
Alternative Implementations of Secure Real Numbers

Vassil Dimitrov Liisi Kerik Toomas Krips Jaak Randmets Jan Willemson

August 11, 2016

Abstract

This paper extends the choice available for secure real number implementations with two new con-
tributions. We will consider the numbers represented in form a − ϕb where ϕ is the golden ratio, and
in form (−1)s · 2e where e is a fixed-point number. We develop basic arithmetic operations together
with some frequently used elementary functions. All the operations are implemented and benchmarked
on Sharemind secure multi-party computation framework. It turns out that the new proposals provide
viable alternatives to standard floating- and fixed-point implementations from the performance/error
viewpoint in various settings. However, the optimal choice still depends on the exact requirements of the
numerical algorithm to be implemented.

1 Introduction

It is estimated that currently human knowledge doubles approximately every year [21]. It means that data
analysis facilities should keep up with this pace. However, it is not conceivable that all the organisations
depending on big data analysis would upgrade their server farms every year.

Consequently, the only way to manage this growth is to rely on computation as a service, and this is the
core reason behind the success of cloud computing business idea.

On the other hand, outsourcing computations has other restrictions with data privacy being on top of
the list. Privacy-preserving data analysis is the holy grail of cloud computing, but unfortunately it is easier
said than done.

There are several paradigms proposed enabling to offload some of the computations to another party in
a way that some privacy guarantees could be given.

Historically, the first framework was the garbled circuits (GC) approach originally proposed by Yao in
1982 [3, 18, 23]. At its core, GC provides secure function evaluation capability for two mutually distrusting
parties, one acting as a garbler and another as evaluator.

Soon, secure multi-party computation protocols were developed in a series of seminal papers [4, 9, 12].
These protocols can be implemented on top of several basic technologies, with secret sharing being one of
the most often used ones [5, 22].

The most recent breakthrough in secure computation outsourcing was achieved by Gentry who proposed
the first solution to achieve fully homomorphic encryption in 2009 [11].

All of these approaches have their strengths and weaknesses, but their common characteristic is that they
introduce a remarkable performance penalty to achieve privacy-preserving features.

Archer et al. have compared the main secure computation implementations of AES-128 block cipher [2]
and conclude that the fastest alternative is secure multi-party computing based on linear secret sharing.

However, an efficient secure computation framework is only the first step, providing basic elementary
operations like bit manipulation or integer addition and multiplication. Statistical data analysis methods
require higher level protocols like division and roots. To implement those, data types richer than bits and
(modular) integers are required.

This paper presents a contribution on secure data types, more precisely, secure real number implemen-
tations.

1



The paper is organised as follows. First, we will review the state of the art in secure real number
implementations in Section 2 and list the required preliminaries in Section 3. Then, Sections 4 and 5
describe two new proposed approaches based on golden section and logarithmic representations. Performance
benchmarks and error analysis are presented in Section 6 and some conclusions are drawn in Section 7.

2 State of the art

The first attempt to extend modular integer domains provided by basic secure computation frameworks was
made by Catrina et al. They implemented fixed-point arithmetic and applied it to linear programming [6–8].

In 2011, Franz and Katzenbeisser [10] proposed a solution to implementation of floating-point arithmetic
for secure signal processing. Their approach relies on two-party computations working over garbled circuits,
and they have not provided any actual implementation or benchmarking results.

In 2013, Aliasgari et al. designed and evaluated floating-point computation techniques and protocols for
square root, logarithm and exponentiation in a standard linear secret sharing framework [1].

This approach was extended in 2015 by Kamm and Willemson who implemented and optimised a number
of numeric primitives, building a complete solution for privacy-preserving satellite collision analysis [13].

In order to provide further improvements, Krips and Willemson [15, 16], and Kerik et al. [14] have
proposed and implemented several tricks that increase the efficiency of specific elementary functions used
under various restrictions.

The standardised IEEE 754 format is not well suited for secure computations on oblivious values. For
example, it has an exceptional not-a-number value and it assumes explicit bit access that is inefficient to
implement on top of modular integer arithmetic. Thus, all of the aforementioned implementations use a
custom format, ignoring some of the details of IEEE 754 standard. The first full standard-compliant imple-
mentation was achieved by Pullonen and Siim who used a hybrid of garbled circuits and secret sharing [20].
However, the overhead required to support the whole standard is too high for larger data volumes.

3 Preliminaries

Our protocols will make use of both public and private (protected) values. To express that x is private,
we will denote it by JxK. Concrete instantiation of the value protection mechanism may vary between
implementations. In principle, any secure computation framework (say, garbled circuits, fully homomorphic
encryption or secret-sharing based multi-party computation) may be used.

However, we will make some assumptions about the underlying framework. We will assume that the
framework provides access to modular integer arithmetic. In addition to integers, we use several kinds of
fixed-point numbers.

Two’s complement and biased fixed-point numbers will be represented and hence also notated as integers.
Fixed-point numbers that use a sign bit instead of two’s complement or biased representation will be denoted
as tuples (s, a). A tuple (s, a) that is a signed fixed-point number with radix-point m signifies the value
(−1)s · a · 2−m.

We will also assume access to the following operations.

• Addition of two private values JxK and JyK denoted as JxK+JyK. If the underlying protection framework
is linear, this is equal to Jx+ yK.

• Multiplication of a private value JxK by a public scalar c denoted as c · JxK. If the underlying protection
framework is linear, this is equal to Jc · xK.

• Multiplication of two private values JxK and JyK denoted as JxK · JyK. If the underlying framework is not
fully homomorphic, evaluating this primitive generally requires communication between the computing
parties.
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• Standard comparison operators >, ≥, etc. The inputs of these operators will be protected integer values
and outputs will be protected bits containing the values of the corresponding predicate evaluations.

• Standard Boolean operations (conjunction, disjunction, xor) on one-bit protected values with the
output being a protected bit again.

• ObliviousChoice(JbK, JxK, JyK): if the bit b = 1 then this function outputs JxK, otherwise it outputs
JyK. Note that while usually x and y are integers, they might also refer to more complicated types that
consist of several integer values.

• Swap(JcK, JxK, JyK) outputting (JxK, JyK) if c = 0 and (JyK, JxK) if c = 1. Here also x and y can refer to
a type consisting of several integer values.

• ConjBit({JxiK}ni=0, JyK) takes an array of bits x and a single bit y and finds the conjunction of every
bit of x with y.

• PublicBitShiftRightProtocol(JxK, k). This function Takes a protected value JxK and a public integer
k, and outputs Jx� kK where x� k is equal to x shifted right by k bits. x� k is also equal to x/2k

rounded down, so sometimes in the protocol we will use syntactic sugar like x/2k to denote x� k.

• BitExtract(JxK) takes a protected value JxK and outputs a vector of protected bits corresponding to
the bit representation of x. Note that when we use linear integer protection mechanism (like secret
sharing) this operation is rather expensive.

• MSNZB({JbiK}n−1i=0 ) (Most Significant Non-Zero Bit) takes a vector of protected bits and outputs a similar
vector, where only the highest 1-bit (i.e. the 1-bit with the largest index value) has remained and all
the other bits are set to 0. If all the input bits are 0, they will also remain so in the output.

• Polynomial evaluation protocol cPoly(p, JxK) evaluates a public polynomial p = {pi}li=0 on JxK. We
consider that the inputs are fixed-point numbers and that both JxK and the output have 0 bits before
radix point. Therefore, both the range and the domain are [0, 1). Implementation details can be found
in [14].

• Vectorised fixed-point polynomial evaluation protocol cPolyArr(p, JxK) takes an array of polynomials
p = {{pi,j}lj=0}ki=0 and an argument JxK and evaluates all the polynomials on JxK. This protocol is
similar to cPoly but more efficient than evaluating each polynomial independently.

• Pick({JxiK}li=0, JnK) takes a shared array {JxiK}li=0 and a shared index JnK and returns JxnK.

• Truncate(JxK, n) takes an integer JxK and casts it down to n bits by discarding the highest bits. We
presume that the length of JxK is no less than n bits. If the underlying protection framework is linear
then truncating a shared integer is achieved by truncating all the shares.

• ConvertUp(JxK, k, l) takes in a shared k-bit two’s complement integer JxK and returns a shared l-bit
two’s complement integer that has the same value. We presume that k < l.

• FixSubtract((Js0K, Ja0K), (Js1K, Ja1K)) takes two signed fixed-point numbers (Js0K, Ja0K) and (Js1K, Ja1K)
and returns their difference as a signed fixed-point number.

For benchmarking, we will implement our algorithms on Sharemind1 multi-party computation engine
that relies on linear secret sharing and provides all the primitive operations listed above.

It was recently shown by Pettai and Laud that, when properly composed, Sharemind protocols provide
privacy against active adversaries [19]. They also produced a software toolkit allowing for the respective
analysis to run on the Sharemind protocols implemented in the domain specific language developed by
Randmets and Laud [17]. All the protocols described in this paper have been formally verified using this
toolkit.

1https://sharemind.cyber.ee/
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4 Golden section numbers

We shall now describe a real number type that can depict signed real numbers, has free addition, and is
reasonably efficient for other operations.

We use a tuple of secret signed two’s complement integers (JaK, JbK) to denote the positive real number
a−ϕb. We call these numbers golden section numbers or golden numbers. We may refer to these numbers as
either a− ϕb or (a, b). For a given real number x, we denote its (approximate) golden representation as gx.
For a golden section number a−ϕb, we refer to a as its integer representand and to b as its ϕ-representand.
Note that we will be using a and b throughout this section to refer to the integer representand and the
ϕ-representand of the number being considered, respectively.

We will now see how addition and multiplication work on golden section numbers. Addition is quite
straightforward:

a− ϕb+ c− ϕd = (a+ c)− ϕ(b+ d).

For multiplication, we note that ϕ2 = ϕ+ 1 and thus obtain

(a− ϕb) · (c− ϕd) = (ac+ bd)− ϕ(bc+ ad− bd) . (1)

Golden numbers are not monotone with respect to representands. Hence, finding a good approximation
for a given number is a non-trivial problem on its own.

Definition 1. Given a real number x, we say that the tuple of integers (a, b) is a (k, ε)-approximation of x
if |a| , |b| ≤ 2k and |a − ϕb − x|≤ ε. If k is implied by the context or not important in the context, we shall
refer to (a, b) as just an ε-representation of x. If ε is implied or not important, we shall refer to (a, b) as a
(k, ·)-representation of x.

If neither are important (or are implied) we refer to (a, b) as just as a representation of x.

It is preferable to use such a (k, ε)-approximation of a number where both k and ε are relatively small.
While it is clear that a small ε implies a small error and is thus better, the reason why a small k is good is
a bit more difficult.

Namely, we observe that when we multiply two golden section numbers x and y with (k, ·)-approximation,
then their product has a (2k + 1, ·)-approximation. We will later see how we can replace a golden section
number x with a (k, ε)-representation of it.

We shall assume throughout the section that the error ε is quite a small number, several orders of
magnitude smaller than 1. Thus, when we discuss how either the number or the representands need to be
bounded by some quite large numbers, we shall ignore ε in those analyses as rounding down used in finding
those large numbers will cover any overflow ε might cause.

Golden numbers are also relatively dense in real numbers.

Lemma 1. For a real number x which satisfies |x| < ϕs+1, and a positive integer k, there exists a (ϕs+1 +
ϕk+1, ϕ−k)-approximation of x.

Proof. We note that we can write every positive real number as a (possibly infinite) sum of powers of ϕ. We
can write x =

∑s
i=−∞ aiϕ

i where ai ∈ {0, 1} and where there is no i so that ai = 1 and ai+1 = 1 would both
hold.

We also note that given such a requirement,
∑s′

i=−∞ aiϕ
i < ϕs′+1 holds for any s′.

Thus, if we choose to represent x as x =
∑s

i=s′ aiϕ
i, the error we make is no greater than ϕs′ , that is,

|x−
∑s

i=s′ aiϕ
i|≤ ϕs′ .

The following three facts about Fibonacci numbers Fk (k ∈ Z) are common knowledge and are easily
proven:

• ϕk = Fkϕ+ Fk−1 for every k,

• Fk ≈ ϕk for every positive k, and
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•
∑k

i=0 Fk = Fk+1 − 1 for every positive k.

From these facts it follows that
s∑

i =s′

aiϕ
i =

s∑
i=s′

ai(Fiϕ+ Fi−1) ≤
s∑

i=s′

|Fi|ϕ+ |Fi−1|=

s′∑
i=0

|Fi|ϕ+ |Fi−1|+
s∑

i=1

|Fi|ϕ+ |Fi−1|=

(Fs′+1 − 1)ϕ+ (Fs′) + (Fs+1 − 2)ϕ+ Fs − 1

= (Fs′+1 + Fs+1 − 3)ϕ+ Fs + Fs′ − 1.

We see that taking k = −s′ gives us the result.

However, there is a problem with this number system. Namely, we may use large integers to depict small
real numbers. This, however, means that when multiplying several small real numbers, the representands
may grow exponentially and may overflow very fast. We would like to keep the absolute value of the
representands to be smaller than some reasonable constant.

The solution for this comes from the fact that there may be several different (k, ε)-approximations of a
number. Thus we want a method for replacing a (k1, ε1)-approximation with a (k2, ε2)-approximation where
ε2 may be slightly greater than ε1, but where k2 < k1. We shall use a method that we shall call normalization,
which is, in essence, subtracting a suitable representation of 0 from the golden section number.

Definition 2. We say that a golden section number is `-normalized if the absolute value of its integer
representand is not greater than `.

Note that this definition depends only on the integer representand and not the ϕ-representand of a golden
number, and that a too large ϕ-representand could also cause similar overflow problems as a too large integer
representand does.

However, we shall see that if the absolute value of integer representand is smaller than ` then, provided
that we put an extra constraint on the size of the numbers that we can represent, the absolute value of the
ϕ-representand shall also be smaller than `. More precisely, we shall require that |a− ϕb|≤ `(ϕ− 1).

Lemma 2. Let a golden section number a − ϕb satisfy also |a − ϕb|≤ `(ϕ − 1) and be `-normalized. Then
|b|≤ `.

Proof. Using the reverse triangle inequality, we obtain ||a| − |bϕ|| ≤ |a− bϕ| ≤ `(ϕ−1). From this we obtain
|bϕ| − `(ϕ− 1) ≤ |a| ≤ |bϕ|+ `(ϕ− 1). Consider the first half — |bϕ|−`(ϕ− 1) ≤ |a|, from which we obtain
|bϕ|−`ϕ+ ` ≤ `, i.e. |bϕ| ≤ `ϕ. This is equivalent to |b| ≤ `.

We thus will assume from this point on that if we are talking about a golden section number, then
|a− ϕb|≤ `(ϕ− 1).

We want to settle for a general value for ` that we will use across the article. The main idea for choosing
` shall be the idea that if we multiply together two `-normalized numbers, no overflow should happen.

We shall generally take ` =

⌊√
2n−1−1

2

⌋
, where n refers to the bit length of a and b.

Lemma 3. If two golden section numbers a − ϕb and c − ϕd are

⌊√
2n−1−1

2

⌋
-normalized, then both the

integer representand and the ϕ-representand of their product are smaller than 2n−1.

Proof. Let us denote a−ϕb · c−ϕd with x−ϕy, i.e. x = ac+ bd and y = ad+ bc− bd. We give the proof for
x ≥ 0 as the proof for x < 0 is analogous. We assume that |a| , |b| , |c| , |d| ≤ `. Thus x = ac+bd ≤ 2`2 < 2n−1.
We assume that the absolute value of the product x−ϕy is no greater than `(ϕ− 1). In a similar way as we
did in the proof of Lemma 2, we obtain that |yϕ|−`(ϕ− 1) ≤ x. Thus |yϕ|≤ 2`2 + `(ϕ− 1) which gives us
|y|< 2`2 < 2n−1.
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From now on, we shall speak of normalized numbers which shall mean

⌊√
2n−1−1

2

⌋
-normalized numbers.

Likewise, ` shall refer to

⌊√
2n−1−1

2

⌋
.

4.1 Normalization

In the previous subsection we described a problem where representands grow exponentially on multiplication
and threaten to overflow really fast.

Thus, we want to significantly reduce the absolute values of the representands of the number while keeping
its value relatively the same.

There are various possibilities for this, but due to the nature of the task, they are equivalent to deducing
suitable ε̄-representations of zero from the number. Namely, suppose that we normalized a− ϕb and ended
up with a′−ϕb′. Let the error made in this process be no greater than ε̄, i.e. |a− ϕb− (a′ − ϕb′)| ≤ ε̄. This
means that |(a−a′)−ϕ(b−b′)|≤ ε̄, i.e. |(a− a′)− ϕ(b− b′)| is an ε̄-representation of 0. The smaller the ε̄, the
smaller the error arising from the normalization process and thus it is desirable to obtain ε̄-representations
of 0 where ε̄ is very small. The process should also be not very resource-consuming.

We first note that, thanks to Lemma 2, it suffices to normalize only the integer representand of the
number. If the normalization error is small, then the result will still be an ε-representation of a golden
number, and thus the absolute value of the ϕ-representand of the result will also be smaller than `.

Note also that in order to normalize an integer representand down to 2k, we need either the n− k most
significant bits to be zero (if this repesentand is positive) or the n− k most significant bits to be one (if it is
negative) in the end-result. (In principle, k can be chosen freely, but we generally take k = n

2 − 1.) We note
that using the protocol BitExtract(J·K), we can have access to the individual bits of a.

If the bit representation of a is a0a1 . . . an−1 then a = −an−12n−1 +
∑n−2

i=0 ai2
i (recall we are using two’s

complement representation). In the positive case we could make the i-th bit of a zero by deducting 2i from
a. We will later confirm that in the negative case in a similar fashion we could make the ith bit zero by
adding 2i to a. In the end we would use an−1 to obliviously choose between the negative and positive cases.

Thus we shall describe a method where for every bit ai of a we have a representation of 0 that is (2i,
[
2i

ϕ

]
),

i.e. 2i−ϕ
[
2i

ϕ

]
. We would perform the BitExtract(JaK) protocol and then use the higher bits of a to perform

oblivious choice about whether to deduce or add (2i,
[
2i

ϕ

]
) from a or not. In the positive case we would end

up with a−
∑n−2

i=k ai2
i =

∑k−1
i=0 ai2

i ≤ 2k − 1 and in the negative case with

a+

n−1∑
i =k

(1− ai)2i = −2n−1 +

n−2∑
i=0

ai2
i +

n−2∑
i=k

(1− ai)2i

= −1−
n−2∑
i=0

2i +

n−2∑
i=0

ai2
i +

n−2∑
i=k

(1− ai)2i

= −1 +

n−2∑
i=0

(ai − 1)2i +

n−2∑
i=k

(1− ai)2i

= −1 +

k−1∑
i=0

(ai − 1)2i

≥ −1 +

k−1∑
i=0

−2i = −2k.

We would then perform oblivious choice between them using an−1. We would end up with a number where
the absolute value of a is no greater than 2k which is small enough for a suitable k.
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However, this approach has a problem – namely, (2i,
[
2i

ϕ

]
) tends to be a very poor representation of 0.

The set {|k − ϕ[ kϕ ]||k ∈ Z} is quite uniformly distributed in [0, ϕ2 ) and thus for most integers k, (k − ϕ
[
k
ϕ

]
)

is a poor representation of 0 as the error is too large.
Thus we want to modify our algorithm somewhat — we want to find numbers xi that are close to 2i but

where |xi − ϕ
[
xi

ϕ

]
| is very small. On the other hand, we also wish |2i − xi| to be small, since if |2i − xi| is

too large, then the number that we obtain after the normalization process is still not normalized.
We shall now describe the algorithm for normalization. We use a number of pairs of public constants

(xi, yi) such that xi − ϕyi ≈ 0 and that xi is close to 2i. After describing the algorithm we shall see what
properties they must satisfy. The protocol is formalized in Algorithm 1.

We are given a golden section number JaK−ϕJbK. We perform bit decomposition on JaK and obtain its bits
Ja0K, . . . , Jan−1K. Out of these, we are interested in bits with large indices as the less significant bits will not
be important in normalizing. Let us consider the positive and negative cases separately for easier reading. In
the algorithm, we will compute both of them and then use an−1 to obliviously choose between them. First
let us consider the case where a is positive. If ai = 1 and n − 1 > i ≥ k, we will deduce xi from a and yi
from b. This is done by multiplying xi with JaiK and deducing JxiaiK from JaK, and likewise, multiplying yi
with JaiK and deducing JyiaiK from JbK. Note that these protocols are local and thus practically free.

Likewise, in the negative case, if ai = 0 and n− 1 > i ≥ k, we will add xi to a and yi to b.

Algorithm 1: GoldenNorm

Data: JaK, JbK, {xi}ni=k, {yi}ni=k

Result: Given a golden section number and a normalization set, returns the number normalized
according to the set.

1 {JaiK}n−1i=0 ← BitExtract(JaK);
2 {JziK}n−2i=k ← {JaiK}

n−2
i=k · {xi}

n−2
i=k ;

3 {JwiK}n−2i=k ← {JaiK}
n−2
i=k · {yi}

n−2
i=k ;

4 {Jz′iK}
n−2
i=k ← {J1− ai)K}

n−2
i=k · {xi}

n−2
i=k ;

5 {Jw′iK}
n−2
i=k ← {J(1− ai)K}

n−2
i=k · {yi}

n−2
i=k ;

6 for i← k to n− 2 do
7 Ja′K← JaK− JziK;
8 Jb′K← JbK− JwiK;
9 Ja′′K← JaK + Jz′iK;

10 Jb′′K← JbK + Jw′iK;
11 end
12 JaK← ObliviousChoice(Jan−1K, Ja′K, Ja′′K);
13 JbK← ObliviousChoice(Jan−1K, Jb′K, Jb′′K);
14 return JaK, JbK

Now we shall see what properties the pairs (xi, yi) must satisfy so that the final result would have an
absolute value no greater than ` and that its difference from the original golden number would be no greater
than ε.

We want the end result, which is a −
∑n−2

i=k aixi in the positive case and a +
∑n−2

i=k (1 − ai)xi in the
negative case, to be in the interval (−`, `). We note that in the positive case the following equality holds.

a−
n−2∑
i=k

aixi =

k−1∑
i=0

ai2
i +

n−2∑
i=k

ai(2
i − xi).

Likewise, in the negative case this holds.

a+

n−2∑
i=k

(1− ai)xi = −1 +

k−1∑
i=0

(ai − 1)2i +

n−2∑
i=k

(ai − 1)(2i − xi).
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In attempting to estimate these quantities with inequalities, it is important whether 2i is smaller or
greater than xi. Thus, by distinguishing these cases, we arrive at the following inequalities:

∑
i:2i<xi

k≤i≤n−2

(2i − xi) ≤
k−1∑
i=0

ai2
i +

n−2∑
i=k

ai(2
i − xi)

≤ 2k − 1 +
∑

i′:2i
′
>xi

k≤i≤n−2

(2i
′
− xi′) ,

∑
i:2i<xi

k≤i≤n−2

(xi − 2i) ≥ −1 +

k−1∑
i=0

(ai − 1)2i +

n−2∑
i=k

(1− ai)(xi − 2i)

≥ −2k +
∑

i:2i>xi
k≤i≤n−2

(xi − 2i) .

Thus, in order to achieve that a−
∑n−2

i=k aixi or a+
∑n−2

i=k (1−ai)xi belongs the interval (−`, `), it suffices
for both cases that

−` ≤
∑

i:2i<xi
k≤i≤n−2

(2i − xi)

and
2k +

∑
i′:2i

′
>xi

k≤i≤n−2

(2i
′
− xi′) ≤ ` .

Thus we arrive to the following definition.

Definition 3. A (k, `, ε, n)-normalization set is a set of integers {xk, . . . , xn−1, yk, . . . , yn−1} with the fol-
lowing properties:

1.
∑n−2

i=k |xi − ϕ · yi|≤ ε

2.
∑

i:2i<xi
k≤i≤n−2

(2i − xi) ≥ −`

3. 2k +
∑

i′:2i
′
>xi

k≤i≤n−2
(2i
′ − xi′) ≤ `

There is some freedom in choosing k, with lower values giving us more freedom in choosing the normal-
ization set, but reducing the number of values that a normalized number can have.

4.2 Finding Normalization Sets

The key part of finding normalization sets is finding integer pairs (xi, yi) where on the one hand xi

yi
is very

close to ϕ and on the other hand xi must be very close to 2i. In essence, we have to find suitable constants
xi, since yi is defined by xi as [xi

ϕ ]. Note that this can be considered a minimization problem – we have to
guarantee that properties 2 and 3 in Definition 3 hold, but how loosely or strictly they hold is not really
important for us.

On the other hand, we do want to minimize
∑n−1

i=k |xi−ϕ ·yi| as much as possible in order to minimize the
error caused by the normalization protocol. Thus we can see finding the normalization set as an optimisation
problem to minimize

∑n−1
i=k |xi − ϕ · [

xi

ϕ ]| with the constraints 2. and 3. in Definition 3 holding.
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For easier notation, let us define err(x) := x− ϕ[ xϕ ].

We searched for these coefficients using the facts that err(Fk) tend to be small and that when when x and
x′ are such that if err(x) and err(x′) are small, then also err(x+ x′) is small, more precisely, |err(x+ x′)| ≤
|err(x)|+ |err(x′)|.

Thus, we would take a small interval around a power of 2 and find all elements zi for which err(zi) was
suitably small. Then, in a larger interval, the only possible candidates w for a minimal |err(w)| had to have
the format zi + j · Fk. Thus we needed to check these elements to find a minimal one. If necessary, this
process could be iterated.

4.3 Protocols for golden section numbers

We shall now present a few protocols on golden numbers. We have already described addition, multiplication
and normalization protocols and thus we will not discuss them any further here.

We will denote with GoldenMult(JxK, JyK) golden number multiplication as described in equation (1).
Generally we assume that all functions get normalized inputs, unless specified otherwise. We will thus not
normalize the inputs before performing multiplication, but will normalize the product. In some cases, such
as when it is the final result that will be declassified, the product can be left unnormalized.

We will also use the function GoldenProd(x0, . . . , xk−1) to refer to computing the product
∏k−1

i=0 xi using
GoldenMult. Computing the product of k − 1 golden numbers takes l · log k rounds where l is the number
of rounds required for a single multiplication.

4.3.1 Multiplication by ϕ

We will describe now a protocol for multiplying an integer by the golden ratio. This protocol, presented in
Algorithm 2, will be useful for performing golden-to-fix conversion described in Section 4.3.2.

Algorithm 2: MultWithPhi

Data: JxK, n,m, (m > n), {pi}∞i=0

Result: JxϕK.
1 {JxiK}n−1i=0 ← BitExtract(JxK);
2 Js0K←

∑m
i=0 pi · (

∑
j=0JxjK · 2m+j−i);

3 Js1K←
∑m+n

i=m+1 pi · (
∑

j=i−mJxjK · 2m+j−i);

4 JsK← Js0K + Js1K;
5 {Jx′iK}

n−1
i=0 ← BitExtract(J−xK);

6 Js′0K←
∑m

i=0 pi · (
∑

j=0Jx
′
jK · 2m+j−i);

7 Js′1K←
∑m+n

i=m+1 pi · (
∑

j=i−mJx′jK · 2m+j−i);

8 Js′K← Js′0K + Js′1K;
9 JrK← ObliviousChoice(Jxn−1K, Js′K, JsK);

10 return (Jxn−1K, JrK)

The protocol takes in a secret signed integer JxK and returns a signed fixed-point number that represents
JxϕK. This protocol needs one bit-extraction protocol and one oblivious choice. We start with a secret integer
JxK. We also have the bits of φ, {pi}∞i=0. We extract the bits JxiK from the input JxK. We then compute∑m

i=0 pi · (
∑

j=0JxjK · 2m+j−i) +
∑m+n

i=m+1 pi · (
∑

j=i−mJxjK · 2m+j−i) that represents xϕ if x is positive. We
then do the same for −x and obliviously choose between the two cases based on the last bit of x. The last
bit of x is also the sign of the resulting fixed-point number, as multiplication with ϕ does not change the
sign.

4.3.2 Conversion to a fixed-point number

Algorithm 3 presents the protocol for converting a golden section number to a fixed-point number.
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Algorithm 3: GoldToFix

Data: JaK− ϕJbK, n,m, (n > m)
Result: A fixed-point number that represents the same value as the golden number input.

1 JbigAK← ConvertUp(JaK, n, n+m);
2 // we will also obtain an−1 as a side product from the ConvertUp function.

3 JfixAK← (Jan−1K, JbigAK · 2m);
4 JfixBK← MultWithPhi(JbK, n,m);
5 JfixK← FixSubtract(JfixAK, JfixBK);
6 return JfixK

While conversion functions are important on their own, here we will also use them as subprotocols in
more complicated algorithms.

Since we have access to MultWithPhi function, converting a golden number to a fixed-point number is
trivial. We need to convert both the integer representand and the ϕ-representand to a respective fixed-point
number and deduce the second from the first.

4.3.3 Return a constant based on power of two

We will see that in both the inverse protocol and the square root protocol, we get a secret golden number
JgxK and, based on the interval [2i, 2i+1) its absolute value is in, return a golden number JgziK.

The protocol for performing this operation is presented in Algorithm 4.

Algorithm 4: TwoPowerConst

Data: JgxK, {gzi} = {(xi, yi)}, n,m < n
Result: Will return the sign of the input and (xj , yj) if gx ∈ [2j , 2j+1).

1 JsignK, JfK← GoldToFix(JgxK);
2 {JbiK}n+m−1

i=0 ← MSNZB(JfK);
3 (JsK, JtK)←

∑n−1
i=−m(JbiK · xi, JbiK · yi);

4 return JsignK, (JsK, JtK)

The computation is performed the following way. We convert the input to a fixed-point number. We
then perform MSNZB on the integer representative of the fixed-point number and compute the scalar product
with the set of public coefficients {gzi}. Note that finding the scalar product is a local operation.

4.3.4 Inverse

We shall now describe the protocol for computing the inverse of a secret golden number JgxK. A protocol
for computing the inverse of numbers in [0.5, 1] is presented in Algorithm 5. It uses the approximation
1
x =

∏
((1 − x)2

i

+ 1) that works well in the neighbourhood of 1 (being equivalent to the respective Taylor
series).

The protocol for computing the inverse of a golden number is presented in Algorithm 6.
We use Algorithm 5 as a subprotocol. Given gx as an input, we need to find gx′ and gy so that x′ ∈ [0.5, 1]

and that x · y = x′. We can then use the HalfToOneInv function to compute 1
x′ = 1

x ·
1
y which we shall then

multiply with y to obtain 1
x . y is an approximation of a suitable power of 2.

We compute y using the function TwoPowerConst(JgxK, {gzi}). Here the gzi are approximations of dif-
ferent powers of 2 – when x ∈ [2j , 2j+1), then TwoPowerConst should return approximately 2−j−1.

We compute Jgx′K by multiplying JgxK and JgyK. We then use the HalfToOneInv protocol on Jgx′K,
obtaining Jg 1

x′ K. To get this back to the correct range, we multiply it by JgyK.

10



Algorithm 5: HalfToOneInv

Data: JgxK(x ∈ [0.5, 1]), n,m, (n > m), k
Result: Jg 1

xK
1 JgyK← 1− JgxK;
2 Jgy0K← JgyK;
3 for i← 0 to k − 1 do
4 Jgyi+1K← GoldenMult(JgyiK, JgyiK);
5 end
6 JgzK← GoldenProd(Jgy0K + 1, Jgy1K + 1, . . . , JgykK + 1);
7 return JgzK

Algorithm 6: GoldInv

Data: JgxK, n,m, (n > m), {(xi, yi)}
Result: Jg 1

xK
1 (JsignK, JgyK)← TwoPowerConst(JgxK, {gzi});
2 Jgx′K← GoldenMult(JgxK, JgyK);
3 JgzK← HalfToOneInv(Jgx′K);
4 JgwK← GoldenMult(JgyK, JgzK);
5 JguK← ObliviousChoice(JsignK,−JgwK, JgwK);
6 return JguK

Finally, since our current result is approximately Jg
∣∣ 1
x′

∣∣K, we have to make an oblivious choice between
the result and its additive inverse so that it would have the correct sign.

4.3.5 Square Root Protocol

Algorithm 7 presents the protocol for finding the square root of a golden section number.

Algorithm 7: GoldSqrt

Data: JgxK,m, n, (n > m), k, {gwi}
Result: Jg

√
xK

1 Jgy0K← TwoPowerConst(JgxK, {gwi});
2 for i← 0 to k − 1 do
3 Jgz0K← GoldenMult(JgyiK, JgxK);
4 Jgz1K← GoldenMult(JgyiK, Jgz0K);
5 Jgz1K← 3− Jgz1K;
6 Jgz2K← GoldenMult(JgyiK,g 0.5);
7 Jgyi+1K← GoldenMult(Jgz1K, Jgz2K);
8 end
9 JgwK← GoldenMult(JgxK, JgykK);

10 return JgwK

The protocol is following. We first compute the inverse square root of the input x and then multiply
it with x. There exists an iterative algorithm for 1√

x
where the formula for the nth approximation is

yn+1 = 0.5yn(3 − xy2n). The reason why we use inverse square root to compute square root is that general
iterative methods for square root need division, which is too costly in out setting.

To obtain the starting approximations, we shall use the function TwoPowerConst where the constants are

2
i
2 – if x ∈ [2j , 2j+1), the function will return 2

j
2 .
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5 Logarithmic numbers

In this section we will present logarithmic numbers. We will explain the format, and then describe algorithms
for computing the inverse, product, square root, logarithm, exponential function and sum.

5.1 Logarithmic number format

We represent a logarithmic number x as a triple (zx, sx, ex). Zero-bit zx is 0 if x is zero and 1 if x is non-zero.
Sign bit sx is 0 if x is positive and 1 if x is negative. Exponent ex is an (m+n)-bit integer which represents a
fixed-point number with m bits before and n bits after the radix point. The exponent is biased and so can be
both positive and negative. The value of the number is computed as follows: (z, s, e)→ z ·(−1)s ·2(e−Bias)/2n ,
where Bias is 2m+n−2 − 1. The larger m, the larger the range of numbers we can represent. The larger n,
the more precision we have.

While the length of the exponent is m+ n bits, only the lowest m+ n− 1 bits are used. The highest bit
is always zero to achieve faster comparisons between exponents.

5.2 Inverse

Algorithm 8 presents the protocol for finding the inverse of a logarithmic number.

Algorithm 8: LogNumInv

Data: JxK = (JzxK, JsxK, JexK)
Result: J1/xK

1 return (J1K, JsxK, 2 · JBiasK− JexK)

Inverse is computed by leaving the sign unchanged and negating the exponent, based on the formula
((−1)sx · 2ex)−1 = (−1)sx · 2−ex . We assume that the input is not zero. The zero-bit of the result is set to 1
to indicate that the result is non-zero. We also have to account for the bias when computing the exponent.
When changing the sign of a biased integer, we have to not only change the sign but also add the double of
the bias.

5.3 Multiplication

Algorithm 9 presents the protocol for multiplying logarithmic numbers.

Algorithm 9: LogNumMult

Data: JxK = (JzxK, JsxK, JexK), JyK = (JzyK, JsyK, JeyK)
Result: Jx · yK

1 JeK← JexK + JeyK;
2 JzK← JzxK ∧ JzyK ∧ (JeK ≥ JBiasK);
3 return (JzK, JsxK⊕ JsyK, JeK− JBiasK)

Multiplication of logarithmic numbers is based on the formula 2ex2ey = 2ex+ey . Because our exponents
are biased, we have to subtract the bias when adding them. To get the sign of the result, we compute
the XOR of the signs of the operands. The zero-bit of the end result is computed as follows: the result is
non-zero iff both operands are non-zero and their product does not underflow. Therefore, any underflows
are rounded down to zero.
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Algorithm 10: LogNumSqrt

Data: JxK = (JzxK, JsxK, JexK)
Result: J

√
xK

1 return (JzxK, J0K, (JexK + JBiasK)/2)

5.4 Square root

Algorithm 10 presents the protocol for finding the square root of a logarithmic number.
We assume that the input is non-negative. If the input is zero we return zero, and if the input is non-zero

then we divide the exponent by two because
√

2ex = 2ex/2. When dividing a biased integer by two we have
to double the bias before division in order to get the end result with the correct bias.

5.5 Logarithm

Algorithm 11 presents the protocol for finding the binary logarithm of a logarithmic number.

Algorithm 11: LogNumLg

Data: m,n, JxK = (JzxK, JsxK, JexK), p = {pi}li=0

Result: Jlg xK
1 JsK← JexK < JBiasK;
2 Je′K← JexK− JBiasK;
3 Je′′K← JBiasK− JexK;
4 JeK← ObliviousChoice(JsK, Je′′K, Je′K);
5 {JjiK}m+n−3

i=0 ← MSNZB(BitExtract(JeK));
6 JvK← JeK−

∑m+n−3
i=0 JjiK · 2i;

7 JwK←
∑m+n−3

i=0 (JjiK · 2m+n−i) · JvK;
8 JzK← JexK 6= JBiasK;
9 JtK← cPoly(p, JwK)/2m−1;

10 JuK← 2n+1 ·
∑m+n−3

i=0 (JjiK · (n+ 1− i));
11 return (JzK, JsK, JtK− JuK + JBiasK)

To compute the binary logarithm of a logarithmic number, we assume that the input is positive. We note
that if 2ey = lg 2ex then ey = lg ex. Therefore, the exponent of the output is the binary logarithm of the
exponent of the input, which means that the problem is reduced to computing the binary logarithm of a fixed-
point number. However, logarithmic numbers with negative and zero exponents (logarithmic numbers that
lie in (0, 1]) need special handling, because we do not want to deal with computing the logarithms of negative
numbers. If the exponent of the input is negative, we find the result using the formula lg 2−ex = −2lg ex .
Thus, to compute the binary logarithm of a logarithmic number we compute the logarithm of the absolute
value of the exponent, and set the sign bit of the end result to 0 if the exponent is positive, and 1 if the
exponent is negative. If the exponent is equal to 0 then we set the zero-bit of the result to 0, otherwise we
set it to 1.

We compute the binary logarithm of a fixed-point number with the help of a polynomial p that ap-
proximates f ′(x) = log4 (x+ 1) + 1/2 in [0, 1) (obtained using Chebychev interpolation). Our polyno-
mial evaluation protocol only allows inputs and outputs in range [0, 1), therefore, instead of approximating
f(x) = lg x directly, we first shift the number to the left so that we shift out all leading zeroes and the
most significant non-zero bit (via BitExtract and MSNZB protocols and multiplications). Then we consider
the resulting number as a fixed-point number with 0 bits before radix point and approximate the function
f ′(x) = log4 (x+ 1) + 1/2, the values of which are in [0.5, 1). In order to derive the logarithm of the original
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number from this intermediate result, we divide it by 2m−1 and subtract a constant which depends on the
most significant non-zero bit of the original number.

In order to compute natural logarithm via binary logarithm, we multiply the result by ln 2, because
loga x = loga 2 · lg x.

5.6 Exponent

Algorithm 12 presents the protocol for finding the base 2 exponent of a logarithmic number.

Algorithm 12: LogNumExp

Data: m,n, JxK = (JzxK, JsxK, JexK), p = {pi}li=0

Result: J2xK
1 JgK← Truncate(JexK, n);
2 JwK← J2m−2 +m− 3K− JexK/2n;
3 JyK← cPoly(p, 2m−2 · JgK);
4 JtK← Pick({JyK/2i}m+n−3

i=0 , JwK);
5 JzK← JzxK ∨ (JexK < J2n · (m− 2) + BiasK);
6 JuK← JzxK · ObliviousChoice(JsxK,−JtK, JtK) + JBiasK;
7 return (JzK, J0K, JuK)

To compute the base 2 exponential function on logarithmic numbers, we note that if 2ey = 22
ex

then
ey = 2ex . Therefore, the exponent of the output is 2 to the power of the exponent of the input, and the
problem is reduced to computing base 2 exponential function on fixed-point numbers.

To find the base 2 exponent of a fixed-point number, we use the formula 2ex = 2bexc+1·2{ex}−1. Separating
the input into whole and fractional part allows us to approximate the function f(x) = 2x−1 on the fractional
part, with inputs in range [0, 1) and outputs in range [0.5, 1), which is suitable for our interpolation protocol.
In the algorithm, approximation polynomial for f(x) = 2x−1 is denoted as p.

After exponentiating the fractional part, we shift the result right by a number of bits which depends on
the whole part. This is done by computing all public shifts and obliviously picking the right one (line 4).

Note that in order to achieve good precision when approximating 2{ex}−1, we do not just truncate the
exponent to get the fractional part. We truncate and then perform a left shift so that polynomial evaluation
protocol has more bits of precision to work with. Therefore, after polynomial evaluation we do not have
to perform a left shift, which shifts in zeroes from the right and therefore means lost precision, but a right
shift, which shifts out bits to the right and therefore means ridding ourselves of excess precision achieved
with polynomial approximation.

In order to compute expx, we multiply the argument by lg e, because ax = 2lg a·x.

5.7 Addition

Algorithm 13 presents the protocol for finding the sum of logarithmic numbers.
First, we sort the operands by their absolute value. If the absolute value of x is smaller than the absolute

value of y then we swap them (lines 1 and 2). Now we know that |x| ≥ |y|. In order to reduce addition to

a single-operand function, we factorise 2ex ± 2ey as 2ex(1 ± 2ey−ex) = 2ex+lg (1±2ey−ex ). Knowing that the
first operand is larger is beneficial for two reasons: it gives us the sign of the end result (which is equal to
the sign of the larger operand), and it ensures that lg (1− 2ey−ex) is a real-valued function. Now that the
operands are sorted, we approximate two different functions, one for addition and one for subtraction.

To compute lg (1± 2ey−ex) we find the difference of the exponents (line 3) and denote it with e. We also
find all its bits (line 4). We denote with t (line 5) a bit which is 0 if we perform addition and 1 if we subtract.

Both fa(x) = lg (1 + 2x) and fd(x) = lg (1− 2x) are functions for which interpolating with a single
polynomial though Chebyshev nodes yields poor precision, especially for the values of the argument near
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Algorithm 13: LogNumAdd

Data: JxK = (JzxK, JsxK, JexK), JyK = (JzyK, JsyK, JeyK), a = {ai}m+n−3
i=0 , d = {di}m+n−3

i=0 , c =

2n(2m + lg (1− 2−2
−n

))
Result: Jx + yK

1 JlK← JzxK ∨ JzyK ∧ (JexK < JeyK);
2 (JxK, JyK)← Swap(JlK, JxK, JyK);
3 JeK← JexK− JeyK;
4 {JbiK}m+n−1

i=0 ← BitExtract(e);
5 JtK← JsxK⊕ JsyK;
6 {JpiK}m+n−2

i=0 ← MSNZB({JbiK}m+n−2
i=0 );

7 {JriK}m+n−2
i=0 ← ConjBit({JpiK}m+n−2

i=0 , JtK);
8 {JqiK}m+n−2

i=0 ← {JriK}m+n−2
i=0 ⊕ {JpiK}m+n−2

i=0 ;

9 JkK←
∑m+n−2

i=1 (JpiK · 2m+n−1−i · (JeK− J2iK));
10 {JviK}m+n−3

i=0 ← cPolyArr(a, JkK);
11 {JwiK}m+n−3

i=0 ← cPolyArr(d, JkK);

12 Jg′aK← (
∨m+n−2

i=0 JbiK⊕ Jq0K) · 2n;

13 JgaK←
∑m+n−3

i=0 (Jqi+1K · JviK);
14 Jg′dK← Jr0K · c;
15 JgdK←

∑m+n−3
i=0 (Jri+1K · JwiK);

16 JuK← JzyK · (Jg′aK + JgaK + Jg′dK + JgdK);
17 JzK← JzxK⊕ JzxK ∧ JzyK ∧ JtK ∧ (JexK < −JuK);
18 return (JzK, JsxK, JexK + JuK)

zero. Therefore, our approach for approximating these functions is to find the most significant non-zero bit
of the argument (line 6) and shift the argument to the left so that we shift out all leading zeroes and the
most significant non-zero bit (line 9). On the resulting number we compute a separate polynomial for each
function and each possible position of the most significant non-zero bit (lines 10 and 11). (In the algorithm,
we denote the array of polynomials for addition as a and the array of polynomials for subtraction as d.)

There are also two special cases which are not covered by the polynomials: if the argument is zero, and
if the most significant non-zero bit of the argument is in the lowest possible position. If the argument is zero
then it means that x and y have an equal absolute value, in which case for addition we return as the value
of fa(x) = lg (1 + 2x) a constant representing 1 (line 12), and for subtraction we return 0 as the final result.
If the most significant non-zero bit of the argument is in the lowest possible position then for addition we
return as the value of fa(x) = lg (1 + 2x) a constant representing 1, and for subtraction we return as the

value of fd(x) = lg (1− 2x) a constant c representing 2m + lg (1− 2−2
−n

) (line 14).
In lines 13 and 15 we pick the right interpolation result depending on the most significant nonzero bit of

the argument. From this collection of constants and polynomial approximation results, we pick the correct
one based on whether we are performing addition or subtraction, and depending on the most significant
non-zero bit of JexK − JeyK. In line 16 we pick the value u which is added to the exponent of the larger
logarithmic number to achieve the final result. Note that if the smaller operand is zero then u is also set to
zero.

In case of subtraction, we check for underflow, and if the result of subtraction is smaller than is possible
to accurately represent with a non-zero number we round the result down to zero (line 17).

The approach to addition presented in Algorithm 13 results in precision which is reasonable but still far
from ideal. One way to perform precise logarithmic addition is based on formula x+y = x·lg (2 · 2y/x) where
we find the sum of two numbers with the help of division, exponentiation, multiplication, and logarithm. In
order to achieve good precision with this method, the operands have to be cast up before computing the
sum. As this method involves a composition of exponentiation and logarithm, both performed on numbers
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twice the size of the original inputs, it is extremely inefficient, but it allows for near-ideal precision.

6 Analysis of error and performance

In this section, we compare golden and logarithmic numbers against existing implementations of floating-
point and fixed-point representations. Comparisons are made in both performance and accuracy for different
operations and bit-widths. We look at addition, multiplication, reciprocal and square root. For floating-
point and logarithmic numbers, we additionally measure the performance and accuracy of exponentiation
and natural logarithm.

We have implemented logarithmic and golden section numbers on the Sharemind SMC platform. We
chose Sharemind because of its maturity, tooling, and availability of fixed-point and floating-point numbers.
As existing number systems were already implemented using Sharemind’s domain-specific language [17],
we decided to also use it for golden section and logarithmic representations. The protocol language pro-
vides us with directly comparable performance and allows to avoid many complexities that a direct C++
implementation would have.

To provide a clear overview of accuracy and speed trade-offs, we measured the performance of each
number system on multiple bit-widths. Generally, higher bit-widths offer us better accuracy for the cost of
performance.

We implemented three different versions of logarithmic numbers: Lh, Ls and Ld (with h, s and d standing
for half, single and double precision). For Lh, we chose m = 6 and n = 16 (Section 5.1) so that it offers
at least as much range and precision as IEEE 754 half-precision floating-point numbers and also aligns to a
byte boundary (2 + 6 + 16 = 24 bits or 3 bytes). For Ls, we chose m = 9 and n = 29 for a size of 40 bits
and accuracy comparable to single-precision floating-point numbers. For Ld, we chose m = 12 and n = 58
for a size of 72 bits and accuracy comparable to double-precision floating-point numbers.

We also implemented tree versions of golden numbers (Section 4): G32, G64 and G128 where for Gn we
store two n-bit components to provide comparable accuracy to n-bit fixed-point numbers with radix point
at bn/2c.

We compare our results against existing secure real number implementations that Sharemind already
provides. Two floating-point number representations are used: floats, providing comparable accuracy
to single-precision floating-point numbers, and floatd, providing comparable accuracy to double-precision
floating-point numbers. See [13–15] for implementation details. Logarithmic numbers compare well with
floating-point numbers as both are designed to provide good relative errors. Additionally, Sharemind pro-
vides 32-bit and 64-bit fixed-point numbers with radix point in the middle (denoted with fix32 and fix64

respectively). Golden numbers compare well with fixed-point numbers as both are designed to provide good
absolute errors.

Accuracy was measured experimentally, by identifying the range of inputs in which the largest errors
should be found, and then uniformly sampling this range to find maximum error.

Performance measurements were made on a cluster of three computers connected with 10Gbps Ether-
net. Each cluster node was equipped with 128GB DDR4 memory and two 8-core Intel Xeon (E5-2640 v3)
processors, and was running Debian 8.2 Jessie with memory overcommit and swap disabled.

We measured each operation on various input sizes, executing the operation in parallel on the inputs.
Each measurement was repeated a minimum of ten times and the mean of the measurements was recorded.
Measurements were performed in randomized order. Note that due to the networked nature of the protocols,
parallel execution improves performance drastically up to the so called saturation point.

We recorded maximum achieved operations per second that states how many parallel operations can be
evaluated on given input size per second. For example, if we can perform a single parallel operation on
100-element vectors per second this gives us 100 operations per second.

Our performance and accuracy measurements are displayed in Figure 1. For every variant of every real
number representation, we plot its maximum achieved performance in operations per second (OP/s) on the
y-axis and its error on the x-axis. Note that performance increases on the y-axis and accuracy improves on
the x-axis. Logarithmic numbers are represented with squares, golden section with diamonds, floating-point
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numbers with circles and fixed-point numbers with triangles. The accuracy of operations increases with
shade, so that white shapes denote least precision and best performance.

We have measured addition, multiplication, reciprocal and square root. For floating-point and logarithmic
numbers we also benchmarked exponentiation and natural logarihm. In most cases, maximum relative error
was measured, but for fixed-point numbers and some golden number protocols this is not reasonable. In
these cases maximum absolute error was measured, and this is denoted by adding label “A” to the mark.

Some operations, such as fixed-point addition, achieve perfect accuracy within their number representa-
tion. These cases are marked with a “?”. Instead of maximum error, we plot the value of half of the step
between two consecutive numbers in this representation

In Figure 1 we can see that golden section numbers compare relatively well with fixed-point numbers.
They achieve somewhat worse performance in our aggregated benchmarks, but the true picture is actually
more detailed.

What is not reflected on the graph is the fact that golden section multiplication requires significantly
fewer communication rounds than fixed-point multiplication. For instance, fix32 multiplication requires 16
communication rounds, but comparable G64 multiplication requires only 11. This makes golden section
numbers more suitable for high latency and high throughput situations, and also better for applications that
perform many consecutive operations on small inputs.

The worse performance of golden section numbers after the saturation point can be wholly attributed to
increased communication cost. Namely, every multiplication of G64 numbers requires 6852 bits of network
communication, but a single fix32 multiplication requires only 2970.

We can also see that compared to floating-point numbers, logarithmic numbers perform significantly
better in case of multiplication (Figure 1b), reciprocal (Figure 1d) and square root (Figure 1c), while offering
similar accuracy. Unfortunately, logarithmic numbers do not compare favourably to floating-point numbers
with both lower performance and worse accuracy of addition (Figure 1a). In case of natural logarithm and
exponentiation, logarithmic numbers are close to floating-point numbers in both performance and accuracy.
This means that logarithmic numbers are a poor choice for applications that are very addition heavy but an
excellent choice for applications that require many multiplicative operations.

7 Conclusions and further work

Technically, protected computation domains are very different from the classical open ones. Many low-level
bit manipulation techniques are too cumbersome to implement and hence standard numeric algorithms do
not work very well.

This holds true even for basic arithmetic operations. A full IEEE 754 floating-point number specification
is too complex to be efficient in an oblivious setting. Even a reimplementation of the significand · 2exponent
representation is too slow, even in case of simple addition, since oblivious radix point alignment is very
inefficient. Hence, alternatives need to be studied.

This paper proposed two new candidate representations for oblivious real numbers – golden and loga-
rithmic representations. The corresponding algorithms were implemented on the Sharemind SMC engine
and benchmarked for various precision levels and input sizes.

The results show that we still do not have a clear winner.
Since logarithmic representation is multiplicative, adding two logarithmic numbers is slow. However,

significant performance improvements can be achieved for several elementary functions like multiplication,
inverse, and square root.

Golden number representation allows for very fast (actually, local) addition, and its multiplication speed is
comparable with that of fixed-point numbers. However, this format only allows for relatively slow elementary
function computations.

Thus the choice of real number representation depends on application domain and computations to be
performed.

Another aspect to consider is precision. Our analysis shows that logarithmic representation achieves the
best relative error for most of the operations (except addition). However, precision achieved by our other
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implementations seems more than sufficient for practical statistical applications.
In this paper we have developed only the most basic mathematical tools. In order to be applied to

actual data analysis tasks (e.g. statistical tests, finding correlation coefficients, variances, etc.), higher-level
operations need to be implemented. It is an interesting open question which real number representations
perform optimally for various operations and input sizes. This study will be a subject for our future research.
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(b) Multiplication
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(c) Reciprocal
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(d) Square root
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(e) Exponentiation
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(f) Natural logarithm
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Figure 1: Performance and accuracy trade-offs between various real number representations. Performance
in operations per second is denoted on the y-axis and absolute or relative error on the x-axis. In most cases
maximum relative error was measured but in a few cases maximum absolute error was measured – we denote
this using “A”. Performance increases on the y-axis and accuracy improves on the x-axis. We annotate
operations that achieve perfect accuracy within the representation with ? and plot the value of half of the
step between two consecutive numbers in this representation.
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