
Σoφoς – Forward Secure Searchable Encryption∗

Raphaël Bost†

Abstract

Searchable Symmetric Encryption aims at making possible searching over an encrypted database
stored on an untrusted server while keeping privacy of both the queries and the data, by allowing some
small controlled leakage to the server.

Recent work shows that dynamic schemes – in which the data is efficiently updatable – leaking some
information on updated keywords are subject to devastating adaptative attacks breaking the privacy
of the queries. The only way to thwart this attack is to design forward private schemes whose update
procedure does not leak if a newly inserted element matches previous search queries.

This work proposes Σoφoς as a forward private SSE scheme with performance similar to existing less
secure schemes, and that is conceptually simpler (and also more efficient) than previous forward private
constructions. In particular, it only relies on trapdoor permutations and does not use an ORAM-like
construction. We also explain why Σoφoς is an optimal point of the security/performance tradeoff for
SSE.

Finally, an implementation and evaluation results demonstrate its practical efficiency.

1 Introduction
Being able to efficiently and privately query an encrypted database stored on an untrusted server is critical
for secure cloud applications. Ideally, we would like to use protocols leaking absolutely no information to
the server. Such solutions can be constructed using powerful techniques such as multi-party computation,
fully homomorphic encryption, or oblivious RAM, but, due to the genericity of these, they are impractical:
they are slower than a naïve approach consisting in downloading the entire database and do the search
locally [Nav15].

Searchable Symmetric Encryption (SSE) [SWP00], which is a class of structured encryption [CK10] for
search structures such as search indexes or search trees, provides a solution to this problem by trading leakage
for efficiency. This leakage comes from the use of (often symmetric) deterministic encryption that will enable
the server to easily find matches between encrypted tokens, without having to run expensive protocols or
computations.

In previous works, leakage ranges from fully revealing the keyword occurence pattern in each document
(including, the keyword order), as of legacy-compatible constructions such as CipherCloud [Cip] or sky-
high [sky], to query-revealed occurence patterns, for reversed-index-based schemes derived from [CGKO06].

Islam et al. [IKK12] and Cash et al. [CGPR15] studied the real-world consequences of the leakage of SSE
schemes and showed that even small leakage can be leveraged by a passive attacker to reveal the client’s
queries, leading to leakage-abuse attacks. For larger leakage, the authors of [CGPR15] show that full plaintext
recovery of the encrypted database is possible.

Their work was improved by the one of Zhang et al. in the case of dynamic databases, where the attacker
can inject new documents in the database, in [ZKP16]. In this paper, the authors show a devastating adaptive
∗This work appeared in the proceedings of the 23rd ACM Conference on Computer and Communications Security (CCS),

2016. DOI: 10.1145/2976749.2978303
†Direction Générale de l’Armement - Maîtrise de l’Information & Université de Rennes 1. The views and conclusions contained

herein are those of the author and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the DGA or the French Government.
email: raphael_bost@alumni.brown.edu

1

http://dx.doi.org/10.1145/2976749.2978303
mailto:raphael_bost@alumni.brown.edu

Scheme Computation Communication Client Forward M.A.Search Update Search Update Storage Private
Previous works

[CJJ+14] O(aw) O(1) O(nw) O(1) O(1) 7 7

[BFP16] O(aw + logW) O(logW) O(nw + logW) O(logW) O(1) 7 3

[SPS14] O
(

min
{ aw + logN

nw log3N

})
O(log2N) O(nw + logN) O(logN) O(Nα) 3 7

[SPS14]
([BFP16]) O

(
min

{ aw + log2N

nw log3N

})
O(log2N) O(nw + logN) O(logN) O(Nα) 3 31

[GMP15] Õ(aw logN + log3N) Õ(log2N) Õ
(aw logN

+ log3N

)
Õ(log3N) O(1) 3 7

This work
Σoφoς O(aw) O(1) O(nw) O(1) O(W logD) 3 7

Σoφoς-ε O(aw) O(1) O(nw) O(1) O(W (logD + λ)) 3 3

Table 1 – Comparison with existing SSE schemes. N is the number of entries (i.e. the number of key-
word/document pairs) in the database, while W is the number of distinct keywords, and D the number of
documents. nw is the size of the search result set for keyword w, and aw is the number of times the queried
keyword w was historically added to the database. In particular, in all works except [SPS14], deletions are
not optimally supported: the search is not linear in the number of matching documents, but in the number
of inserted documents matching the query. M.A. stands for ‘Malicious Adversary’. We omitted the polyno-
mial dependency in the security parameter λ for both computation and communication complexity. The Õ
notation hides the log logN factors. Update complexities are given per updated document/keyword pair. We
only considered schemes whose server’s storage complexity is optimal (O(N)).

attack which reveals the content of a past query by inserting as few as 10 new documents. This attack can
be run on almost all existing SSE schemes because the server can learn that the newly added document
matches a previous search query.

This work underlines the need for SSE constructions which do no leak this information, also called
forward private constructions [SPS14]. To our knowledge, besides the ORAM-based ones such as TWO-
RAM [GMP15], the only existing forward private schemes are by Chang and Mitzenmacher [CM05], and by
Stefanov et al. [SPS14], but both suffer from inefficiencies. The former has a large bandwith requirement
from the client to the server for search queries, and a very large server storage, while the latter uses non
trivial ORAM-related techniques, which induces a large bandwith overhead on updates, despite supporting
efficient deletions.

Until now, no SSE construction offered both the security requirements necessary to thwart those leakage-
abuse attacks, and achieved optimal update efficiency.

Contributions We construct a forward private SSE scheme with optimal search and update complexity,
for both computational and communicational complexity, called Σoφoς.2

It has both the security guarantees of forward private constructions [SPS14], and the asymptotic efficiency
of constructions with more leakage [CJJ+14]. Our scheme uses simple cryptographic tools (only pseudo-
random functions and trapdoor permutations, and does not rely on ORAM ideas), and is very easy to
understand. A comparison of Σoφoς with previous works is given in Table 1.

We give a full proof of security against honest-but-curious adversaries, and show how it can be easily
extended to security against malicious adversaries, without server-side modifications of the construction
(Σoφoς-ε).

1There is a flaw in the original paper [SPS14], concerning security against malicious adversaries, but it can be fixed without
large modifications of the original construction (cf. [BFP16]).

2Σoφoς (pronounce ‘sophos’) stands for Scalable Optimal FOrward Secure Searchable Encryption. It also refers to the ancient
greek for ‘wise’: we strongly believe that it is wise to use a forward private SSE scheme.

2

Finally, we provide an open source implementation of our scheme [Bos16], and show that, even on per-
sistent storage, it is very efficient in practice, for both searches and updates.

2 Related Work
SSE has been introduced by Song et al. [SWP00], with a solution whose search time is linear in the size
of the database. Chang and Mitzenmacher [CM05] later proposed a construction whose search time is also
linear, but that achieves forward privacy.

Ten years ago, Curtmola et al. [CGKO06] were the first to formally consider leakage, and designed, in the
static setting, the first index-based SSE construction achieving sublinear search complexity. The first dynamic
and sublinear scheme was introduced by Kamara et al. [KPR12], but was leaking the hashes of keywords
contained by the updated documents. Kamara and Papamanthou [KP13] later improved this construction,
and reduced the leakage at the cost of increased space complexity on the server. Still, this construction is
not forward private.

Another line of work presented index based schemes supporting boolean queries [CJJ+13], optimized for
very large databases and dynamism [CJJ+14], or in a three-party setting [JJK+13], some of whose features
were also studied in [PKV+14].

Forward privacy was for the first time explicitely considered by Stefanov et al. in [SPS14]. The authors
built in their paper a dynamic, sublinear scheme achieving forward privacy.

Verifiable SSE schemes (i.e. secure against an active adversary) have been studied by Kurosawa and
Ohtaki [KO12], and efficient and dynamic constructions have been recently proposed by Bost et al. [BFP16],
including a forward private one derived from [SPS14].

Recently, Cash and Tessaro [CT14] demonstrated a lower bound on the storage locality of searchable
encryption: it is not possible to achieve both optimal server storage and optimal locality. Their lower bound
was shown tight by Asharov et al. [ANSS16].

SSE was extended by Chase and Kamara [CK10] to arbitrarily-structured data, such as graphs, matrices
or labeled data. New applications of structured encryptions arose recently, such as approximate shortest
distance queries on an encrypted graph [MKNK15].

SSE can be constructed from Oblivious RAM [GO96], either in a black box way, or using specific ORAM
sub-components, in a grey-box way, as in [GMP15]. Unfortunately, ORAM induces large bandwith overhead,
large client storage and/or, multiple roundtrips. This makes use of ORAM for SSE unrealistic, as showed in
the study by Naveed [Nav15].

Islam et al. [IKK12] studied the consequences of leakage in searchable encryption. Their attacks were
improved by Cash et al. [CGPR15], and lately by Zhang et al. [ZKP16], who demonstrated the need for
forward privacy for SSE.

3 Preliminaries
In the paper, λ is the security parameter and negl(λ) denotes a negligible function in the security parameter.
Our construction uses pseudo-random functions (PRF) and (keyed) hash functions, for which we use the
standard security definitions [Gol04].

Unless specified explicitely, the symmetric keys are strings of λ bits, and the key generation algorithm
uniformly samples a key in {0, 1}λ. We only consider (possibly probabilistic) algorithms and protocols running
in time polynomial in the security parameter λ. In particular, adversaries are probabilistic polynomial time
algorithms.

For a finite set X, x $← X means that x was uniformly sampled from X.

3

3.1 Trapdoor Permutations
A trapdoor permutation (TDP) π is a permutation over a set D such that, using a public key PK, π can
be easily evaluated, but the inverse π−1 can be efficiently computed only with the secret SK.

More formally, π with the key generation algorithm KeyGen is a trapdoor permutation if for every
adversary A

AdvOW
π,A(λ) ≤ negl(λ)

where
AdvOW

π,A(λ) = Pr[y
$←M, (SK,PK)← KeyGen(1λ), x← A(1λ,PK, y) : πPK(x) = y]

(π is one-way) while for every x ∈ D

πPK(π−1
SK (x)) = x and π−1

SK (πPK(x)) = x

and πPK(.) and π−1
SK (.) can be computed in polynomial time. In the paper, we also use the notation π(c)

PK(x)

(resp. π(−c)
SK (x)) for the iterated application of πPK (resp. π−1

SK) c times.

3.2 Symmetric Searchable Encryption
A database DB = (indi,Wi)

D
i=1 is a tuple of index/keyword-set pairs with indi ∈ {0, 1}` and Wi ⊆ {0, 1}∗.

The set of keywords of the database DB is W = ∪Di=1Wi. We set D to be the number of documents in DB,
W = |W| the total number of keywords , and N =

∑D
i=1 |Wi| to be the number of document/keyword pairs

(we identify documents with their indices). We denote by DB(w) the set of documents containing keyword
w, i.e. DB(w) = {indi|w ∈Wi}. N can also be written as N =

∑
w∈W |DB(w)|.

A dynamic searchable encryption scheme Π = (Setup,Search,Update) consists of one algorithm and two
protocols between a client and a server:

• Setup(DB) is an algorithm that takes as input a database DB. It outputs a pair (EDB,K, σ) where K
is a secret key, EDB the encrypted database, and σ the client’s state.

• Search(K, q, σ;EDB) = (SearchC(K, q, σ),SearchS(EDB)) is a protocol between the client with input
the key K, its state σ, and a search query q, and the server with input EDB. For single-keyword search
schemes (as the ones considered in this paper), a search query is restricted to a unique keyword w.

• Update(K,σ, op, in;EDB) = (UpdateC(K,σ, op, in),UpdateS(EDB)) is a protocol between the client
with input the key K and state σ, an operation op and an input in parsed as the index ind and a set
W of keywords, and the server with input EDB. The update operations are taken from the set {add,
del}, meaning, respectively, the addition and the deletion of a document/keyword pair.

3.3 Security of SSE
SSE schemes must achieve two security properties: correctness and confidentiality.

Correctness The correctness of an SSE scheme is a basic property: the search protocol must return the
correct result for every query, except with negligible probability.

Confidentiality The confidentiality definition of an SSE scheme uses the real world versus ideal world
formalization [CGKO06, KPR12, CJJ+14]. It is parametrized by a leakage function L = (LStp,LSrch,LUpdt)
describing what the protocol leaks to the adversary, and formalized as a stateful algorithm. The definition
ensures that the scheme does not reveal any information beyond the ones that can be inferred from the
leakage function.

More precisely, we define two games, SSEReal, and SSEIdeal, in which the adversary A chooses a
database DB, and is given back EDB generated using Setup(DB) in the real case, or S(LStp(DB)) in the ideal

4

case. Then, he repeatedly performs search and update queries with an input q (resp. in) and receives the
transcripts generated running the Search(q) (resp. Update(op, in)) protocol in the real game, or the simulator
S(LSrch(q)) (resp. S(LUpdt(op, in))) in the ideal game. Eventually, A outputs a bit. We say that the scheme
is L-adaptively-secure if for every adversary A, there exists an efficient simulator S such that the adversary
A cannot distinguish an execution of the real game from an execution of the ideal game with non-negligible
probability.

Common Leakage Many SSE schemes leak the repetition of tokens sent by the client to the server, and
hence, the repetition of queried keywords. Similarly to previous works [CGKO06], when this leakage is limited
to search queries (for example in static schemes), we call it the search pattern. When repetition of updated
keywords also leaks, we call it the query pattern.

More formally, the leakage function L will keep as state the query list Q: the list of all queries issued so
far, and whose entries are (i, w) for a search query on keyword w, or (i, op, in) for an op update query with
input in. The integer i is a timestamp, initially set to 0, and which is incremented at each query. The search
and query patterns, respectively denoted sp(x) and qp(x), are then defined as

sp(x) = {j : (j, x) ∈ Q} (only matches search queries)
qp(x) = {j : (j, x) ∈ Q or

(j, op, in) ∈ Q and x appears in in}

In the paper, we also introduce the notation HistDB(w): it is the list of documents historically added to
DB matching keyword w, in the order of insertion. In particular, it includes documents that have been added
and later deleted, or even documents that have been added twice.

Finally, we use the notation Hist(w), the history of keyword w. It lists all the modifications made to
DB(w) over the time. It consists in a tuple whose first element is DB0(w), the set of documents indices
matching w at setup, and whose second element is the list UpHist(w) of updates of documents matching w,
called the update history. For example, consider two documents Dind1

and Dind2
matching w. Suppose that

we first added Dind1
at the second update, then Dind2

at the 5-th update, and finally that Dind1
got removed

during the 14-th update. Then UpHist(w) = [(2, add, ind1), (5, add, ind2), (14, del, ind1)]. These can be also
formally defined using the query list.

4 Forward privacy

4.1 Definition
Forward privacy is a strong property of the SSE leakage function of dynamic SSE schemes. Informally, it
means that an update does not leak any information about the updated keywords. In particular, the server
cannot learn that the updated document matches a keyword we previously queried. More formally, we give
the following definition of forward privacy.

Definition 1. A L-adaptively-secure SSE scheme Σ is forward private if the update leakage function LUpdt

can be written as
LUpdt(op, in) = L′(op, {(indi, µi)})

where {(indi, µi)} is the set of modified documents paired with the number µi of modified keywords for the
updated document indi.

The definition given here slightly extends the informal definition of forward privacy of Stefanov et
al. [SPS14] which focused only on added documents rather than on updated (i.e. both added and deleted)
documents. They also described backward privacy, a property that prevents searches to be performed over
deleted documents.

The only existing schemes supporting both forward and backward privacy are based on Oblivious RAM,
but are not particularly efficient, while efficient forward private-only schemes have been designed [CM05,
SPS14], but suffer from a big bandwith or storage blowup.

5

4.2 The Need for Forward Privacy
Islam et al. [IKK12] and Cash et al. [CGPR15] studied the real-world consequences of the leakage of SSE
schemes and showed that even small leakage can be leveraged by an attacker to reveal the client’s queries.
Their work not only considered static databases but also dynamic databases, in a setting where the server
could submit new documents to be added in the database in a way that would help him to break query
privacy. Zhang et al. [ZKP16] improve this file injection attack and showe that it can be devastating.

They actually describe both a non-adaptive and an adaptive attack. The adaptive attack is very effective
but only applies to schemes that are not forward private. This attack, reveals a previously search keyword
w by submitting log 2T new documents if the adversary has partial knowledge of the database, or using
W/T +log T new documents if he hasn’t. T is the threshold parameter, a public parameter used to avoid non
adaptative attacks, and that needs to be kept small to be an efficient counter measure (but not too small, to
avoid a large efficiency loss). In [ZKP16], the authors chose T = 200 for their experiments, and in this case,
the privacy of a query can be broken by an adversary posting less than 10 new documents.

Even on a functional point of view, forward privacy is important. Indeed, a forward private scheme allows
for an online build of the encrypted database. In most other SSE constructions, one must first go through
an indexing step: the setup phase needs an inverted index whose construction takes both time and space.
Forward private schemes avoid this source of inefficiency.

4.3 Constraints Induced by Forward Privacy
Unfortunately, forward privacy has various downsides in terms of efficiency. This section explains that dy-
namic SSE schemes have to make compromises between storage efficiency, locality, and security.

On Storage First, let us focus on storage. A desirable property of dynamic databases is space reclamation
upon entry deletion. For searchable encryption, it implies that, when a document/keyword pair is removed
from the encrypted index, the logical location of the pair can be marked as empty. Now, suppose an adversary
successively submits a search query for a keyword w, and then a delete query for pair (ind, w). If the Search
protocol does not modify the encrypted database (almost all existing schemes do not), and if the scheme
reclaims space, the adversary will learn that the updated keyword was just searched. The previous example
actually shows that the locations of the encrypted pairs before and after the search query must be completely
unrelated for forward private, space-reclaiming scheme, yielding constructions with security properties close
to the ones of resizable ORAM [MMBC15]. In particular, one cannot really hope for extremely efficient
scheme with these properties.

On Locality In [CT14], Cash and Tessaro studied the problem of memory accesses locality in SSE. In
particular, they showed that one cannot achieve even minimal locality without increasing the size of the
encrypted database beyond Θ(N). Their lower bound holds for static schemes, and so applies for dynamic
schemes too, but, to our knowledge, locality of dynamic SSE has not been specifically studied.

Here we claim that, for dynamic schemes, locality and forward-privacy are two irreconciliable notions.
First, it is worth noticing that caring about memory locality makes sense only if the scheme is already
efficient in terms of disk accesses. For example, if a scheme systematically updates the encrypted database
every time a search is performed (e.g. the ORAM-based scheme [GMP15]), the rewriting cost will be much
higher than the efficiency improvements due to increased locality. So without loss of generality, we consider
schemes whose Search protocol does not modify a large portion of EDB. In this case, forward privacy implies
that, for an updated keyword w, the location of the newly inserted tokens is unrelated to the location of
already existing tokens matching w. So, if the whole set DB(w) is not somehow, at least partially, re-written
during the update, no locality optimization is possible for keyword w. Said otherwise, if you want both
forward privacy and locality during search, you have to do some rather large modifications of the encrypted
database, either during searches or updates.

Finally, we will in see in the evaluation of our implementation that non-locality is not a critical perfor-
mance issue with modern SSDs.

6

ST0(w) ST1(w) STc(w) STc+1(w)

UT0(w) UT1(w) UTc(w) UTc+1(w)

πPK

π−1
SK

π(c−1)
PK

πPK

π−1
SK

HKw
HKw

HKw
HKw

· · ·

· · ·

Figure 1 – Relations among tokens. Operations in red can only be done by the client, using the secret key
SK.

5 The Σoφoς Construction
In this section, we start by constructing a forward secure SSE scheme, whose Search and Update protocols
are performed in a single roundtrip, but at the cost of O(W (logD + log |M|) storage on the client side. We
also first consider a scheme that only supports additions, not deletions. We will then describe how to turn
this basic construction into an SSE constructions supporting both additions and deletions, with reduced
client storage, and also how to make it secure against malicious adversaries.

5.1 General ideas
In an inverted index scheme (such as [CGKO06] and derived works), we are usually considering for each
keyword w an indexed list of matching documents (ind0, · · · , indnw

). Every element indc of this list is then
encrypted and stored at a (logical) location derived from w and c. We call this location UTc(w). When the
client wants to add a document matching w, he computes a new location UTnw+1(w), encrypts the document
index as e, and sends (UTnw+1(w), e) to the server (this explains our notation UT , for update token).

When the client performs a search query on w, he will issue a search token that will allow the server to
recompute the update tokens, and hence the locations of the entries matching w. In general, we want the
update tokens for a given w to be unlinkable until a search token ST (w) is issued. In our case, the search
token generated by the client will depend on the number nw of matching entries, and we want that the
search token STc(w) generated for c results to be unlinkable to the update tokens UTi(w) for i > c, i.e. the
update tokens that will be issued for keyword w in the future. In particular, it implies that the server could
not generate STi(w) from STc(w) when i > c.

To do so, we could make the client generate all the search token using a PRF evaluation F (w, i), and
send them to the server. However this solution is not satisfactory: the client needs to send O(nw) tokens to
the server, which can be a problem on constrained devices. In this work, we propose another solution, based
on trapdoor permutations: from STi(w), the server will be able to compute STi−1(w) using the a public key,
but only the client will be able to construct STi+1(w).

Figure 1 gives the relations among the tokens and formalizes our idea for token generation. STi+1(w) is
generated from STi(w) by applying the inverse of a one-way trapdoor permutation π: only the client will
be able to perform this operation, while the server, given the public key PK will do the opposite, namely
compute from a search token STc(w) all the tokens STi(w) for 0 ≤ i < c. Finally, the update tokens are
derived from the search tokens, using a keyed hash function. In particular, it is crucial that H is pre-image
resistant for the security of the scheme. We will actually show the security of this construction when H is
modeled as a random oracle.

7

5.2 Basic Construction
Algorithm 1 gives the formal description of our basic forward private scheme, Σoφoς-B. It follows the idea
of the previous section, in particular for token generation. Also, the only updates Σoφoς-B supports are
insertions of new keyword/document pairs.

In the pseudo code, π is a trapdoor permutation, F is a PRF, H1 and H2 are keyed hash functions,
whose outputs are, respectively, µ and ` bits long. On the client side, W maps every inserted keyword to
its current search token STc(w) and to a counter c = nw − 1. Every time a new document matching w is
inserted, W[w] gets ‘incremented’: the client generates the new search token STc+1(w) = π−1(STc(w)) and
stores it in W. If w did not match any documents, a new ST0(w) is randomly picked and put in W. Finally,
the entries locations, i.e. the update tokens, are derived from the search tokens by a keyed hash function.

Σoφoς’ setup algorithm does not take a database as input: as stated in Section 4.2, encryption can be
performed online with a forward private scheme, without loss of security.

Algorithm 1 Σoφoς-B: Forward private SSE scheme with large client storage.
Setup()

1: KS
$← {0, 1}λ

2: (SK,PK)← KeyGen(1λ)
3: W,T← empty map
4: return ((T,PK), (KS,SK),W)

Search(w, σ;EDB)

Client:
1: Kw ← FKS

(w)
2: (STc, c)←W[w] . c = nw − 1
3: if (STc, c) = ⊥
4: return ∅
5: Send (Kw, STc, c) to the server.

Server:
6: for i = c to 0 do
7: UTi ← H1(Kw, STi)
8: e← T[UTi]
9: ind← e⊕H2(Kw, STi)

10: Output each ind
11: STi−1 ← πPK(STi)
12: end for

Update(add, w, ind, σ;EDB)

Client:
1: Kw ← F (KS , w)
2: (STc, c)←W[w]
3: if (STc, c) = ⊥ then
4: ST0

$←M, c← −1
5: else
6: STc+1 ← π−1

SK (STc)
7: end if
8: W[w]← (STc+1, c+ 1)
9: UTc+1 ← H1(Kw, STc+1)

10: e← ind⊕H2(Kw, STc+1)
11: Send (UTc+1, e) to the server.

Server:
12: T[UTc+1]← e

Correctness The correctness of Σoφoς-B is quite straightforward. The only issue is collision among the
update tokens UTc(w), generated from H1 with input (Kw, STc). We can reduce the correctness to the
collision resistance of H1. In particular, we need to choose µ such that N2/2µ is negligible in the security
parameter, so in practice, we will set µ = λ+ 2 logNmax, where Nmax is the maximum number of pairs the
database can support.

Complexity The scheme’s computational complexity is optimal: O(nw) for a search query, O(1) for an
update. Both Search and Update are single round, and their performance will not be more affected by network
latency than regular insecure protocols.

Bandwith is also (almost) optimal. The Search protocol uses a single log |M| = poly(λ) bits token per
query. The Update protocol sends a µ + ` bits token per updated document/keyword pair, representing a
λ+ logNmax bits increase compared to the smallest possible update token size of an unencrypted database.

The client’s storage is O(W (log |M| + logD)): an element of M is stored for every keyword, with the
counter c < D.

8

5.3 Security
The adaptive security of Σoφoς-B can be proven in the Random Oracle Model, and relies on the one-wayness
of the TDP π and on the pseudo-randomness of F . We will only give a sketch of the proof here, and postpone
to Appendix A the full proof.

Theorem 1 (Adaptive security of Σoφoς-B). Define LΣ = (LSrch
Σ ,LUpdt

Σ) as,

LSrch
Σ (w) = (sp(w),Hist(w))

LUpdt
Σ (add, w, ind) = ⊥.

Σoφoς-B is LΣ-adaptively-secure.

Hence, Σoφoς thwarts all the devastating adaptive file-injection attacks of [ZKP16] – but not the non-
adaptive ones.

The proof works by constructing successive indistinguishable hybrids, where H1 and H2 are modeled
as random oracles, the first hybrid being the real-world game, and the last the ideal-world game. We first
replace F by a random function, i.e. we randomly pick the keys Kw.

In the second hybrid, we will replace all the strings generated by the random oracles in the Update
protocol by randomly chosen strings. The game will then program the random oracles during the Search
protocol so that the result produced by the server matches the real results: H1 is set to map the i-th search
token for w to the update token produced randomly when w was updated for the i-th time.H2 is programmed
in a similar manner to produce the right keystream used to hide the ind values. We show that if the first
and second hybrids are not indistinguishable, it means that the adversary was able to invert the trapdoor
permutation without knowing the secret key.

Finally, we construct an hybrid that only needs to know the repetition of search queries and the history
to produce search tokens indistinguishable from the previous hybrid. As this hybrid only needs the output
of the leakage function to run, it means that we have a simulator that produces indistinguishable transcripts
from the real security game.

Note that LΣ uses Hist and not DB because the simulator needs to know exactly when documents
matching w were inserted in the database in order to correctly simulate the real protocol. In Appendix,
Theorem A gives a more formal statement, with an explicit distinguishing advantage.

5.4 Derived Constructions
Deletion Support Although Σoφoς-B does not support deletions, this is easy to fix by ‘duplicating’ the
data structure: we will use one instance of Σoφoς-B for insertions, and the other for deletions. When searching
w, the server will compute and return the difference between the indices matching w in both instances.

The leakage stays the same: we can separate the elements of HistDB(w) in two sublists HistDBadd(w) and
HistDBdel(w), according to their operation (add or del), to build the leakage functions of each instance of
Σoφoς-B. The only difference with the original scheme would be that it leaks the operation op = add or del,
but we can use the same map T for both instances, which would hide the actual operation performed during
the update.

Batch Updates We can also slightly modify the update protocol to support batch updates on documents:
when we want to update document with index ind on the keywords list w, we successively select keywords
in w in random order, and run the original Update protocol with input ind and the selected keyword.

Again, the leakage function remains identical. We just have to slightly update the security proof: when the
simulator programs the random oracles on (Kw, STi), instead of targeting exactly the only token produced
at the i-th update on w, it will pick a one of the random tokens produced during the update that modified
DB(w) for the i-th time.

9

5.5 Reducing Client-side Storage
We saw that the client’s storage is O(W (log |M| + logD)). This can be a problem on constrained devices,
especially when M is big, which is the case for both RSA and Rabin’s Squaring trapdoor permutations:
M = Z∗N , where N is, for a reasonable level of security, a 2048 bits integer.

But there is a workaround to reduce storage to O(W · logD) at the expense of additional computations.
The idea is to pseudo-randomly generate ST0(w) from w (or a unique identifier iw ∈ N of w). WhenM = Z∗N ,
this is quite easy to do from a PRF G : N→ {0, 1}λ+logN by taking ST0(w)← G(iw) mod N .

When STc(w) is needed, we recompute it from ST0(w). However, this will be very computationally
expensive if have to iteratively compute π(−c)

SK by iterating π−1
SK c times. Fortunately, this is not the case

for common trapdoor permutations π, and in particular for RSA: if (p, q, d) and (N, e) are respectively the
secret and the public keys, y = RSA

(−i)
SK (x) can be computed as follows.

f ← di mod (p− 1)(q − 1)

y ← xf mod N

We can also use the Chinese remainders technique to improve the performances of this computation.
Then, the client has only to store an identifier iw for every w, together with the counter c. When he needs

to, he can easily recompute the STc(w) from iw and c, with a small complexity overhead (essentially the
cost of a private-key operation, when RSA is the chosen TDP). The client’s storage reduces to O(W logD)
asymptotically (as c < D).

We call this version Σoφoς (without the -B), and it is the one that we implemented. The proof of security
of Σoφoς-B can easily be ported to Σoφoς:

Theorem 2. Σoφoς is LΣ-adaptively-secure.

5.6 Security against Malicious Adversaries
Theorem 2 states security against passive adversaries only. However, Σoφoς can easily be turned in a verifiable
SSE scheme, as defined by Bost et al. [BFP16]. We can do so by storing a hash of DB(w) for every w on the
client, and during a search, the stored hash value is checked to match the hash recomputed from the server’s
results. To allow for easy incremental updates, we can use a set hashing function to hash DB(w), as explained
in [BFP16]. The asymptotic complexity of this verifiable version of Σoφoς – that we call Σoφoς-ε3 – and the
client’s storage will increase to O(W (logD + λ)) From the collision resistance of the set hash function, we
can show that Σoφoς-ε is secure against malicious adversaries.

Theorem 3. Σoφoς-ε is LΣ-adaptively-secure against malicious adversaries.

5.7 Comparison with Other Constructions
If we limit this scheme to only support modification of full documents (i.e. it is not allowed to add/delete a
keyword to a document already in the database, but we can add or delete an entire document), our scheme
has the same functionalities than the SPS scheme [SPS14], whose leakage function is LSPS, with LSrch

SPS (w) =

(sp(w),DB(w),HistDB(w)), and LUpdt
SPS (op, ind,w) = (op, ind, |w|). LΣ and LSPS might look incomparable,

but actually we can construct LΣ from LSPS rather easily: we just reconstruct Hist(w) from HistDB(w)
and the timestamps t generated at every update. We associate these timestamps to the leaked information
(op, ind, |w|), and for each matching document in HistDB(w), we can retrieve the associated update operation,
and when it happened, and hence recompute Hist(w).

This shows that Σoφoς is LSPS-adaptively-secure. We can similarly show that SPS is LΣ-adaptively-
secure by adapting the proof of [SPS14]. Hence, SPS and Σoφoς have exactly the same security guarantees.
However Σoφoς is much more efficient in terms of bandwith usage and update complexity. Namely, SPS’s

3ε stands for επαληθευω: I verify.

10

updates trigger O(log2N) work and O(logN) bandwith usage per update, using standard, yet not trivial
de-amortization techniques. Σoφoς bandwith and computational overheads for an update are both a constant.

Also, SPS needs O(Nα) client memory for 0 < α < 1 as working storage to run the oblivious sort
algorithm needed during the updates, while Σoφoς stores O(W logD) on the client – and we expectW � N .

As presented in Table 1, Σoφoς has the same asymptotic complexity as the most efficient dynamic SSE
schemes. Moreover, we saw in Section 4.3 that we cannot really hope for something better in terms of features
(space reclamation) or storage locality, for a forward private scheme. This justifies the optimality claim made
higher, in the abstract, and in Σoφoς’ name itself.

6 Implementation and Experimental Results
We implemented Σoφoς in C/C++, using a bit more than 8000 lines of code. For the trapdoor permutation,
we used RSA. Our RSA implementation uses OpenSSL’s BigNum library. The PRF F and the keyed hash
function H are instantiated using HMAC, and we chose Blake2b as the underlying hash function.

Aside from cryptographic components, gRPC [Goo16] was chosen for the RPC machinery, and the map
T were stored using RocksDB [Fac16].

W is implemented as a memory-mapped disk-resident – and hence persistent – hash table (with support
of multiple collisions in buckets, and an overflow stash to improve the data structure’s load).

We ran our experiments on a desktop computer with a single Intel Core i7 4790K 4.00GHz CPU (with
8 logical cores), 16GB of RAM, a 250 GB Samsung 850 EVO SSD, running on OS X.10. Our code is Open
Source [Bos16].

Parameters Cryptographic keys are 128 bits long for symmetric primitives, and we chose to use 2048 bits
RSA keys, with a public exponent fixed to 3.

Our system can easily be scaled to support databases with up to 264 keyword/document pairs, but to
avoid unnecessary overhead for our experiments using much smaller database, we fixed N ≤ 248, W ≤ 248,
and the maximum matching documents per keyword nmax ≤ 232 . We set µ, the length of the update tokens,
to 128 bits, leading to an incorrectness probability of 2−32 for the maximum size database. Similarly, on the
client side, the keywords are hashed to obtain the 128 bits identifiers iw (cf. Section 5.5).

6.1 Evaluation
We evaluated the performance of Σoφoς using 4 data sets of increasing size and also the English Wikipedia.
The characteristics of the databases are given in Table 2, as well as the size of the encrypted database, and
the size of the client’s state (i.e. the size of W).

We also report the load of the hash table storing W. It can be optimized if we know in advance the
number of distinct keywords in the database. This is what we did for the first and second database (but not
the third).

Storage size
W N Client (load) EDB

23,356 1.4E6 572 kB (0.91) 64.0 MB
213,349 14E6 4.81 MB (1.00) 512 MB

2,113,333 140E6 64.2 MB (0.64) 5.25 GB
4,599,490 139E6 128 MB (0.91) 5.25 GB

Table 2 – Evaluation databases size. The last database is the English Wikipedia.

11

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

10 100 1000 10000 100000

Se
ar
ch

ti
m
e
pe

r
m
at
ch
in
g
en
tr
y
(m

s)

Number of matching documents

Database with 14E5 entries
Database with 14E6 entries
Database with 14E7 entries

Figure 2 – Σoφoς search time per matched document (with standard deviations for the two largest datasets).
Timings do not include the RPC.

Search Figure 2 presents our measurements for the search algorithm, on the server side, without accounting
for RPC costs – we focus on the core of the algorithm. The timings given here are means of the elapsed
search time per found document, taken over between 1000 queries (for small queries and large queries on
large datasets) to 30 queries (for large queries on small data sets). This allows us to exhibit some real-
world side effects in our implementation. We also give standard deviations for data sets of 14E6 and 14E7
keyword/document pairs.

The first thing we can notice in the timings, is that the larger the result set, the faster the search
algorithm (again, on a per matching document basis). We explain that by the cost of multi-threading, and
by the storage latency: even if the RSA or hash function computations are fully parallelized, adding an index
to the result list is not, and accessing the disk induces some wait. Hence, at the beginning of the search
algorithm, RSA operations will not be fully interleaved with disk accesses (like they are for a sufficiently
large result set), we will pay for the latency induced by mutexes and storage accesses. Also, in the case of
small result sets, some one-time costly operations (such as creating threads) are not amortized.

Figure 3 includes the RPCs in the timings, shows that they are far from being negligible, and also
confirms our previous supposition: sending a matching document index to the client via RPC cannot be
done concurrently for a given query, and creates a bottleneck if RPC, disk accesses and RSA computations
are not well interleaved.

Update We report an update throughput of around 4300 keyword/document pairs per second, for both
large and small datasets. This evaluation includes all costs (disk accesses, RPC). For updates, the bottleneck
is clearly the computation of the new search token used to derive the update token. In particular, we pay
for the fact that private key operations are a lot more expensive than public key operations (to a factor 30
on our computer).

12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

10 100 1000 10000 100000

Se
ar
ch

ti
m
e
pe

r
m
at
ch
in
g
en
tr
y
(m

s)

Number of matching documents

With RPC
Without RPC

Figure 3 – Σoφoς search time per matched document, with and without RPC costs, with standard deviations.
The dataset contains 14e7 entries.

6.2 Comparison with Existing Implementations
We can try to compare our implementation with the ones in [CJJ+13], [CJJ+14], and [SPS14], using figures
taken directly from the original papers. The comparison will be mostly qualitative as the performance
are despite that the evaluation of these papers are measured in extremely different environments. The
implementations in [CJJ+13] and [CJJ+14] run on 8 cores server blades connected to a high-end RAID-
0/RAID-5 HDD-based storage, while [SPS14] performance is evaluated on an Amazon EC2 cr1.8xlarge
instance, with 32 cores, entirely in RAM. Ours runs on a desktop computer, with a medium-end SSD.

The first thing we can notice, is that, despite the use of costly asymmetric cryptographic primitives,
we achieve higher search throughput with a single basic SSD than the authors of [CJJ+13] (1E7 matches
per second for Σoφoς, versus 2E4 for large results queries), who use an expensive SAN system. Even using
grouping techniques the performances are comparable to ours (cf. [CJJ+14] whose search algorithm needs
approximately 150 ms for a 1E4 documents match, our implementation only needs 1ms), justifying our claim
of Section 4.3, that locality in SSE is not necessary for good performances.

This also quite invalidates the reflexion of Stefanovet al. in [SPS14] about the relative cost of RAM vs.
Disk: using a single PCI Express SSD, we can achieve up to 430,000 random reads per seconds [Int] with
very low latency, and this can be further improved using several SSDs in RAID. For Σoφoς, we claim that,
once implemented on such powerful systems (more CPU cores, higher end storage), search performance will
increase accordingly.

However, this cannot really be done for the updates as we would like (computationally) weak clients to
also perform well when updating the database. This would require an improvement of our scheme, so as to
limit the number of RSA public key operations the client has to perform during updates. We leave this for
future work.

Given that disk accesses is a bottleneck of our construction – as well as for the [CJJ+14] construction
– it is quite hard to compare Σoφoς with SPS whose encrypted database is RAM-resident. We can only
conjecture that, once implemented on non-volatile storage, SPS throughput, both for search and updates,

13

will be comparable to ours. One could however argue that, in presence of deletions, SPS’s sublinear search
algorithm will imply better performance than Σoφoς linear one, but that would be the case only if the non-
deleted documents represent a very small fraction of the overall inserted documents: Σoφoς makes exactly
2aw − nw storage accesses, while SPS makes at the very least log2 N

2 accesses per non deleted matching
document – this being a conservative lower bound. As storage accesses are the practical bottleneck for both
schemes, SPS will perform better only if less than 0.64% of the inserted documents have not been deleted if
N > 225. Also, as SPS’s search uses binary searches, all theses accesses cannot be fully parallelized unlike in
Σoφoς.

Finally, another nice feature of our scheme is that Σoφoς’ server storage is 8 times smaller than the one
in [SPS14], and 2.5 times than the scheme of [CJJ+14], reducing the financial cost of SSE.

Acknowledgements
The author thanks Pierre-Alain Fouque and David Pointcheval for their help on clarifying the proof of
security, and Brice Minaud and anonymous reviewers for helpful comments.

This work was supported in part by the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud)

References
[ANSS16] Asharov, G., Naor, M., Segev, G., and Shahaf, I. Searchable symmetric encryption: Optimal

locality in linear space via two-dimensional balanced allocations. In: 48th ACM STOC. ACM
Press (2016).

[BFP16] Bost, R., Fouque, P.A., and Pointcheval, D. Verifiable dynamic symmetric searchable encryption:
Optimality and forward security. Cryptology ePrint Archive, Report 2016/062 (2016). http:
//eprint.iacr.org/2016/062.

[Bos16] Bost, R. Implementation of Σoφoς (2016). URL https://gitlab.com/sse/sophos.

[CGKO06] Curtmola, R., Garay, J.A., Kamara, S., and Ostrovsky, R. Searchable symmetric encryption:
improved definitions and efficient constructions. In: A. Juels, R.N. Wright, and S. Vimercati
(eds.), ACM CCS 06, pp. 79–88. ACM Press (Oct. / Nov. 2006).

[CGPR15] Cash, D., Grubbs, P., Perry, J., and Ristenpart, T. Leakage-abuse attacks against searchable
encryption. In: I. Ray, N. Li, and C. Kruegel: (eds.), ACM CCS 15, pp. 668–679. ACM Press
(Oct. 2015).

[Cip] CipherCloud. Cloud data encryption. URL http://www.ciphercloud.com/technologies/
encryption/.

[CJJ+13] Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and Steiner, M. Highly-scalable
searchable symmetric encryption with support for boolean queries. In: R. Canetti and J.A.
Garay (eds.), CRYPTO 2013, Part I, LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (Aug.
2013).

[CJJ+14] Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and Steiner, M. Dy-
namic searchable encryption in very-large databases: Data structures and implementation. In:
NDSS 2014. The Internet Society (Feb. 2014).

[CK10] Chase, M. and Kamara, S. Structured encryption and controlled disclosure. In: M. Abe (ed.),
ASIACRYPT 2010, LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (Dec. 2010).

14

http://eprint.iacr.org/2016/062
http://eprint.iacr.org/2016/062
https://gitlab.com/sse/sophos
http://www.ciphercloud.com/technologies/encryption/
http://www.ciphercloud.com/technologies/encryption/

[CM05] Chang, Y.C. and Mitzenmacher, M. Privacy preserving keyword searches on remote encrypted
data. In: J. Ioannidis, A. Keromytis, and M. Yung (eds.), ACNS 05, LNCS, vol. 3531, pp.
442–455. Springer, Heidelberg (Jun. 2005).

[CT14] Cash, D. and Tessaro, S. The locality of searchable symmetric encryption. In: P.Q. Nguyen
and E. Oswald (eds.), EUROCRYPT 2014, LNCS, vol. 8441, pp. 351–368. Springer, Heidelberg
(May 2014).

[Fac16] Facebook, Inc. RocksDB: A Persistent Key-Value Store for Flash and RAM Storage. (June
2016). URL http://rocksdb.org.

[GMP15] Garg, S., Mohassel, P., and Papamanthou, C. TWORAM: Round-optimal oblivious RAM with
applications to searchable encryption. Cryptology ePrint Archive, Report 2015/1010 (2015).
http://eprint.iacr.org/2015/1010.

[GO96] Goldreich, O. and Ostrovsky, R. Software protection and simulation on oblivious RAMs. Journal
of the ACM (JACM), vol. 43(3):(1996), pp. 431–473.

[Gol04] Goldreich, O. Foundations of cryptography. Cambridge University Press (2004).

[Goo16] Google, Inc. gRPC: A high performance, open source, general RPC framework that puts mobile
and HTTP/2 first. (April 2016). URL http://www.grpc.io/.

[IKK12] Islam, M.S., Kuzu, M., and Kantarcioglu, M. Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In: NDSS 2012. The Internet Society (Feb. 2012).

[Int] Intel. Intel R© SSD 750 Series: Performance Unleashed. URL http://www.intel.com/content/
www/us/en/solid-state-drives/solid-state-drives-750-series.html.

[JJK+13] Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and Steiner, M. Outsourced symmetric
private information retrieval. In: A.R. Sadeghi, V.D. Gligor, and M. Yung (eds.), ACM CCS 13,
pp. 875–888. ACM Press (Nov. 2013).

[KO12] Kurosawa, K. and Ohtaki, Y. UC-secure searchable symmetric encryption. In: A.D. Keromytis
(ed.), FC 2012, LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg (Feb. / Mar. 2012).

[KP13] Kamara, S. and Papamanthou, C. Parallel and dynamic searchable symmetric encryption. In:
A.R. Sadeghi (ed.), FC 2013, LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (Apr. 2013).

[KPR12] Kamara, S., Papamanthou, C., and Roeder, T. Dynamic searchable symmetric encryption. In:
T. Yu, G. Danezis, and V.D. Gligor (eds.), ACM CCS 12, pp. 965–976. ACM Press (Oct. 2012).

[MKNK15] Meng, X., Kamara, S., Nissim, K., and Kollios, G. GRECS: Graph encryption for approximate
shortest distance queries. In: I. Ray, N. Li, and C. Kruegel: (eds.), ACM CCS 15, pp. 504–517.
ACM Press (Oct. 2015).

[MMBC15] Moataz, T., Mayberry, T., Blass, E.O., and Chan, A.H. Resizable tree-based oblivious RAM. In:
R. Böhme and T. Okamoto (eds.), FC 2015, LNCS, vol. 8975, pp. 147–167. Springer, Heidelberg
(Jan. 2015).

[Nav15] Naveed, M. The fallacy of composition of oblivious RAM and searchable encryption. Cryptology
ePrint Archive, Report 2015/668 (2015). http://eprint.iacr.org/2015/668.

[PKV+14] Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George, W., Keromytis,
A.D., and Bellovin, S. Blind seer: A scalable private DBMS. In: 2014 IEEE Symposium on
Security and Privacy, pp. 359–374. IEEE Computer Society Press (May 2014).

[sky] skyhigh. Cloud security and enablement. URL https://www.skyhighnetworks.com.

15

http://rocksdb.org
http://eprint.iacr.org/2015/1010
http://www.grpc.io/
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750-series.html
http://eprint.iacr.org/2015/668
https://www.skyhighnetworks.com

[SPS14] Stefanov, E., Papamanthou, C., and Shi, E. Practical dynamic searchable encryption with small
leakage. In: NDSS 2014. The Internet Society (Feb. 2014).

[SWP00] Song, D.X., Wagner, D., and Perrig, A. Practical techniques for searches on encrypted data. In:
2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Computer Society Press (May
2000).

[ZKP16] Zhang, Y., Katz, J., and Papamanthou, C. All your queries are belong to us: The power of file-
injection attacks on searchable encryption. Cryptology ePrint Archive, Report 2016/172 (2016).
http://eprint.iacr.org/2016/172.

A Proof of Theorem 1
Let us first restate precisely the security claim for Σoφoς.

Theorem 1. Let π be a one-way trapdoor permutation, F a PRF, and H1 and H2 to hash functions modeled
as a random oracle outputting respectively µ and λ bits. Define LΣ = (LSrch

Σ ,LUpdt
Σ) as

LSrch
Σ (w) = (sp(w),Hist(w))

LUpdt
Σ (add, w, ind) = ⊥.

Then Σoφoς-B is LΣ-adaptively-secure.

Proof. We are going to derive several games from the real world game SSERealΣoφoς
A (λ).

Game G0 G0 is exactly the real world SSE security game SSEReal.

P[SSERealΣoφoς
A (λ) = 1] = P[G0 = 1]

Game G1 Instead of calling F when generating Kw, G1 picks a new random key when it is confronted to
a new w, and stores it in a table Key so it can be reused next time w is queried. If an adversary is able to
distinguish between G0 and G1, we can then build a reduction able to distinguish between F and a truly
random function. More formally, there exists an efficient adversary B1 such that

P[G0 = 1]− P[G1 = 1] ≤ Advprf
F,B1

(λ).

Game G2 In G2, in the Update protocol, instead of calling H1 to generate the update tokens UT , we
pick random strings. Then, during the Search protocol, the random oracle H1 is programmed so that
H1(Kw, STc(w)) = UTc(w).

Algorithm 2 formally describes G2, and also introduces an intermediate game G̃2, by including the
additional boxed lines. In the pseudo-code, we explicit the calls to the random oracle H1, and keep track of
the transcripts via the table H1. In particular, we can see that we explicitly program the RO during Search
at line 7. Note that we use the following convention for the table Key: if an entry is accessed for the first
time, it is first randomly chosen and then returned. Also G2 and G̃2 make some bookkeeping of the search
tokens STc, instead of recomputing all of them in Search.

The point of G̃2 is to ensure consistency of H1’s transcript: in G̃2, H1 is never programmed to two
different values for the same input by Search’ line 7. Instead of immediately generating the UT derived from
the c-th ST for keyword w from H1, G̃2 randomly either choses them if (Kw, STc+1) does not already appear
in H1’s transcript, or, if this is already the case, sets UTc+1 to the already chosen value H1[Kw, UTc+1]. Then,
G̃2 lazily programs the RO when needed by the Search protocol (line 7) or by an adversary’s query (line 5
of H1), so that it’s outputs are consistent with the chosen values of the UT ’s.

16

http://eprint.iacr.org/2016/172

Algorithm 2 Games G2 and G̃2 Boxed code is included in G̃2 only.
Setup()

1: (SK,PK)← KeyGen(1λ)
2: W,T← empty map
3: bad← false
4: return ((T,PK), (KS,SK),W)

Search(w, σ;EDB)

Client:
1: Kw ← Key[w]
2: (ST0, . . . , STc, c)←W[w]
3: if (ST0, . . . , STc, c) = ⊥
4: return ∅
5: (ind0, . . . , indc)← HistDB(w) . Ordered from

the order of updates
6: for i = 0 to c do
7: H1(Kw, STi)← UT[w, i]
8: end for
9: Send (Kw, STc, c) to the server.

Server:
10: for i = c to 0 do
11: UTi ← H1(Kw, STi)
12: e← T[UTi]
13: ind← e⊕H2(Kw, STi)
14: Output each ind
15: STi−1 ← πPK(STi)
16: end for

Update(add, w, ind, σ;EDB)

Client:
1: Kw ← Key[w]
2: (ST0, . . . , STc, c)←W[w]
3: if (ST0, . . . , STc, c) = ⊥ then
4: ST0

$←M, c← −1
5: else
6: STc+1 ← π−1

SK (STc)
7: end if
8: W[w]← (ST0, . . . , STc+1, c+ 1)
9: UTc+1 ← {0, 1}µ

10: if H1(Kw, STc+1) 6= ⊥ then
11: bad← true, UTc+1 ← H1(Kw, STc+1)

12: end if
13: UT[w, c+ 1]← UTc+1

14: d← ind⊕H2(Kw, STc+1)
15: Send (UTc+1, d) to the server.

Server:
16: T[UTc+1]← e

H1(k, st)

1: v ← H1(k, st)
2: if v = ⊥ then
3: v

$← {0, 1}λ
4: if ∃w, c s.t st = STc ∈W[w] then
5: bad← true, v ← UT[w, c]

6: end if
7: H1(k, st)← v
8: end if
9: return v

Because of this, H1’s outputs in G̃2 and G1 are perfectly indistinguishable, and so are the games:

P[G̃2 = 1] = P[G1 = 1].

The games G̃2 and G2 are also perfectly identical unless the flag bad is set to true, and we can apply the
identical-until-bad technique to bound the distinguishing advantage between G̃2 and G2:

P[G̃2 = 1]− P[G2 = 1] ≤ P[bad is set to true in G̃2].

Intuitively, we can see that, if bad is set to true, we can break the one-wayness of the TDP. More formally,
we are going to construct a reduction B2 from a distinguisher A inserting N keyword/document pairs in
the database, using a technique similar to the Schnorr’s signatures proofs. We note maxw∈W nw = nmax =
poly(λ) the maximum number of documents matching a keyword. B2 will take as input a public key PK and
a challenge y ∈M, and will ouput x such that πPK(x) = y.

As for Schnorr’s signatures proofs, B2 first guesses the pair (w∗, c∗) for which bad will be set to true
for the first time, by querying H1 on (Kw∗ , STc∗) (i.e. by pre-computing UT[w∗, c∗]), among the N possible
pairs. For all keyword w ∈W \ {w∗}, B2 pre-computes STi(w) as follows:

STnmax(w)
$←M

STi(w)← πPK(STi+1(w)) for 0 ≤ i < nmax

17

Similarly, for w∗, B2 generates the search tokens from the challenge y:

STc∗−1(w∗)← y

STi(w
∗)← πPK(STi+1(w∗)) for 0 ≤ i < c∗

It is essential to see that the distribution of the search tokens remains unchanged from game G2. So, to
return a pre-image of y, the reduction B2 will find the value x by evaluating πPK(r) for all (Kw∗ , r) in the
RO’s transcript and check if πPK(r) = y. Hence, for a fixed pair (w∗, c∗), if G2 sets bad to true because of
an adversary’s query on (Kw∗ , STc∗), B2 is able to invert π without the secret key:

P [bad is set to true by forging UT[w∗, c∗]] = AdvOW
π,B2

(λ).

Guessing the pair (w∗, c∗) implies a N loss in the advantage of the reduction, and

P[G1 = 1]− P[G2 = 1] = P[G̃2 = 1]− P[G2 = 1]

≤ N ·AdvOW
π,B2

(λ).

Game G3 Game G3 does exactly what game G2 did for H1, but for H2. The exact same argument can be
reused, giving that there is an adversary B3 such that

P[G2 = 1]− P[G3 = 1] ≤ N ·AdvOW
π,B3

(λ).

Note that we can consider that B2 = B3 without loss of generality: we could have started with H2 instead
of H1 and the reduction would have been the same.

Algorithm 3 Game G4.
Setup()

1: (SK,PK)← KeyGen(1λ)
2: W,T← empty map
3: u← 0
4: Updates← empty map
5: return ((T,PK), (KS,SK),W)

Update(add, w, ind, σ;EDB)

Client:
1: Append (u, ind) to Updates[w]

2: UT[u]
$← {0, 1}µ

3: e[u]
$← {0, 1}λ

4: Send (UT[u], e[u]) to the server.
5: u← u+ 1

Search(w, σ;EDB)

Client:
1: Kw ← Key[w]
2: ST0 ←W[w]
3: [(u0, ind0), . . . , (uc, indc)]← Updates[w]
4: if c = 0
5: return ∅
6: for i = 0 to c do
7: Program H1 s.t. H1(Kw, STi)← UT[ui]
8: Program H2 s.t. H2(Kw, STi)← e[ui]⊕ indi
9: STi+1 ← π−1

SK (STi)
10: end for
11: Send (Kw, STc, c) to the server.

Game G4 In game G4, as defined by Algorithm 3, the game keeps track of the randomly generated string
UT and d differently than before, but the transcript output by Search and Update are stricly identical, and
the random oracles are also programmed identically. In Algorithm 3, we removed the now useless code for the
H1 oracle. Also note that we got rid of the server’s part is the protocols: these are single roundtrip protocols
and the removed lines do not influence the client’s transcript.

We still have to show that G3 and G4 are indistinguishable. For Update, this is immediate as we are
already outputting fresh random strings for each update in G3. In Search, G4 generates the search token
from ST0 by iterating π−1

SK instead of using an already computed and stored token. As for Key, if an entry
of W if an entry is accessed for the first time, the game randomly picks it inM.

18

Finally, instead of directly mapping the pairs (w, i) (a keyword and the i-th update to this keyword) to
the values picked for UT and e, we use the intermediate table Updates which implicitly maps (w, i) to the
global update count. Hence,

P[G3 = 1]− P[G4 = 1] = 0.

The Simulator We can – almost straightforwardly – cut the code of game G4 in two independent parts:
the leakage and the simulator. The simulator is described in Algorithm 4, and the leakage function is LΣ.
G4 and SSEIdealS,LΣ

are identical games, the only difference being that, instead of the keyword w, S uses
the counter w = min sp(w) uniquely mapped from w using the leakage function. Hence,

P[G4 = 1]− P[SSEIdealΣoφoς
A,S,LΣ

(λ) = 1] = 0.

Algorithm 4 Simulator S.
S.Setup()

1: (SK,PK)← KeyGen(1λ)
2: W,T← empty map
3: u← 0
4: return ((T,PK), (KS,SK),W)

S.Update()

Client:
1: UT[u]

$← {0, 1}µ

2: e[u]
$← {0, 1}λ

3: Send (UT[u], e[u]) to the server.
4: u← u+ 1

S.Search(sp(w),Hist(w))

Client:
1: w ← min sp(x)
2: Kw ← Key[w]
3: ST0 ←W[w]
4: Parse Hist(w) as [(u0, add, ind0), . . . , (uc, add, indc)]
5: if c = 0
6: return ∅
7: for i = 0 to c do
8: Program H1 s.t. H1(Kw, STi)← UT[ui]
9: Program H2 s.t. H2(Kw, STi)← e[ui]⊕ indi

10: STi+1 ← π−1
SK (STi)

11: end for
12: Send (Kw, STc) to the server.

Conclusion By combining all the contributions from all the games, there exists 2 adversaries B1 and B2

such that

P[SSERealΣoφoς
A (λ) =1]− P[SSEIdealΣoφoς

A,S,LΣ
(λ) = 1]

≤ Advprf
F,B1

(λ) + 2N ·AdvOW
π,B2

(λ).

We conclude by stating that π is a one-way function, and that F is a PRF.

19

	Introduction
	Related Work
	Preliminaries
	Trapdoor Permutations
	Symmetric Searchable Encryption
	Security of SSE

	Forward privacy
	Definition
	The Need for Forward Privacy
	Constraints Induced by Forward Privacy

	The oo Construction
	General ideas
	Basic Construction
	Security
	Derived Constructions
	Reducing Client-side Storage
	Security against Malicious Adversaries
	Comparison with Other Constructions

	Implementation and Experimental Results
	Evaluation
	Comparison with Existing Implementations

	Proof of Theorem 1

