waiting time. In Table
4, we report the running time of our protocol for both offline and online phases in different settings. For
instance, in LAN environment, the online phase of our BaRK-OPRF protocol takes about 3.2s for n = 220.

To illustrate the efficacy of the BaRK-OPRF-PSI approach, we compared it with a näıve hashing protocol
and the PSSZ protocol. The näıve hashing protocol is a widely-used insecure protocol [PSSZ15] where both
parties use the same cryptographic hash function to hash their elements, then one of the parties permutes
their hash value and sends the result to the other party, who will compute the intersection by computing
the match of the hash values. In the following, we conducted several performance tests with the input sets
of equal size n and for inputs of length 32, 64, and 128 bits.

Note that the running time of our PSI protocol does not depend on the bit length of the input. It can be
explained as follows. First, the upper bound of the length of the input is 128 bits. Second, the hash function
will call a block of 128 bits to encrypt the input data, thus our protocol has the same computation cost for
all bit length of the input. In addition, the communication cost of our BaRK-OPRF protocol depends only
on the length of the pseudorandom code k and the length v of the OPRF outputs, which are independent
of the bit length `. Similarly, the näıve hashing protocol does not depend on `. This was confirmed by our
simulation results for different bit lengths (e.g. 32 bits, 64 bits, and 128 bits). Table 3 presents the running
time of the näıve hashing protocol, PSSZ, and our PSI protocol in both LAN and WAN environment.

As we can see in the tables, our protocol outperforms PSSZ in almost all the case studies, especially for
the long bit length of input ` and large values of the input size n. For example, we consider the results in the
LAN setting. For the input size of 220, our approach can improve 2.8 times and 3.6 times the performance
of PSSZ for the bit lengths of 64 bits and 128 bits, respectively. For the input size of 224, the corresponding
improvements are 2.3 times and 3.6 times. It is worth mentioning that it takes about 1 minute to compute
the intersection for the sets of size n = 224. Similar observations can be inferred from Table 3 for the WAN
setting.

At the same time, for smaller bit lengths, the PSSZ protocol can be faster than our PSI protocol. This
is the case, for example, when the bit length is 32 bits and n = 224 in LAN setting. Since the two protocols
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are very similar, differing only in the choice of OPRF subprotocol, it would be relatively straightforward to
implement a hybrid that always chooses the best OPRF subprotocol based on n and ` according to Table 1.
However, in order to clarify the strengths/weaknesses of the two protocols, we report the performance for
our approach even when it is worse.

Similar to the running time result, our communication cost is 2.9–3.3× faster than Pinkas et al. for PSI
of 128-bit strings and sufficiently large sets. Concretely, for the input size of 220, our protocol can improve
3.2 times the performance of PSSZ for the bit lengths 128 bits. Table 5 presents the communication (in MB)
of the näıve hashing protocol, PSSZ, and our BaRK-OPRF-PSI protocol.
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