
Bounded Size-Hiding Private Set Intersection

Tatiana Bradley Sky Faber Gene Tsudik

University of California, Irvine

Abstract. Private Set Intersection (PSI) and other private set operations have
many current and emerging applications. Numerous PSI techniques have been
proposed that vary widely in terms of underlying cryptographic primitives, secu-
rity assumptions as well as complexity. One recent strand of PSI-related research
focused on an additional privacy property of hiding participants’ input sizes. De-
spite some interesting results, only one practical size-hiding PSI (SH-PSI) has
been demonstrated thus far [1].
One legitimate general criticism of size-hiding private set intersection is that the
party that hides its input size can attempt to enumerate the entire (and possibly
limited) domain of set elements, thus learning the other party’s entire input set.
Although this “attack” goes beyond the honest-but-curious model, it motivates
investigation of techniques that simultaneously hide and limit a participant’s in-
put size. To this end, this paper explores the design of bounded size-hiding PSI
techniques that allow one party to hide the size of its input while allowing the
other party to limit that size. Its main contribution is a reasonably efficient (quasi-
quadratic in input size) bSH-PSI protocol based on bounded keyed accumulators.
This paper also studies the relationships between several flavors of the “Strong
Diffie-Hellman” (SDH) problem.

Keywords: Private Set Intersection, Size Hiding, Bounded Input, Cryptographic
Accumulators, SDH Problem

1 Introduction

Private set operations have many potential applications in secure cloud computing and
storage, as well as other settings involving mutually suspicious parties that wish to di-
vulge to each other nothing beyond the outcome of a particular set operation. This serves
as one motivating factor for research in more efficient and more secure techniques. The
other, no less important, factor is intellectual curiosity. There is something inherently
appealing about private set operations, perhaps because they represent an interesting
and realistic-sounding application domain for secure two-party computation.

The most natural and popular private set operation is Private Set Intersection (PSI),
a cryptographic technique that allows two parties, server and client, to interact such
that one or both of them (often, client) computes the intersection S ∩ C over their
respective input sets S and C. Typically, server and client learn nothing beyond the size
of each other’s set and the resulting intersection. There are multiple PSI flavors with
varying privacy properties, security models, complexities and underlying cryptographic
primitives [21, 22, 12, 13, 1, 17, 24, 16, 15, 14, 7, 26, 32, 27, 23].

One recent PSI research direction focused on techniques that additionally hide the
input size of one participant. This property is sometimes called one-sided input size-
hiding. This line of research is attractive because, in general, there are few crypto-
graphic techniques that achieve non-padding-based input size-hiding. (See Section 2
for an overview of related work).

Meanwhile, one important criticism of size-hiding PSI (SH-PSI) is the unlimited
nature of the size-hiding feature. In scenarios where the overall input domain is small1,
a dishonest client can enumerate all (or most) of the possible elements, use them as its
input set and thus learn all (or most) of server’s input set.

On the one hand, this criticism seems unfair because a client that enumerates, and
provides as input, elements that it does not actually have, goes beyond the “honest-but-
curious” (HbC) adversary model considered in, for example, [1]. On the other hand,
it could be that the entire notion of input size-hiding inherently motivates a slightly
different adversary model than HbC.

Consequently, the main motivation for this paper is the need to combine hiding of
one party’s input size with the other party’s ability to upper-bound it, i.e., to limit the
amount of information potentially learned by the first party. Specifically, the goal is to
explore PSI techniques that allow client to hide its set size while assuring server that
it does not exceed some fixed threshold t. At the first glance, it seems that this can be
trivially met by modifying current SH-PSI, PSI or similar techniques.

One intuitive approach to bounded size-hiding is to amend any regular PSI protocol
by having client always pad its (linear-size) input with dummy elements, up to the
server-selected upper bound t. While this approach would meet our goals, we consider
it to be undesirable, for several reasons:

– Padding by client always incursO(t) computation and bandwidth costs, even if |C|
and/or |S| are small relative to t.2

– Representation of dummy elements must be indistinguishable from that of their
genuine counterparts. This very likely entails generating a random value for every
dummy element, which, depending on the underlying PRNG, can involve as little
computation as a hash, or as much as a large-integer arithmetic operation.

– If |C| < t, a misbehaving HbC client can easily cheat – and learn more about S
than it is entitled to – by inserting extra actual elements into its input that it could
later claim are just dummies.3

Even if aforementioned reasons are deemed to be superficial, we still consider padding-
based size-hiding techniques to be inelegant.

Another simple way to force boundedness, is to modify any PSI protocol such that
server, acting unilaterally, uses a subset S∗ ∈ S of no more than t set elements as its
PSI input. This implies that client would learn an intersection of at most t elements.
However, client would also very likely learn less than it is entitled to if

1 For example: age, blood type, birthday, country, zip code, etc.
2 In contrast, bSH-PSI incurs only O(|C|) costs, since client can download server’s public key

only once, ahead of time, i.e., off-line.
3 As discussed later, although the proposed bSH-PSI has the same issue, it discourages client’s

cheating by imposing a relatively high client computational cost for each additional element
in the accumulator, up to the bound.

|C ∩ S∗| < |C ∩ S| ≤ t. An equally trivial approach is for server to pick a random
subset C∗ ∈ C of no more than t set elements (assuming |C| > t) of client’s input.
This is doable since most (not size-hiding) PSI protocols involve a message from client
to server that contains some linear representation of client’s input set. The end-result
would be the same: client would likely learn less than C ∩ S even if |C ∩ S| ≤ t.

In this paper, we introduce the notion of Bounded Size-Hiding Private Set Inter-
section (bSH-PSI) and demonstrate the first provably secure and reasonably efficient4

bSH-PSI protocol. In the process, we introduce two new cryptographic SDH-related
assumptions and show their equivalence to more established assumptions. Finally, we
discuss several bSH-PSI extensions and optimizations.

In a general sense, bSH-PSI operates as follows: before any interaction, server
chooses a bound t. During the interaction, client inputs a set of size m < t and server
inputs a set of size n, which is independent of t. At the end of the interaction, client
learns the intersection of the two sets and n, the server’s set size. The server learns
nothing.

Notable features of proposed bSH-PSI include:

– It is particularly well-suited for scenarios where server needs to interact with client
whose input set is larger than server’s. However, bSH-PSI is effective regardless
of client’s and server’s relative set sizes.

– Server can set (and modify at will) the upper bound t on client’s input set size. In
particular, if set elements are drawn from a small domain, this prevents client from
enumerating all elements and determining the entirety of server’s set.

– It is based on a bounded cryptographic accumulator construct from [31].
– Client privacy is unconditional with respect to both set elements and their number,

i.e., set size.
– Server security holds under the One-Generator [3] and Exponent [33] q-Strong

Diffie-Hellman (SDH) Assumptions in the Random Oracle Model (ROM) [2].
– Server incurs computational complexity linear in server’s input size – O(n) where
n = |S|.

– Client incurs computational complexity of O(m2log2m) in client’s input set size:
m = |C|. With pre-computation, this can be lowered to O(m2).

– Overall bandwidth complexity is linear in server’s input size – O(n).

Organization: Related work is discussed in Section 2. Section 3 formally defines SH-
PSI, its security properties and underlying cryptographic assumptions. A concrete SH-
PSI construct is presented in Section 4, along with its security arguments. Section 5
discusses scenario-specific extensions and open problems. Next, Section 6 presents re-
ductions of new cryptographic assumptions to their better-known counterparts. Then,
Section 7 details specific methodologies for efficient computation by client. The paper
concludes with a summary in Section 8.

4 The term “efficient” is used in the standard sense, i.e., efficient in the context of most crypto-
graphic literature.

2 Related Work

The concept of size-hiding private set intersection (SH-PSI) was introduced by Ate-
niese et al. in [1]. It demonstrated the first SH-PSI technique using RSA accumulators,
with unconditional privacy of client’s set size and its contents, server privacy based on
the strong RSA assumption, and correctness in the HbC setting in the random oracle
model (ROM).

D’Arco et al. [8] (revised in [9]) is the only other effort, to our knowledge, focused
on SH-PSI. It demonstrates several results about the possibility of SH-PSI, including
one that one-sided SH-PSI is possible in both the standard model and ROM. How-
ever, the proposed techniques – which are based on oblivious pseudorandom function
(OPRF) evaluation and RSA, require a setup phase using a trusted third party (TTP).
The revised version [9] presents a technique that avoids random oracles at the price of
a commitment scheme which is unspecified; thus, the exact complexity is unclear.

There have been other efforts to define, and show feasibility of, various size-hiding
two-party computation techniques. However, these results are largely theoretical.

Lindell et al. [29] prove some results about the feasibility of input-size hiding in
two-party computation under various conditions. In particular, one-sided size-hiding is
shown to be possible for every function in the HbC model without random oracles,
given that the output size is upper-bounded by some function of a party’s input size,
which is the case in bSH-PSI. The concrete protocol presented in [29] is based on fully
homomorphic encryption, which is not yet practical. The full version [28] shows how to
modify the protocol for the case where one party hides its size and learns the outcome.
Size-hiding is achieved by padding client’s input with random elements.

Chase et al. [6] present an extended definition of the real/ideal model that allows for
input-size hiding in the presence of malicious players. The extended model allows one
party in the ideal world to send what is called an “implicit representation” of its input
(which does not necessarily reveal the input size) in lieu of the input itself. The generic
protocol for two-party computation involves five rounds of communication, making use
of fully homomorphic encryption. Also, the output size must be fixed, which is not the
case in PSI.

Other results discuss the need for input size-hiding in secure computation, starting
with Micali et al. [30], which introduces the notion of zero-knowledge sets – a size-
hiding cryptographic primitive. The protocol allows a party to commit to a private set
(with size hidden) and later prove whether a given element is a member of that set.
This notion is different from PSI since the element (for which set membership is being
tested) is public.

De Cristofaro et al. [11] focus on size- and position-hiding private substring match-
ing in the context of genomic privacy. The proposed protocol is highly specialized, in
particular, not suitable for generic PSI. Based on additively homomorphic encryption,
it allows client to test whether a number of substrings are present in server’s string
(genome) at pre-determined positions, while revealing neither positions nor sizes of the
substrings to server, and precluding client from learning anything about server’s input
beyond the binary result of the computation.

Ishai and Paskin [25] show that it is possible to securely evaluate branching pro-
grams while hiding the size of the program, given that the length of the program is

upper-bounded by some polynomial. In this context, size refers the number of instruc-
tions in the program, while length refers to the length of the longest branch in the
program. The protocol in [25] is based on strong oblivious transfer.

Goyal et al. [20] show that constant-round public-coin zero knowledge is possible
using only black box techniques, while hiding the size of the input string. The protocol
is based on a commit-and-prove scheme using extendible Merkle trees.

3 Problem Statement and Preliminaries

We now formally define bSH-PSI as well as four relevant cryptographic problems. The
latter include two new assumptions: polynomial-generalized exponent q-SDH (PG-E-
SDH) and polynomial-generalized one-generator q-SDH (PG-OG-SDH) as well as
their better-known counterparts: exponent q-SDH (E-SDH) and one-generator q-SDH
(OG-SDH).

3.1 Bounded SH-PSI

Informally, bSH-PSI extends SH-PSI with the requirement that client can only input
a limited number of set elements. This bound t is fixed by server prior to protocol
execution. For ease of presentation, we define bSH-PSI directly, and refer to [4] and [1]
for formal definitions of PSI and SH-PSI, respectively. In the following, ∼ denotes
computational indistinguishability, as defined in [19].

Definition 1 (Bounded SH-PSI). A scheme satisfying correctness, boundedness, client
privacy and server privacy, (per Definitions 2, 3, 4 and 5, respectively) involving two
parties: client C and server S, and two components: Setup and Interaction, where:

– Setup: an algorithm that selects global parameters, including t and server’s public
key, if any.

– Interaction: a protocol between S and C on respective inputs: S = {s1, . . . , sn}
and C = {c1, . . . , cm}.

Definition 2 (Correctness). If both parties are honest and m ≤ t, then, at the end of
Interaction on inputs (S,C) server outputs ⊥, and client outputs (n, S ∩ C).

Definition 3 (Boundedness). If client’s set size exceeds the bound (|C| = m > t), and
server is honest, client only learns n = |S|.

Definition 4 (Client Privacy). For any PPT adversary S∗ acting as server on input
S′ in execution of bSH-PSI, we say that Client Privacy holds if the views of S∗ are
computationally indistinguishable when interacting with any pair of client input sets:
[C(0), C(1)]. Specifically, let ViewS(C) represent the view of S∗ during protocol execu-
tion on input C. Then, Client Privacy is:

∀ (C(0), C(1)) : ViewS [C(0)) ∼ ViewS(C(1)]

We note that Client Privacy implies that S∗ learns no information about C, including
m, i.e., Client Privacy includes privacy of client’s set elements and of their number.

Definition 5 (Server Privacy). Let ViewC(C, S) be a random variable representing
C’s view during execution of bSH-PSI on inputs: C, S. We say that Server Privacy
holds if there exists a PPT algorithm C∗ such that:

∀ (C, S) : C∗(C,C ∩ S, n) ∼ ViewC(C, S).

In other words, for any pair of inputs [C, S], C’s view of the protocol can be efficiently
simulated5 by C∗ on input C and C ∩ S alone. In particular, this means C∗ does not
have access to S.

Security Model. We aim to construct bSH-PSI techniques secure in the HbC
model [18]. HbC assumes that, while all parties faithfully follow the protocol, they may
try to infer or compute additional information from the protocol transcript(s). However,
due to the unusual input-boundedness feature of bSH-PSI, we extend the HbC model
for client by allowing it to attempt using an input set larger than the server-imposed
bound t, while still adhering to the rest of the protocol. We refer to this as the HbC*
model.6 In particular, client’s messages are assumed to be well-formed. However, the
HbC model for server is unchanged from its usual form.

3.2 q-Strong Diffie-Hellman Assumptions

As discussed later in the paper, security of the proposed bSH-PSI relies on the hard-
ness of two non-standard cryptographic problems: polynomial-generalized exponent
q-SDH (PG-E-SDH) and polynomial-generalized one-generator q-SDH (PG-OG-
SDH). These are the generalizations of well-known exponent q-SDH (E-SDH) and one-
generator q-SDH (OG-SDH) problems, to allow polynomials in the group exponent.
Each of these problems assumes the same public information derived from the secret
z. This public information is a (q + 1)-tuple: [g, gz, . . . , g(z

q)], where all components
are mod p, g is a generator of the p′ order subgroup (G) of Z∗p and p and p′ are large
primes. (We omit the mod p notation from here on).

PG-E-SDH generalizes E-SDH to reflect the difficulty of computing g exponenti-
ated with any polynomial in z of degree larger than q, instead of simply zq+1. Similarly,
PG-OG-SDH generalizes OG-SDH to the difficulty of exponentiating a base (not just g)
to the power of 1

z+c . Specifically, it considers base elements of the form g exponentiated
to any polynomial in z of degree less than or equal to q.

We now state the problems and then discuss the assumptions on their hardness. Our
definitions of the standard problems (1 and 2 below) follow the presentation in [3].

Problem 1 (One-generator q-Strong Diffie-Hellman Problem). Given a (q + 1)-tuple
[g, gz, . . . , g(z

q)] as input, the one-generator q-SDH problem in G is to output a pair:
[c, g

1
(z+c)] where c ∈ Z∗p′ . An algorithm A has advantage ε in solving one-generator

q-SDH in G if:
Pr
[
A
(
[g, gz, . . . , g(z

q)]
)
= [c, g

1
z+c]

]
≥ ε

5 Being simulatable means that C∗ can output a computationally indistinguishable transcript.
6 Note that because the adversarial client has more power in the HbC* model than in plain HbC,

security also holds in HbC.

where the probability is over the random choice of generator g ∈ G, the random choice
of z ∈ Z∗p′ , and random bits consumed by A.

Problem 2 (Exponent q-Strong Diffie-Hellman Problem). Given a (q + 1)-tuple
[g, gz, . . . , g(z

q)] as input, the exponent q-SDH problem in G is to output g(z
q+1). An

algorithm A has advantage ε in solving exponent q-SDH in G if

Pr
[
A
(
[g, gz, . . . , g(z

q)]
)
= g(z

q+1)
]
≥ ε

where the probability is over the random choice of generator g ∈ G, the random choice
of z ∈ Z∗p′ , and random bits consumed by A.

The following are the two new problems that generalize the two above. We refer to
Section 6 for formal reductions.

Problem 3 (Polynomial-generalized one-generator q-Strong Diffie-Hellman Problem).
Given a (q + 1)-tuple [g, gz, . . . , g(z

q)] and a polynomial Pn(z) in z of degree n ≤ q
with known coefficients in Z∗p as input, the polynomial-generalized one-generator q-

SDH problem in G is to output a pair: [c, g
Pn(z)
(z+c)], where −c is not a root of Pn(z).

An algorithm A has an advantage ε in solving polynomial-generalized one-generator
q-SDH in G if:

Pr
[
A
(
[g, gz, . . . , g(z

q)], Pn(z)
)
= [c, g

Pn(z)
z+c]

]
≥ ε

where the probability is over the random choice of generator g ∈ G, the random choice
of z ∈ Z∗p′ , and random bits consumed by A.

Note 1. Note that the polynomial-generalized one-generator q-SDH problem described
above is not hard if (z+c) divides Pn(z) (i.e.,−c, the additive inverse of c, is a root) be-
cause of the restriction that n ≤ q. If−c is a root of Pn(z), the problem is equivalent to
computing (c, gP

′
n−1(z)), where P ′n−1(z) =

Pn(z)
z+c . This is achievable by exponentiation

and multiplication of elements in [g, gz, . . . , g(z
q)].

Problem 4 (Polynomial-generalized exponent q-Strong Diffie-Hellman Problem). Given
as input a (q+1)-tuple [g, gz, . . . , g(z

q)] and Pn(z), a polynomial in z of degree n > q
(and n being polynomial in the security parameter) with known coefficients in Z∗p, the
polynomial-generalized exponent q-SDH problem in G is to output g(Pn(z)). An algo-
rithm A has an advantage ε in solving polynomial-generalized exponent q-SDH in G
if:

Pr
[
A
(
[g, gz, . . . , g(z

q)]
)
= gPn(z) s.t. n > q

]
≥ ε

where the probability is over the random choice of generator g ∈ G, the random choice
of z ∈ Z∗p′ , and random bits consumed by A.

Definition 6. For each of the four q-SDH problems described above, we say that the
corresponding (q, t′, ε)-SDH assumption holds in G if no t′-time algorithm has advan-
tage at least ε in solving that q-SDH problem in G.

As discussed later, security of our bSH-PSI protocol is based on these assumptions,
against polynomial time adversaries with q = t, and negligible advantage ε.

Group Selection. While there are many candidate groups, we focus on the Diffie-
Hellman prime-order integer subgroups modulo a large prime. Specifically, let τ be a
security parameter and let DH.setup(τ) be an algorithm that outputs a triple: (p, p′, g)
such that: (1) p is a prime of the form p = 2(p′)

l
+ 1 for some integer l, (2) p′ is a

prime, and (3) g is a generator of a subgroup of Z∗p of order p′. For more on our choice
of group see Section 5.5.

4 Protocol

We now present a concrete bSH-PSI technique, followed by security arguments.

4.1 Protocol Description

We first introduce the building blocks and intuition behind this realization of bSH-PSI.
The primary building blocks are: (1) a t-bounded keyed accumulator [31], (2) a keyed
unpredictable function fz,X(c) = X

1
z+c , and (3) two cryptographic hash functions

F (·) and H(·) modeled as Random Oracles: F : {0, 1}∗ → {0, 1}ω where ω is a
security parameter7, and H : {0, 1}∗ → {0, 1}log p′ . For the time being, we assume
that ω = log p′, though, in practice, ω can be smaller.

Intuitively, client aggregates its input elementsC = {c1, . . . , cm} into an accumula-
tor of the formX ′ = g

∏m
i=0 hci+z , where hci = H(ci). Client can compute this product

using server’s public key [g, gz, . . . , g(z
t)] by expanding the product in the exponent

into the polynomial of the form: A(z) = a0 + a1z + . . . + amz
m, where each coeffi-

cient ak is a product-sum of a combination of client’s hashed inputs: hc1, . . . , hcm.
Each ak has a closed-form solution dependent only on client’s input and t. Option-

ally, it can be computed before protocol execution. Techniques for efficient computa-
tion of this polynomial are presented in Section 7. The resulting accumulator X ′ is then
blinded asX = X ′r, (using a fresh random value r) and sent to server. Due to this con-
sistent random blinding client benefits from unconditional privacy of its input. It also
obtains unconditional privacy of its input size since X is log p bits long. Furthermore,
total protocol bandwidth is independent of m.

Upon receipt of X , for each hashed element hsj , server computes a distinct tag,

denoted tgj , as the composition of F and fz,X . That is: tgj = F (X
1

z+hsj) where
hsj = H(sj). The resulting set of tags is then sent to client who, in turn, uses them to
determine the actual set intersection.

Note that fz,X(hsj) is of the form g
Pm(z)
z+hsj for some polynomial Pm(z). Also,

fz,X(hsj) is unpredictable given public information provided to client, if and only if
PG-OG-SDH assumption holds. Applying F (·) converts these unpredictable values into
pseudorandom values, which is essential for server privacy.

Meanwhile (either before receiving server’s tags or upon receiving them), client
computes a tag tg′i for each hashed element hci in its input set. As part of computing

7 A practical example is SHA-256 for ω = 256.

each tg′i client essentially constructs “witness”Xi for the original accumulatorX , based
on each hci, i.e., Xi is a partial accumulator, with one term missing from the product
in the exponent. Specifically, each tg′i is computed as: F (·) applied to a witness: g
exponentiated with a product of m− 1 binomials of the form (hci+ z) and the random
value r. The product of binomials can be represented by a unique polynomial Ai(z),
such that:Ai = a(i,0)+a(i,1)z+. . .+a(i,m)z

m and a(i,k) is a product-sum involving all
of client’s hashed input, except hci. As mentioned above, client tags can be computed
ahead of time. The intersection of: {tg′i | 0 < i ≤ m} and {tgj | 0 < j ≤ n}, determines
client’s output: S ∩ C.

Figure 1 shows the Interaction component of this bSH-PSI protocol. Setup(z, t)
returns the information extracted from the output of DH.setup(τ) and the public key
[g, gz, . . . , g(z

t)] generated from a bound t and secret z. Before the protocol begins,
server selects t and z and publishes the output of Setup.

4.2 Security Analysis

We now present proofs of security for Definitions 2, 3, 4, 5.

bSH-PSI on input: (p, p′, H(·), F (·), [g, gz, . . . , g(z
t)])

CLIENT on input: C = {c1, . . . , cm} SERVER on input: (S = {s1, . . . , sn} , z)

. Phase 1 .

for (i = 1 tom) for (j = 1 to n)
hci = H(ci) hsj = H(sj)

r ←$Z∗p′ ksj = (z + hsj)
−1

(mod p′)

A =

m∏
i=1

(z + hci) =

m∑
k=1

akz
k−1

(mod p′)

X = g
rA

=

m∏
k=1

(g
zk−1

)
rak

for (i = 1 tom)

Ai =
A

z + hci
=

m−1∑
k=1

a(i,k)z
k−1

(mod p′)

Xi = g
rAi =

m−1∏
k=1

(g
zk−1

)
a(i,k)r

tg
′
i = F (Xi)

. Phase 2 .

X for (j = 1 to n) tgj = F (X
ksj)

T PERMUTE: T = Π({tg1, . . . , tgn})

return (|T |,
{
ci|tg′i ∈ T

}
) return⊥

Fig. 1. bSH-PSI Protocol. All computation is (mod p) unless stated otherwise.

Correctness. Following Definition 2, we show that when both parties are honest, client
outputs (n, S ∩ C) and server outputs ⊥, i.e., nothing.

It is easy to see client correctly computes n. For every sj ∈ S, HbC server sends
exactly one tgj to client. Thus, client needs only to count the number of tgj’s received.

To see that client correctly computes the intersection, let ci be an an arbitrary ele-
ment in client’s set, such that ci ∈ S ∩ C. Then, there is some 0 < j ≤ n such that
ci = sj and hci = hsj . Therefore, tgj , computed by server and sent to client matches
client’s tag tg′i:

tg′i = F (Xi) = F (gr(z+hc1)...(z+hci−1)(z+hci+1)...(z+hcm)) =

= F (g
r(z+hc1)...(z+hcm)

z+hci) = F (g
r A

z+hci) = F (X
1

z+hci) = tgj .

Thus client concludes that ci is in the intersection.
Now consider a client’s element ck /∈ S ∩ C, i.e., there is no j such that ck = sj .

Thus, there is also no j such that hck = hsj and tgj = tg′k except for negligible
probability, due to collisions in either F (·) or H(·), or degenerate input x such that
(H(x) + z) = 0 mod p′. (If server ever detects such an input element, it must change
its public key.) Therefore, client computes no match and concludes that ck is not in the
intersection.

Boundedness. As described in Definition 3, we need to show that client learns only
server’s input set size if it attempts to input more than t set elements. We note that in
order to extract S ∩ C with a set of size m = u, where u > t, client must aggregate
u elements into X . This follows directly from our security model which requires client
messages to be well formed. Then, we show that this is impossible under the PG-E-SDH
assumption. Thus, if client is able to extract S ∩ C then m ≤ t.

More formally, we show by contradiction, that constructing a well-formed X , as
described, is infeasible. We now assume that client can aggregate u elements into X .
Then, client must have a PPT algorithmA which – given C,H(·), and [g, gz, . . . , g(z

t)]
– computes:

X = gr(z+hc1)...(z+hcu) = g(A0+...+Au−1z
u−1+zu),

where each Ai is a product-sum of values known to client: r, hc1, ..., hcu.
However, computingX is the same as solving the polynomial-generalized exponent

q-SDH problem on inputs: [g, gz, . . . , g(z
t)] and Pn(z) = A0 + ...+Au−1z

u−1 + zu,
which, based on our assumption, is infeasible since u > t. Hence, by contradiction, the
embedding is impossible and client learns only n.

Client Privacy. The only message sent from client to server is:

X = gr(z+hc1)...(z+hcm) mod p.

X is always of this form as an HbC server always correctly generates its public key.
Since g is a generator of the cyclic subgroup G ⊂ Z∗p of order p′, and no (z +
hci) is a multiple of p′, except for negligible probability, we can assume that A =
g(z+hc1)...(z+hcu) is also a generator of G. Since r is chosen uniformly, at random,
from Z∗p′ , X also has a uniform distribution in G.

Thus with overwhelming probability8, ViewS(C0) and ViewS(C1) are two uni-
formly distributed group elements and are thus indistinguishable. Therefore, Client Pri-
vacy holds in the presence of an HbC server.

By making one slight modification to the protocol, Client Privacy can be guaranteed
unconditionally, regardless of the adversarial model of server. To mitigate the possibil-
ity of a malicious server presenting an invalid public key, client can simply verify that:
(g(z+hc1)...(z+hcm))p

′
mod p = 1. If so, then gA is a generator of G and X = (gA)r

is uniformly distributed in G. Otherwise client aborts the protocol by sending just gr

and ignoring server’s response. In either case, Client Privacy is guaranteed.
Server Privacy. Following Definition 5, in order to show Server Privacy we construct
an efficient simulator C∗ of client’s view that is computationally indistinguishable from
a real protocol execution. First, C∗ computes the first message X from C, using H(·).
It computes the remainder of the transcript as follows: It uses knowledge of S ∩ C to
construct: {F (Ki) | ci ∈ S ∩ C}. Then, it adds to the set {F (rj)} for 0 < j ≤ n −
|S ∩ C|, where each rj is chosen at random. C∗ then randomly permutes this set and
returns the result as the second message to server.

To arrive at a contradiction, suppose that a distinguisher D exists which can differ-
entiate between the real protocol execution: ViewC(C, S) and that of the view simulated
by C∗: C∗(C,C ∩ S, n). Then, by the hybrid argument, a PPT distinguisher D′ must
exist that can distinguish between random oracle outputs: F (Ki) and F (rj) for some j
and i, such that si /∈ S ∩ C. Thus, by the random oracle model, a simulator for D′ can
be used to construct an algorithm A which computes:

Ki = X
1

z+hsi = g
r(z+hc1)...(z+hcm)

(z+hsi)

where si 6= ck, for all k. (Ki must be of this form due to boundedness and HbC
behavior of client.)

Therefore, (z + hsi) is not a factor of Pm(z) = r(z + hc1)...(z + hcm) and does
not evenly divide it, with overwhelming probability. There are two possible events that
occur with only negligible probability: (1) collisions in H(·), or (2) Pm(z)/(z + hsi)
having a remainder that is a multiple of p′. Thus, we can useA to solve the polynomial-
generalized one-generator q-SDH problem on inputs: [g, gz, . . . , g(z

t)] and Pm(z) =
r(z + hc1)...(z + hcm), which is infeasible, based on our assumption. Consequently,
by contradiction, Server Privacy holds.

4.3 Computational and Communication Complexity

We now assess communication, computation and storage costs of bSH-PSI, as pre-
sented in Figure 1.

Communication complexity involves: (1) a single log(p)-bit group element in the
first message, and (2) n outputs of F (·) in the second message.

We partition computation costs into Phase 1 and Phase 2. Computation costs are
further broken down by specific cryptographic operations: (1) invocations of random

8 This probability is taken over the input space. Given non-degenerate inputs, these views are
perfectly indistinguishable.

oracles: F (·) and H(·) (2) short log(p′)-bit multiplications, exponentiations, and in-
versions, and (3) and long log(p)-bit multiplications and exponentiations. We analyze
costs for both server and client.

Server’s Phase 1 work starts with O(t) mod(p) exponentiations to compute the
public key. However, this can be done once for many interactions. It also includes O(n)
invocations of H(·), and O(n) mod p′ inversions. This requires server to know its input
set S. If S is stable, this work can also be amortized for many interactions. Server’s
Phase 2 work consists of O(n) short log(p′)-bit exponentiations and O(n) invocations
of F (·).

Client’s Phase 1 work is dominated by the computation of X and m witnesses:
{Xi|0 < i ≤ m}. Most work is done in the expansion of the product of binomials
of the form

∏
(z + hci). This can be performed as soon as client’s input set is known.

Also, as long as p′ is fixed globally, client does not even need to know which server
will be involved in the interaction. Coefficients of the resulting reduced polynomial
in z can be computed in O(m2) time using the naı̈ve method of repeated polynomial
multiplication. Thus, we can precompute the numerator of X and each Xi in O(m3)
short multiplications. This can be further reduced toO(m2 log2 m) by taking advantage
of a more sophisticated technique (discussed in Section 7) leveraging an O(d log d)
algorithm for d-degree polynomial multiplication.

Also, client must perform O(m) invocations of H(·) and F (·), O(m2) long mul-
tiplications and short exponentiations, and O(m) multiplications and exponentiations
for each Xi in order to embed the corresponding polynomial evaluated at particular z
corresponding to server’s public key. In more detail, given Pt(s) =

∑m
i=0 ais

i, client
computes

∏m
i=0 g

si
ai

, which is feasible because all gs
i

are known.
Client’s only mandatory Phase 2 work amounts to computing a cleartext set inter-

section, which is achievable with a single sort via O((m+ n) log (m+ n)) swaps.
Storage overhead is dependent on precomputation. If all possible precomputation

is performed, then server’s storage is dominated by O(n) log(p′)-bit group elements.
Client’s storage is dominated by O(m) log(p)-bit group elements and O(m) outputs of
F (·). If client computes Phase 1 without knowledge of server’s public key then storage
is dominated by O(m2) short (log(p′)-bit) integers.
Optimizations. Choices of public parameters are essential for fast operation. In partic-
ular, bSH-PSI can operate in different groups (e.g., on some elliptic curves). We chose
integers mod p due to their more efficient operation [11, 10]. Practical current examples
of sufficiently secure parameters are: log(p) ≈ 1024 and log(p′) ≈ 160.

Furthermore, H(·) substantially influences computational complexity. If the range
of H is considerably smaller than p′ then O(m2 log2 m) short (log(p′)) multiplications
may reduce to O(m2 log2 m) multiplications of |H(·)|-bit integers, and O(m2) short
multiplications (accounting for r).

5 Discussion and Open Problems

5.1 Unlinkability and Change Obliviousness

In settings where client and server interact more than once, additional privacy properties
of unlinkability and change obliviousness might be desirable for either party.

Informally, unlinkability means that, if client and server interact twice, they should
be unable to determine whether they have interacted before. Change obliviousness
means: if one party’s input changes between protocol executions, the other party should
not learn this, unless: (1) input size changes, and/or (2) protocol output changes. Un-
linkability subsumes change obliviousness; thus, is usually requires more effort.

The proposed bSH-PSI protocol provides both unlinkability and change oblivi-
ousness for client. This is due to client’s unconditional privacy. To attain server change
obliviousness the protocol can be modified to use a keyed random oracle F ′γ(·) – instead
of F (·) – with a fresh random server-selected γ for every interaction. Whereas, to obtain
unlinkability, server must also generate new secret9 (z) and public ([g, gz, . . . , g(z

t)])
keys for every interaction, and communicate the latter to client.

These modifications require additional Phase 2 computation and storage for client
and an extra round of communication. Specifically, γ and one-time public key
([g, gz, . . . , g(z

t)]) must be communicated to client before it can send X . Client must
now storeXi instead of F (Xi), even if the target server is known. If server unlinkability
is provided, client must also store A and Ai and compute X and Xi during Phase 2.

5.2 Flexibility of t

At times, it may be desirable for server to increase the upper bound t to t′. There are
at least two intuitive ways to do so. One way is for client and server to simply run the
protocol d t′/t e times. Alternatively, server can publish the extra elements of the public
key: [gz

t+1

, . . . , gz
t′

]. Either approach provides forward security for both parties. That
is, no additional information can be learned from prior protocol executions, with lower
bounds. Note, however, that t cannot be decreased unless an entirely new public key is
generated.

5.3 Interacting with Multiple Servers

Optimizations can be made to save client’s resources in settings where client intends
to interact with multiple servers using the same input set. First, if server’s set is not
known ahead of time, or if space is a concern, client can compute and store A and Ai
instead of X and t′i. Of course, this is only possible if all servers use the same public
key parameters: (g, p, p′).

5.4 Malicious Security

While our protocol is secure in the HbC* model, it provides unconditional client pri-
vacy regardless of the behavior of server10. Security against a fully malicious server [18]
would require a proof of valid computation of the random oracle F (·) without reveal-
ing the oracle’s input. Security against a malicious client would require a proof that

9 Strictly speaking, a new z is not needed. Instead, server can generate a new base ĝ, compute
the new [ĝ, ĝz, . . . , ĝ(z

t)] and keep the same z.
10 Client need only verify gA is a generator by computing (gA)p

′
before exponentiating with r.

the accumulator X = gu is well-formed, for some u. We believe that such a proof is
challenging since the exponent u is not known to client. Moreover, it is unclear how
to construct a proof without revealing client’s input size in the process. An alternative
approach is to rely on a variant of the Exponent Strong q-SDH assumption which states
that: computing (c, x

1
z+c) is hard for all x ∈ Zp given [g, gz, . . . , g(z

q)].

5.5 Group Selection

Due to its computational efficiency of operations, we chose prime-order integer DH-
groups. This efficiency is largely based on the fact that exponentiation can take advan-
tage of the relatively small size of p′. Our protocol would work equally well in other
DH-groups, such as the elliptic curve DH-group variant [5]. However, in our experi-
ence, these groups tend to be slower using existing implementations. Since computa-
tional cost (and not storage) is of primary importance, integer groups are the logical
choice. We also conjecture that variants of the protocol composite groups (e.g., in the
RSA setting) are easily realizable.

5.6 t-Intersection bSH-PSI

Thus far, we focused on limiting the amount of information revealed to client in each
interaction by providing a guaranteed upper bound on client’s input size. An alternative
approach would be limit the size of the intersection |C ∩ S|. Although not secure
against enumeration by client, this approach is useful in some situations. It is particu-
larly applicable if server’s input set is much larger than t and the domain of set elements
is large. For example, suppose that server owns a database and is willing to answer any
query with a result set less than t. A hypothetical t-intersection bSH-PSI protocol could
be realized in at least two variations (each of independent interest): (1) if |C ∩ S| > t,
client learns nothing, or (2) if |C ∩ S| > t, client learns a random t sized subset of the
intersection C ∩ S. We defer the investigation of this topic for future work.

6 Equivalence of SDH Problems

We now show equivalence of the two new assumptions and their more established coun-
terparts. First, we argue that polynomial-generalized one-generator q-SDH and one-
generator q-SDH are equivalent. Next, we show equivalence of polynomial-generalized
exponent q-SDH and exponent q-SDH . Both equivalence proofs describe two reduc-
tions (one in each direction) between respective problems.

Theorem 1. The one-generator (q, t, ε)-SDH assumption holds iff the polynomial- gen-
eralized one-generator (q, t, ε)-SDH assumption holds.

Proof. We show the contrapositive in each case. First, suppose that there exists an al-
gorithm:

A
(
[g, gz, . . . , g(z

q)]
)
→ (c, g

1
(z+c))

that has an non-negligible advantage ε in solving one-generator q-SDH . We can then
construct an algorithm:

A′
(
[g, gz, . . . , g(z

q)], Pn(z))
)
→ (c, g

Pn(z)
(z+c))

that has the same advantage in solving the polynomial-generalized one-generator q-
SDH problem. First, A′ runs A

(
[g, gz, . . . , g(z

q)]
)
. With probability at least ε, A out-

puts:
[c, g

1
z+c] (1)

for some c ∈ Z∗p′ . We observe that A′ may use the polynomial division algorithm to
rewrite the non-trivial part of its desired output as:

g
Pn(z)
(z+c) = g

P ′n(z)+r

z+c = g
P ′n(z)

z+c g
r

z+c ,

where P ′n(z) is a polynomial divisible by (z + c), and r is a constant in Z∗p′ . Because
(z + c) divides P ′n(z),

g
P ′n(z)

z+c = gP
′′
n−1(z), (2)

where P ′′n−1(z) is a polynomial in z of degree n−1. Because (n−1) < q,A′ may com-
pute (2) by exponentiating and multiplying together elements from [g, gz, . . . , g(z

q)].
Using (1), A′ computes

(g
1

z+c)r = g
r

z+c . (3)

Finally,A′ multiplies (2) by (3) to obtain the value g
Pn(z)
(z+c) = g

Pn(z)
z+c , which is then out-

put with the known value c. If and only ifA’s output is correct,A′ also outputs a correct
solution. Therefore, A′ has advantage equal to ε in solving the polynomial-generalized
exponent q-SDH problem.

Now, conversely, suppose that there exists an algorithm:

A
(
[g, gz, . . . , g(z

q)], Pn(z)
)
→ (c, g

Pn(z)
(z+c))

that has an advantage ε in solving the polynomial-generalized one-generator q-SDH
problem. Then, we can construct an algorithm:

A′
(
[g, gz, . . . , g(z

q)]
)
→ (c, g

1
(z+c))

that has an advantage ε in solving the one-generator q-SDH problem with probability at
least ε by merely running A

(
[g, gz, . . . , g(z

q)], 1
)

and outputting the result. If A yields

a correct output [c, g
1

(z+c)], then A′ is also correct. Thus A′ has advantage equal to ε of
solving the one-generator q-SDH problem.

Theorem 2. The exponent (q, t, ε)-SDH assumption holds iff the polynomial-generalized
exponent (q, t, ε)-SDH assumption holds.

Proof. We show the contrapositive for both cases. Suppose there exists an algorithm:

A
(
[g, gz, . . . , g(z

q)]
)
→ g(z

q+1)

that has an advantage ε in solving the exponent q-SDH problem. We then construct
another algorithm:

A′
(
[g, gz, . . . , g(z

q)], Pn(z)
)
→ g(Pn(z))

that has an advantage of (ε)poly(n) in solving the polynomial-generalized exponent q-
SDH problem. (Note that (ε)poly(n) is non-negligible if ε is non-negligible).A′ creates
an (n + 1)-tuple of the form [g, gz, . . . , g(z

n)] as follows: for each q < j ≤ n, it runs
A
(
[g, gz, . . . , g(z

j−1)]
)

to obtain gz
j

and saves it for subsequent calls to A. If any call
fails to produce the correct output, A′’s output will also be incorrect. We observe that
Pn(z) = a0 + a1z + . . .+ anz

n. Thus,

gPn(z) = ga0ga1z . . . ganz
n

.

Since all coefficients ai and values ([g, gz, . . . , g(z
n)]) are now known to A′, it out-

puts gPn(z). Thus, A′ has non-negligible advantage εn−q in solving the polynomial-
generalized exponent q-SDH problem.

Now suppose there exists an algorithm:

A
(
[g, gz, . . . , g(z

q)], Pn(z)
)
→ g(Pn(z))

that has a non-negligible advantage ε in solving polynomial-generalized exponent q-
SDH . We construct another algorithm:

A′
(
[g, gz, . . . , g(z

q)]
)
→ g(z

q+1)

that has the same advantage ε in solving exponent q-SDH by simply running and out-
puttingA

(
[g, gz, . . . , g(z

q)], zq+1
)
. This call toA has probability at least ε of outputting

gz
q+1

, and solving the exponent q-SDH problem.

7 Client Complexity to Compute Accumulator Embeddings

As discussed in Section 4.3, the dominating factor in client computation is the con-
struction of m + 1 accumulators: X and each Xi. Recall that X = gΠ

m
i=0(z+hci) and

Xi = g
1

hci
Πm

j=0(z+hcj). Intuitively, X is an embedding of all of client’s hashed set el-
ements {hc1,. . . ,hcm} into an accumulator, and Xi is the same embedding, with one
hci missing. Client computes these accumulators in two steps: (1) reduces the polyno-
mial in the exponent, and (2) embeds the coefficients of the reduced polynomial into
the group using server’s public key: [g, gz, . . . , g(z

t)].
Step (1) can be computed in several ways described in the remainder of this sec-

tion. However, each Xi only differs from X by one binomial in the exponent. Thus it
might be possibly to take advantage of this shared structure to compute all Xi-s simul-
taneously. Step (2) can be done with m modular exponentiations and m − 1 modular

multiplications. Despite the shared structure among Xi-s, each reduced polynomial has
unique coefficients. Therefore, the total cost for the second step is O(m2).

We now describe two strategies for reducing the polynomial in the exponent: the
direct strategy and the tree strategy. Complexity of each strategy depends on the un-
derlying algorithm used for polynomial multiplication. We analyze performance of
each strategy using both naı̈ve O(d2) and FFT- based O(d log (d)) algorithms for d-
degree polynomial multiplication. Direct strategy entails multiplying each binomial in
the product, iteratively with an accumulator (initialized to 1). This requires m − 1 po-
lynomial multiplications.

Tree strategy is best described by visualizing a binary tree where each binomial term
(in the product) is a leaf. Each internal tree node is the product of its children. This way,
the reduced polynomial is represented by the root. We construct this tree by starting at
the leaves (s+ hci) and computing internal nodes one level at a time. This can be done
with O(m) polynomial multiplications.

Both strategies could potentially benefit from memoization, when computing X
and each Xi simultaneously due to the shared structure between them. However, it is
easier to exploit this structure with tree strategy. We memoize nodes in the tree while
computingX . Since the trees corresponding to each pair [Xi, Xj] (i 6= j) only differ by
one leaf node, we can obtain them by simply re-computing the co-path from the missing
node to the root. This can be done with only O(log (m)) polynomial multiplications.
However, the degree of the polynomial increases as we get closer to the root. Therefore,
the cost of each multiplication increases as we traverse the tree.

Direct strategy requires O(m) polynomial multiplications. At each iteration, we
multiply a polynomial (of degree equal to the number of iterations) by a degree-one bi-
nomial. Each such polynomial multiplication can be performed with exactly m regular
modular multiplications. The total cost of direct strategy using a naı̈ve algorithm for
matrix multiplication is:

m∑
i=1

i =
m(m+ 1)

2
.

Thus, the asymptotic cost of computing a single embedding is O(m2), and the cost of
all embeddings is O(m3).

If we use a generic O(d log (d)) algorithm for polynomial multiplication, the cost
is

m∑
i=1

i log (i) ≤
m∑
i=1

m log (m) = m2 log (m),

which results in a slightly worse total running time of O(m3 log (m)).
Switching to tree strategy, we count the number of multiplications needed for com-

puting all nodes in one tree. The height of the tree is log (m). We assume that levels in
the tree are indexed, starting at the leaves. Thus, the degree of the polynomial stored in
a node at level i is 2i. Also, there are 2log (m)−i nodes at each level. Therefore, the total
cost to compute a tree using a O(d2) algorithm for polynomial multiplication is:

log (m)∑
i=1

(2i)2(2log (m)−i) =

log (m)∑
i=1

(2i)2(
m

2i
) =

log (m)∑
i=1

(2i)(m) = m

log (m)∑
i=1

(2i) =

= m(2log (m)+1 − 1) = m(m+ 1).

The overall cost of computing all embeddings is O(m3), which is equivalent to direct
approach. However, some efficiency gain can be obtained with tree strategy using a
O(d log d) algorithm for polynomial multiplication. Then, the cost of computing a
single tree can be written as:

log (m)∑
i=1

(2i log 2i)(2log (m)−i) =

log (m)∑
i=1

(2i log 2i)(m/2i) =

log (m)∑
i=1

(m log 2i),

which is bounded above by:

log (m)∑
i=1

(m log 2log (m)) =

log (m)∑
i=1

(m log (m)) = m log2m.

Thus, the cost to compute a single accumulator isO(m log2 m) and the cost to compute
m accumulators is O(m2 log2 m).

8 Conclusions

Motivated by recent advances in size-hiding secure computation and, more specifically,
SH-PSI: size-hiding private set intersection techniques, this paper investigated bounded
variants thereof. The main contribution of this work is the construction of the first bSH-
PSI technique that allows client to unconditionally hide its input size while allowing
server to limit that size. We believe that bSH-PSI can be a useful tool in the arsenal
of secure computation techniques. There are at least three directions for future work:
(1) alternative and/or more efficient, bSH-PSI techniques, (2) other private set opera-
tions with bounded (one-sided) size-hiding input, e.g., private set union and private set
intersection cardinality, and (3) modifications of our current construct and its proofs to
provide security against malicious client in the standard model, i.e., without relying on
random oracles.

Acknowledgments

We are grateful to the anonymous reviewers for their helpful comments. We also thank
Jaroslav Šeděnka for his contributions to the initial stages of this work.

References

1. G. Ateniese, E. D. Cristofaro, and G. Tsudik. (If) size matters: Size-hiding private set inter-
section. In Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science,
pages 156–173. Springer, 2011.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62–73.
ACM, 1993.

3. D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT, volume
3027 of Lecture Notes in Computer Science, pages 56–73. Springer, 2004.

4. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In EUROCRYPT, volume 3027 of Lecture Notes in Computer Science,
pages 506–522. Springer, 2004.

5. W. J. Caelli, E. P. Dawson, and S. A. Rea. Pki, elliptic curve cryptography, and digital
signatures. Computers & Security, 18(1):47–66, 1999.

6. M. Chase, R. Ostrovsky, and I. Visconti. Executable proofs, input-size hiding secure compu-
tation and a new ideal world. In EUROCRYPT, volume 9057 of Lecture Notes in Computer
Science, pages 532–560. Springer, 2015.

7. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private set inter-
section. International Journal of Applied Cryptography, 2(4):289–303, 2012.

8. P. D’Arco, M. I. G. Vasco, A. L. P. del Pozo, and C. Soriente. Size-hiding in private set in-
tersection: Existential results and constructions. In AFRICACRYPT, volume 7374 of Lecture
Notes in Computer Science, pages 378–394. Springer, 2012.

9. P. D’Arco, M. I. G. Vasco, A. L. P. del Pozo, and C. Soriente. Size-hiding in private set
intersection: what can be done and how to do it without random oracles. IACR Cryptology
ePrint Archive, 2015:321, 2015.

10. E. De Cristofaro, S. Faber, P. Gasti, and G. Tsudik. Genodroid: are privacy-preserving ge-
nomic tests ready for prime time? In WPES, pages 97–108. ACM, 2012.

11. E. De Cristofaro, S. Faber, and G. Tsudik. Secure genomic testing with size- and position-
hiding private substring matching. In WPES, pages 107–118. ACM, 2013.

12. E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and private computation of cardinality of set
intersection and union. In Cryptology and Network Security, 11th International Conference,
CANS 2012, Darmstadt, Germany, December 12-14, 2012. Proceedings, pages 218–231,
2012.

13. E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection protocols
secure in malicious model. In Advances in Cryptology-ASIACRYPT 2010, pages 213–231.
Springer, 2010.

14. E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with linear com-
plexity. In Financial Cryptography and Data Security, pages 143–159. Springer, 2010.

15. C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: an efficient
and scalable protocol. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 789–800. ACM, 2013.

16. S. Faber, R. Petrlic, and G. Tsudik. Unlinked: Private proximity-based off-line osn interac-
tion. In Proceedings of the 14th ACM Workshop on Privacy in the Electronic Society, pages
121–131. ACM, 2015.

17. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection.
In Advances in Cryptology-EUROCRYPT 2004, pages 1–19. Springer, 2004.

18. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

19. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer and system
sciences, 28(2):270–299, 1984.

20. V. Goyal, R. Ostrovsky, A. Scafuro, and I. Visconti. Black-box non-black-box zero knowl-
edge. In STOC, pages 515–524. ACM, 2014.

21. C. Hahn and J. Hur. Scalable and secure private set intersection for big data. In 2016
International Conference on Big Data and Smart Computing, BigComp 2016, Hong Kong,
China, January 18-20, 2016, pages 285–288, 2016.

22. C. Hazay. Oblivious polynomial evaluation and secure set-intersection from algebraic prfs.
In TCC (2), volume 9015 of Lecture Notes in Computer Science, pages 90–120. Springer,
2015.

23. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In Theory of Cryptography, pages 155–
175. Springer, 2008.

24. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than
custom protocols? In NDSS, 2012.

25. Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In TCC, volume
4392 of Lecture Notes in Computer Science, pages 575–594. Springer, 2007.

26. F. Kerschbaum. Outsourced private set intersection using homomorphic encryption. In Pro-
ceedings of the 7th ACM Symposium on Information, Computer and Communications Secu-
rity, pages 85–86. ACM, 2012.

27. L. Kissner and D. Song. Private and threshold set-intersection. Technical report, DTIC
Document, 2004.

28. Y. Lindell, K. Nissim, and C. Orlandi. Hiding the input-size in secure two-party computation.
IACR Cryptology ePrint Archive, 2012:679, 2012.

29. Y. Lindell, K. Nissim, and C. Orlandi. Hiding the input-size in secure two-party computa-
tion. In ASIACRYPT, volume 8270 of Lecture Notes in Computer Science, pages 421–440.
Springer, 2013.

30. S. Micali, M. O. Rabin, and J. Kilian. Zero-knowledge sets. In FOCS, pages 80–91. IEEE
Computer Society, 2003.

31. L. Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA, volume 3376
of Lecture Notes in Computer Science, pages 275–292. Springer, 2005.

32. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on OT exten-
sion. In 23rd USENIX Security Symposium (USENIX Security 14), pages 797–812, 2014.

33. N. Tanaka and T. Saito. On the q-strong diffie-hellman problem. IACR Cryptology ePrint
Archive, 2010:215, 2010.

