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Abstract—Trusted hardware systems, such as Intel’s new SGX
instruction set architecture extension, aim to provide strong
confidentiality and integrity assurances for applications. Recent
work, however, raises serious concerns about the vulnerability
of such systems to side-channel attacks.

We propose, formalize, and explore a cryptographic primi-
tive called a Sealed-Glass Proof (SGP) that models computation
possible in an isolated execution environment with unbounded
leakage, and thus in the face of arbitrary side-channels. A
SGP specifically models the capabilities of trusted hardware
that can attest to correct execution of a piece of code, but whose
execution is transparent, meaning that an application’s secrets
and state are visible to other processes on the same host.

Despite this strong threat model, we show that SGPs enable
a range of practical applications. Our key observation is that
SGPs permit safe verifiable computing in zero-knowledge, as
data leakage results only in the prover learning her own secrets.
Among other applications, we describe the implementation of
an end-to-end bug bounty (or zero-day solicitation) platform
that couples a SGX-based SGP with a smart contract. Our
platform enables a marketplace that achieves fair exchange,
protects against unfair bounty withdrawals, and resists denial-
of-service attacks by dishonest sellers. We also consider a
slight relaxation of the SGP model that permits black-box
modules instantiating minimal, side-channel resistant primi-
tives, yielding a still broader range of applications. Our work
shows how trusted hardware systems such as SGX can support
trustworthy applications even in the presence of side channels.

1. Introduction

Trusted hardware platforms aim at creating isolated soft-
ware execution environments that could lead to many prac-
tical applications of secure multiparty computation. For in-
stance, Intel’s newly released Software Guard Extensions [1]
(SGX) let developers create secure enclaves that execute in
isolation from the rest of a host’s software, including its OS.

While these trusted platforms aim to protect the in-
tegrity, authenticity and confidentiality of enclaved programs
against a variety of software or physical attacks [1], the
confidentiality goal appears elusive. Recent work shows that
enclaves may leak large amounts of sensitive information to
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a malicious host through their memory access patterns [2],
[3]. Additional software or physical side-channels [4]–[8]
could further compromise an enclave’s secrets. Such attacks
are not unique to SGX, and a number of defenses have been
developed over the years [6]–[9], usually to protect highly
sensitive cryptographic code. It is reasonable to assume
that trusted hardware platforms can apply these methods to
achieve strong protection for a limited set of cryptographic
operations using long term secrets (e.g., cryptographic keys
used for attesting to an enclave’s contents or for protecting
enclave memory). Such protection is essential: A successful
extraction of a platform’s private key would essentially
translate into a total security break. A much more challeng-
ing goal is extending side-channel protections to arbitrary
computations [3], [9]–[15] as the resulting performance
degradation is non-negligible [10], [16], [17] and it remains
unclear whether data leaks can truly be fully eliminated.

We thus initiate an investigation of a model of secure
computation that is intentionally weaker than that of tra-
ditional trusted hardware. Our goal is to predicate such
computation on security assumptions that are more easily
achieved in practice. We define a formal model of transpar-
ent enclave execution, wherein enclaves guarantee execution
integrity and authenticity, but not confidentiality. That is, we
assume that the trusted hardware’s attestation and integrity
protection mechanisms are secure (even in the presence of
side channels), but that programs running in enclaves leak
unbounded information to the host. As such, we aim to
minimize the size of the trusted computing base (TCB) that
need be assumed immune to side-channel leakage.

The question immediately arises: Is this weaker model
of trusted hardware useful? Many prior works have
proposed using trusted hardware for secure outsourc-
ing of computations, including protection of crypto-
graphic keys (Flicker) [18], Digital Rights Management
(Aegis) [16], Map-Reduce jobs (M2R) [15], [19], data an-
alytics (VC3) [20], machine learning [14], and even legacy
Windows binaries (Haven) [21]. Yet, these applications crit-
ically rely on enclave confidentiality to hide data from an
untrusted cloud. Successful side-channel attacks (on Haven)
have already been demonstrated [2]. While some works
identified the utility of trusted hardware for “secret-less”
applications such as verifiable computing [16], [18], [22],
our work appears to be the first to explicitly forgo enclave
confidentiality, and explore the range of applications that
remain achievable under these weaker assumptions.

Our key insight is that transparent enclaves provide
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sufficient guarantees to securely realize functionalities char-
acterized by a “uni-directional” resource asymmetry between
untrusted parties, e.g., when one party has knowledge of a
secret, but not the other. Indeed, by having the party holding
the secret host the enclave, we forego the need for execution
confidentiality and can rely solely on execution integrity
and authenticity. To demonstrate the usability of our model,
we show how to realize a number of interesting primitives
in the UC framework [23], such as Verifiable Computing,
Commitment Schemes, and Zero-Knowledge Proofs.

We go further to show that transparent enclaves can
securely realize a powerful, general functionality that en-
compasses the above three primitives. We call this function-
ality a sealed-glass proof: A prover first seals (i.e., commits
to) a program and input in an enclave, and later runs the
program over her own input in addition to a “challenge”
input provided by a verifier. We further show that in cases
where the verifier’s challenge is simply a random string, the
scheme can be made non-interactive by leveraging random-
ness provided by the enclave environment.

We propose a compelling application of SGPs in achiev-
ing fair exchange of a secret for a monetary reward. Such
transactions support a number of use-cases, including the
sale of 0-day exploits (as in a bug bounty system) and pay-
ments contingent on a proof of identity. A recently proposed
scheme by Maxwell [24] known as Zero-Knowledge Con-
tingent Payments (ZKCP) enables Bitcoin transactions for
the sale of information between mutually untrusted parties.
As we show, however, this scheme and an extension in [25]
have serious limitations in terms of efficiency, requirements
for interaction among parties, and vulnerability to buyers
retracting their offers and denying payment to honest sellers.

We show that SGPs combined with smart contracts [26]
can overcome these limitations and thus vastly improve the
safety and efficiency of such fair exchange protocols in
digital knowledge marketplaces where buyers and sellers are
able to launch respectively bounties or auctions for secret
resources. For buyer-initiated transactions, we further de-
scribe slight relaxations to our transparent enclave execution
model that protect against unfair withdrawal of a bounty, a
property missing in the original ZKCP protocol.

To demonstrate the practicality of such knowledge mar-
ketplaces, we design and implement a secure and fair bug-
bounty system leveraging SGX and Ethereum [27], [28]. We
use our system to showcase sales of 0-day exploits in several
applications: (1) A SQL injection bug in a web login form;
(2) Disparities in certificate validation logic in different TLS
libraries; and (3) A generic framework for MITM attacks, in
particular attacks on TLS handshakes. Our solution is highly
efficient: the exploit proofs required the addition of only a
few hundred lines of trusted code to the tested applications,
and incurred negligible performance overhead compared to
running the exploits in a non-isolated environment.

Contributions. Our work offers the following contributions:
(1) We introduce the novel notion of transparent enclave

execution, a model of trusted hardware that captures
unbounded leakage of application data and thus arbi-

trarily powerful side-channel attacks. We additionally
formalize slight relaxations of this strong threat model
that expand the range of applications for which secure
realization of efficient protocols is possible.

(2) We formalize and show how to instantiate Sealed-Glass
Proofs (SGPs), a primitive realizable with transparent
enclaves that encompasses and generalizes verifiable
computing, commitment schemes, and ZK proofs.

(3) We present protocols that use SGPs and smart contracts
to realize knowledge marketplaces with strong fairness
guarantees. We describe a practical implementation of
such a marketplace in the form of a secure and fair
bug-bounty platform leveraging SGX and Ethereum,
and report experiments for sample proofs of 0-day
exploits. The code used for our experiments is available
at https://github.com/ftramer/sealed-glass-proofs.

2. Preliminaries

In this section, we formalize our model of transparent
enclave execution and discuss its relevance in view of known
side-channel attacks against trusted hardware platforms.

2.1. Transparent Enclave Execution

The model described hereafter serves as a relaxation of
the standard model of trusted hardware (e.g., as in SGX), in
which enclave execution is assumed to be fully concealed
from the host. This “standard” model of trusted execution
has been formalized for instance in [10], [20], [22], [29].

In contrast, in our model, only a minimal number of
critical functionalities (e.g., sensitive crypto code such as
random number generators or the platform’s attestation
mechanism) are assumed to be kept secret from the host,
while software enclaves are only assumed to provide authen-
ticity and integrity when executing arbitrary user programs.

In the same sense that enclaves serve as a separation
between trusted code and untrusted code, we further distin-
guish between tasks that require confidentiality from tasks
that require only authenticity and integrity. This lets us side-
step many critical and practical concerns about side-channel
attacks arising from the execution of arbitrary code on plat-
forms such as SGX [2]. Our thesis is that in practice, only
a small number of privileged cryptographic functionalities
will be successfully concealed from the host, through the use
of well-studied cryptographic side-channel defenses [6].

We first introduce some notation used in this work.
P,V Host (prover) equipped with trusted hardware, remote verifier
prog A program to run in an enclave

inp, outp,mem The program’s input, output and memory tape
sid, idx Session identifier and Enclave identifier
λ,N Security parameter, cryptographic nonce

Σ,KGen A Signature Scheme and its key generation algorithm
←$ Uniformly random sampling from the right-hand set

A, Sim,Z Real-world adversary, ideal-world adversary (the simulator) and
environment in the UC Framework [23]

Formal Model. For our purposes, an enclave is an isolated
software container loaded with some program. We modify
the trusted hardware abstraction of Shi et al. [10], [29], to

2



account for our relaxed enclave transparency assumption 1.
Our hope is to narrow the gap between formal abstrac-
tions and real-world implementations of trusted hardware
platforms. We define a functionality FTEE (Transparent
Enclave Execution) for a trusted hardware platform used by
multiple hosts Pi (Figure 1). FTEE abstracts an enclave as
a third party trusted for execution integrity and authenticity,
but not confidentiality, with respect to P.

In our context, a host (or prover) P wants to prove
statements about the execution of some program prog, to
a remote client (or verifier) V . The program gets access to
trusted randomness (e.g., as in SGX [1]), but its execution is
fully transparent to the host (i.e., all program inputs includ-
ing the randomness are revealed to P). Only the platform’s
attestation mechanism (more specifically a secret signing
key skTEE) is assumed to remain hidden from the host. This
model captures a setting in which the execution of arbitrary
code in an enclave leaks complete information about that
program’s state, e.g., through side channels. This setting
could be generalized by considering various constrained
information leakage models (see Section 4.2).

The host P first loads a program prog into an enclave
with identifier idx (see Figure 1). On a “resume” call, prog
is run on the given input and fresh randomness, to produce
some output. All program inputs and outputs are revealed
to P. FTEE’s “resume” call can capture settings where
prog is a stateful program that handles successive inputs
from P (potentially received from other parties). To realize
sealed-glass proofs in Section 3, we will require an enclave
to store an input committed by the host. Note that a host
can launch multiple enclaves with different idxs running the
same program prog. Enclaves generate attestations on each
“resume” invocation. An attestation is a digital signature,
under a secret key skTEE, of the loaded program (i.e., a hash
digest of the loaded binary) and the program’s output outp.

Adversarial Model and Universal Composability. We
prove the security of our protocols in the Universal Com-
posability (UC) framework [23], to illustrate the strong
security and modularity guarantees offered by our trans-
parent enclave execution model. Specifically, FTEE is a
setup assumption [23], that models the functionality offered
by real-world trusted hardware platforms. Therefore, FTEE

uses a “real” signature scheme Σ, rather than an idealized
variant [30], as doing so would correspond to a less natural
assumption on the setup provided by trusted hardware.2

1. Barbosa et al. [22] use an alternative model to the one of Shi et al. [10],
[29] (both assume fully confidential enclave execution). A main technical
difference is that the model from Barbosa et al. is game-based (i.e., security
properties are defined as adversarial games), whereas the model from Shi
et al. and ours is simulation-based (i.e., all security properties are defined
as an “ideal functionality” to be emulated). For primitives that require
a large number of security properties (e.g., the protocols considered in
Section 5 that combine trusted hardware and smart contracts), we believe
it is conceptually simpler to express all security properties through a single
ideal functionality, rather than through multiple security games. In addition,
the simulation paradigm gives strong security guarantees under protocol
composition [23], which game-based approaches usually do not.

2. Other setup functionalities that make internal use of cryptographic
primitives can for instance be found in [31].

FTEE with parties P1, . . . ,Pn

Init: (pkTEE, skTEE) := KGen(1λ), and publicize pkTEE

On receive (sid, idx, “install”, prog) from Pi:
store (idx,Pi, prog, ∅) if no (idx,Pi, , ) is stored, else ignore
send (sid, idx, “okay”) to Pi

On receive (sid, idx, “resume”, inp) from Pi:
find a stored (idx,Pi, prog,mem) or return ⊥
r ←$ {0, 1}∗ // The length of r is defined by prog

outp,mem′ := prog(inp, r,mem)

store (idx,Pi, prog,mem′) // overwrite (idx,Pi, prog, )

σ := Σ.Sig(skTEE, (prog, outp)) // anonymous software attestation
send (sid, idx, outp, σ, r) to Pi // transparent execution: r is revealed to Pi

Figure 1: Transparent Enclave Execution functionality.

Throughout this work, we assume that Σ is existentially
unforgeable under chosen message attacks,3 and that all
parties know the public key pkTEE at the start of a protocol.

Each party P is identified by a unique id (simply denoted
P) and a session id sid, obtained from an environment
Z [23]. Parties send messages over authenticated channels;
an adversary A observes all messages sent over the net-
work. For ideal functionalities, we use the standard “delayed
outputs” terminology [23]: when a functionality F sends a
public delayed output msg to party Pi, this means that msg
is first sent to the ideal-world adversary (the simulator Sim),
and forwarded to Pi only after acknowledgment by Sim.

Note that FTEE is a local functionality: a host P can talk
to its trusted hardware without leaking this interaction to A.
In contrast, when A corrupts a party, it gets full access to
that party’s software and hardware. A can fully observe all
programs executed in trusted hardware, but A cannot tamper
with the hardware’s integrity and attestation authenticity.

Our proposed model currently fails to capture compo-
sition with arbitrary protocols that make use of the same
global trusted hardware functionality FTEE, while implic-
itly sharing state in the form of that platform’s attestation
key. While it is possible to securely compose protocols that
share the same FTEE, including multiple instances of the
same protocol (see Section 3), the security of the composi-
tion cannot be directly inferred from the UC theorem, and
thus requires a more detailed analysis.

Stronger composability guarantees could be obtained in
the GUC framework [31], by modeling FTEE as a global
setup assumption shared by all protocols. A formal treatment
of FTEE as a global setup is given in a recent work by
Pass et al. [32]. They show that, surprisingly, a number of
natural functionalities either cannot be realized assuming
only a global FTEE, or require more complex protocols
than the ones presented in ours and previous works.

The security model in our work can thus be seen as an
intermediate setting between the strong model of Pass et
al. [32] (in the GUC framework) and the model of Barbosa
et al. [22] (not based on the UC framework). Specifically,

3. Following [30], we could then replace FTEE’s signature scheme by
an ideal one. Yet, this requires changing the definitions from [30] slightly,
as FTEE cannot be corrupted. We do not believe that this approach would
simplify the exposition or analysis of our protocols, hence we omit it here.
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our model allows us to guarantee that carefully designed
protocols remain secure even when composed with other
protocols (including several instances of the same protocol),
that share the same setup FTEE (see Claim 2). However, we
provide no guarantees when protocols are composed with
other (potentially maliciously crafted) protocols that make
use of the same FTEE setup (which requires the stronger
GUC modeling from [32]).

Relation to Intel’s SGX. SGX [1] allows a host to create
multiple enclaves that run programs of the host’s choosing.
The “resume” call in the FTEE functionality abstracts two
mechanisms of SGX: (1) A host may call any trusted
function exposed by the loaded program, or (2) A trusted
program may explicitly call an untrusted function outside of
the enclave. The latter can be seen as prog producing some
intermediate output to be sent as a request to P, and await-
ing a “resume” callback with P’s response. SGX enclaves
further have access to a trusted hardware random number
generator. The signature scheme in FTEE models SGX’s
quoting enclave that authenticates and signs reports obtained
from running enclaves. Attestations can be publicly verified
by remote clients. SGX actually makes use of a group
signature scheme with efficient revocation support [33]. For
simplicity, FTEE does not capture revocation issues.

The transparent execution model of FTEE highlights
known vulnerabilities arising from the execution of arbitrary
programs in SGX enclaves. Indeed, although SGX aims at
protecting against known software and hardware attacks [1],
it has been shown that enclaves can leak considerable in-
formation through side channels [2], [3], [17]. Our model
pessimistically assumes that computations that have not been
explicitly hardened against known side-channel attacks leak
their complete execution trace to the host. We do rely on
assumptions of execution integrity and secure attestation,
however. As we shall see, these two properties actually
suffice in a number of interesting applications. We note that
these assumptions are consistent with SGX’s design, which
explicitly leaves protection against page-fault and timing
side-channels in enclave applications to developers [1].

2.2. Exploiting Resource Asymmetry

Given this model of transparent enclave execution, the
question we seek to answer is: “What kinds of protocols can
we design that are secure in this model”?

Our key observation is that transparent enclaves can
be securely deployed in environments characterized by an
inherent resource asymmetry between mutually untrusted
parties, e.g., in terms of access to knowledge, computational
power, or storage. We consider a generic setting in which
a prover P wants to convince a verifier V that she ran a
program prog on some input inp and obtained output outp.
We describe three scenarios that correspond to different
forms of resource asymmetry between provers and verifiers:

Verifiable Computing (VC). In a VC scheme, P con-
vinces V that she correctly executed prog with input inp

and output outp. The asymmetry lies in the resources com-
mitted by the two players: The benefit of VC is that V can
obtain a correct outp while committing much less resource,
e.g., computation, than P. A transparent enclave can be used
to consume P’s resources on behalf of V .

Zero-Knowledge (ZK) Proofs. In a ZK proof, P wants to
convince V that there is an input inp such that prog(inp) =
true, without leaking any information about inp. We are
primarily interested here in zero-knowledge proofs of knowl-
edge, in which P wants to prove that she knows such an
inp. Here, there is a knowledge asymmetry, and an enclave
can be used to check P’s knowledge of inp on V’s behalf.

Sealed-Glass Proofs (SGP). An SGP generalizes VC
and ZK schemes. In many protocols for both schemes, V
provides an ephemeral secret (i.e., a challenge) r to P. As
enclave execution is transparent to the prover in our model,
enclaves cannot be trusted to safeguard r. We can use our
model, however, to ensure that a prover commits a program
and input of her choice before learning r. Moreover, in
settings where the challenge r is simply a random string,
we can leverage the trusted randomness supplied by FTEE

to render such a scheme non-interactive. We describe appli-
cations of SGPs in the construction of a digital knowledge
marketplace, and a fair bug-bounty program in particular.

3. Sealed-Glass Proofs

Suppose you know an exploit against a system with
a database (e.g., a SQL injection attack). You may want
not to share this exploit explicitly, but instead just prove
knowledge of it (e.g., to later sell it for a bug bounty).
Directly demonstrating the exploit on the vulnerable system
is not an option, of course, as it might then be learned by the
system owner. Instead, if the system owner provided the full
system environment, including the database, you could set
up this environment in an enclave and prove the validity of
the exploit by attesting to a valid program trace in which the
access-control policy is violated (a NIZK proof, in essence).
This approach is not an option either, though, as the database
contents may be private and sensitive (and large).

In most cases, though, it would suffice to prove that your
exploit works for some database. The system-owner could
then instantiate an enclave you control with a “challenge”
environment containing a database with randomly generated
secrets. In a naı̈ve approach to proving the validity of your
exploit, you might input it into the enclave and show that it
can output secrets from the “challenge.” This would work
if an enclave preserved confidentiality, but cannot work in
a transparent execution environment: You could fake an
exploit simply by extracting secrets from the enclave and
embedding them in the exploit. To avoid such cheating by
a prover, we can instead ask the prover to commit to her
exploit before accepting a challenge from the system owner.

In a number of applications, notably the ones we de-
scribe in Section 6, the challenge can simply be viewed as
a random string. For instance, in our motivating example, the
system-owner’s input is an arbitrary “exploit environment.”
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FSGP[prog,P,V]

// Prover commits to her input
On receive (sid, “commit”, inpP ) from P:

store (inpP , inpV := ⊥)

send a public delayed output (sid, “receipt”) to V

// Verifier provides a challenge (optional)
On receive (sid, “challenge”, inpV) from V :

find (inpP , ) stored or halt
store (inpP , inpV)

send a public delayed output (sid, “challenge”, inpV) to P

// Compute prog on inpP , inpV (optional), and trusted randomness
On receive (sid, “prove”) from P:

find (inpP , inpV) stored or halt // inpV may be ⊥
let outp := prog(inpP , inpV , r), for r ←$ {0, 1}∗

send (sid, “proof”, outp, r) to P, wait to receive (sid, “okay”) from P
send a public delayed output (sid, “proof”, outp) to V

// Prover reveals her input
On receive (sid, “open”) from P:

find (inpP , ) stored or halt
send a public delayed output (sid, “open”, inpP ) to V

Figure 2: Ideal Sealed-Glass Proof. FSGP is parametrized by
a program prog and involves two parties P,V . Activation points
are non-reentrant: If queried more than once, FSGP ignores the
request. The length of the random input r is specified by prog.

We observe that the above proposed scheme can be made
non-interactive, by having the trusted hardware platform
generate a random challenge on the system-owner’s behalf.
This is reminiscent of the Fiat-Shamir transform for Sigma
protocols [34], except that the randomness is provided by
trusted hardware instead of a random oracle.

The FSGP Functionality. Sealed-Glass Proofs meet the
requirements of the above scenario, permitting, e.g., a sound
ZK-proof of knowledge of an exploit. Specified in Figure 2,
an SGP can be viewed as combining commitment schemes
with verifiable computation (in ZK) over some challenge.

A prover first commits to running a known program
on her secret input. Then, the verifier may interactively
specify a challenge to include in the prover’s computation.
Alternatively, the challenge can also take the form of fresh
random coins provided to the program during its execution.
The key is that the challenge is revealed only after the prover
commits to her own input. The verifier obtains the output of
the computation, and the prover may later share her secret
input with the verifier by opening her commitment.

As we show in Section 5, combining SGPs with smart
contract systems can form the basis of a digital knowledge
marketplace with strong guarantees for fair-exchange.

Realizing FSGP in the FTEE Model. FSGP can be seen
as an extension of the “commit-and-prove” functionality
FCP in [35]. Compared to FCP, FSGP further includes a
challenge phase, that aggregates an optional input provided
by V , and randomness provided by the trusted hardware.

As shown in [35], FCP can be realized given a se-
cure commitment scheme and an ideal ZK functionality.
Our protocol for realizing FSGP makes use of FTEE to
directly realize both commitments and ZK proofs. As the
confidentiality requirements in commitments and ZK proofs
are inherently one-sided, these primitives are natural fits for

ProtSGP[prog,P,V]
Prover P:

On input (sid, “commit”, inpP ) from the environment Z:
set idx := 0

send (sid, idx, “install”, p̂rog) to FTEE, wait to receive (sid, 0, “okay”)
send (sid, idx, “resume”, (“commit”,P, inpP )) to FTEE

wait to receive (sid, idx, (“receipt”,P, N), σC, ) from FTEE:
send (sid, “receipt”, N, σC) to V

On receive (sid, “challenge”, inpV) from V :
store inpV and output (sid, “challenge”, inpV)

On input (sid, “prove”) from Z:
find inpV stored or set inpV := ⊥
send (sid, idx, “resume”, (“prove”, inpV)) to FTEE

wait to receive (sid, idx, (“proof”, outp, inpV , N), σP, ) from FTEE:
send (sid, “proof”, outp, σP) to V

On input (sid, “open”) from Z:
send (sid, idx, “resume”, “open”) to FTEE

wait to receive (sid, idx, (“open”, inpP , N), σO, ) from FTEE:
send (sid, “open”, inpP , σO) to V

Verifier V :

On receive (sid, “receipt”, N, σC) from P:
assert Σ.Vf(pkTEE, σC, (p̂rog, (“receipt”,P, N))), output (sid, “receipt”)

On input (sid, “challenge”, inpV) from Z:
store inpV and send (sid, “challenge”, inpV) to P

On receive (sid, “proof”, outp, σP) from P:
find inpV stored or set inpV := ⊥
assert Σ.Vf(pkTEE, σP, (p̂rog, (“proof”, outp, inpV , N)))

output (sid, “proof”, outp)

On receive (sid, “open”, inpP , σO) from P:
assert Σ.Vf(pkTEE, σO, (p̂rog, (“open”, inpP , N)))

output (sid, “open”, inpP )

Figure 3: Protocol realizing FSGP. All activation points are non-
reentrant, i.e., the corresponding actions are executed at most once.

Enclave program wrapper p̂rog

On input ((“commit”,P, inpP ), r,mem):

parse r as a nonce N of length λ //store mem′ = inpP ||N
return (“receipt”,P, N) //outputs will be included in σC

On input ((“prove”, inpV), r,mem):
parse mem as inpP ||N
let outp := prog(inpP , inpV , r) //store mem′ = inpP ||N
return (“proof”, outp, inpV , N) //outputs will be included in σP

On input (“open”, ,mem):
parse mem as inpP ||N
return (“open”, inpP , N) //outputs will be included in σO

Figure 4: Program wrapper used in ProtSGP. Function calls
are non-reentrant, i.e., they return ⊥ if re-invoked. The random
strings r consumed by p̂rog are sampled by FTEE (see Figure 1).

our transparent enclave execution model. Interestingly, our
results show that FTEE adds to a known list of setups,
including Common Reference Strings [36] or Tamper Proof
Hardware Tokens [37], from which any multi-party func-
tionality can be securely realized [35], [36].

Note that FSGP requires state to be kept between the
commit and open phases (i.e., the committed input has to
be stored). This is easily done in the FTEE model, by
having an enclave store the committed input in memory.
Yet, as the prover can launch multiple enclaves running the
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same program, the verifier must be convinced that the same
enclave process is being used throughout the protocol. This
is also easily achieved in our model (and in SGX [1]), by
having the hardware platform provide each enclave with a
fresh random nonce, N . To open a commitment to a different
value (i.e., to break the binding property), a prover must
launch two enclaves that generate the same nonce, which
happens only with negligible probability.

In Figure 3 we give a protocol ProtSGP which realizes
the FSGP functionality. The prover P runs a “wrapper” p̂rog
around prog in an enclave (Figure 4): it saves P’s committed
input (and binds this input to a nonce N with the attestation
σC), attests to the correct execution of prog (with σP) and
later reveals the input to V (by producing σO).

Theorem 1. Assume that FTEE’s signature scheme Σ is
existentially unforgeable under chosen message attacks (EU-
CMA). Then ProtSGP securely realizes FSGP in the FTEE

model, for static adversaries.

The proof of this theorem is given in Appendix A

Realizing Multiple SGPs. To simplify exposition, FSGP

captures a single instance of a sealed-glass proof between
two parties. In Section 5, however, we will design protocols
that use multiple SGPs between different pairs of parties.
As we have proved that ProtSGP securely realizes FSGP,
the UC theorem [23] lets us analyze the security of ad-
ditional protocols in an hybrid model, in which sub-calls
to ProtSGP are replaced by interactions with FSGP. This
modularity simplifies the security analysis, as FSGP explic-
itly defines the information that is leaked to the adversary.

However, for the UC theorem to apply, we have to as-
sume that each copy ofProtSGP uses an independent copy
of the setup FTEE (i.e., with its own unique secret key) [23].
This does not correspond to the situation arising in practice,
where all copies of a trusted hardware platform (from the
same vendor) share the same attestation key [1], [17]. We
would thus like to show that multiple SGP instances can be
securely realized using the same underlying copy of FTEE.

Our setting here is comparable to that of Canetti and
Fischlin [36] in the context of UC-secure commitments in
the Common Reference String (CRS) model: They first show
how to build a secure (single-use) commitment from a CRS,
and then propose a more complex protocol that can be used
to realize multiple commitments using the same CRS.

Hereafter, we argue that multiple SGPs can actually
be securely realized by simply re-using ProtSGP multiple
times, with the same FTEE. More specifically, note that
FTEE allows a party to create an arbitrary number of
enclaves (with different identifiers idx). Thus, we consider
“re-using” ProtSGP (with different idx values) for every
instance of FSGP to be realized between any pair of parties.
We claim that this construction is secure.

As noted in Section 2.1, an alternative solution would
be to prove security in the GUC framework [31], by view-
ing FTEE as a global setup shared by all protocols. Pass
et al. [32] recently showed that many functionalities are
surprisingly tricky to realize in this model, requiring either

additional assumptions or more complex protocols. In this
work, we consider a slightly weaker notion of composability,
which allows for simpler constructions. Specifically, in our
model, composition holds if protocols either do not share
the same FTEE, or if the protocols are carefully designed
such that attestations produced by FTEE in one run of a
protocol cannot affect the security of other protocols running
concurrently. We refer the reader to the discussion of the UC
framework in Section 2.1 for more details.

Claim 2. Let π be a protocol in the FSGP-hybrid model,
that makes multiple calls to FSGP[prog,Pi,Pj ] for pairs of
parties Pi,Pj . Let πProtSGP be the protocol obtained by
replacing each instance of FSGP in π by an instance of
ProtSGP. Then, πProtSGP securely realizes π in the FTEE

model, and makes use of a single copy of FTEE.

The proof of this claim is mostly similar to the proof of
Theorem 1. Hereafter, we review the main differences.

As mentioned above, the challenge is to show that
attestations produced by FTEE in one run of ProtSGP

cannot affect the security of other instances of ProtSGP.
Consider the case of a corrupt prover P (the case of an
honest prover is the same as in the proof of Theorem 1).
Because multiple copies of ProtSGP are now being run
with the same underlying FTEE, the prover can obtain valid
signatures under skTEE in two ways: either by interacting
with FTEE or by observing messages sent by honest parties
in other instances of ProtSGP. We show that this ability
to observe attestations produced in different runs of the
protocol does not aid P in breaking the security of FSGP.

First, note that by the unforgeability of FTEE’s signature
scheme, P cannot get a verifier V to accept an attestation
σ that was not produced by FTEE. Thus, if V accepts a
σ sent by P, then σ must come either from an interaction
between P and FTEE, or from an interaction between some
honest party P ′ and FTEE in a different run of the protocol.
However, note that when an honest prover runs ProtSGP,
the first attestation σC produced by FTEE includes the
prover’s identity. Further attestations σP and σO produced by
FTEE are implicitly linked to the same identity by means of
the random nonce N . Thus, if the corrupt prover P attempts
to re-use an attestation σ produced by another honest prover
P ′ , the verifier V will reject σ with overwhelming probabil-
ity. In summary, when P is corrupt, any attestation accepted
by V must come from an interaction between P and FTEE,
implying that the simulator can extract P’s input.

4. Beyond Transparent Execution

Thus far, we have seen how authenticated and integrity
protected execution enables efficient constructions of sealed-
glass proofs. We show a number of applications of this prim-
itive in Section 5 and Section 6. Notably, combining such
proofs with smart contracts can form the basis of knowledge
marketplaces with strong fair-exchange guarantees.

The assumption at the heart of this work (namely that
enclave execution of arbitrary programs is fully transparent
to hosts) is intentionally restrictive. Indeed, our primary goal
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is to demonstrate the broad usability of trusted hardware that
provides only integrity and authenticity. We will see that in
a number of applications, though, slight relaxations to this
strong assumption may enable more efficient constructions.
Here we discuss and motivate two such relaxations to the
transparent enclave model, namely covert-channel resistance
and the ability to secure cryptographic keys.

4.1. Covert Channel Resistance

In our setting, a covert channel is a means for the host
to pass data to a maliciously crafted enclave program, other
than through exposed interfaces.4 For instance, an SGX
enclave could abuse timing primitives to “listen” for signals
sent by the host [1], [17]. Our assumed abstraction FTEE

does not allow for such message-passing between hosts
and enclave programs, and our results thus hold under the
implicit assumption that no covert communication between
host and enclaves occurs. Below, we discuss how covert-
channel resistance can be effectively realized in practice.

As enclaves attest to the code they are running, it is rea-
sonable to assume that covert channels would be detected by
remote verifiers through code inspection or preconditions on
code compilation (e.g., use of a compiler with information-
flow controls). Crucially, we note that it is much easier to
ensure that no data spuriously enters an enclave, than to
ensure that no data leaves (i.e., leaks from) an enclave.
Indeed, the former goal does not necessarily require an
absence of side-channels, but simply the inability of the
enclave code to listen. For instance, it is easy to check
whether the attested code abuses timing functionalities.

Yet, for applications such as the bug-bounty system we
will describe in Section 7, the prover’s secret input may it-
self be viewed as a piece of code called by a loader program
(e.g., the input may be a piece of code specifying an exploit).
This secret code cannot be included in the enclave at load-
time, as it should not be part of the attestation sent to the
verifier. The prover’s code must thus be loaded dynamically,
as possible in an upcoming extension to SGX [39].

In this setting, covert channels are a real concern, as the
executed code is not visible to the verifier and cannot be
trusted a priori. For instance, the prover could commit to a
simple piece of “shell” code that cheats by listening on a
covert channel to another process that itself abuses enclave
transparency to extract the verifier’s challenge! For these
applications, we require the stronger assumption that either
the hardware platform or the loader program can ensure that
the prover’s dynamically loaded code cannot communicate
with the host. This could be achieved by imposing restric-
tions on dynamically loaded code (e.g., disabling timing
functionalities), or through standard sandboxing techniques.

4.2. Securing Cryptographic Keys

The transparent enclave execution model is highly con-
servative: it assumes complete leakage of a program’s state.

4. Covert channels that pass information from the enclave to the host are
irrelevant, as the enclave’s execution is already assumed to be transparent.

Here we slightly relax this assumption, and consider en-
claves that can be trusted with the confidentiality of select
cryptographic primitives. We motivate this “intermediate”
model with two observations. First, many side-channel coun-
termeasures (e.g., constant-time constructions, blinding or
masking [6], [7]) are routinely used in the implementation
of cryptographic primitives, and incur modest overhead [6].
Second, the security of platforms such as SGX inherently
relies on the assumption that the platform’s attestation key
remains protected.5 Extending this assumption to crypto-
graphic primitives used in application code seems natural.

Costan and Devadas argue that applying leakage protec-
tion solely to cryptographic keys and algorithms is useless
if the aim is data confidentiality [17]. However, we note that
protecting cryptographic material (and only that) may still
have applications for authentication and integrity.

A simple use-case of trusted hardware is in efficiently
setting up an authenticated channel to a remote party. If
an enclave knows the public key of a remote client, an
authenticated channel could in principle be set up using
FTEE: The enclave and remote client could digitally sign
all their messages. Such use of FTEE would translate in
SGX to use of the quoting enclave to sign all messages—
an extremely inefficient approach. Instead, we might in
practice assume the confidentiality of the key-exchange and
MAC primitives in client-side TLS code, given our two
observations above. Under this assumption, an enclave could
authenticate data from a remote web server over HTTPS,
and attest to properties such as the presence or availability of
data. The recently proposed Town Crier system [29] makes
use of this functionality to feed trustworthy data to smart
contracts, an application we also consider in the context of
a fair bug-bounty marketplace (Section 5.2).

5. Knowledge Monetization

In Section 3, we described how a trusted hardware plat-
form realizing FTEE could be used to create “sealed” zero-
knowledge (ZK) proofs. We now further explore how SGPs
can be extended with cryptocurrencies and smart contract
systems to create marketplaces for digital knowledge.

For clarity, we will make a slight adjustment to our
notation: We consider a Seller S that possesses some piece
of knowledge inp and wishes to sell this information to
another party, a Buyer B, for a reward $Reward. With regard
to sealed-glass proofs, the Seller is the prover, and the Buyer
is the verifier. Without loss of generality, we assume the
existence of a program prog such that the inputs of interest
to the Buyer are those for which prog(inp) = true.

While S may prove possession of inp in ZK without
disclosing it to B (using FSGP), an issue arises if the two
parties perform a direct exchange of inp for $Reward: The
first mover is at a disadvantage. If S reveals inp before
receiving $Reward, she risks not being paid. If B pays

5. SGX’s documentation mentions techniques to protect cryptographic
code against side channels [1]. It is reasonable to assume that side-channel
defenses are used in the quoting enclave, to protect the attestation key.

7



$Reward upfront, she might not obtain inp. To ensure against
such failures and establish a workable marketplace for inp,
it is necessary to enforce fair exchange. Fair exchange may
be achieved by a trusted party that swaps $Reward and inp
between S and B (or intervenes if a swap fails [40]).

In this section, we show how sealed-glass proofs may be
combined with modern cryptocurrency systems to emulate
such a trusted party. We go further, however, and also show
that while fair exchange is necessary to achieve a robust
marketplace, it is not sufficient. Fair exchange alone does not
ensure fulfillment of a purchase or sale offer. For example,
Buyer B might offer a bug bounty for a piece of software,
causing potential sellers to invest resources in a search for
bugs. B could then subsequently reject any offer she receives
from any Seller S. B can then beneficially learn of the
existence of a bug, or cancel her offer if the bug is no longer
of value to her, but B thereby causes S to waste resources.

We instead appeal to a stronger notion of honest behav-
ior, fair exchange with guaranteed fulfillment. We formally
define this notion below, and show how to use SGPs and
smart contracts to achieve it. This forms the basis for a
secure marketplace of digital resources. We further detail
one particular application of such a marketplace, a fair and
automated bug-bounty system.

5.1. The ZKCP Protocol

In the context of Bitcoin, Maxwell proposed the follow-
ing simple protocol for fair exchange, referred to as “Zero-
Knowledge Contingent Payment” (ZKCP) [24].

Let prog(inp)→ {true, false} be a program that outputs
true iff inp satisfies B’s requirements (e.g., in a bug-bounty
system, prog might define an execution environment for
some software and inp an exploit). Let H be a cryptographic
hash function and Enc a symmetric encryption scheme.
Finally, let hashlock(h,S, $Reward) denote a hash-locked
transaction, as supported in Bitcoin: On input k from party
S such that h = H(k), the transaction sends $Reward to S.

The ZKCP protocol—whose original specification we
generalize here as a buyer-initiated protocol—is as follows:
(1) Publish predicate: B publishes prog, inviting sales of-

fers of satisfying inputs inp.
(2) Create offer: S constructs and sends B a tuple offer =

(π, h, c), where π is a non-interactive ZK proof that
there exists a bitstring inp such that prog(inp) = true,
c = Enck(inp), and h = H(k).

(3) Post conditional transaction: B posts a transaction
HL = hashlock(h,S, $Reward) (possibly with a time-
out to claim back $Reward if the seller aborts).

(4) Claim reward: S sends k to HL, obtaining $Reward.
(5) Recover inp: B decrypts c using k.

Relationship to Sealed-Glass Proofs. The ZKCP protocol
is a special case of a SGP, in which the verifier provides no
input. It is actually a form of Commit-and-Prove function-
ality [35]: the seller commits to inp and proves something

about inp in ZK.6 The reasons that the ZKCP makes use of
this form of “commitment” to inp are two-fold:
(1) The input inp may be large, meaning that it would be

impractical and expensive to send it to the blockchain.
In the ZKCP protocol, c can be exchanged off-chain,
so that the opening to the commitment (k, or k||r as
described above) that is sent to the blockchain is small.

(2) Bitcoin transactions have limited expressiveness. Pay-
ments contingent on more complex operations than a
simple hash are not supported.

Restriction (2) can be lifted by using more expressive
smart contracts [26], but exchanging inp off-chain may still
remain preferable for efficiency reasons.

Marketplace Properties Lacking in ZKCP. The ZKCP
protocol is remarkably simple and may suffice for a variety
of scenarios of interest. But it fails to achieve three key
properties of a practical knowledge marketplace:
(1) Performance: For many predicates prog of interest, ZK

arguments can be prohibitively expensive to construct.
The ZKCP protocol was demonstrated [24], [41] using
a ZK-SNARK for a trivial application (sale of a Sudoku
puzzle solution). Practical knowledge marketplaces will
benefit from support for far more complex predicates.

(2) Denial-of-service (DoS) resistance: In ZKCP, while the
hash-lock HL is valid, $Reward is committed in HL
and unavailable for other purposes. A malicious S can
repeatedly send offers and fail to claim the reward, tying
up B’s monetary resources. A workable knowledge
marketplace should not permit such abuses.

(3) Guaranteed fulfillment: In ZKCP, B can abort after
receiving an offer from S, i.e., fail to execute step 3.
As noted above, this diminishes the value of the mar-
ketplace, as a potential Seller S has no guarantee that
B will pay a reward. A knowledge marketplace should
instead guarantee fulfillment: B should pay $Reward to
a valid seller emerging before a deadline.

Our constructions of ZK proofs using trusted hardware
can address limitation (1), which is the most obvious barrier
to wide-adoption of a knowledge marketplace. Thus, our
first contribution is to show how our sealed-glass proof
model can be used to replace expensive cryptographic ZK
proofs in the ZKCP protocol by more efficient trusted-
hardware-based proofs. We further describe how limitations
(2) and (3) can be addressed using smart contracts.

5.2. Secure and Fair Knowledge Marketplaces

We first discuss a formal modeling of smart con-
tracts [26], [42]. We then present an ideal “knowledge-
marketplace” functionality, and describe a protocol lever-
aging sealed-glass proofs and smart contracts to realize it.

6. Note that (c, h) is not a secure (hiding) commitment to inp in the
formal sense: The security of the ZKCP protocol relies on the non-standard
assumption that Enck is secure if H(k) is known. This is easily fixed by
setting h = H(k||r) for a random r←$ {0, 1}λ. This yields a Bitcoin-
compatible secure commitment in the random-oracle model.
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Modeling of Blockchains and Smart Contracts. We
adopt the Hawk framework [42], which proposes a formal-
ization of blockchains and smart contracts in the UC frame-
work, with a threat model adapted to distributed consensus
protocols. We present some of the main features here, and
refer the reader to [42] for further details:
• Party identifiers: Each party Pi has an associated iden-

tity (simply denoted Pi) and can send authenticated
messages to a smart contract (e.g., messages are digitally
signed by a key associated to a user account[27], [28]).
• Money: Money is modeled as a public ledger, which

associates monetary quantities to parties. Parties can
transfer money to each other through smart contracts.
• Timing: A per-contract timer is modeled as a discrete

variable T that the environment can increment, by having
all honest parties send tick messages to the smart
contract. All parties can query a contract’s timer.
• Message Batches: Smart contracts are assumed to ex-

ecute in rounds. A new round starts when the timer T
is incremented (modeling the addition of a new block
to the chain). The adversary can observe every message
(a.k.a transaction) sent to a smart contract in a round. At
the end of the round, the adversary selects the order in
which these messages will be processed by the contract.
Thus, messages sent to contracts are guaranteed to be
delivered in the same round, but in adversarial order.
These assumptions are reflected in the design of ideal

functionalities as follows: (1) When an ideal smart contract
C receives a message from a party, C stores the message and
executes the immediate actions (see [42]) associated with
receipt of this message. Such actions model computations
and information leakage that occur “off-chain”, as well
as the adversary’s ability to observe messages sent to the
blockchain. (2) At the end of a round, C applies an adversar-
ial permutation to all messages stored in that round. Then,
the delayed actions [42] (in gray background in Figure 5)
of each message are executed, in the specified order. This
models computation that occurs in a real-world smart con-
tract, every time a batch of transactions is included in a new
block. (3) The ideal contract also has an associated timer,
incremented by the environment through honest parties.

In the Hawk framework [42], these generic functionali-
ties are handled by wrappers around ideal smart contracts,
real-world contracts, and protocols. For simplicity of expo-
sition, we will keep these wrappers implicit in our proposed
solution, and refer the reader to [42] for the full details.

Rushing Attacks. The adversary’s ability to re-order mes-
sages in each round models a broad class of real-world
rushing attacks: a corrupted party observes a message sent
to the blockchain and adaptively crafts its own input to be
processed by the contract in the same round.

These attacks have an important impact on contract
design. Looking forward, we will build a smart contract
allowing multiple sellers to compete for a reward, by submit-
ting a proof that a given ciphertext (under a buyer’s public
key) holds a valid input. Consider the following attack: A
malicious buyer observes a ciphertext sent by a seller to the

FKM[prog,B,S1, . . . ,Sn] with adversary A

// Initialize a buyer-initiated marketplace
On receive (sid, “init”, $Reward, timeout) from B:

send (sid, “init”,B, $Reward, timeout) to A
assert st = ⊥; set st := CREATED, T := 0, D,DB := ∅
assert ledger[B] ≥ $Reward; set ledger[B] := ledger[B]− $Reward

D := {(“init”,B, $Reward, timeout)}

// Let sellers commit to an input
On receive (sid, “commit”, inpSi ) from Si:

assert st = CREATED and Si has not called “commit” before
send (sid, “receipt”,Si) to A
store (Si, inpSi , T ); D := D ∪ {(“receipt”,Si, T )}

// A seller that committed in a previous round can try to claim the reward.
// Immediate off-chain actions: execute prog over the committed input.
// Delayed on-chain actions: exchange input and reward.
On receive (sid, “claim”) from Si:

assert st = CREATED and (Si, inpSi , T
′) is stored for a T ′ < T

assert Si has not called “claim” before
r ←$ {0, 1}∗; send (sid, r) to Si, wait to receive (sid, “okay”)
if prog(inpSi , r) = true:

store (Si, “success”)
if B is corrupted by A: send (sid, “claimed”,Si, inpSi ) to A
else : send (sid, “claimed”,Si) to A

assert (Si, “success”) is stored and st = CREATED

set st := CLAIMED, ledger[Si] := ledger[Si] + $Reward

D := D ∪ {(“claimed”,Si)};DB := {inpSi}

// Query current smart-contract state
On receive (sid, “get-state”) from a party P:
if P = B: send (sid, st, T,D,DB) to B
else : send (sid, st, T,D) to P

Timer(T): assert (st = CREATED) and (T > timeout)

set st := ABORTED, ledger[B] := ledger[B] + $Reward

Figure 5: Ideal buyer-initiated transaction in a knowledge mar-
ketplace. The adversary selects the order in which delayed actions
are processed in each round.

contract, decrypts it (thus obtaining her coveted input), and
then crafts a new message to the contract (acting as a seller)
in order to also claim the reward. As the adversary decides
on the order in which messages are processed in each round,
she can ensure that the buyer’s claim is processed first, and
thus that she obtains the input for free.

To avoid such attacks, our smart contract will work in
two phases: sellers first commit to the value of their input,
and must wait for a future round in order to claim the
reward. Thus, if a malicious buyer intercepts a valid input
in round T , she would have to wait until round T + 1 to
claim the reward, as she must commit first. However, the
honest seller’s claim will then have been already processed.

As the adversary can choose the message order in each
round, we allow that if multiple sellers (honest or corrupt)
provide valid inputs in the same round, the adversary can
choose which party gets the reward. The contract could also
split the reward between all successful sellers in a round.
However, sellers could simply create many “dummy parties”
proposing the same exploit, to increase their reward share.

The FKM functionality. We now present the ideal func-
tionality FKM that we seek to achieve in a trusted hard-
ware based knowledge marketplace (Figure 5). We define
this functionality for a buyer-initiated scheme with multiple
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Contract KM-Buyer

On receive (sid, “init”, p̂rog, $Reward, timeout, pkB) from B:
assert st = ⊥ and ledger[B] ≥ $Reward

ledger[B] := ledger[B]− $Reward

set st := CREATED, T := 0

D := {(“init”,B, $Reward, timeout)}, D′ := {(p̂rog, pkB)}

On receive (Si, “receipt”) from FSGP[p̂rog,Si,KM-Buyer]
assert st = CREATED and no message (Si, “receipt”) was received before
D := D ∪ {(“receipt”,Si, T )}

On receive (Si, “proof”, (c, pkB)) from FSGP[p̂rog,Si,KM-Buyer]
assert st = CREATED and (“receipt”,Si, T ′) ∈ D for a T ′ < T

set st := CLAIMED, ledger[Si] := ledger[Si] + $Reward

D := D ∪ {(“claimed”,Si)}, D′ := D′ ∪ {c}

On receive (sid, “get-state”) from a party P: send (sid, st, T,D,D′) to P

Timer(T): assert (st = CREATED) and (T > timeout)

set st := ABORTED, ledger[B] := ledger[B] + $Reward

Figure 6: Smart contract for realizing FKM. A observes all
messages and chooses the processing order in each round.

ProtKM[prog,B,S1, . . . ,Sn]
Buyer B:

On input (sid, “init”, $Reward, timeout) from Z:
(pkB, skB) := KGen(1λ)

send (sid, “init”, p̂rog, $Reward, timeout, pkB) to KM-Buyer

On input (sid, “get-state”) from Z:
send (sid, “get-state”) to KM-Buyer, wait to receive (sid, st, T,D,D′)

if c ∈ D′ : DB := {DecskB (c)} else : DB := ∅
output (sid, st, T,D,DB)

Seller Si:
On input (sid, “commit”, inpSi ) from Z:

send (sid, “get-state”) to KM-Buyer, wait to receive (sid, st, T,D,D′)

assert st = CREATED; parse D′ as {(p̂rog, pkB}
// The seller ID serves as session ID for this Sealed-Glass Proof
send (Si, “commit”, (inpSi , pkB)) to FSGP[p̂rog,Si,KM-Buyer]

On input (sid, “claim”) from Z:
send (Si, “prove”) to FSGP[p̂rog,Si,KM-Buyer]
wait to receive (sid, “proof”, outp, r) from FSGP[p̂rog,Si,KM-Buyer]:
send (sid, “okay”) to FSGP[p̂rog,Si,KM-Buyer]

On input (sid, “get-state”) from Z:
send (sid, “get-state”) to KM-Buyer, wait to receive (sid, st, T,D,D′)

output (sid, st, T,D)

Figure 7: Protocol realizing FKM in the FSGP-hybrid model.
Sellers use the program wrapper from Figure 8 in a SGP with the
contract KM-Buyer from Figure 6.

Program wrapper p̂rog to run in FSGP

On input ((inpS , pkB),⊥, r):
assert prog(inpS , r) = true

let c := EncpkB (inpS ) and return (c, pkB)

Figure 8: Program wrapper for the SGP used in KM-Buyer.

sellers; that for a seller-initiated marketplace is analogous.
In a seller-initiated transaction, the seller proves knowledge
of inp such that prog(inp) = true. Buyers then bid for a
reward. After a fixed time, the highest bidder gets inp and
the seller receives the winning reward.

Our goal is to extend SGPs (Figure 2) with an additional
fair-exchange step. For our purposes, it will be sufficient to
consider the “non-interactive” variant of SGPs, in which
the verifier does not explicitly provide a challenge, but

the computation may make use of trusted randomness. The
fairness guarantees we wish to achieve are (1) the buyer is
assured that she can reclaim her reward if no timely seller
appears, and (2) the sellers are assured that one of them will
obtain the reward if they provide valid inputs.
FKM keeps an internal state st. A timer starts on con-

tract initialization and activates after a given timeout. This
timer is modeled as in [42]: The ideal contract FKM is
encapsulated in a “wrapper” that records tick messages
sent by honest parties. When all honest parties have sent a
tick (as instructed by Z), the variable T is incremented
and the Timer procedure of FKM is called. In addition to
handling timing, this wrapper also handles message batching
and adversarial message ordering (see [42]).

As noted above, the real-world contract requires a com-
mitment round to prevent rushing attacks, and this structure
is reflected in FKM. Any party can query FKM to obtain the
current internal state st, the timer value T , as well as stored
data D. Note that only the Buyer can obtain DB, which
eventually contains the valid input from the successful seller.

Observe that while simple, FKM accomplishes more
than standard fair exchange, achieving all three key proper-
ties given above. With regard to DoS resistance, note that
in FKM, the buyer sets up a single contract and reward, in
order to accept offers from all potential sellers. In the ZKCP
protocol, each new offer from a seller Si would require the
buyer to set up a new hash-lock with its own reward.

Smart Contract Realization. Figure 6 shows a smart
contract (as available in Ethereum for instance [27], [28])
that leverages the FSGP functionality to realize a buyer-
initiated knowledge marketplace. Note that data sent to a
smart contract is inherently public (i.e., it is visible on a
public blockchain). We thus cannot rely on a smart contract
to run prog over the seller’s private input. As only the buyer
should eventually learn the input of the seller that claimed
the reward (indeed, this input is valuable enough to warrant
a reward), we cannot use FSGP directly either, as FSGP

discloses the input to A in the opening phase. Rather, we
will use a SGP between a seller and a smart contract, in
order to prove to the contract not only that the seller’s input
is valid, but also that it has been correctly encrypted under a
public key provided by the buyer. The program wrapper (for
FSGP) that provides this abstraction is given in Figure 8.
The full protocol realizing FKM is described in Figure 7.

We first consider that the seller’s input is small, so that
the ciphertext can be efficiently processed by the smart con-
tract. Guaranteed fulfillment is then achieved under no extra
assumptions. In Section 7.2, we discuss different techniques
to maintain property (3) in a setting where large ciphertexts
are exchanged off-chain, as in the ZKCP protocol.

The KM-Buyer contract in Figure 6 first receives a
program (i.e., a hash digest of the program binary), a public
key, a reward and a timeout value from the buyer. Sellers
have until the timeout to provide valid inputs, by engaging in
a sealed-glass proof with the smart contract. In practice, the
ideal FSGP functionalities are replaced by ProtSGP proto-
cols, with KM-Buyer in the role of the verifier. The actual
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program loaded into FTEE then consists of the wrapper in
Figure 8 embedded into the SGP wrapper in Figure 4.

Again, following [42], the timer functionality, message
batching, and adversarial message re-ordering in KM-Buyer
are handled by a generic “smart-contract wrapper”. For
simplicity, we keep this wrapper implicit in our protocols.
All data processed by a smart contract is publicly available
on a blockchain. This is made explicit in KM-Buyer via the
data stores D,D′, that any party can obtain by querying the
contract. The distinction between D and D′ is only made to
simplify the analysis, with D corresponding exactly to the
data also made available by the ideal functionality FKM.

To see that our protocol protects against rushing attacks,
first note that FSGP prevents an adversary from copying
proofs, even if multiple SGPs are realized from a single copy
of FTEE (see Claim 2). To recall, this is achieved by having
honest sellers link FTEE’s attestations to their identity.
Furthermore, as the “commit” and “prove” phases of FSGP

occur in different timing rounds, KM-Buyer ensures that if
a malicious buyer observes a seller’s ciphertext, she cannot
make use of it to claim the reward in the same round.

Theorem 3. Assume that the signature scheme Σ is exis-
tentially unforgeable under chosen message attacks and that
Enc is IND-CPA secure. Then ProtKM securely realizes
FKM in the FSGP-hybrid model, for static adversaries.

The proof of this theorem is given in Appendix B.

Corollary 4. FKM can be securely realized in the FTEE

model, using a single copy of FTEE.

Proof. Follows from the UC Theorem [23] and Claim 2.

6. Applications

Hereafter, we describe possible applications for our re-
laxed transparent enclave execution functionality, as well as
for the SGP-based protocols in Section 3 and Section 5.

6.1. Verifiable Computing

In a Verifiable Computing (VC) scheme, a party out-
sources a non-confidential computation to another, and re-
ceives proof that the computation was performed correctly.
This is one of the simplest applications of trusted hardware,
and a powerful example of a setting in which execution
confidentiality is not required. VC schemes based on trusted
hardware were previously suggested in [16], [18], [22].

It is easy to see that the sealed-glass proof functionality
FSGP is a generalization of a VC scheme. Indeed, disre-
garding the “commit” and “open” interfaces, the “prove”
functionality of FSGP serves to convince the client of the
correct execution of some program prog over both the
server’s and client’s inputs (the server’s input may be null).

Although viable VC schemes (i.e., with verification
complexity lower than evaluation complexity) can be based
on purely cryptographic assumptions [43], [44], solutions
based on trusted hardware could be practical today, for a

FZK[R,P,V]

On receive (sid, “prove”, x, w) from P:
if R(x,w) = 1, send a public delayed output (sid, “proof”, x) to V .

Figure 9: Ideal Zero-Knowledge functionality [35]. The func-
tionality is parametrized by some public relation R.

large range of applications. For instance, volunteer comput-
ing projects such as SETI@home [45] could use SGX to
efficiently verify the computations of untrusted workers.

6.2. Zero-Knowledge Proofs

Like VC schemes, Zero-Knowledge (ZK) proofs are a
special case of a sealed-glass proof. To see this, consider
the ideal ZK functionality FZK [35], shown in Figure 9. It
is parametrized by a relation R for some language L in NP,
such that for any x, there exists a polynomial-length witness
w for which R(x,w) = 1, iff x ∈ L.

Now, if we omit the verifier’s challenge and the
hardware-provided randomness in FSGP, (and thus the
need for a commitment and opening phase), the function-
ality reduces to taking an input inp from P and sending
outp := prog(inp) to V . If we define prog to be a program
that on input inp := (x,w), outputs x if R(x,w) = 1,
we obtain the ZK functionality in Figure 9. Informally, the
(computational) soundness of the ZK proof follows from the
hardness of forging an attestation from FTEE. The zero-
knowledge property is trivially satisfied as the verifier only
obtains a digital signature over prog and x.

A widely applicable use-case of ZK proofs based on
trusted-hardware is in proving knowledge of a hash preim-
age. Consider the validation of an API key: An enclave
can attest that a user holds a key k that hashes to some
value h = H(k). The security advantages of this scheme are
two-fold: (1) the server only stores H(k) and is thus less
vulnerable to key theft in case of a security breach; and (2)
the authentication key k never leaves the client’s machine,
and thus cannot be intercepted in a network attack.

6.3. Knowledge Marketplaces

We describe two applications of knowledge market-
places as presented in Section 5: machine learning competi-
tions and bug bounties. Of course, many other scenarios con-
sidered in the literature on ZK proofs and zero-knowledge
contingent payments can also be easily instantiated in our
model. For instance, ZK proofs for the sale of Sudoku
solutions [41], or of RSA factors [25] have been proposed.

The applications we consider here are much more gen-
eral and complex, and it is not immediately evident how
to construct traditional ZK proofs for them. While possible
in theory [46], the derived proof systems are typically pro-
hibitively inefficient. In contrast, a trusted hardware platform
such as SGX can attest to the execution of arbitrary func-
tions, with minimal overhead [10]. As such, the applications
described here demonstrate a wide gap between traditional
ZK proofs and trusted-hardware-based approaches in their
respective practicality and range of applicability today.

11



Machine Learning (ML) Competitions. Consider a party
that wishes to buy an ML model that performs well for a
problem of interest. The party organizes a competition and
provides a training set to competitors, while holding out a
test set. The competitor showing the best results on this test
set exchanges her model for a reward.

In typical ML competitions such as those organized
by Kaggle [47], the organizer discloses an unlabeled test
set, and each participant provides the labels computed by
her model. The organizer announces the identity of the
winning participant, and exchanges the winning model for
the reward. Under Kaggle’s terms of service, an organizer
must warrant that she will pay a reward to the winning party.

The knowledge marketplace primitive in Figure 5 en-
ables a ML competition with fair exchange and guaranteed
fulfillment. An organizer first releases a training set, and all
participants commit to trained models. The organizer then
reveals the (labeled) test set and participants attest to their
model’s performance with trusted enclaves. A smart contract
verifies each participant’s attestation, identifies the winner,
and fairly exchanges the winning model for a reward.

Bug Bounties. As described in Section 3, a natural moti-
vation for SGPs is in the sale of 0-day software exploits. In
Section 7, we detail the instantiation of a fair bug-bounty
system, which follows naturally from the knowledge market-
place primitive proposed in Section 5. That system is buyer-
initiated, meaning that a buyer solicits exploits. Although we
do not explore them in detail here, seller-initiated transac-
tions are also possible. In such transactions, a seller proposes
a testing environment together with an exploit attestation. A
smart contract is used to set up an open ascending price
auction between interested buyers. The seller then encrypts
the exploit with the highest bidder’s public key and the smart
contract fairly exchanges the ciphertext for the highest bid.

7. A Fair Bug Bounty Marketplace

We propose the implementation of a generic bug-bounty
marketplace, built on top of SGX [1] and Ethereum [27],
[28]. We first describe features of the SGX programming
model which define the application scope of our system. We
then present our system’s design and analyze three examples
of bug bounties that we designed and constructed.

7.1. The SGX Programming Model

The SGX SDK lets developers write enclave programs in
native C and C++ [1]. A subset of the C and C++ standard
libraries are available inside an enclave, with the excep-
tion of functions that require interaction with the untrusted
host’s OS (i.e., system calls). SGX provides trusted APIs
for random number generation, thread synchronization and
exception handling. Explicit interaction with the host occurs
by means of “outside calls” (OCalls) to untrusted functions
outside the enclave. Once a function call completes, control
is returned to the enclave, together with the function output.

Because of such constraints, porting arbitrary software
into an enclave can be difficult. One solution would be to
make use of a shielded execution system such as Haven [21],
that aims at running unmodified legacy code in SGX. How-
ever, we note that the generality provided by such solutions
also comes at a cost, especially in the context of a bug
bounty system: As the complexity of the execution environ-
ment grows, so does the probability that it itself contains
exploitable bugs. In such a case, a seller may be able to
convince a buyer of a bug found in an application, when the
seller actually exploited a flaw in the execution environment.

In our experiments (see Section 7.4), we focus on
demonstrating bug bounties for applications that can be
ported to SGX with minimal modifications. These include
“standalone” programs (e.g., many crypto libraries), or mod-
ular applications designed to be portable to various embed-
ded systems. For instance, we easily ported a SQL library
(SQlite) and a TLS library (mbedTLS) into SGX enclaves
by disabling untrusted OS features (networking, I/O, local-
ization) and mapping others (dynamic memory allocation,
randomness generation) to their trusted SGX counterparts.

7.2. Implementing the KM-Buyer Smart Contract

We describe some implementation details and decisions
for instantiating the KM-Buyer contract (Figure 6) using
Ethereum [27], [28] and SGX [1]. Although KM-Buyer
could in principle be instantiated on top of these two
technologies today, some extensions to our threat model
and to current smart contracts are needed to achieve the
most efficient solutions. We describe these limitations and
alternative constructions below.

Attestation Verification. In practice, the sub-calls to
FSGP made by ProtKM and KM-Buyer (see Figures 6-7)
would be replaced by instances of the ProtSGP protocol,
with KM-Buyer in the role of the verifier. Thus, the smart
contract KM-Buyer needs the ability to verify FTEE’s at-
testations. However, verifying attestations in smart contracts
may be expensive. Ethereum, for instance, lacks native
support for the EPID signature scheme used in SGX [33],
although it may eventually be added [29]. An alternative
is to have SGX enclaves directly produce signatures under
a private key associated with an Ethereum wallet [29].
In our model, this requires the assumption that enclaves
can use a private signing key (other than the platform’s
main attestation key), without leaking it to the host (see
Section 4.2). An alternative (described below for dealing
with large inputs) is to allow the ciphertext exchange and
attestation verification to occur “off-chain”, possibly at the
expense of the guaranteed fulfillment property.

Handling Large Inputs. If the seller’s input inpS is large,
sending the ciphertext c to the contract could be inefficient
or monetarily expensive. To maintain guaranteed fulfillment,
while letting some exchanges occur off-chain as in the
ZKCP protocol, we could use trusted data feeds [27], [28].
The idea is to have a trusted external “notary” attest to
the smart contract that the seller followed the protocol
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honestly. Concretely, a seller posts her ciphertext to a public
archive, and a trusted notary (e.g., Virtual Notary [48] or
TLSNotary [49]) attests to the availability and validity of
this ciphertext, assuming data persistence in the archive. The
notary’s attestation is then fed into a smart contract. If we
assume that enclaves can generate and safeguard keys for
select cryptographic primitives, such as the handshake and
record protocols in TLS (see Section 4.2), a seller could use
an enclave to directly attest to the availability and validity of
a ciphertext in an HTTPS-enabled public archive (see [29]).

7.3. System Design

As some features required to efficiently instantiate the
KM-Buyer contract (Figure 6) are not yet available in
Ethereum (see Section 7.2), we built a working bug-bounty
platform on top of a marketplace that extends the original
ZKCP protocol, but does not provide all the guarantees of
FKM. More specifically, because of the difficulty to verify
SGX attestations in smart contracts, we forgo the guaranteed
fulfillment property for now, and consider a protocol in
which some exchanges occur off-chain. Our goal here is to
demonstrate a working system that extends the functionality
and greatly improves the efficiency of the ZKCP protocol.

In more detail, a seller Si uses an enclave to attest to
the correct encryption of her exploit under a symmetric key
k, as well as to a commitment com to k, both of which are
sent off-chain to the buyer. An honest buyer sends (Si, com)
to a smart contract holding the reward, which Si can then
claim by revealing k. Note that this protocol achieves the
performance and DoS resistance properties we previously
mentioned as limitations of the ZKCP protocol. However,
a dishonest buyer could abort after receiving the encrypted
exploit, thus denying the reward to the successful seller (the
buyer also forfeits her ability to decrypt the exploit).

Probabilistic Exploits. As discussed in Section 3, the
randomness provided by the trusted hardware in a SGP can
serve as a random challenge for certain exploit proofs. Yet,
some exploits may work only with probability p < 1. If the
seller is “unlucky”, a new SGP would have to be instantiated
in order to convince the buyer that the exploit works. If such
a probabilistic exploit is of value to the buyer, we can make
use of standard tail bounds to ensure that the buyer obtains
a close estimate for the exploits’ true success probability.

We assume that the prover provides an exploit inp (V
provides no challenge) and the enclave checks whether
prog(inp, r) = true. Let p := Prr[prog(inp, r) = true] be
the success probability of the exploit, for uniformly random
r. Then, we can extend the FSGP functionality to compute
an estimate p̃ of p, by running prog(inp, ·) for n independent
random strings. By a Hoeffding bound [50], the probability
that |p − p̃| > δ, for some constant δ, is negligible in the
security parameter λ if n = Ω(λ). The buyer thus specifies
a target probability t and an allowed error δ. The enclave
computes p̃ and produces an attestation iff p̃ ≥ t. The buyer
is guaranteed that exploits with success probability below
t− δ will be accepted with negligible probability.

The Bounty Wrapper. We built a generic exploit wrapper
similar to the abstractions in Figure 4 and Figure 8. It
exposes an API that a seller uses to attest to the correctness
of her exploit, and to a commitment to the key used to
encrypt the exploit. The exploit setup is defined in a sepa-
rate trusted statically-linked library. The wrapper allows for
proofs of probabilistic exploits using the above methods.
Any randomness required by the exploit program is made
available through calls to SGX’s random number generator.

We place no restrictions on the bounty program other
than those imposed by the SGX programming model. It is
up to the buyer to ensure that the program is “sound”, i.e., it
correctly classifies exploits as valid or invalid.

7.4. Bug Bounty Examples

We now present three examples of bug bounties that can
be performed in our system. The first two correspond to ex-
ploits specified by a piece of data, and we have successfully
implemented these in the current SGX platform.

We implemented the bounty wrapper for probabilistic
exploits described above, using Intel’s SGX-SDK [1]. We
ran experiments on a laptop with a SGX-equipped processor
(Intel Core i7-6500U, Dual-Core 2.50GHz, 16GB of RAM).
Our code was written in C and C++, and will be released
upon publication. Table 1 gives the code complexity and
performance results for our exploit proofs. Attesting the va-
lidity of these exploits in an enclave incurred no noticeable
performance overhead compared to the cost of running the
exploits in non-isolated environments. The prover’s perfor-
mance in our solution is thus essentially optimal. Porting
the exploited applications (which have over 100,000 lines of
code [51]–[53]) to the SGX programming model required
the addition of only a few hundred lines of “glue code”.
In contrast, a system like Haven [21], capable of running
arbitrary applications in SGX enclaves, is comprised of
millions of line of code [21]. A complex exploit setup makes
it harder for a buyer to be convinced of its soundness,
i.e., that it correctly characterizes exploits over the targeted
application. We could not measure the time required to
verify exploit proofs, as Intel has yet to launch its “At-
testation Verification Service” [17]. However, we note that
verifying a proof essentially consists in verifying a single
digital signature, over a digest of the program binary and
outputs (an encryption of the exploit using AES-128, and a
hash-based commitment to the secret symmetric key).

Our third example of a bug bounty describes a general
framework for proving exploits defined as code implement-
ing a MITM attack. We present preliminary evidence of
how to securely prove knowledge of such exploits on top
of SGX2 [39] under the additional assumption of covert-
channel resistance as motivated in Section 4.1.

SQL Injections in Login Forms. We built a simple web-
login form that extracts a username and password from
an HTTP Post message, and matches these against a user

7. Timing is for 10,000 independent runs. The estimation error |p− p̃|
is larger than 5% with probability at most 2−80.
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Application “Glue” LOC Time (ms) Proof Size (B)
Wrapper 365 37 1152

SQL Injection +166 22907 +166
X.509 Validation +195 42 +220

TABLE 1: Complexity and performance of exploit proofs. Lines
of code given are for the “glue” code required to set up the exploit
environment (excluding the vulnerable library) and attest to the
result. Timings are for exploit execution and attestation. The proof
size comprises SGX’s attestation as well as the encrypted exploit.

database. The HTTP processing makes use of Facebook’s
Proxygen [54] and the database is built on SQLite [53].
Our application is vulnerable to a simple SQL Injection
attack [55], as it directly copies the user’s credentials into a
SQL statement. Although SQL Injections are highly recog-
nizable, and simple and efficient countermeasures exist, they
remain one of the primary reported exploits in industry [55].

This attack illustrates the usage of the non-interactive
SGP functionality: If the program populates the user
database in a pre-determined manner, the seller could simply
provide a valid login by choosing one of the entries in the
database. The buyer could also hardcode hashed and salted
random passwords into the program, but this doesn’t fully
prevent the seller from running an (expensive) offline attack
to recover valid credentials and sell a (worthless) exploit.

In our system, a seller provides her exploit to an enclave,
which then generates random user credentials to populate
the database with. Thus, the seller’s exploit is independently
from the random environment in which it will be tested. As
the seller’s exploit is very small (less than 256 bytes), send-
ing the ciphertext directly to a smart contract is reasonable.

Differential Testing of Certificate Validation Logic. A
generic way of finding bugs in the implementation of a spe-
cific standard is via differential testing: one shows that some
input produces conflicting results on various implementa-
tions of the standard. This method has been used to find
certificate verification bugs in TLS libraries [56]. By crafting
randomly “mutated” X.509 certificates, the authors revealed
serious flaws in libraries’ certificate validation logic.

We propose to use the same differential testing tech-
nique (for a known malicious certificate) to “prove” that
a bug is present in a library. The seller loads a program
with two different TLS certificate validation modules (we
experimented with OpenSSL [51] and mbedTLS [52]) and
asks the enclave to attest that one of the modules accepted
the certificate while the other rejected it. In the vast majority
of cases, this points to a bug in the “accepting” library [56].

Note that SGX enclaves do not have access to a trusted
source of (absolute) time, which is required for certificate
validation (incidentally, many bugs discovered in [56] were
due to incorrect verification of a certificate’s validity period).
Yet, for the differential testing process described here, it is
sufficient for the time used by both libraries to be consistent.
We thus allow the seller to provide the “current time” as part
of the exploit, and then attest that the two libraries behave
differently for the certificate and time provided by the host.

As an example of an exploit proof, we consider a bug
discovered in [56]: in an earlier version of mbedTLS, cer-

tificates would be accepted even if not yet valid. We craft an
exploit consisting of a standard self-signed X.509 certificate
and a “current time” set in the past. The certificate is
accepted by the unpatched version of mbedTLS but correctly
rejected by OpenSSL, thus proving knowledge of a bug.

MITM Attacks on TLS Handshakes. Consider a generic
network adversary that can observe, delay, drop or alter mes-
sages sent between parties. Such man-in-the-middle (MITM)
attacks encompass a wide range of attacks on HTTPS con-
nections, and TLS handshakes in particular.

To prove knowledge of such exploits, we require a secure
and trusted “simulation environment”. To this end, we set
up an enclave running honest server and client applications
(that know each others’ certificates), and have them perform
a TLS handshake over an adversarial network. The goal of
the prover is to show her attack is successful in extracting
some secret (e.g., a key) from the honest applications. If we
assume that enclaves guarantee confidentiality, this could
easily be achieved: The network would be simulated by
having each message between client and server be mediated
by the host (the prover). If the prover can provide a secret
at the end of this interaction, the transcript of all messages
sent between client and server constitutes a proof of exploit.

In our transparent model, things are a little trickier. As
the client’s and server’s secrets are expected to irremedia-
bly leak to the prover through side-channels, we need the
prover to commit to her exploit code before the secrets
are generated. This is achieved by loading the prover’s
exploit code into a separate enclave. The network is then
simulated by forwarding all messages to this “adversary
enclave”. This will become possible with Intel’s upcoming
SGX2 processors [39], which will support dynamic memory
management. One could then use a trusted loader enclave
to dynamically load and run the prover’s exploit code.

Yet, for the exploit to be “meaningful” we still require
that the exploit code, once loaded, only receives information
through well-specified interfaces. Recalling our discussion
in Section 4.1, a concern is that the prover transmits in-
formation to her exploit code over covert channels; this
threat can be mitigated through sandboxing or by limiting
the functionality of dynamically loaded code.

8. Related Work

Isolated Execution Environments. The use of trusted
hardware for secure computation dates back to platforms
such as XOM [57], Aegis [16] or TPM-based solutions
such as Flicker [18]. These secure processors, and their
successors such as SGX [1], aim to create execution envi-
ronments which provide execution integrity, authenticity and
confidentiality. A number of proposed applications leverage
these platforms to securely outsource computations. Recent
examples built on SGX include M2R [19], VC3 [20] and
Haven [21]. These systems critically rely on enclave confi-
dentiality to protect data and code from an untrusted cloud.

Trusted Hardware and Side Channels. Many attacks on
applications built on top of trusted hardware have focused
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on breaking confidentiality, by exploiting data leakage from
side channels, e.g., page-faults [2], [3]. Although side-
channel attacks on memory integrity have been demon-
strated across virtual machines [58], to the best of our
knowledge, no successful attacks are known against enclave
integrity or authenticity, at least for Intel’s SGX platform.
Many prior works leveraging SGX dismiss side-channel
attacks as out of scope [19]–[22], [29]. Others suggest
more defensive architectures or programming paradigms,
with the goal of eliminating or reducing data leakage from
enclaves [3], [9], [11]–[15]. Our work appears to be the first
to explicitly forgo enclave confidentiality, and explore appli-
cations that are achievable under these weaker assumptions.

Verifiable Computing and ZK Proofs. Verifiable com-
puting (possibly in ZK) is an active field of study in the
cryptography community. Despite recent improvements, so-
lutions based on ZK-SNARKs [43], [44] or garbled cir-
cuits [59], [60] remain impractical in most settings. In the
context of a bug-bounty platform, another limitation of these
approaches is that they typically require code to be compiled
into some specialized circuit representation, which tend to
cover only a small subset of programs and bugs of interest.

Bug Bounties. Netscape launched the first bug bounty
program in 1995 [61]. Today, bug bounties are widespread
in industry, with a fast growth in rewarded discoveries and
number of bounty hunters [62]. Illegal markets for 0-day
exploits are also emerging, under the cover of anonymity
provided by Tor or Bitcoin [63]. These programs and mar-
kets do not guarantee fair-exchange, as buyers or sellers can
abort transactions after obtaining their share of the goods.

While our SGX-based bug bounty platform requires ap-
plications to be explicitly ported to the enclave programming
model, this results in a significantly smaller exploit setup,
compared to “universal” platforms such as Haven [21].

Cryptocurrencies and Fair-Exchange. A number of
works have used cryptocurrencies to incentivize fair behav-
ior in multiparty computations, through threats of monetary
penalties [64]–[66]. The use of Bitcoin transactions and
smart contracts for the sale of information has been consid-
ered in [24], [25], [67]. Our work extends such techniques
with the use of transparent trusted hardware.

9. Conclusion

We have introduced Sealed-Glass Proofs (SGPs), a novel
cryptographic functionality based on transparent enclaves
trusted for execution authenticity and integrity, but not con-
fidentiality. When realized on top of Intel’s SGX, SGPs
sidestep many concerns about data leakage in the presence
of side-channels. We have shown that SGPs generalize many
interesting functionalities in the UC framework, inducing
verifiable computing, commitment schemes, and ZK proofs.

We have described how SGPs combined with smart con-
tracts can create knowledge marketplaces with previously
unachieved combinations of efficiency, denial-of-service re-
sistance, fair exchange, and fulfillment guarantees. As an

application, we have implemented an end-to-end bug-bounty
system leveraging Intel’s SGX and the Ethereum blockchain.
We have used our system to prove knowledge of a SQL-
Injection bug in a sample web login form and inconsisten-
cies in certificate validation logic between two TLS libraries.

Finally, we have proposed future paths to even broader
and more efficient constructions, either through moderate
relaxations to the transparent enclave model, or through
extensions to smart contract and trusted hardware platforms.
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Appendix A.
Proof of Theorem 1

Proof. Let A be a static adversary against ProtSGP in the
FTEE-hybrid model. We construct an ideal-world adversary
(the simulator) Sim such that no environment Z can distin-
guish between interactions with A and ProtSGP or with
Sim and FSGP.

We consider two cases, where P is either honest or
corrupted (i.e., controlled by the adversary), and prove
indistinguishability via a sequence of hybrids. In the
following, a probability is considered negligible if it is a
negligible function of the security parameter λ.

Corrupt Prover: Consider the following sequence of
hybrids, starting from a real-world execution of ProtSGP.
Hybrid H1 lets Sim emulate FTEE. H2 rules out forgery
attacks on Σ. H3 ensures that a single enclave is used
throughout the protocol and H4 ensures that the prover
correctly forwards information between FTEE and V .
Finally, H5 is equivalent to an ideal execution.
Hybrid H1 proceeds as in the real protocol, except that Sim
emulates FTEE by generating a keypair (pkTEE, skTEE) for
Σ and publishing pkTEE. When the adversary A wants to
communicate with FTEE, Sim records A’s messages and
faithfully emulates FTEE’s behavior.

As A’s view in H1 is emulated perfectly as in the real
execution, we have that Z cannot distinguish between H1

and the real execution.
Hybrid H2 is the same as H1 except for the following
modifications. If A invoked FTEE with a correct message
(sid, idx, “install”, p̂rog), then for every “resume” call to
p̂rog, Sim records a tuple (msg, σ) where msg is the output
of p̂rog, and σ is the produced attestation under skTEE. Let
Ω denote the set of all such tuples. Whenever A sends a
signature σ to V , let msg be the message over which V
verifies σ in ProtSGP. Then, if (msg, σ) /∈ Ω, Sim aborts.

We can show that H2 is indistinguishable from H1 by
a reduction to the EU-CMA property of Σ: If A does not
send one of the correct messages in Ω to V , V’s signature
verification would fail with all but negligible probability
— otherwise, Z and A can be leveraged to construct an
adversary that succeeds in a signature forgery.
Hybrid H3 proceeds as in H2, except for the following
difference. When A sends (sid, “receipt”, N, σC) to V , let idx
be the identifier of the enclave running p̂rog that produced
N and σC (if no such idx exists, Sim aborts). Then, if A ever
sends a message to V containing a signature σ generated by
an enclave with a different identifier idx′ 6= idx, Sim aborts.

First note that if an idx as defined above doesn’t exist,
then V’s signature verification will fail (i.e., the nonce sent
by A does not match the one signed by p̂rog). As FTEE

samples new randomness on every “resume” call, launching
multiple enclaves running p̂rog will produce a new nonce
N ′ 6= N with overwhelming probability, implying that V’s
signature verification for σP or σO will fail. H3 and H2 are
thus indistinguishable.

Hybrid H4 proceeds as in H3 with the following dif-
ferences. When A sends (sid, “receipt”, N, σC) to V , Sim
records the input inpP that A sent to FTEE to obtain σC.
If the verifier submits a challenge inpV , Sim forwards it to
A. When A sends (sid, “proof”, outp, σP) to V , Sim aborts
if outp and σP were not obtained from a “resume” call
to p̂rog with input (“prove”, inpV) (where inpV = ⊥ if V
sent no challenge). Sim also aborts if A sends a message
(sid, “open”, inp, σO) to V where inp 6= inpP .

H4 and H3 are trivially indistinguishable, as in both of
the described abort cases, V’s signature verification fails.
Hybrid H5 is as H4, except for the following differences:
When A sends (sid, “receipt”, N, σC) to V , Sim finds the
recorded input inpP that A sent to FTEE to obtain (N, σC),
and sends (sid, “commit”, inpP) from P to FSGP in the
ideal-world. When A asks FTEE to resume p̂rog with input
(“prove”, inpV), Sim sends (sid, “prove”) to FSGP on P’s
behalf, and obtains (sid, “proof”, outp, r) from FSGP. To
emulate FTEE’s response to A, Sim then simply uses this
randomness r. When A sends (sid, “proof”, outp, σP) to V ,
Sim lets FSGP deliver the output to V in the ideal world.
Finally, when A sends (sid, “open”, inpP , σO) to V , Sim
sends (sid, “open”) to FSGP.

It is immediate that A’s view in H4 is distributed
identically from the view in H5, as the only difference is
that in H4 the randomness r is randomly sampled by Sim,
and in H5 it is sampled by FSGP.

It remains to observe that in H5, Sim can interact
directly with FSGP in the ideal-world, faithfully emulate
A’s view in the real-world, and then output exactly what
A outputs. Thus, no environment Z can distinguish an
interaction with A and the real protocol ProtSGP from an
interaction with Sim and FSGP.

Honest Prover: Simulating the view of a network ad-
versary or of a corrupt verifier is considerably simpler, as
V sends at most a single message in ProtSGP. We directly
describe Sim’s behavior:
• Upon receiving a message (sid, “commit”) from FSGP,

Sim sends a valid message (sid, “receipt”, N, σC) to V
(whether honest or corrupt), for a randomly chosen
nonce N , and a correct attestation σC.
• If V is honest and Sim gets (sid, “challenge”, inpV)

from FSGP, Sim simply emulates a message
(sid, “challenge”, inpV) to P. Otherwise, if V is
corrupted and A sends (sid, “challenge”, inpV)
to the honest P on V’s behalf, Sim sends
(sid, “challenge”, inpV) to FSGP on V’s behalf.
• If Sim receives (sid, “proof”, outp) from FSGP, Sim

emulates a message (sid, “proof”, outp, σP) from P to
V , where σP is a valid signature under skTEE over inpV ,
outp and N .
• Finally, when the commitment to FSGP is opened, Sim

obtains (sid, “open”, inpP) from FSGP and can emulate
a valid opening (sid, “open”, inpP , σO) to V , by creating
a valid signature σO over inpP and N .
The simulation of A’s view is perfect: V obtains valid

digital signatures σC, σP, σO from P, that are linked by a
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randomly chosen nonce N . The real-worlds and ideal-world
executions are thus indistinguishable to Z .

Appendix B.
Proof of Theorem 3

Proof. Let A be a static adversary against ProtKM in the
FSGP-hybrid model. We construct an ideal-world simulator
Sim, such that no environment Z can distinguish between
interactions with A and ProtKM or with Sim and FKM.
We first describe the simulator Sim, which internally runs a
copy of the real-world adversary A. Note that the wrappers
F , G and Π around ideal contracts, real-world contracts and
protocols, defined in [42], are implicit.

In each round, the simulation generically proceeds as
follows: If a message is sent by an honest party to FKM, Sim
obtains information from the “immediate actions” executed
by FKM. Sim then appropriately emulates the same actions
for its internal copy of A, as described in more detail for
each message type below. If messages are sent to KM-Buyer
on behalf of corrupt parties, Sim records those messages and
awaits the end of the round. Then, Sim obtains the order
chosen by A for processing messages in KM-Buyer. For
those messages that pass KM-Buyer’s “assert” statements,
Sim sends an appropriate message on behalf of a corrupted
party to FKM (details below), and instructs FKM to process
these messages in an order that is consistent with the real-
world execution.

We now provide further details on the processing of
specific messages in each round:
(1) Initialization Phase:
• Sim obtains (sid, “init”,B, $Reward, timeout) by query-

ing FKM’s state if the Buyer B is honest. It then
faithfully emulates B’s role in ProtKM by generating
a keypair (pkB, skB) and emulating an “init” message to
KM-Buyer.
• If the Buyer B is corrupt, Sim gets

(sid, “init”, prog, $Reward, timeout, pkB) when A
sends it to KM-Buyer. On behalf of B, Sim then sends
(sid, “init”, prog, $Reward, timeout) to FKM.
• In both cases, Sim will emulate interactions between

KM-Buyer and FSGP, on behalf of A or honest parties.

(2) Commitment Phase:
• If an honest Seller Si is invoked with input

(sid, “commit”, inpSi), Sim obtains (“receipt”,Si, T )
by querying FKM’s state. Sim then emulates a
message (Si, “commit”) to KM-Buyer on behalf of
FSGP[p̂rog,Si,KM-Buyer]. At the end of the round, Sim
emulates KM-Buyer’s processing of the message.
• If a corrupt Seller Sj sends a message to FSGP, Sim

records the message and faithfully emulates FSGP’s
response. If Sj sends (Sj , “commit”, (inpSj , pkB)) to
FSGP[p̂rog,Sj ,KM-Buyer], where pkB is the Buyer’s
public key, Sim sends (sid, “commit”, inpSj ) to FKM on
the behalf of the corrupt Sj .

(3) Claiming Phase:

• The ordering of “claim” messages in a round may
determine which successful seller receives the reward.
At the end of a round, Sim thus chooses the same
ordering of messages for FKM as the one chosen by
A for KM-Buyer (ignoring messages that are rejected
by KM-Buyer).
• If an honest seller Si sends (sid, “claim”) to FKM but

the evaluation of prog(inpSi , r) fails, Sim learns nothing
from FKM. This models the real-world where the ad-
versary learns nothing if an honest seller interacts with
FSGP (and thus FTEE) and the evaluation of prog fails.
• If an honest seller Si sends (sid, “claim”) to FKM

and the evaluation of prog succeeds, Sim obtains
(“claimed”,Si) by querying FKM’s state if B is
honest, and also inpSi if B is corrupt. Sim com-
putes c := EncpkB(inpSi) if B is corrupt, and
c := EncpkB(0) otherwise. In both cases, Sim gen-
erates a message (sid, “proof”, (c, pkB)) on behalf of
FSGP[p̂rog,Si,KM-Buyer] to KM-Buyer.
• If a corrupt Seller Sj sends (Sj , “prove”) to
FSGP[p̂rog,Sj ,KM-Buyer], Sim emulates FSGP

as follows: If Sj had previously correctly committed
to an input inpSj , Sim sends (sid, “claim”) to FKM on
Sj’s behalf (here Sim does not wait until the end of the
real-world round to interact with FKM, as it needs to
obtain the randomness r from FKM to proceed with the
simulation). If the ideal contract is in a correct state, Sim
obtains r. Sim then faithfully emulates FSGP’s response
to the “prove” call, with randomness r. If the evaluation
of p̂rog succeeds, Sim sends (Si, “proof”, (c, pkB)) to
KM-Buyer on FSGP’s behalf, where c := EncpkB(inpSi)
if B is corrupted, and c := EncpkB(0) otherwise.
• At the end of the round, Sim applies the same processing

order to FKM asA chooses for KM-Buyer. If at least one
seller (honest or corrupt) correctly claimed the reward in
this round, the first seller Si to have her claim processed
will obtain the reward.

(4) Timer: Note that the timer functionality is the same in
the real and ideal worlds and can thus be simulated perfectly.
Specifically, whenever the environment instructs an honest
party to send a tick to FKM in the ideal world, Sim is
notified of this and can emulate sending a tick to KM-Buyer
on behalf of the honest party in the real world [42].

(5) Internal State: On any call (sid, “get-state” to
KM-Buyer, Sim simply responds by first querying FKM’s
state, and crafting appropriate “extra data” D′. Specifi-
cally, after KM-Buyer has been initialized, D′ contains
(p̂rog, pkB) which Sim obtained from A. After a successful
claim, D′ further contains the simulated ciphertext c pro-
duced by Sim.

Consider a sequence of hybrids, starting from a
real-world execution of ProtKM. Hybrid H1 lets Sim
emulate FSGP and KM-Buyer. H2 has Sim emulate the
initialization and commitment phases. H3 replaces the
random coins of FSGP by those of FKM, and H4 replaces
ciphertexts under pkB by encryptions of 0, when B is honest.
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Hybrid H1 proceeds as in the real protocol, except that
Sim emulates FSGP and KM-Buyer. When the adversary
A wants to communicate with FSGP or KM-Buyer, Sim
records A’s messages and faithfully emulates FSGP’s or
KM-Buyer’s behavior.

As A’s view in H1 is emulated perfectly as in the real
execution, we have that Z cannot distinguish between H1

and the real execution.

Hybrid H2 is the same as H1, except that Sim emulates the
initialization and commitment phases. As described above,
if B is honest, Sim generates (pkB, skB) and initializes
KM-Buyer. If B is corrupt, Sim simply initializes FKM

on B’s behalf, using the information provided by A. In
the commitment phase, Sim extracts inputs committed by
corrupt parties when sent to FSGP, and forwards them to
FKM. When an honest seller commits in the ideal-world,
Sim simply emulates a valid acknowledgement on behalf
of FSGP, and updates the state of the emulated KM-Buyer
contract.

It is trivial to see that A’s view in H2 is distributed
exactly as in H1, by the definition of FSGP.

Hybrid H3 is the same as H2 except for the following
modification. When a corrupt Seller Sj sends (Sj , “prove”)
to FSGP[p̂rog,Sj ,KM-Buyer], Sim checks that Sj had pre-
viously committed a value inpSj , and otherwise ignores
the message. Then, Sim sends (sid, “claim”) to FKM on
Sj’s behalf. If the ideal contract is in a correct state, Sim
obtains r, and emulates FSGP’s computation of p̂rog, with
randomness r. Otherwise, Sim emulates FSGP by sampling
r on its own, and sending the response to KM-Buyer.

We observe that A’s view in H3 is distributed exactly
as in H2: If FKM rejects Sj’s message, KM-Buyer would
also reject a message from FSGP[p̂rog,Sj ,KM-Buyer], as
the timer and state of FKM and KM-Buyer are identical
throughout the simulation. Finally, if FKM accepts the
message, the only difference between H2 and H3 is that in
H2 the randomness used in FSGP is sampled by Sim, and
in H3 it is sampled by FKM.

Hybrid H4 proceeds as in H3, except for the following dif-
ference. If the Buyer is honest, then Sim replaces any mes-
sage (sid, “proof”, (c, pkB)) sent by FSGP to KM-Buyer, by
a message (sid, “proof”, (c′, pkB)), where c′ := EncpkB(0).

Indistinguishability between H4 and H3 can directly
be reduced to the semantic security of Enc. If the Buyer
is honest, A has no knowledge of pkB, and thus cannot
distinguish encryptions of 0 from encryptions of valid
program inputs.

It remains to argue that H4 is indistinguishable from
the ideal execution: If B is honest, in H4 the adversary
only obtains encryptions of 0, in lieu of the honest parties’
inputs. To claim a reward, a corrupt Sj needs to commit to
a valid input inpSj using FSGP, and in a later round ask
FSGP to produce the proof. Sim can extract inpSi when it
is sent to FSGP, and commit it to FKM on behalf of Sj .
In later rounds, FSGP uses the same randomness as FKM

to run prog, and thus produces a valid proof for KM-Buyer

exactly when a claim succeeds in FKM as well.
If the Buyer is corrupt, the adversary in H4 obtains a

valid ciphertext for the Seller (whether honest or corrupt)
that submits a successful claim, and can thus extract a valid
input. If the adversary had previously committed to a valid
input on behalf of a corrupted party, it can still claim the
actual reward, as also allowed in FKM, by selecting the
message processing order.

Finally, timeouts in FKM and KM-Buyer occur exactly
in the same round, and result in the Buyer recovering her
reward if no successful claim was made.
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