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Abstract. This paper proposes a decentralised and privacy-preserving
local electricity trading market. The proposed market employs a bidding
protocol based upon secure multiparty computations and allows users to
trade their excess electricity among themselves. The bid selection and
calculation of the clearance price at which the electricity is traded are
performed by the market in a decentralised and privacy-preserving man-
ner. We implemented the market in C++ and tested its performance
with realistic data sets. Our simulation results show that the market
tasks can be performed for 2500 bids in less than five minutes in the on-
line phase, showing its feasibility for a typical electricity trading period
of, for example, 30 minutes.
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1 Introduction

The Smart Grid (SG) is an electricity grid supporting bidirectional communi-
cation between the main components in the grid. For instance, an important
component is smart meters which allow real-time grid management [1]. Poten-
tial benefits of SG include improved grid management, efficiency and reliability,
and seamless integration of various green energy sources such as, Renewable
Energy Sources (RESs) (e.g., solar panels, wind turbines), into the distribution
grid. When these RESs generate more electricity than needed by their owners,
the excess electricity is fed back to the grid. Currently, households get some com-
pensation from their suppliers for such excess electricity at a regulated, low price.
However, households with such excess electricity may be interested in selling di-
rectly to other consumers at a competitive price for monetary gains. Enabling
that would also incentivise more and more households to own RESs. To address
this, a local electricity market that allows RES owners to trade their excess elec-
tricity with other households in their neighbourhood has been proposed in [2].
However, such a local electricity market has user privacy risks, since users’ bids
and offers reveal private information about their lifestyle [3].

There are various proposals for an electricity trading market that allows
users to trade with each other or suppliers, using game-theoretic approaches
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(cf. Section 1.1). None of these, however, addresses the privacy concerns. The
security and privacy concerns in such a local market have been analysed in [2],
and initial ideas for designing one has been proposed in [4]. However, no concrete
solution has been proposed. In this work, we not only propose a concrete secure
and privacy-preserving solution for such a local market for trading electricity,
but also implement and evaluate its performance using realistic data.

1.1 Related Work

Privacy in Local Electricity Markets. Preserving users’ privacy in SG has
already been recognised as an important issue by the research community [5,
6]. However, the majority of the privacy-preserving smart metering solutions
focus on efficient grid management and billing. While some use anonymisation
of the metering data [7, 8], others utilise homomorphic cryptographic schemes to
aggregate the consumption data [9–11]. There are various local electricity trading
market models that have been proposed in the literature [12, 13]. Mustafa et al.
are the first to perform a comprehensive security analysis of such a market
and raise the privacy concerns associated with it in [2]. However, a concrete
solution has not been proposed. Recently, Abidin et al. [4] proposed to use secure
multiparty computation to address these privacy concerns, however, they have
also not provided a concrete solution, not to mention an evaluation of their ideas.

Electricity Markets using MPC. Ever since Yao’s seminal work [14], Mul-
tiparty Computation (MPC) has grown from being a theoretical result to being
a mechanism used in practical applications [15]. Various frameworks such as,
VIFF, Tasty, Sharemind [16–18] have been developed and significant improve-
ments in terms of efficiency and security are made to MPC protocols [19, 20].
Contributions to problems such as, secure comparisons, secure sorting, and net-
work flows [21, 22] opened the door for the design of auction mechanisms based
on day-ahead electricity markets [23], allowing electricity suppliers and genera-
tors to interact among themselves in a secure and privacy-preserving manner.

Contributions. Our specific contributions include:

– A novel application of MPC to identify the selected bids, calculate the clear-
ance price, and compute the total amount of electricity traded by the users
belonging to each individual supplier in a data oblivious and secure manner.

– A concrete decentralised and privacy-preserving protocol for a local electric-
ity trading market using MPC.

– A security and complexity analysis of our protocol in the context of MPC.

– An implementation, evaluation and analysis of the proposed protocol using
a realistic data for various market sizes.

– A list of trade-offs between privacy and efficiency for realistic scenarios.
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Fig. 1. A local MPC-based market for trading electricity from RESs.

Outline. The rest of the paper is organised as follows: Section 2 elaborates on
the system and threat model, assumptions, functional requirements, and also
presents our security definition. In Section 3 and 4, we present our proposed
protocol and analyse its security, respectively. Section 5 gives the details on
our implementation and simulation results, and discusses privacy and efficiency
trade-offs . Finally, Section 6 concludes the paper and gives directions for future
work.

2 Preliminaries

This section briefly describes the system model, the local electricity market,
threat model, the assumptions and requirements introduced in [2, 4] on which
our protocol is based.

System Model. As shown in Fig. 1, a local electricity market comprises the
following entities: RESs, SMs, users, suppliers and the local electricity market.
If users do not trade in the local electricity market, their contracted suppliers
are responsible for providing them with electricity.

Local Electricity Market Overview. Here we briefly describe the local elec-
tricity trading market proposed by Mustafa et al. [2]. The market operation
consists of the following steps.
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– Bid Submission: Prior to each trading period, users submit their bids to
the market to inform the market how much electricity they are willing to
sell or buy during the trading period and for what price per unit.

– Trading Price Computation: The local market performs a double auction
trading and generates the supply and demand curve. The intersection of
these two curves is used to determine the trading price, amount of electricity
traded, as well as which users will trade on the market.

– Informing Users/Suppliers: The market informs (i) the users about the
amount of electricity they traded and the trading price, and (ii) the suppliers
about the amount of electricity agreed to be traded by their respective users.

Threat Model. Users and suppliers are assumed to be malicious. Users may
try to modify data sent by their (or other users’) SMs in an attempt to gain
financial advantage, whereas suppliers may try to learn and modify users’ bids
in an attempt to influence the electricity trading price on the market. The local
electricity market is honest-but-curious. It follows the protocol specifications,
but it may attempt to learn individual users’ bids from the protocol transcripts.
External entities are malicious. They may eavesdrop data in transit trying to
discover confidential data and/or modify the data in an attempt to disrupt the
local electricity market and/or the SG.

Assumptions. Taking into account the above presented threat model, the pro-
tocol we propose is subject to the following assumptions: (i) each entity (e.g.,
SM, supplier) has a unique identity, (ii) SMs are tamper-evident, (iii) all entities
are time synchronized, (iv) the communication channels between entities are se-
cure and authentic, and (v) users are rational, i.e., they try to buy electricity for
the cheapest price but sell their excess electricity at the highest possible price.

Functional Requirements. Our protocol should meet the requirements below.

– The local market should receive users’ bids, calculate the clearing price, and
inform the users and suppliers about the outcome of the market.

– Each user should learn if their bid was accepted, the market clearing price
and the amount of electricity to be traded by them.

– Each supplier should learn the amount of electricity traded by their cus-
tomers on the local market in each settlement (electricity trading) period.

Privacy Requirements. Our proposed protocol should satisfy the following
privacy requirements:

– Confidentiality of users’ bids and the amount of electricity traded;
– Users’ privacy preservation;

• RES identity privacy,
• RES user identity privacy,
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• Trading RES user identity privacy,
• RES user location privacy,
• Trading session unlinkability,

– Minimum data disclosure.

We refer the curious reader to [2, 4] for details on these requirements.

MPC. Secure MPC allows any set of mutually distrustful parties to compute
any function such that no party learns more than their original input and what
can be inferred from the output. MPC can be achieved using various crypto-
graphic primitives. Different flavors include secret sharing [24, 25], garbled cir-
cuits [14] and homomorphic encryption [26]. In short, parties P1, ..., Pn want to
compute y = f(x1, ..., xn), where xi corresponds to the secret input of party Pi,
in a distributed fashion with guaranteed correctness such that Pi learns only y
and what can be inferred from y.

Security definition under MPC. The security notion can be characterized as
follows: a secure protocol over MPC discloses to an adversary the same informa-
tion, as if the computation were carried out by a trusted (non-corruptible) third
party. This security notion implies that a secure MPC protocol emulates the
“ideal” (trusted third party) setting, in which the third party would only need
to execute a trivial (non-secure) version of the protocols introduced by this work
or any other efficient mechanism. This definition allows for a variety of adversar-
ial and communication models, offering various security levels: perfect, statistical
or computational. Seminal results prove that any functionality can be calculated
with perfect security against active and passive adversaries [24, 25]. Recent work
focus on efficiency and realistic scenarios, e.g., dishonest majorities [19, 27, 20].
Furthermore, by using arithmetic circuits, any functionality can be constructed
on MPC. Notice that any oblivious functionality built in this way would be as
secure as the underlying MPC protocols used for its execution. Finally, note that
under this scenario, functionality, also referred to as sub-protocols, like the ones
used in this work, can be used for modular composition under the hybrid model
introduced by Canetti [28].

Our results make use of the following well known results:

– Secure Comparison: Methods for secure comparison using MPC have been
proposed in the literature [29, 21]. These constructions offer either perfect
or statistical security and are constructed under the same assumptions as
this work. Moreover, mechanisms as the ones proposed by Catrina et al. [30]
introduce inequality tests at a constant complexity.

– Secure Sorting: Secure Sorting using MPC can be achieved by sorting net-
works and other data-oblivious mechanisms with perfect security, e.g., [31],
including the randomize shell-sort from Goodrich [32]. Moreover, Hamada
et al. [33] introduced a technique to facilitate the use of comparison sorting
algorithms, e.g., Quick-sorting or Batcher’s merge sort. This technique con-
sists of randomly permuting the vector before sorting, so that the results of
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some of the intermediate secure comparisons can be made public. Our secure
local market makes use of the results by Hamada et al. for vector sorting.

– Secure Permutation: Mechanisms for secure vector permutation using
MPC have been introduced [34–36]. Leur et al. [34] analysed various permu-
tation mechanisms, including vector multiplication by a permutation matrix
and the use of sorting networks. Additionally, Czumaj et al. [35] proposed
alternatives for obliviously permuting a vector in (almost) O(n × log(n)),
where n is the vector size. A recent application by Aly et al. [23] proposes
the use of these mechanisms in a similar setting and suggests adaptations.

3 Privacy-preserving Protocol for Electricity Trading

In this section, we propose a protocol for trading electricity on local markets in
a privacy-preserving manner. Our protocol employs MPC to guarantee secrecy.
Moreover, we devise a series of mechanisms that produce the outputs expected
and needed at various process stages, and guarantee secrecy.

In our scheme, bidders provide their private inputs to a virtualized third en-
tity (i.e., the local market) consisting of multiple computational parties. Bidders
submit their bids to a series of servers that function as evaluators. The selection
and the number of evaluators depend solely on the application and the needs
of the parties involved, and it could be as many as the number of parties in-
volved in the computation. This approach, however, would be rather costly in
terms of performance. In the current setting, we assume that one computational
party could come from the RES owners (bidders), one from the suppliers and a
third one from a local control agency, so the need for a trusted third party is
eliminated, while still guaranteeing security and correctness. Following [4], we
classify the parties involved in our scheme as Dealers, Computational Parties
(Evaluators) and Output Parties.

Notations. Our proposed protocol makes use of the square brackets notation
to denote either encrypted or secretly shared values [37]. Moreover, assignments
that are a result of any securely implemented operation are represented by the
use of the infix operator, as follows: [z]← [x]+[y]. This extends to any operation
over securely distributed data, since its result would be of a secret nature as well.
Vectors are denoted by capital letters. For a vector, say B, Bi represents its i-th
element and |B| its size. The bids originated by SMs are considered as the initial
input data. Each bid is a tuple ([q], [p], [d], [s], [b]) and B is the vector of all bids.
The notations for the input and output data of our protocol are shown in Table 1
and Table 2, respectively.

We assume all bid elements belong to ZM , where M is a sufficiently large
number so that no overflow occurs. Moreover, we assume the number of bids
or at least an upper bound on them is publicly known. Any other data related
to the bid is kept secret. Note that in case the protocol admits a single supply
and a single demand bid per SM, the computation of this upper bound is trivial.
Markets could opt for enforcing all participants’ SMs to submit a bid regardless of
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Table 1. Input data

Symbol Meaning

ti i-th time slot
[q]i Bid’s electricity volume in absolute terms
[p]i Unit price enclosed in the bid
[d]i Binary value: 1 indicates a demand bid and 0 a supply bid
[s]i Unique supplier identifier, such that s ∈ {1, .., |S|} where S

is the set of all suppliers. Our algorithm however requires
this value to be encoded using the Launchbury et al. index
encoding approach [38]. Here, the identifier is encoded in a
{0, 1} vector, such that [s]ij ← 1 on the j-th position that
corresponds to the suppliers unique identifier, and [s]ij ← 0
otherwise, for all i ∈ B.

[b]i Bid’s unique identifier. Initially public, it serves to link the
protocol output (selected/rejected bids) to the bidder

Table 2. Output data

Symbol Meaning

[φ] Volume of electricity traded on the market during period ti
[σ] Market’s clearance price (price of the lowest supply bid) cal-

culated for period ti
[a]i Binary value: 1 indicates the bid i was accepted, 0 otherwise.

[S]φ Set of the volume of electricity traded by supplier affiliation
where [s]φi stands for the summation of all the accepted bids
from users affiliated to the supplier i, for all i ∈ S

whether they participate or not at the ti market clearance. Let > be a sufficiently
big number such that it is greater than any input value from the users, but
> << M . In this scenario, non-participating SMs would have to replace their
input values by [0] and [>] accordingly.

System Initialization. Private bids for trading period ti have to be submitted
before the beginning of ti−2. The auction for ti is computed at period ti−2 and
the outcome is announced to the users and suppliers before the end of this period.
This is done to allow suppliers to trade in the wholesale market during ti−1 so
they can adjust their wholesale deals according to the local market outcome.

Some pre-computations (randomizations), might be precomputed in an “off-
line phase.” This can be achieved by the intervention of a trusted dealer that is
not directly involved at any level of the computations [19]. The amount and the
purpose of the randomly generated numbers depend on the underlying security
model and primitives used by the market.

3.1 The Protocol

The description of our secure and privacy-preserving protocol is as follows.
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Preprocessing for trading period ti.

1. Bidders: Before the start of period ti−2, each individual bid is prepared
by the bidder and sent to the computational parties. In the case of secret
sharing, this means share generation, using the Linear Secure Secret Sharing
Scheme of choice, e.g., [39], generating as many shares as needed for the
computational parties participating in the scheme. This is the only input
required from the bidders. Bidders then send the corresponding shares of
their bids to the respective computational parties to be evaluated.

2. Evaluators: To randomly permute the bidders’ input, upon reception, each
share (ciphertext) is multiplied with a column of a randomized permutation
matrix which was computed beforehand. As mentioned in the previous sec-
tion, the permutation matrix generation used by Bogdanov et al. [18] can be
executed “offline”. This is still performed before the start of period ti−2.

Evaluation for trading period ti.

3. Evaluation: The evaluation is performed at period ti−2. In this phase, the
clearance price, traded volume and accepted and rejected bids are calculated
and identified in a data-oblivious fashion. To achieve this, we make use of
Algorithm 1, which gives a detailed overview of our secure auction evaluation.
It allows us to identify the clearance price [σ], the volume of electricity traded
[φ] and the vector of adjudicated demand and supply bids [A]. It achieves
this by obliviously calculating the aggregation of the demand bids [δ], and
then iterating over the set of all bids in B using their volume to match [δ].
An extended analysis is provided below.

To access the vector of accepted supply bids, it is enough to compute [A]i ×
(1 − [d]i) × [b]i. To find the vector of accepted demand bids, it is sufficient to
calculate (1− [A]i)× ([d]i)× [b]i.

Inform Bidders and Suppliers (before the end of period ti−2).

4. Bidders: To hide the bid order the vector of all bids [B] with the associated
[A] vector should be shuffled once more. Then, the evaluators will proceed
to use the open operation of the underlying MPC primitive, e.g., Linear
Secret Sharing, on the electricity price [σ] for period ti, for all i ∈ T . The
evaluators should follow this process by opening all the [b]j , for all j ∈ B.
Each evaluator Ei, for all i, will send the shares corresponding to the tuple
Bbj to the bidder that originated the bid identified by bj , for all j ∈ B. The
bidder can proceed to reconstruct the shares and verify the integrity of the
information contained in them and whether his bid was accepted or rejected.

5. Suppliers: In the same fashion the evaluators send the shares of the volume
aggregation Sφi , for all i ∈ S, to the corresponding supplier. Suppliers also
learn the market clearance price. Both bidders and suppliers are informed of
the results at period ti−2.
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Agorithm 1: Smart Market Clearance.

Input: Vector of n bid tuples B = ([q], [p], [d], [s], [b])
Output: Clearance price [σ], volume of traded electricity [φ], vector of accepted

bids [A] of size |B|, vector of aggregated volume traded by supplier Sφ

of size |S|
1 for i← 1 to n do
2 [δ]← [δ] + [q]i × [d]i;
3 end
4 [ν]← [0];

5 [Sφ]← {01, ..., 0|S|};
6 [A]← {01, ..., 0|B|};
7 for i← 1 to n do
8 [c]← [ν] < [δ];
9 [σ]← ((1− [d]i)× [c])× ([p]i − [σ]) + [σ];

10 [φ]← ((1− [d]i)× [c])× [q]i + [φ];
11 for j ← 1 to |S| do
12 [s]φj ← ([s]ij × ((1− [d]i)× [c])× [q]i + [s]φj ;

13 end
14 [a]i ← [c];
15 [ν]← [ν] + [c]× [q]i;

16 end

Correctness. The general goal of the protocol is to find the clearance price
and to identify the accepted and rejected bids. As previously stated any supply
bid below the market clearance price, and any demand bid above this price is
automatically accepted and vice versa. It is important to note that the market
equilibrium can be identified when the price of a given supply allocation surpasses
the price of the next cheapest available demand allocation. In other words, when
supply equals demand, the market equilibrium can be identified if the price of
the supply is at least the price of the demand.

In our protocol, we proceed to sort all bids regardless of whether they are
demand or supply bids. Following Algorithm 1, we then proceed to identify and

select bids until the aggregated demand ([δ]←
∑|B|
i [q]i× [d]i) is matched (note

that to maintain secrecy we iterate over the set of all bids), choosing the bids
in ascending order of price. If a supply bid is selected, this implies that there is
no supply bid that could be allocated to reduce [δ], and hence is not part of the
market clearance. Using [d]i cancels the supply bid’s effect over [δ], and provides
us with the sufficient tools to identify it. The opposite occurs when a demand
bid is selected. At the end of Algorithm 1, the bids that were used to reduce
[δ] can be identified, and correspond to all the supply and demand bids with
prices below and above the clearance price, respectively. From this, the set of
accepted and rejected bids follows. The clearance price is set to the price of the
last selected supply bid.
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Complexity. The protocol grows linearly with the number of bids. Given its
variability and numbers, it would be the main factor influencing the performance.
Moreover, the complexity of Algorithm 1 is O(|B|×|S|). The number of suppliers
rarely varies over time, and is of limited size.

As an additional note we would like to mention that secure vector permuta-
tion can be achieved in O(n×log(n)), where n is the size of the vector and in our
case the vector is the one of the Bids [B]. Moreover, as previously mentioned,
the sorting methods used by our secure market can achieve O(n× log(n)).

4 Security Analysis

The MPC mechanisms used in the protocol steps 1-5 presented above consti-
tute a unique arithmetic circuit (addition and multiplication), with no leakage,
making privacy straight forward. Moreover, the protocol can be computed with
perfect security on the information theoretic model against passive and active
adversaries under Canetti’s hybrid model [28], by using available MPC protocols
such as BGW [24]. this We refer the reader to [40], for a complete set of proofs
of security and composability for BGW.

Indeed, as it was previously mentioned, seminal results in BGW [24] and
CDD [25] showed that any function can be computed using MPC with the afore-
mentioned security levels by providing secure addition and multiplication under
an arithmetic circuit paradigm. Similarly, there are promising results on more
restricted models, e.g., dishonest majority [19] with computational security.

Furthermore, there exists privacy-preserving sub-protocols (arithmetic cir-
cuits) for sorting, comparison and vector permutation over MPC, that provide
the same security guarantees with no leakage, that can be utilized. These are in-
tegrated into a single arithmetic circuit that is our protocol i.e. modular fashion.
Therefore, the security of our protocol readily follows. In other words, the order
of the operations (multiplications and additions) is predetermined beforehand
by the publicly available circuit. More precisely, the protocol simulation in our
case can be simply achieved by invoking the corresponding simulators of the
sub-protocols used, and/or atomic operations in its predefined order.

5 Experimentation and Discussion

The market introduced by this work was implemented and tested under real-
istic scenario configurations. We executed our experimentation using the MPC
Toolkit proposed in [41] which is based on BGW [24]. This library includes all
the underlying cryptoprimitives and other sub-protocols we report on, together
with our own introduced code. The library was compiled with NTL (Number
Theory Library) [42] that itself was compiled using GMP (GNU Multiple Pre-
cision Library). These two libraries are used for the modulo arithmetic that is
extensively used by the underlying MPC protocols. Each instance of the proto-
type comprises two CPU threads. One manages message exchanges exclusively
and the other executes the protocol and the related cryptographic tasks. The
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application itself is not memory demanding, with each instance requiring little
more than 1 MB of allocated memory at any time, during our most memory
demanding test (2500 bids).

Data Generation. We generated the data used in our experiments using a
realistic data from Belgium. First we picked a time slot and date, i.e., between
13:00h and 13:30h on 5-th of May 2016, during which 2382 MW solar electricity
was generated in Belgium by solar panels with total capacity 2953 MW [43],
i.e., on average each solar panel has produced electricity approximately equal to
81.66% of its capacity. The average electricity consumption data of a Belgian
household during the same time slot was 0.637 kW [44]. Thus, for each user we
generated a random consumption data for this time slot with mean equal to the
average consumption data, i.e., 0.637, standard deviation equal to 0.20 and vari-
ance equal to 0.04. Then, we randomly chose 30% of the users to have installed a
solar panel at their homes, and each of the solar panels is randomly assigned one
of the following electricity generation capacities: 2.3, 3.6 or 4,7 kW. After that,
we randomly generated the electricity output of each solar panel during this time
slot with a mean equal to the capacity of the given solar panel multiplied with
the efficiency factor for the time slot, i.e., 81.66%, standard deviation equal to
0.20 and variance equal to 0.04. Once we generated the electricity consumption
and generation data for each user with a solar panel, we simply subtracted the
latter from the first value to find the amount of excess electricity each user has.

We assumed that there are 10 different suppliers available in the market and
randomly assigned a supplier to each user. The retail electricity sell price of the
suppliers is set to 0.20 e/kWh and the retail buy price is set to 0.04 e/kWh.
For the bid price selection we used the following rational steps. We divided
the retail electricity sell and buy price difference into nine ranges each includ-
ing several (overlapping) prices, e.g., range 2 includes three prices: 0.04, 0.05
and 0.06 e/kWh, whereas range 7 includes four prices: 0.17, 0.18, 0.19 and
0.20 e/kWh. Then, for each user, depending on how much excess electricity
he/she has for sell or he/she wants to buy, we picked randomly one of the prices
from the appropriate price range. For selecting the appropriate price range we
assumed that the users are rational, i.e., if they have a lot of excess electricity to
sell, they would choose a lower asking price, so they could sell it all. In contrast,
if they have a little excess electricity to sell, they would ask for a higher price
since selling it for a cheap price will not allow them to make a high profit by
selling it at the market compared to selling it directly to the supplier.

In summary, for each user we generated the following data items: unique user
ID, amount of electricity for the bid, bid price, indicator if the bid is a supply
or demand bid, and ID of the user’s contracted supplier.

Characteristics. Our prototype was built in C++ following an object oriented
approach, with modularity and composability in mind. It has an engine that
separates communication and cryptographic tasks. Table 3 shows the detailed
list of the sub-protocols used in our implementation.
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Table 3. List of Primitives used by secure prototype

Primitive Protocol

Sharing Shamir Secret Sharing [39]
Multiplication Gennaro et al. [45]
Inequality Test Catrina and Hoogh [30]
Random Bit Generation Damg̊ard et al. [29]
Sorting: QuickSort Hamada et al. [33]
Permutation: Sorting Network Lai et al. [34]

Security. Our security target was to build a prototype for the classic scenario of
semi-honest adversaries under the information theoretic model (private authen-
ticated channels), and threshold corruption. This is achieved by the underlying
BGW primitives and Shamir Secret sharing (honest majority). This is a neces-
sary configuration to achieve perfect security as long as the adversary does not
corrupt more than halve of the parties. However, the prototype offers statistical
security on the size of its input, given that it utilizes the comparison method
introduced by Catrina and Hoogh [30]. The security of such method depends on
input parameters l and k, where l is the bit-size of the numbers and k a security
parameter. Under the assumption that the channel is perfect, this task is also
decoupled from the prototype operation.

Environment. We executed our tests on a single 64-bit Linux server with
2*2*10-cores with Intel Xeon E5-2687W microprocessors at 3.1GHz and 25 MB
of cache available, and with memory of 256 GB.

Setting. All our tests were performed under a 3-party setting, with two available
cores for each instance. We ran our tests starting with a baseline of a realistic
scenario with 100 bids and then monotonically increasing the number of bids
until they reached 2500 bids. Each test scenario was repeated several times to
reduce the impact of the noise e.g., 5 to 10 times. The values reported in the
rest of this section correspond to those of the resulting averages.
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Fig. 2. Numerical results.

Results. The prototype, at its current state, requires bit randomization for the
comparison methods. The task of generating such values could be executed before
hand, in an “offline” phase. The “online” phase would execute the remaining
tasks and would utilize the randomization values generated during the “offline”
phase. Figure 2 shows such breakdown for all test scenarios considered. Moreover,
we have measured the computational cost at every test instance. For the 2500
bids case, the prototype took 678.50 sec. for either sending or waiting to receive
other parties’ messages (note that our prototype is synchronous) and 215.52 sec.
for other computational tasks, e.g., crypto-primitives. In other words, ≈ 75% of
the computational time was dedicated to transmission related tasks.

Our algorithm is capable of solving a 2500-bids instance in less than 15
minutes, and less than 5, when only the online phase is taken into account.
Table 4 shows a more complete break down of our results.

Table 4. Overall Results

Bids Com. Rounds Comparisons CPU Time (sec) On-line Phase (sec)

100 ≈ 1.40 · 105 965 2.96 1.01
500 ≈ 1.96 · 106 14628 40.40 11.35
1000 ≈ 7.03 · 106 53508 147.76 39.80
1500 ≈ 15.61 · 106 118956 320.79 86.14
2000 ≈ 26.97 · 106 208132 562.50 145.78
2500 ≈ 43.15 · 106 330912 894.01 235.82

From these results we can conclude the following:



14 A. Abidin et al.

– The 2500 bids instance total time on the online phase is less than 5 minutes,
meanwhile when the offline phase is considered, it is less than 15 minutes.
In both cases this is less than the typical 30 minutes duration of period t.

– The asymptotic behaviour on the growth of the computational time seems
to adjust to the behaviour included in the complexity analysis.

– The performance of the prototype could be improved by the use of techniques
such as, PRSS [46], to reduce the cost of generating random bits. Moreover,
other optimizations can be put in place based on the experimental setting.
This could be the case for a 3-computational parties configuration.

– During our tests, ≈ 95% of the computational time was spent on sorting
the bids. Although the number of suppliers rarely changes with time and is
relatively low, in our tests we used a fixed value of 10. Given that they are
involved in the other stages of the protocol, their influence on the number
of suppliers is quite limited. This means that they can be easily adjusted to
other realistic scenarios without much overhead, for bigger suppliers settings.

5.1 Discussion, Adaptations and Trade-offs

Our protocol can achieve perfect security, depending on the crypto-primitives
and setting. However, this security level comes with an associated price in term of
performance. Realistic applications might prefer to have a more efficient solution,
if any leakage produced by the optimizations does not pose a security risk for
the users. With this in mind, we introduce three simple approaches as trade-offs:

1. Users can use stopping conditions for the central loop of the Algorithm 1,
that resolves the auction once the bids are sorted. This stopping condition
could encompass the leakage of the comparison [c] at the end of each itera-
tion, and use it in the decisional process. This of course will leak the number
of iterations needed to set the clearance price.

2. To reduce the overhead of calculating comparison [c] at every iteration, users
can choose to do the following. At each iteration of Algorithm 1, two dis-
tinctive secret shared random values on Zp are generated for anonymizing
[ν] and [δ]. We simply have to multiply [ν] and [δ] by the first value, then
we add to both the second value and proceed to open them. Then [c] could
be executed in the clear. A more complete treatment of this technique can
be found in [47].

3. At the final stages of our protocol, the vector of bids that was previously
sorted gets randomly permuted. Our protocol uses a sorting network for this.
However, lighter exchange networks can be used instead, which would result
in a reduced permutation space and would thus leak some information.

Note that any stopping condition would only help to accelerate the execution
of the Algorithm 1, and as mentioned before, the bulk of the processing takes
place during the sorting. This also stands for any change on the configuration of
the exchange network for the permutation, adding the statistical complexities of
finding an adequate gate representation.
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6 Conclusions

In this work we proposed an MPC-based privacy-preserving protocol for a trad-
ing market that allows users to trade their excess electricity among themselves.
Our protocol employs a bidding scheme based upon MPC, and the selection
of the bids and the calculation of the clearance price at which the electricity
is traded are performed in a decentralised and privacy-preserving manner. We
also implemented the protocol in C++ and tested its performance with realistic
data. Our simulation results show its feasibility for a typical electricity trading
period of, for example, 30 minutes, as the market tasks are performed for 2500
bids in less than five minutes in the online phase. Future work would include
topics related to balancing suppliers’ accounts based on the private volumes of
the electricity that was traded, without violating privacy, will also be addressed.
In addition, it would be interesting to assess the impact of the trade-offs pro-
posed by this work as well as the impact of any possible optimization on the
underlying MPC implementation of the protocol, e.g., the use of PRSS.
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