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Abstract

Lattice sieving is asymptotically the fastest approach for solving the shortest vector
problem (SVP) on Euclidean lattices. All known sieving algorithms for solving SVP re-
quire space which (heuristically) grows as 20.2075n+o(n), where n is the lattice dimension.
In high dimensions, the memory requirement becomes a limiting factor for running these
algorithms, making them uncompetitive with enumeration algorithms, despite their supe-
rior asymptotic time complexity.

We generalize sieving algorithms to solve SVP with less memory. We consider reduc-
tions of tuples of vectors rather than pairs of vectors as existing sieve algorithms do. For
triples, we estimate that the space requirement scales as 20.1887n+o(n). The naive algo-
rithm for this triple sieve runs in time 20.5661n+o(n). With appropriate filtering of pairs,
we reduce the time complexity to 20.4812n+o(n) while keeping the same space complex-
ity. We further analyze the effects of using larger tuples for reduction, and conjecture
how this provides a continuous tradeoff between the memory-intensive sieving and the
asymptotically slower enumeration.

1 Introduction

The shortest vector problem (SVP) aims to find a shortest non-zero vector in a Euclidean
lattice, starting from an arbitrary basis of the lattice. Solving SVP is the cost-dominating
component to cryptanalyze lattice-based cryptosystems [17,22]. The currently best known al-
gorithm with proven correctness and complexity bounds [3] requires memory and time 2n+o(n),
where n is the lattice dimension. The best known provable algorithm requiring less space
than this is due to Kannan [18]. Its space requirement is polynomial, but its running-time
is nn/(2e)+o(n) [14, 15], which is asymptotically slower than sieving. In practice, however, the
most competitive implementations rely on variants of Kannan’s algorithm that are asymptot-
ically slower and whose correctness can only be guaranteed heuristically [6, 8, 11].

Lattice sieving. The first provable lattice sieving algorithm dates back to the work of Ajtai,
Kumar, and Sivakumar (AKS) [4]. The AKS algorithm has been progressively refined and
simplified in a series of works [13,23,25], resulting in the ListSieve algorithms of Micciancio and
Voulgaris [23]. Currently, the fastest provable variant of lattice sieving runs in time 22.465n+o(n)

and space 21.325n+o(n) [26] (see [21] for a quantum acceleration).
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In practice, heuristic variants of the lattice sieving algorithms are found to be more ef-
ficient. Nguyen and Vidick [25] exhibited a version of AKS that can be heuristically ar-
gued correct and which requires a running-time of (4/3)n+o(n) ≈ 20.4150n+o(n) and space
of (4/3)n/2+o(n) ≈ 20.2075n+o(n). Micciancio and Voulgaris [23] later proposed a heuristic vari-
ant of their ListSieve algorithm, namely the GaussSieve algorithm. In practice, the GaussSieve
seems to perform well compared to the other variants [23]. It has been investigated further
in a series of works (see, e.g., [9]); and its variants were used to solve some lattice chal-
lenges [19]. The GaussSieve algorithm is one of the most promising candidates for lattice
sieving algorithms in practice.

Recently, nearest neighbor search techniques have been used to accelerate heuristic sieving
algorithms further. The technique was first used in the context of lattice sieving by Laarhoven
in [20]. Currently, the best variant is due to Becker, Ducas, Gama, and Laarhoven [5], which
has a time complexity of (3/2)n/2+o(n) ≈ 20.2925n+o(n) and space complexity (4/3)n/2+o(n).

Reducing the space complexity. Note that the upper bound of the space requirement of
all the aforementioned sieve-based algorithms is at least (4/3)n/2+o(n). It is conjectured (and
experimentally observed [23,25]) that such space is typically consumed during the execution
of these algorithms as well. Let us explain where this bound stems from.

Before we get vectors of norms close to the lattice minimum, sieving algorithms involve
lattice vectors that seem uniformly distributed on an n-dimensional sphere (or super-thin
crust of a ball), and create shorter vectors by subtracting two lattice vectors on the sphere
that happen to be sufficiently close. Concretely, this occurs when the angle between the two
vectors is less than π/3: their difference results in a shorter vector. One way to heuristically
obtain the space complexity bound is to observe that if we have a point v on a sphere, then it
covers a fraction sinn(π/3) = (3/4)n/2 of this sphere of points at angle at most π/3 from this
point. If we further assume that each point covers a different part of the sphere, and overlaps
are generally small and almost negligible, then we see that we need about (4/3)n/2 ≈ 20.2075n

vectors to cover the sphere. With this many covering points, any extra point expects to see
an existing nearby covering point; and their difference leads to a short vector.

Contributions. We propose tuple variants for the ListSieve and GaussSieve algorithms,
which we call TupleSieve and TupleMinkowskiSieve, whose memory footprint is smaller than
20.2075n+o(n). The main idea is to attempt to create shorter vectors by looking at triples,
quadruples, etc. of vectors rather than pairs of vectors. For triples of vectors, we estimate the
space complexity by 20.1887n+o(n). For quadruples, the space complexity is about 20.1724n+o(n).
For growing k (which remains small compared to n), the space complexity seems to scale
as kn/k(1+o(1)), while the running-time seems to scale as kn(1+o(1)). We conjecture that Tu-
pleSieve provides a continuous tradeoff between the memory-intensive sieving algorithms and
the asymptotically slower Kannan enumeration algorithm.1

The time complexity of TupleSieve grows very fast with the size k of tuples. If implemented
naively, the algorithm has a time complexity which is the k-th power of its space complexity.
We show that this naive complexity can be reduced by a filtering of pairs of vectors, to remove
those that are too unlikely to be extended to a useful triple. More concretely, in the case of
k = 3, a triple is useful if either its underlying pairs are useful, or one pair is not too close
to orthogonal and the third vector is close to that pair difference. The underlying thought

1Recently Fouque and Kirchner [10] show it is possible to obtain a similar time/space tradeoff, by using
more memory for enumeration. Our tradeoff instead follows from using less memory for sieving.
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is that if two vectors are almost orthogonal, then a third vector which is far away from both
vectors is unlikely to lead to a triple reduction. For k = 3, filtering allows to decrease the
20.5661n+o(n) running-time of the naive algorithm to 20.4812n+o(n).

On removing the heuristics. The correctness of the tuple lattice sieving algorithms
presented in this paper is heuristic, as is their complexity analysis. These heuristics are
backed by experiments in Section 6, but it would be preferable to also better apprehend them
in theory.

The main obstacle towards proving correctness of sieving algorithms is that the vector
combinations may all result in the 0 vector after some stage, leading us to miss shortest non-
zero vectors. This difficulty is typically circumvented by adding perturbations to the vectors
to “hide” the lattice structure to the algorithm (see, e.g., [23]). We believe such a technique
could also be applied to our algorithms, although with a significant cost increase.

The problem of obtaining rigorous bounds on the space complexity is, in our opinion, much
more challenging (and mathematically enticing). Bounding the space complexity of ListSieve
and GaussSieve can be reformulated in terms of spherical codes: how large can a list of points
on the unit sphere be if we assume that all pairs of points have angle at least π/3 (i.e., their
difference has norm > 1)? In the case of k-tuple sieving, the list of points on the unit sphere
is such that any sum of at most k list vectors has norm > 1. As the constraint gets stronger
with increasing k, the maximum list size cannot increase. Can it be shown that it decreases?

Road-map. Section 2 gives preliminaries on the geometry of lattices. Section 3 presents the
TupleSieve and its complexity analysis. Section 4 describes the filtered TupleSieve, which is
designed to optimize its running-time. The TupleSieve is a generalization of ListSieve. A
GaussSieve-like variant of the TupleSieve, called TupleMinkowskiSieve, is discussed in Sec-
tion 5: similarly to GaussSieve and ListSieve, TupleMinkowskiSieve is more complex to study
than the TupleSieve but has more potential in practice. Finally, experimental results are
discussed in Section 6: we test heuristics used in the theoretical analysis of the TupleSieve,
and we test the practical efficiency of TupleMinkowskiSieve.

2 Preliminaries

We first introduce some notation and recall some elementary geometric facts that we will use
when analyzing tuple lattice sieving algorithms.

Let B(v, r) be the ball of radius r around v ∈ R
n. Denote in short B(v) = B(v, 1).

and B = B(0, 1). We let S denote the unit sphere. Let us write |Ω| for the volume of a
(measurable) set Ω ⊂ R

n. For a set Ω of finite measure, we let U(Ω) denote the uniform
distribution on Ω. For two functions A, B of n, we write A ∝ B if there exist two constants c
and c′ such that A ≤ nc · B and B ≤ nc′ ·A for large n.

2.1 Geometric properties of the unit sphere

We first recall the following simple geometric observation, regarding the norm of the difference
between two vectors on the sphere.

Lemma 2.1 ((Cosine law)). For vectors v1,v2 with angle θ we have

‖v1 − v2‖2 = ‖v1‖2 + ‖v2‖2 − 2‖v1‖‖v2‖ cos θ.
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Thus for two unit vectors v1,v2 ∈ S with angle θ, we have ‖v1 − v2‖ =
√

2(1− cos θ).

Throughout the paper, we are interested in the covering of the unit sphere S by unit
balls B(v): how many vectors v are needed such that the union of several balls B(v) covers
(most of) S? The following lemma considers the probability mass of different portions of the
unit sphere, when considering the uniform distribution over the sphere.

Lemma 2.2. The density function f(θ) of the angle θ ∈ [0, π/2) between any fixed vector
in S and a vector sampled independently from U(S) satisfies f(θ) ∝ (sin θ)n.

A spherical cap of height h in a ball of radius r is any set that may be obtained by applying
an isometry to {x ∈ B(0, r) : xn ≥ r − h}. We let C(h, r) denote the volume of a spherical
cap with parameters h and r.

Lemma 2.3 ( [23, Le. 4.1]). A spherical cap of height h and radius r has volume

C(h, r) ∝ (r2 − (r − h)2)n/2 · |B|.

The following lemma will be useful for estimating the part of the sphere that is covered
by a (unit) ball at arbitrary distance from the origin.

Lemma 2.4. Two balls B(v1, r1) and B(v2, r2) at distance ‖v1 − v2‖ = d and radii r1, r2

such that
√

∣

∣r21 − r22
∣

∣ < d < r1 + r2 satisfy

|B(v1, r1) ∩ B(v2, r2)| ∝
(

−d4 + 2d2
(

r21 + r22
)

−
(

r21 − r22
)2

4d2

)n/2

· |B|.

In particular, we have |B(v1) ∩ B(v2)| ∝ (1− d2/4)
n

2 · |B|.

Proof. Without loss of generality, we assume that v1 = 0 and v2 = de1. The intersection of
these two balls is partitioned in two spherical caps. Let a be a point at distance r1 from 0

and distance r2 from de1 and consider the triangle formed by 0,a and de1. This triangle has
sides d, r1, r2. To find |〈a, de1〉|, we use the law of cosines in the point 0 to establish that
this angle in the triangle satisfies cosφ = (r21 + d2 − r22)/(2r1d). Using the cosine definition,
we then know that cosφ = |〈a, de1〉|/r1. We define x = |〈a, de1〉| = (r21 + d2 − r22)/(2d). The
spherical cap associated to the ball of radius r1 has volume

C(r1 − x, r1) ∝
(

−d4 + 2d2
(

r21 + r22
)

−
(

r21 − r22
)2

4d2

)n/2

· |B|.

The other spherical cap has the same volume C(r2− (d−x), r2) ∝ C(r1−x, r1). As the total
volume of the intersection is the sum of these two values, the result follows.

2.2 Euclidean lattices

A (full-rank) lattice of Rn is the set L[(bi)i] =
∑

i Zbi ⊂ R
n of all integer combinations of

some n linearly independent vectors (bi)i≤n of Rn. In this setup, the vectors (bi)i≤n are said to
form a basis of L[(bi)i]. Note that any given lattice of dimension n ≥ 2 admits infinitely many
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bases. A lattice L contains shortest non-zero vectors, and their common norm is referred to as
the lattice minimum and denoted by λ(L). The algorithmic task of finding a shortest non-zero
vector of L[(bi)i] given (bi)i as input is known as the Shortest Vector Problem (SVP).

In tuple variants of the GaussSieve algorithm (TupleMinkowskiSieve), we consider a list
of lattice vectors which are tuple-wise Minkowski-reduced.

Definition 1 ((Minkowski reduction)). A basis (bi)i≤n of a lattice L is Minkowski-reduced
if the bi’s are sorted by non-decreasing norms and, for all i < n, the vector bi has minimal
norm among all vectors b ∈ L such that (b1, b2, · · · , bi−1, b) can be extended to a basis of L.

Note that Gauss reduction is Minkowski reduction in the special case of n = 2.

3 Tuple sieving

Let us first describe the general strategy of sieving algorithms. These algorithms start with a
large number of long lattice vectors, e.g., created by sampling from a discrete Gaussian over
the lattice with a large standard deviation [12]. They try to gradually reduce their norms by
considering simple combinations. The process of combining vectors to create shorter lattice
vectors is the sieving procedure, which produces shorter and shorter lattice vectors when
applied iteratively; vector combinations whose norm is above some threshold are discarded
during the sieving procedure, while short combinations are kept for the next iteration.

To make sure that we are not losing too many vectors during this sieving procedure and
to bound the running-time, we use a “covering” set which provably cannot become too large
(e.g., the center set in the Nguyen-Vidick sieve [25], or the list in the Micciancio-Voulgaris
sieve [23]). In general, the vectors in this “covering” set are not too close to each other. If
two current vectors are sufficiently close, we will reduce them before putting them into this
“covering” set.

To prove correctness (i.e., that shortest non-zero vectors are not avoided in the successive
sieves), the standard approach is using perturbations: one adds a small error vector to each
lattice vector, so that the lattice is blurred from the perspective of the sieves. This allows to
argue that the probability of finding a non-zero vector cannot be arbitrarily small compared
to the probability of getting the zero vector. We refer to [23] for more details.

To ease the analysis, we consider a simplified algorithm named DoubleSieve (see Algo-
rithm 1); and we do not consider these perturbations, which appear to be an artifact of the
proof of correctness, rather than a procedure necessary to make sure the algorithm succeeds.

Algorithm 1 DoubleSieve

1: L′ ← {}
2: for each v,w ∈ L do

3: if ‖v ±w‖ ≤ γ · R then

4: L′ ← L′ ∪ {v ±w}2

Algorithm 2 TripleSieve

1: L′ ← {}
2: for each v,w,x ∈ L do

3: if ‖v ±w ± x‖ ≤ γ · R then

4: L′ ← L′ ∪ {v ±w ± x}2

The DoubleSieve follows the same main procedure as the other sieves. In short, the main
point is to reduce pairs of vectors in L to get a new list L′. The norms of the vectors in L
are bounded by some constant R, and the norms of the vectors in L′ are then bounded by

2The sign choice is the same as in the step above.
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γ ·R for some geometric factor γ < 1. This factor γ ensures that in each iteration of the sieve
we make some progress with reducing the norms of the list vectors. In the analysis we will
assume γ ≈ 1, so that we do not need far more points to create a large output list. Note that
we can choose γ = 1− 1/poly(n) while ensuring the total number of sieves remains poly(n):
indeed, we may start with an initial radius R ≤ 2n · λ(L) by pre-processing the input basis
with the LLL lattice reduction algorithm, and stop with a final radius γpoly(n)R ≈ λ(L).

Note that a sieving step aims at reducing the norms of the current vectors by a multi-
plicative factor γ > 1, in order to prevent the whole procedure from stalling. As a result,
perturbation-free sieving algorithms (and our extensions) are unlikely to solve SVP and seem
limited to finding non-zero lattice vectors of norms ≤ t ·λ(L) for some t that is close to 1. We
make do with only finding near shortest non-zero lattice vectors.

An extension (TripleSieve) of this DoubleSieve algorithm is presented in Algorithm 2
above, where instead of pairs of vectors, we consider triples to find shorter lattice vectors.
Note that for pairs of vectors, considering combinations v±w is the best one can do: if there
exists some integer linear combination z1v + z2w which has norm < R for vectors v,w of
norms R then also one of the vectors v ± w must have norm < R. For triples (or tuples)
it is harder to tell which finite set of linear combinations must be considered to guarantee
obtaining the strongest notion of reduction in our list. The Minkowski conditions described
in [24, 28] show that for triples of vectors, it suffices to consider combinations v ±w, v ± x,
w ± x and v ±w ± x for reduction to achieve Minkowski-reducedness for a triple of lattice
vectors {v,w,x}. If we assume that 0 belongs to L, then these are exactly the combinations
considered in Algorithm 2.

3.1 Cost analysis of the DoubleSieve

We now proceed with a sketch of the cost analysis for the Double Sieve, which will serve as a
guideline for analyzing the TripleSieve in Section 3.2.

Let us suppose we started with a certain list of size |L| = N , and let v,w ∈ L. Let both
vectors have norm approximately R; significantly shorter vectors are also shorter than γR
and are immediately added to L′. Now, the condition ‖v −w‖ < γR for γ ≈ 1 equivalently
corresponds to w ∈ B(0, R)∩B(v, γR). To estimate the probability of finding a vector v−w

satisfying ‖v −w‖ < γR, we use of the following heuristic assumption, introduced in [25].

Heuristic 1. We assume that each time DoubleSieve is called, the vectors v/‖v‖ for v ∈ L
are i.i.d. uniformly distributed points on the unit sphere.

We may restrict ourselves to analyzing the DoubleSieve to list vectors of near-identical
norms (as they are coming from a prior sieve, and if they were much shorter than expected,
they could have been kept for later sieves). Further, as the DoubleSieve is scale-invariant, we
may restrict the study to the case where L consists of unit vectors.

Assuming Heuristic 1 holds, we can now estimate the probability that w ∈ B ∩ B(v, γ)
by the relative mass of the corresponding spherical cap on the sphere. Letting γ ≈ 1 and
‖v‖ ≈ 1, this probability is p ≈ sinn(π/3) = (3/4)n/2. So given any lattice vector in the list,
the probability that a second vector is going to lead to a good combination which can be used
for L′ is proportional to (3/4)n/2. Alternatively, one could say that each vector in the list covers
a fraction (3/4)n/2 of the sphere; vectors falling inside this spherical cap will lead to pairwise
reductions, while vectors outside will not. Assuming that the intersections of these spherical
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caps are negligible, we therefore approximately need 1/p ≈ (4/3)n/2 points to cover the entire
sphere: using a list L of size poly(n) · (4/3)n/2 guarantees that with overwhelming probability,
any other vector can be reduced with one of the list vectors, while if L is significantly smaller
than (4/3)n/2, then with overwhelming probability a random lattice vector is not covered by
this list L, meaning we will lose many points in each iteration of the sieve.

To summarize, the crucial equation for the list size N to guarantee that 1 − o(1) of the
sphere is covered with this list is given by

N ·
(

3

4

)n/2

≥ 1− o(1).

Finally, by taking for instance γ = 1−1/n, it is guaranteed that only a polynomial number
of iterations is needed to go from an initial list of long lattice vectors to a list of vectors of
norm at most λ(L). The time complexity is therefore dominated by poly(n) applications of
the DoubleSieve, whose cost is quadratic in the list size N . This leads to a memory complexity
of N ∝ (4/3)n/2 and a time complexity of N2 ∝ (4/3)n.

3.2 Cost analysis of the TripleSieve

In the TripleSieve, not only single list vectors cover subsets of the sphere, but also sums and
differences of pairs of list vectors cover parts of the sphere; if v − w − x is short, then x is
covered by the spherical cap B(0, R) ∩ B(v −w, γR). So not only the N single vectors cover
part of the sphere, also the roughly N2 sums and differences of list vectors v ±w each cover
a region of the sphere in the sense that any vector x in one of these regions can be reduced
with (v ±w). Intuitively this explains why fewer vectors will be needed to cover the entire
sphere (and to guarantee that L′ will not be shorter than L).

In the analysis below, we will make use of the following generalization of Heuristic 1.

Heuristic 2. We assume that each time the TripleSieve is called, the vectors v/‖v‖ for v ∈ L
are i.i.d. uniformly distributed points on the unit sphere, and all vectors v ∈ L and v ± w

for v 6= w ∈ L, with sign choice minimizing the norm, behave as if they were independent.

Note that the vectors v±w for v 6= w ∈ L cannot be independent as they are deterministi-
cally obtained from a much smaller set of points. A heuristic stating that they are independent
would hence be invalid. However, we still we may assume that this non-independence does
not impact the analysis below.

As in the analysis of DoubleSieve, we assume that the vectors of L all lie on the unit
sphere S. Now, the vectors v±w generally do not lie on S, and the part of S that is covered
by ±v ±w depends exactly on the norm of v ±w. Let us express this norm in terms of the
angle θ ∈ [0, π/2] between v and w. For unit vectors v and w, we have:

min ‖v ±w‖2 = 2(1 − cos θ).

Next, note that if a vector has norm r, then the part of the unit sphere it covers is
proportional to (1− r2/4)n/2 (by Lemma 2.4). Therefore, if v and w have angle θ, then the
vector v ±w covers a fraction of the spherical surface equal to at least:

g(θ) = (1− ‖v ±w‖2/4)n/2 = cos(θ/2)n.
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Here we used the half-angle identity cos2(φ/2) = (1 + cosφ)/2 that holds for arbitrary φ.
We now compute the expected portion of S that is covered by the difference vector between

two list vectors. By Lemma 2.2, the density of angles between pairs of vectors is proportional
to f(θ) ∝ sin(θ)n. The expected value of the part of S covered by a pair of vectors is therefore:

Eθ[g(θ)] ∝
∫ π/2

0
f(θ)g(θ)dθ =

∫ π/2

0

(

sin(θ) cos

(

θ

2

))n

dθ.

Note that the integrand is exponential in n, and so the asymptotic scaling of the entire integral
is determined by the maximum value of the integrand. Ignoring polynomial terms, we have

Eθ[g(θ)] ∝
(

max
θ

sin(θ) cos

(

θ

2

))n

.

With some elementary trigonometric manipulation we see that this maximum is attained at
θ = arccos(1/3), and in this point the function takes value 4/(3

√
3) =

√

16/27. So we obtain:

Eθ[g(θ)] =

(

16

27

)n/2

.

To figure out how large the list size must be to cover the entire sphere, suppose we have N
points in our list. Then to guarantee that the single points and pairs of points in the list
together cover a fraction 1 − o(1) of the sphere, assuming that the overlap between these
regions is asymptotically negligible, this leads to the following condition on N :

N ·
(

3

4

)n/2

+N2 ·
(

16

27

)n/2

≥ 1− o(1).

The first term corresponds to the area covered by single list vectors, whereas the second
term stems from pairs of list vectors. If N is much smaller than (4/3)n/2, then the first
term is exponentially smaller than 1 and the second term dominates.3 So solving for N in
N2 · (16/27)n/2 ∝ 1, we obtain N ∝ (27/16)n/4 ≈ 20.1887n. Note that this list size N is strictly
smaller than the DoubleSieve list size of ∝ (4/3)n/2 ≈ 20.2075n.

Finally, similar to the DoubleSieve, the cost of this algorithm is dominated by having to
store the lists of vectors (memory), and having to consider all pairs/triples of vectors for the
sieve (time). This directly leads to heuristic space and time complexities of (27/16)n/4 ≈
20.1887n and (27/16)3n/4 ≈ 20.5662n for a naive cubic search over all triples.

3.3 Cost analysis of the k-TupleSieve

Algorithm 3 generalizes the DoubleSieve and the TripleSieve to arbitrary k-tuples. The Dou-
bleSieve and the TripleSieve correspond to setting k = 2 and k = 3 respectively. Similarly to
the DoubleSieve and the TripleSieve, the sign choice at Step 4 is identical to that of Step 3.
Further, we may assume that vector 0 belongs to L so that the test of Step 3 actually al-
lows to consider combinations of up to k vectors. Or we may argue (thanks to the analysis
below) that only combinations of exactly k (non-zero) list vectors are likely to lead to norm
reductions, and discard combinations of fewer vectors.

3The imbalance of the two terms implies that in the TripleSieve we may consider only combinations of
triples of vectors and forget about combinations of pairs of vectors.
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Algorithm 3 k-TupleSieve

1: L′ ← {}
2: for each v1,v2, . . . ,vk ∈ L do

3: if ‖v1 ± v2 ± . . .± vk‖ ≤ γ · R then

4: L′ ← L′ ∪ {v1 ± v2 ± . . .± vk}

We now generalize the previous analyses to tuple sieving. Let k be fixed, and let v1, . . . ,vk−1

be independently sampled from U(S). Define v′
1 = v1 and, for 1 < i ≤ k, let v′

i be either
vi or −vi, so that 〈v′

i,
∑

j<i v
′
j〉 ≤ 0. Note that the angles θi between

∑

j<i v
′
j and vi are

independent and have densities proportional to (sin θ)n by Lemma 2.2. Further, observe
that θ2, . . . , θi fully determine fi := ‖

∑

j≤i v
′
j‖. Indeed, we have f1 = 1, and, for i > 1:

f2
i = f2

i−1 − 2fi−1 cos θi + 1.

Now, the proportion gk−1 of S at distance ≤ 1 from
∑

i<k v
′
i covered by this sum is

proportional to the size of the intersection of two unit balls centered at 0 and at a point at
distance fk−1 from 0. By Lemma 2.4, we have gk−1 ∝ (1− f2

k−1/4)
n/2. Hence we have

αk−1 := Ev1,...,vk−1
[gk−1] ∝

(

max
θ2,...,θk−1

√

1− f2

k−1

4

∏

1<i<k

sin θi

)n

. (1)

By the above, a list size L satisfying the following suffices to cover the sphere by k-tuples.

αn
1L+ αn

2L
2 + · · ·+ αn

k−1L
k−1 = 1.

The space requirement is Sk = (maxi<k α
1/i
i )n, and the time requirement Tk is Sk

k . Note that
α1 =

√

4/3 and α2 =
√

27/16 as in the previous subsections.
We give estimates for the Triple and Quadruple Sieves. For k = 3, we have previously

seen that the target function was

(
√

1− f2

2

4

)

sin θ2 =

(

√

1
2 cos (θ2) +

1
2

)

sin (θ2) = cos
(

θ2
2

)

sin (θ2) .

The maximum is achieved at θ2 = arccos(1/3) and the maximum value is 4/(3
√
3), leading

to a list size 20.1887n+o(n) for the TripleSieve. For k = 4, the target function is

√

1
2

√

2− 2 cos (θ2) cos (θ3) +
1
2 cos (θ2) +

1
4 sin (θ2) sin (θ3) .

Numerically optimizing over θ2 and θ3, we obtain a Quadruple Sieve list size 20.1724n+o(n).
For even larger tuple sizes k, Table 1 lists the numerical values for the space complexity of

the k-TupleSieve for tuple sizes k from 3 to 15. The first column denotes the k-tuples used. The
second column (log2 |L|)/n gives the list size estimate for the k-tuples. The columns “cos θi”
denote the cosines for the optimized angles for the target function in Equation (1). We used
function minimize in Sagemath [7] to optimize Equation (1), and obtained equivalent results
using FindMinimum in Mathematica [29].
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k log2(|L|)
n cos θ2 cos θ3 cos θ4 cos θ5 cos θ6 cos θ7 cos θ8 cos θ9 cos θ10 cos θ11 cos θ12 cos θ13 cos θ14

3 .1887 .333

4 .1724 .250 .408

5 .1587 .200 .316 .447

6 .1473 .167 .258 .354 .471

7 .1376 .143 .218 .293 .378 .488

8 .1293 .125 .189 .250 .316 .395 .500

9 .1221 .111 .167 .218 .272 .333 .408 .509

10 .1158 .100 .149 .194 .239 .289 .346 .418 .516

11 .1102 .091 .135 .174 .213 .255 .302 .357 .426 .522

12 .1052 .083 .123 .158 .192 .228 .267 .312 .365 .433 .527

13 .1007 .077 .113 .145 .175 .207 .240 .277 .320 .372 .439 .531

14 .0967 .071 .105 .134 .161 .189 .218 .250 .286 .327 .378 .443 .534

15 .0930 .067 .098 .124 .149 .174 .200 .228 .258 .293 .333 .383 .447 .538

Table 1: Estimates of list size for k-tuple sieving

3.4 Conjectured large-k asymptotics

Finally, we conclude this theoretical analysis with conjectured large-k asymptotics of the
time and space complexities of the k-TupleSieve. For small k = 2, 3 we have exact algebraic
expressions for the heuristic space complexities, and if we attempt to match similar expressions
to the numeric data in the first column of Table 1 using the Inverse Symbolic Calculator [1],
we obtain a conjectured general expression for the heuristic space complexity for arbitrary k.

Conjecture 1. The heuristic asymptotic space complexity |L| of the k-TupleSieve satisfies

|L|1/n =
kk/(2k−2)

√
k + 1

.

This formula matches our numerically obtained results for k = 2, . . . , 15 up to the first 50
digits. We plot the numerical results and the conjectured space complexity curve in Figure 1.
Note that indeed for k = 2, 3 this formula gives |L|1/n =

√

4/3 and |L|1/n = (27/16)1/4 .
Assuming this formula is correct, we can study the limiting behavior of large tuples.

First, observe that the expression above scales as k1/k+o(1/k). In other words, the list size
asymptotically scales as |L| = kn/k+o(k), and the corresponding time complexity is given
by kn+o(n). If we let k approach n, then we see that the estimated list size approaches
|L| → n1+o(1) while the time complexity scales as nn+o(n). This conjectured asymptotic
scaling matches (up to constants in the exponents) the complexities of Kannan’s enumeration
algorithm [18]. Tuple lattice sieving could therefore be considered a way to obtain a continuous
trade-off between the asymptotically fast but memory-intensive heuristic sieving algorithms
(small k), and the memory-efficient and asymptotically slow enumeration methods (large k).

4 Filtered triple sieving

In the analysis of the TripleSieve above, we saw that vectors with angle θ significantly smaller
than arccos(1/3) lead to a lot of the sphere being covered, but these vectors do not appear
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Figure 1: The numerically obtained heuristic logarithmic space complexities for k-tuple sieving
up to k = 15, and the conjectured pattern for arbitrary k from (1).

often (thus in the algorithm, we should try to use them all); vectors at angle θ ≈ arccos(1/3)
cover a decent amount of the sphere, and contribute 1 − o(1) of the found collisions among
triples of vectors; and vectors at angle θ significantly larger than arccos(1/3) appear very often,
but rarely lead to reductions even though this case appears very often (thus in the algorithm
we can ignore them). This motivates the Filtered TripleSieve described in Algorithm 4.

Algorithm 4 Filtered TripleSieve

1: L′ ← {}
2: for each v,w ∈ L do

3: if |〈v,w〉| ≥ 1
3 then

4: for each x ∈ L do

5: if ‖v ±w ± x‖ ≤ γR then

6: L′ ← L′ ∪ {v ±w ± x}

In this extension of the TripleSieve, the third search over the list is only performed if the
first two vectors are sufficiently close. Asymptotically this means that still the same number
of good triples is found, but this significantly reduces the cost of the algorithm: after all, out
of all pairs of vectors, only those with pairwise angle less than θ1 = arccos(1/3) survive. The
fraction of pairs that survive is proportional to (sin θ1)

n or, after a trigonometric exercise, a
fraction p = (2

√
2/3)n of all pairs of vectors survive the first round. The time cost of the

algorithm is then N2(1 + p ·N) which, as N is much larger than 1/p, leads to the following
result.

Proposition 4.1. Under the aforementioned heuristic assumptions, the Filtered Triple Sieve
solves SVP in time (27/16)3n/4 · (2

√
2/3)n = 20.4812n and space (27/16)n/4 = 20.1887n.

Note that such a filtering strategy may also be applied to the k-TupleSieve with larger k.
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5 Tuple MinkowskiSieve

In the previous sections, we described the tuple variants of the ListSieve algorithm. In practice,
it has been observed that the GaussSieve algorithm of Micciancio and Voulgaris [23] is more
efficient (in terms of both time and space) than the ListSieve algorithm. Hence, for practical
considerations, we devise a tuple-like GaussSieve algorithm.

5.1 GaussSieve

We recall the GaussSieve algorithm of Micciancio and Voulgaris [23]. The philosophy of the
algorithm is to make every pairs of distinct vectors in a list Gauss-reduced.

In GaussSieve, we first setup and maintain a list L of vectors and a stack S of vectors in
the algorithm. They are initially empty. To begin the GaussSieve algorithm, we sample a new
vector p. We add p to the list L. The list L consists of lattice vectors that are always pairwise
Gauss-reduced and this property is maintained during the execution of the algorithm. For
each new sampled vector p, we may modify p (to p′) and the existing vectors in the list L
(to L′) so that L′ ∪ p′ is pairwise Gauss-reduced. Therefore, for each p, we not only reduce
p (to p′) using the vectors v ∈ L; but also reduce the vectors v ∈ L using p′. If p (or p′)
equals to some v ∈ L, then we discard it and count it as a collision of zero vectors. If some
list vector v ∈ L has been reduced by p, the list itself may not be pairwise Gauss-reduced
anymore (since v might be modified). We then move the modified vector v′ to the stack S
and attempt to reduce it in the following reductions (taking v′ as a new sample p).

Note that, in GaussSieve, we are not Gauss-reducing the two vectors in a one-off way.
Instead, we only reduce one vector at one iteration and then put the modified vector in the
stack (if it is a vector in the list), and perhaps change it in the future.

In practice, we can terminate the algorithm if we have found a short enough vector; or if
the number of collisions of zero vectors reach some bound.

5.2 Tuple MinkowskiSieve

The Gauss-reduced condition for two vectors can be generalized to the Minkowski-reduced
condition for tuple vectors (see Definition 1). The greedy reduction algorithm of [24,27] can
be used to efficiently compute Minkowski-reduced bases for lattices of dimensions ≤ 4.

We describe the Triple MinkowskiSieve algorithm in Algorithms 5 and 6. The Quadruple
MinkowskiSieve algorithm can be designed similarly.

Lines 1-5 of Algorithm 6 ensure the Gauss-reduced condition; Lines 6-10 of Algorithm 6
ensure the 3-dimensional Minkowski reducedness. Note that the Triple MinkowskiSieve re-
sembles the GaussSieve. In particular, we do not Minkowski-reduce the three vectors in one
go. Instead, we only modify one vector at each reduction step.

3After each pass of reducing p by all v ∈ L (resp. by all pairs v1, v2 ∈ L), we repeat the procedure as the
current p may not be reduced w.r.t some v (resp. some pair of v1, v2) in the list L anymore. Note that the
vector p is being updated from every reduction by v (resp. pairs of v1,v2). We repeat the loop (Lines 1 and
6 of Algorithm 6) until p can not be reduced anymore with any v ∈ L (resp. any pair v1,v2 ∈ L).
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Algorithm 5TripleMinkowskiSieve((bi)i)

1: L← {0}, S← {}
2: while cond do

3: if S is not empty then

4: p← S.pop()
5: else

6: p← SampleGaussian((bi)i)

7: p← TripleReduce(p,L,S)
8: if p 6= 0 then insert p to L

Algorithm 6 TripleReduce(p,L,S)

1: Loop4 {∀v ∈ L, reduce p by v}
2: if p = 0 then Return p

3: ∀v ∈ L, reduce v by p

4: if any v ∈ L is modified then

5: move v to S
6: Loop4 {∀v1,v2 ∈ L, reduce p by v1,v2}
7: if p = 0 then Return p

8: ∀v1,v2 ∈ L, reduce v1 by p, v2

9: if any v1 ∈ L is modified then

10: move v1 to S

11: Return p

If the modified vector comes from a new sampled vector p, then we repeatedly reduce p

using every v1,v2 ∈ L (Line 6 of Algorithm 6) until it can not be reduced anymore. If the
modified vector comes from an existing list vector v ∈ L, then we move the reduced v′ from
the list L to the stack S for further consideration (Lines 9-10 of Algorithm 6).

During the execution of the Algorithm 5, every triple of vectors of L is always Minkowski-
reduced (except during the calls to Algorithm 6). We can terminate the algorithm if we have
found a short enough vector; or if the number of zero vectors returned by Algorithm 6) reaches
some threshold (this determines the “cond” in Line 2 of Algorithm 5).

As GaussSieve is one of the most promising lattice sieving candidates for use in practice,
we implemented the Triple and Quadruple MinkowskiSieve algorithms. We also consider an
improved variant of Triple MinkowskiSieve by applying the filtering principle (see Section 4)
on pairs of vectors (p, v1). We refer to Subsection 6.2 for experimental results.

6 Experiments

In this section, we describe some experimental results which support our previous analysis. In
Subsection 6.1, we conduct experiments to verify the conclusions in Subsections 3.1 and 3.2. In
Subsection 6.2, we describe the implementation and experimental results for Triple, Quadruple
and Filtered Triple MinkowskiSieve.

6.1 Experiments on the unit sphere

We give some numerical evidence for the conclusions in Section 3, in the case of list vectors
sampled uniformly on the unit sphere. Note that, even in that idealized framework, the
analysis of Section 3 remains heuristic when k ≥ 3.

We sample random vectors uniformly on the sphere, and, for each new vector, we test
whether it coincides with (e.g., is close to) a combination of two vectors (resp. one vector)
already present in the list, in the case of triples (resp. pairs).

We enforce Minkowski’s reduction condition for the double- or triple-reduced vectors, thus
this is even stricter than the cost analysis. Once the number of “collisions” (nearby vectors)
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exceeds a small multiple of |L| (here we use 4 · |L|) we stop and record the list size. We repeat
this process ⌈20000/n⌋ many times for each dimension n, and take the average (logarithmic)
list size and plot it in Figure 2.
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Figure 2: Log space complexity of Double and Triple Sieve.

The lines in the plot take the form C1n+ b (log2 n)
e1 + c and C2n + d (log2 n)

e2 + e. We
used a least-squares fit to find the best fits for parameters b, c, d, e. For the experimental data,
the values C1 and C2 are 0.21 and 0.17, which are close to the heuristic estimates. It is also
clear that there is a significant gap between pairwise and triplewise reduced list sizes.

6.2 Implementation of the Tuple MinkowskiSieve

We have implemented GaussSieve, Triple MinkowskiSieve, Quadruple MinkowskiSieve and
filtered Triple MinkowskiSieve algorithms. These algorithms were described in Section 5. The
implementation can be found in FPLLL [8]. We describe some experimental results for these
algorithms.

For each dimension, we use at least 10 random instances from the SVP challenge genera-
tor [2]. Before the sieving, we pre-process the input basis with lattice reduction. To prevent
trivial instances (where the sieving quickly finds many collisions since the vectors are already
short), we used either LLL with δ = 0.75, η = 0.51 for smaller dimensions, and BKZ with
blocksize 20 for larger dimensions. The computation are taken on Intel Xeon X5650 processors
of 2.67GHz.

We give experimental results in Table 2 and Figures 3, 4 (see Appendix). We explain the
notation in Table 2 (Figures 3, 4 follow a similar notation). The column n denotes the dimen-
sion. Column “2-red” denotes GaussSieve; Column “3-red” denotes Triple MinkowskiSieve;
“4-red” denotes QuadrupleMinkowskiSieve; Column “3-red′” is the filtered Triple Minkowski-
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Sieve. Under each algorithm, the subcolumn |L|∞ denotes the (average) maximum list size
during the sieving. The number inside parentheses (e.g., (.251) in n = 24 and 2-red) is the
average value of (log |L|∞)/n over all experiments. Subcolumn time is the average running-
time in seconds. The cells with “b” are the experiments with BKZ-20 pre-processed; other
cells are LLL pre-processed.

It can be seen that there is a noticeable gap between the space requirements of GaussSieve
and Triple MinkowskiSieve (resp. Quadruple MinkowskiSieve). Furthermore, the filtered
Triple MinkowskiSieve variant is much more efficient than the non-filtered Triple Minkowski-
Sieve.

7 Discussion

In the present work, we describe various tuple sieving algorithms which reduce the memory
requirement in lattice sieving. For triple (quadruple) reduced lists, we estimate the space
complexity to be 20.1887n+o(n) (resp. 20.1724n+o(n)). We investigated the (heuristic) asymptotic
costs of these algorithms, and verified these theoretical results through experiments.

One interesting future question is to consider nearest neighbor search techniques to speed
up the search procedures, which could lead to an improvement on the overall running-time
of the sieving algorithms. For triple sieving, for instance, we could consider a nest of hash
functions, where the first search is to find vectors with inner product at least 1/3 and the
second search is to find vectors with inner product 1/2. The two sets of hash tables T1/3,T1/2
are therefore different; one is optimized for finding vectors at angle ≈ 70 degrees and one for
60 degrees. Figuring out how to optimize the combination of nearest neighbor searching with
these nested search procedures is left for future work.

Very recently, following up on our work, Herold and Kirshanova [16] further studied tuple
lattice sieving algorithms, and how the ‘filtering’ procedure can be optimized to obtain even
better time complexities. For triple reductions, they obtain a heuristic time complexity of
only 20.3962n+o(n), significantly improving upon our 20.4812n+o(n) using filtered triple sieving,
and with LSH-like techniques they show how to further reduce the time complexity for a
triple-sieve to 20.3717n+o(n). In practice, the latter improvement comes at the cost of having to
use the Nguyen-Vidick sieve (rather than the faster GaussSieve) to obtain these asymptotic
costs, and it is unclear how big the practical improvements of both methods are compared
to our filtered triple sieve from Section 6. For more details on these results, as well as their
improved complexities for tuple sieving with larger tuple sizes, we refer the reader to [16].
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2-red 3-red 3-red′ 4-red

n |L|∞ time |L|∞ time |L|∞ time |L|∞ time

24 70 (.251) .02 42 (.222) .11 50 (.233) .03 33 (.208) 1.1e1

26 89 (.238) .04 49 (.209) .21 57 (.217) .04 34 (.190) 2.5e1

28 130 (.246) .05 74 (.222) .41 83 (.227) .07 55 (.206) 6.8e1

30 165 (.238) .08 81 (.207) .95 94 (.214) .13 58 (.192) 1.5e2

32 244 (.248) .11 97 (.200) 1.8 123 (.213) .22 62 (.183) 3.2e2

34 319 (.245) .19 148 (.212) 4.8 169 (.217) .48 97 (.194) 9.6e2

36 435 (.243) .31 176 (.207) 9.9 223 (.217) .89 118 (.191) 2.6e3

38 571 (.241) .61 230 (.206) 2.7e1 284 (.214) 1.9 134 (.186) 6.5e3

40 741 (.238) 1.1 298 (.205) 6.3e1 361 (.212) 4.4 191 (.189) 1.9e4

42 1021 (.238) 2.3 377 (.204) 1.6e2 476 (.212) 9.4 b 246 (.189) 2.0e4

44 1390 (.237) 5.1 484 (.203) 4.0e2 602 (.219) 2.3e1 b 263 (.182) 5.2e4

46 1777 (.235) 9.6 638 (.202) 9.9e2 777 (.209) 4.7e1 b 352 (.184) 1.4e5

48 2400 (.234) 2.0e1 795 (.201) 2.5e3 1063 (.209) 1.1e2 — —

50 3254 (.233) 4.1e1 1104 (.202) 6.6e3 1328 (.207) 2.5e2 — —

52 4219 (.232) 9.5e1 1324 (.199) 1.7e4 1742 (.207) 5.6e2 — —

54 5879 (.232) 2.2e2 1700 (.199) 3.9e4 2234 (.206) 1.2e3 — —

56 7574 (.230) 5.3e2 b 2163 (.198) 2.7e4 b 2878 (.205) 8.5e2 — —

58 10539 (.230) 1.2e3 b 2877 (.198) 7.1e4 b 3804 (.205) 1.9e3 — —

60 b 13433 (.229) 9.1e2 b 3664 (.197) 1.7e5 b 4879 (.204) 4.3e3 — —

62 b 18251 (.228) 2.0e3 b 5102 (.199) 4.6e5 b 6475 (.204) 1.0e4 — —

64 b 24223 (.228) 4.5e3 b 6604 (.198) 1.1e6 b 8338 (.204) 2.2e4 — —

66 b 32587 (.227) 9.1e3 — — b 10994 (.203) 5.1e4 — —

68 b 43887 (.227) 2.0e4 — — b 14297 (.203) 1.1e5 — —

70 b 58912 (.227) 3.8e4 — — b 18973 (.203) 2.5e5 — —

72 b 79521 (.226) 7.2e4 — — — — — —

74 b 107050 (.226) 1.5e5 — — — — — —

76 b 142504 (.225) 2.9e5 — — — — — —

78 b 192141 (.225) 6.0e5 — — — — — —

80 b 256343 (.225) 1.2e6 — — — — — —

Table 2: Experimental results for (filtered) Tuple MinkowskiSieve (Subsection 6.2).
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