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Abstract

This paper presents a security bound in the standard security model for the
Magma cipher CTR encryption mode and the «CryptoPro Key Meshing» ( CPKM )
re-keying method that was previously used with the GOST 28147-89 cipher. We
enumerate the main requirements that should be followed during the development
of re-keying methods, then we propose a modified method and justify its advantages
over CPKM . We also obtain certain results about the operational features of the
Kuznyechik cipher CTR encryption mode with several re-keying methods.

1 Introduction
The effectiveness of many cryptanalytic methods (see, e.g. [7] and [8]) depends heavily

on amount of material (e.g., pairs of plaintext and ciphertext) obtained using a single
key. The amount of data that is processed with one key is called a key capacity. The key
capacity should be limited in order to prevent the adversary to obtain any significant
information, which results in the necessity to use special encryption modes that assume
a key transformation every time after a given amount of data is processed.

The introduction of new Magma and Kuznyechik (see [1]) standard block ciphers
and their encryption modes (see [2]) in Russia makes it necessary to define some re-
keying methods. The re-keying method for the GOST 28147-89 algorithm [9] is defined
in [5] and is called «CryptoPro Key Meshing». In the paper [6] the combinatorial and
probabilistic properties of this method are analyzed, but there is no analysis of its impact
on cryptographic properties of the used encryption mode. As there is an opportunity to
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use this re-keying method or methods based on it with the new block ciphers it is relevant
to analyze the properties of encryption modes which include a re-keying method.

This task was addressed by Abdalla and Bellare in [3] –– a motivation was given,
criteria for such mechanisms were obtained, two schemes were proposed and complete
and correct proofs were given.

These two schemes have the following issue: both of them require an additional key,
which is never used directly for the encryption but is used for key transformations. And
it seems to be the only reasonable approach if we have to protect a key for some section
even in the case when a session key for the other section is compromised. In the current
work we consider the question of constructing such a mechanism without additional keys
— in an adversary model that is a little weakened appropriately for the considered case.

In developing a new re-keying method the operational differences between the Magma
and Kuznyechik ciphers, such as block size and key extension complexity, should be taken
into account. Therefore it is interesting to analyze the influence of the Kuznyechik ’s
features with re-keying method on the efficiency of the extended encryption mode.

2 Notations
By Vn we denote a set of n -component bit vectors. We denote by M(i) the i -th bit,

i ∈ {0, . . . , n− 1} , of the string M ∈ Vn . For A ∈ Vn and B ∈ Vm we denote by A||B a
string A(0)|| . . . ||A(n−1)||B(0)|| . . . ||B(m−1) ∈ Vn+m . Let |M | be a bit length of the string
M , and |M |8 – a byte length.

For some set A we will denote by Perm(A) a set of all bijective mappings on A
(permutations on A ), and by Func(A) — a set of all mappings from A to A . A
block cipher E (or just a cipher) is a set of permutations {EK |K ∈ Vk} ⊆ Perm(Vn) ,
where K is a key. For M ∈ Vmn we denote by Mi , 0 6 i 6 m − 1 , a string
M(i·n)||M(i·n+1)|| . . . ||M(i·n+n−1) ∈ Vn and call it the i -th block of the string M . Thus the
string M is presented as M = M0||M1|| . . . ||Mm−1 . If IV ∈ Vn

2
, then we assume that

IVi , i ∈ {0, 1, . . . , 2
n
2 − 1} , is a string IV ||i ∈ Vn , implying without additional notations

that IV is concatenated with n/2 -bit representation of the number i , defined according
to [2].

We model an adversary using a probabilistic Turing machine. If an algorithm A with
inputs X1, . . . , Xt returns Y as a result, then let A(X1, . . . , Xt) ⇒ Y . If a value s
is chosen from a set S at random according to uniform distribution, then let s ∈U S .
We suppose that A(t, a, b, . . .) is a set of the adversaries whose computational resources
(a sum of program size and average complexity) are not greater than t and the other
parameters (e.g. a number of requests to oracles) are limited with values a, b, . . . (the
sense of these parameters is explained in each specific case). If T is a decisional task
where an adversary A should distinguish a bit b , then the advantage of this adversary
in the T task is

AdvT (A) = Pr [A⇒ 1|b = 1]− Pr [A⇒ 1|b = 0] .
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3 Block ciphers encryption modes
Block cipher is used as a basic function to construct some protocols. The challenge

of confidentiality is solved with the use of block cipher in a special way. In this case we
indicate «an encryption mode».

In the present paper we consider a CTR encryption mode, defined according to [2] (in
case, when s = n ): the result of the encryption of a message M =M0|| . . . ||Mm−1||Mm ,
M0, . . . ,Mm−1 ∈ Vn , Mm ∈ Vr , is a string IV ||C0|| . . . ||Cm−1||Cm , where IV ∈ Vn

2
,

Ci = Mi ⊕ EK(IVi) and Cm = Mm ⊕ EK(IVm)(0)|| . . . ||EK(IVm)(r−1) . In addition, the
strings IV are different for different messages processed with one key.

A periodical key transformation for long message processing is considered as an ex-
tension of the basic encryption mode. The «CryptoPro Key Meshing» re-keying method
for the GOST 28147-89 algorithm [9] is defined in [5] in the following way:

Ki+1 = E−1Ki
(D1)||E−1Ki

(D2)||E−1Ki
(D3)||E−1Ki

(D4),

where D1, D2, D3, D4 ∈ V64 are pairwise different constants.
We consider an incomplete version of the CPKM method, where only the key is

changed. There is an additional rule for changing IV in the original CPKM method. For
the Kuznyechik cipher we assume an algorithm that is similar to CPKM but uses two
128 -bits constants instead of four, and we denote it by CPKM128 .

We denote by CTR-CPKMl the CTR encryption mode that assumes the key trans-
formation according to the CPKM method after every l processed blocks of message.
The string which consists of message blocks processed using one key is called «a section».

4 The target properties of the perspective re-keying
method

The requirements to the re-keying method which is used in high-level cryptographic
protocols can be divided into operational and cryptographic. The main operational re-
quirements are:

1. Maximal efficiency in case of short data processing — the first section should be
processed using the initial key.

2. Efficiency — the data processing speed with the re-keying method is not much
different from the speed without it.

The cryptographic requirements are formulated in the following way:

1. Common security — the use of the re-keying method should improve the security
properties of the initial encryption scheme.

3



2. Security in the extended model — the complexity of one section key disclosure
with side channels information should slightly differ from cases where adversary
additionally has the same information about keys of other sections.

3. Forward secrecy — the comprometation of the key used in one section should not
compromise the keys or data used in previous sections.

These requirements should be followed during the development of re-keying methods
with the new standard block ciphers and theirs encryption modes.

In section 6 we give the security bounds of the CTR-CPKMl encryption mode in the
common model, i.e. we analyze whether the CPKM method satisfies the first requirement.

The re-keying methods which are similar to CPKM satisfy the first operational re-
quirement. The second requirement is considered in section 8, where we show certain
results about the operational features of the Kuznyechik cipher in the CTR encryption
mode with several re-keying method.

5 Known models and security bounds
It is a common practice to bound security of block ciphers in the PRF and PRP-CСA

models (see, e.g. [4]), for clarity we call them tasks.

Definition 5.1. A PRF («Pseudo Random Function») task for a cipher {EK : Vn →
Vn|K ∈ Vk} is the following decisional task. An adversary A has access to an oracle
OPRF which operates in the following way. Before starting the work the oracle OPRF

chooses b ∈U {0, 1} . If b = 0 , then OPRF chooses a function F ∈U Func(Vn) and if
b = 1 , then it chooses a key K ∈U Vk . The oracle OPRF with input M ∈ Vn returns
either F (M) (if b = 0 ) or EK(M) (if b = 1 ).

The advantage of the cipher E in the PRF task with parameters t and q ( q is a
number of queries to the oracle OPRF ) is

AdvPRF
E (t, q) = max

A∈A(t,q)
AdvPRF

E (A) .

Definition 5.2. A PRP-CCA («Pseudo Random Permutation in Chosen Ciphertext
Attack») task for a cipher {EK : Vn → Vn|K ∈ Vk} is the following decisional task.
An adversary A has access to oracles OPRP and OPRP−1 which operate in the following
way. Before starting the work the oracle OPRP chooses b ∈U {0, 1} . If b = 0 , then OPRP

chooses a permutation R ∈U Perm(Vn) , and if b = 1 , then it chooses a key K ∈U Vk .
The oracle OPRP with an input M ∈ Vn returns either R(M) (if b = 0 ) or EK(M)
(if b = 1 ). The oracle OPRP−1 takes the input string M and returns the result of the
permutation that is the inverse of the function realized by the oracle OPRP .

The advantage of the cipher E in the PRP-CCA task with parameters t and q1, q2
( q1 is a number of queries to the oracle OPRP , q2 is a number of queries to the oracle
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OPRP−1 ) is
AdvPRP-CCA

E (t, q1, q2) = max
A∈A(t,q1,q2)

AdvPRP-CCA
E (A) .

In case of the block cipher that has no specific methods to decrease the security, the
values AdvPRF

E (t, q) and AdvPRP-CCA
E (t, q1, q2) are bounded considering the character-

istics of common methods which solve these tasks. For the PRF task it is a method based
on the birthday paradox, and for the PRP-CCA task it is a brute force attack. So for
such cipher E we assume the following approximations:

AdvPRP-CCA
E (t, q) ≈ t

2k
, AdvPRF

E (t, q) ≈ t

2k
+
q2

2n
. (1)

A standard model to bound security of encryption modes is a LOR-CPA task (see,
e.g. [4]).

Definition 5.3. A LOR-CPA («Left Or Right in Chosen Plaintext Attack») task for
a SE encryption mode is the following decisional task. An adversary A has access to
an oracle OLOR that operates in the following way. Before starting the work the oracle
OLOR chooses b ∈U {0, 1} . The adversary A can make requests to the oracle OLOR ,
each of these requests is a pair of strings (M0,M1) , where |M0| = |M1| . In response
to the request (M0,M1) the oracle returns a string C that is a result of the processing
string M b according to the SE encryption mode.

The advantage of the SE mode in the LOR-CPA task with parameters t, q,m ( q
is a number of queries to the oracle OLOR , m is a maximal amount of blocks that the
messages in query can consist of) is

AdvLOR-CPA
SE (t, q,m) = max

A∈A(t,q,m)
AdvLOR-CPA

SE (A) .

Theorem 5.4. [4] The following inequality holds

AdvLOR-CPA
CTR (t, q,m) 6 2 ·AdvPRF

E (t+ q + nqm, qm) .

6 Security bound of the CTR-CPKM encryption mode
in the LOR-CPA model

The main element of the proof of the theorem on security of the CTR-CPKMl en-
cryption mode is the introduction of an intermediate IND-KMl,m task, that is used to
replace the CTR-CPKMl mode by the abstract CTR-RKl mode where a key is chosen
at random for every new section.

Definition 6.1. An IND-KMl,m task, where l,m ∈ N , for a set of permutations F ⊂
Perm(Vn) is the following decisional task. An adversary A has an access to an ora-
cle OIND-KMl,m , that stores an initialy empty set I . Before starting the work the oracle
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OIND-KMl,m chooses bit b ∈U {0, 1} and a permutation F ∈U F . The first query of the
adversary A is a number j ∈ {0, 1, . . . ,m− 1} . The oracle OIND-KMl,m returns a string
K ′ = F−1(D1)||F−1(D2)||F−1(D3)||F−1(D4) in response, if b = 1 , and K ′ ∈U Vk ,
if b = 0 . The following queries of the adversary A to the oracle are empty strings.
In response to each of these queries the oracle OIND-KMl,m operates as follows: chooses
IV ∈U Vn

2
\ I , adds the element IV to I and returns IV ||F (IVj·l)|| . . . ||F (IVj·l+l−1) .

We denote by AdvIND-KMl,m

F (t, q) the following value:

AdvIND-KMl,m

F (t, q) = max
A∈A(t,q)

AdvIND-KMl,m

F (A) .

Lemma 6.1. The following inequality holds

AdvIND-KMl,m

E (t, q) 6 2 ·AdvPRP-CCA
E

(
t+ q · n

2
, q · l, 4

)
+

8ql + 6

2n
+

(
4ql

2n

)2

.

The following final bound holds.

Theorem 6.2. The inequality holds for natural l , t , q and m for k ∈ {4n, 2n}

AdvLOR-CPA
CTR-CPKMl

(t, q,ml) 6 4m ·AdvPRP-CCA
E

(
t+mlq + q · n

2
, q · l, k

n

)
+

+ 2m ·AdvPRF
E (t+ qml, ql) + 2mδ,

where δ = 8ql+6
2n

+
(
4ql
2n

)2
, if k = 4n , and δ = 4ql+1

2n
+
(
2ql
2n

)2
, if k = 2n .

Compare the security bounds of the CTR and CTR-CPKMl modes in the LOR-CPA
model. We assume that for the used cipher E the assumptions (1) hold. If these assump-
tions hold it can be shown that the obtained bounds for the CTR and CTR-CPKMl

modes are achievable. We also assume that 2k � 2n , that holds for the Magma and
Kuznyechik ciphers. For convenience we use the value ml instead of m in case of the
CTR mode. So amount of processed blocks is at most equal to qml . If qml < 2n/2 and
t� 2k then for the Magma cipher the following inequalities hold

AdvLOR-CPA
CTR (t, q,ml) ≈ 2m2q2l2

2n
+
t+ q + nmql

2k
≈ m2 · 2q

2l2

2n
,

AdvLOR-CPA
CTR-CPKMl

(t, q,ml) ≈ 2m

(
2 · t+ qml

2k
+
q2l2

2n
+
t+ qml

2k
+ δ

)
≈ m · 2q

2l2

2n
.

These relations indicate that the security of the CTR-CPKMl mode is improved in com-
parison with the security of the basic CTR mode. The arguments and the final conclusions
for the Kuznyechik cipher and the CPKM128 re-keying method are similar to the Magma
cipher.
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7 Open questions
Despite the fact that the CPKM re-keying method improves the security of the CTR

encryption mode, this re-keying method has the following properties:

• a key with equal n -bit blocks cannot be a result of the CPKM method;

• if there is a block of gamma that coincides with one of the constants used in the
CPKM method then an adversary obtains a part of the key of the next section.

Consider the following method that doesn’t have the second property that can be
regarded as disadvantage:

K ′ = KMl(K) = EK(ϕ(D1))||EK(ϕ(D2))||EK(ϕ(D3))||EK(ϕ(D4)),

whereϕ : V64 → V64 , ϕ(X1||X||X2) = X1||1||X2 for X1 ∈ V32 , X2 ∈ V31 , X ∈ V1 and
D1, D2, D3, D4 ∈ V64 are arbitrary constants such that ϕ(D1), ϕ(D2), ϕ(D3), ϕ(D4) are
pairwise different values. The message size should be less than 2n/2−1 .

The given limitation on a value l , the use of the encryption instead of the decryption
and the additional function ϕ guarantee that blocks encrypted using this method cannot
coincide with blocks IVi . This follows from the fact that for any IVi the most significant
bit of the second semiblock is 0 and the function ϕ set this value to 1 .

A security bound of the CTR-KM mode is obtained in the same way as for the
CTR-CPKM mode but there are several differences that support the KM method. The
first difference is that in the final bound the value AdvPRP-CCA

E (·, ·, ·) is replaced by
AdvPRP-CPA

E (·, ·) . It is known (see, e.g. [4]) that AdvPRP-CPA
E (·, ·) 6 AdvPRP-CCA

E (·, ·, ·) ,
but the capabilities of adversaries in the PRP-CCA model is significantly greater then the
capabilities in the PRP-CPA task. If new methods that decrease a cipher security appear
it is more likely that AdvPRP-CPA

E (·, ·) will be strictly less than AdvPRP-CCA
E (·, ·, ·) . The

second difference is that the value δ in Theorem 6.2 will decrease as the KM method
doesn’t allow to consider adversaries that use the second property described above in
order to solve the IND-KMl,m task.

Also the KM method has some operational advantages over CPKM . For some ciphers,
particularly for Kuznyechik , encryption and decryption code are very different. Therefore
it is relevant to use encryption procedure instead of decryption one in the re-keying method
in order not to increase the code size.

Note that the KM method has the first combinatorial property described above.
This property was analyzed in detail in [6]. It could be regarded as disadvantage but
as Theorem 6.2 shows this property doesn’t influence on the security in the model with
computationally limited adversary.
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8 Influence of the Kuznyechik’s properties on efficiency
of the CTR mode with re-keying method

The use of the re-keying method with any encryption mode decreases data processing
speed. We analyze the correlation between encryption efficiency and value l , re-keying
method and procedures related to this method. The IV transformation was not made.
The measurement was made during the encryption of one long message in the CTR
mode. The computer with the following characteristics was used: Intel Core i5-6500 CPU
3.20GHz, L1 D-Cache 32 KB x 4, L1 I-Cache 32 KB x 4, L2 Cache 256 KB x 4.

Speed of the encryption process in the CTR mode in the case where the re-keying
method was not used is equal to 335 MB/s. In the tables below the speed is expressed
in megabytes per second.

l 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB
320.8 322.5 324.2 325.4 326.5 329.4 330.0

Table 1: A key is not changed, a repeated key extension is not made — slowing is explained
by a repeated function call.

l 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB
142.2 197.9 247.3 281.3 302.7 308.9 316.6

Table 2: The key is not changed, but there is the repeated key extension.

The Table 2 shows a contribution of the key extension in the complexity of the key
transformation.

l 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB
132.7 186.1 233.4 266.9 287.6 300.0 306.0

Table 3: The CPKM128 re-keying method.

l 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB
134.2 192.9 242.6 277.3 300.0 308.6 315.6

Table 4: The KM re-keying method.
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9 Conclusion
Results obtained in this paper show that the use of the CPKM method with the

CTR mode improves the security properties of the initial encryption mode in the standard
security model. We propose a modified method and justify its advantages over the CPKM
method. We obtain certain results about the operational features of the Kuznyechik cipher
in the CTR encryption mode with several re-keying methods.
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11 Appendix
Definition 11.1. For all l ∈ {1, 2, . . . , 2n

2 } and m ∈ {1, . . . , 2n
2 /l} a LOR-CPAm,l

task is a following decisional task. An adversary A has access to an oracle OLORm ,
that operates in the following way. Before start of the work the oracle OLORm chooses
b ∈U {0, 1} . The adversary A makes the first request j ∈ {0, 1, 2, . . . ,m−1} to the oracle.
This request predicts how a counter IV should be processed. The following requests of the
adversary A to the oracle OLORm are the pairs (M0,M1) , where |M0| = |M1| = ln .
The oracle OLORm returns a string IV ||C in response, where IV ∈U Vn

2
, and

C =M b
0 ⊕ EK(IVjl)|| . . . ||M b

l−1 ⊕ EK(IVjl+l−1).

The advantage of the adversary A in the LOR-CPAm,l task for the CTR mode is

AdvLOR-CPAm,l

CTR (A) = Pr [A⇒ 1|b = 1]− Pr [A⇒ 1|b = 0] .

The advantage in the LOR-CPAm,l task with parameters t, q ( q is the number of requests
to the oracle OLORm ) is

AdvLOR-CPAm,l

CTR (t, q) = max
A∈A(t,q)

AdvLOR-CPAm,l

CTR (A) .

Lemma 11.1. For all l ∈ {1, 2, . . . , 2n
2 } and m ∈ {1, . . . , 2n

2 } the following inequality
holds

AdvLOR-CPAm,l

CTR (t, q) 6 2 ·AdvPRF
E (t, ql) .

Proof. Let A ∈ A(t, q) is an adversary such that AdvLOR-CPAm,l

CTR (A) = AdvLOR-CPAm,l

CTR (t, q) =
ε . We will construct an adversary B based on the adversary A who solves the PRF
task for the cipher E .

We denote by b a bit that determines the oracle behavior in the PRF task.
The adversary B uses the adversary A as a black box. The adversary B chooses bit

b′ ∈U {0, 1} and starts the adversary A . After the first request j ∈ {0, 1, . . . ,m− 1} the
adversary A sends pairs (M0,M1) , where |M0| = |M1| = ln . The adversary B models
the oracle OLORm behavior in the following way: chooses IV ∈U Vn

2
, makes l requests

to the available for him oracle OPRF with inputs IVjl, IVjl+1, . . . , IVjl+l−1 and returns
to the adversary A the following string:

IV ||M b′

0 ⊕OPRF (IVjl)|| . . . ||M b′

l−1 ⊕OPRF (IVjl+l−1).

The adversary A returns as a result a bit a . The adversary B returns 1 as a result
of his task, if b′ = a , and 0 , otherwise.

Note that if b = 1 for the adversary A the environment, modeled by the adversary
B , coincides with the environment of the LOR-CPAm,l task, therefore

Pr [B = 1|b = 1] =
1

2
+
ε

2
.
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If b = 0 the environment, modeled by the adversary B , coincides with the environ-
ment of the ideal cipher, i.e. a case, where the oracle OLORm in response to a request
(M0,M1) returns a string IV ||C , where C ∈U Vln , therefore

Pr [B = 1|b = 0] =
1

2
.

By definition,

AdvPRF
E (B) = Pr [B = 1|b = 1]− Pr [B = 1|b = 0] =

1

2
+
ε

2
− 1

2
=
ε

2
.

Thus, we get

AdvPRF
E (t, ql) > AdvPRF

E (B) =
1

2
·AdvLOR-CPAm,l

CTR (A) .

Therefore
AdvLOR-CPAm,l

CTR (t, q) 6 2 ·AdvPRF
E (t, ql) .

Lemma 11.2. For all l ∈ {1, 2, . . . , 2n
2 } and m ∈ {1, . . . , 2n

2 /l} the following inequality
holds

AdvLOR-CPA
CTR−RKl

(t, q,ml) 6 m ·AdvLOR-CPAm,l

CTR (t+mlqtE, q) ,

where tE is the complexity of computation EK(·) .

Proof. Let A ∈ A(t, q,ml) is an adversary such that AdvLOR-CPA
CTR−RKl

(A) =

AdvLOR-CPA
CTR−RKl

(t, q,ml) = ε .
We denote by b a bit that determines the oracle OLOR behavior in the LOR-CPA

task for the CTR−RKl mode.
Define a set of the hybrid experiments HybridA,j for j ∈ {0, 1, . . . ,m} . In the ex-

periment HybridA,j the oracle OLOR , that is available for A , is replaced by the oracle
OLOR

j , that operates in the following way:

• The oracle OLOR
j chooses m keys K0, K1, . . . , Km−1 ∈U Vk independently of each

other;

• In response to a request (M0,M1) , where |M0| = |M1| = mln , the oracle chooses
IV ∈U Vn/2 and returns the string

IV ||C [0]|| . . . ||C [m−1],

where
C [i] =M b

i·l ⊕ EKi
(IVi·l)|| . . . ||M b

i·l+l−1 ⊕ EKi
(IVi·l+l−1),

at that b = 0 , if i < j , and b = 1 , otherwise, for all 0 6 i 6 m− 1 .

12



The result of any experiment described above is what the adversary A returns as a
result. Further we denote by HybridA,j ⇒ 1 an event that occurs if the result of the
experiment HybridA,j is 1 .

Note that for the adversary A the environment of the experiment HybridA,0 is coin-
cides totally with the environment of the LOR-CPA task if b = 1 , and the environment
of the experiment HybridA,m — with the environment of the LOR-CPA task if b = 0 ,
i.e. the following inequalities hold:

Pr [HybridA,0 ⇒ 1] = Pr [A⇒ 1|b = 1] ,

Pr [HybridA,m ⇒ 1] = Pr [A⇒ 1|b = 0] .

Construct an adversary B , that uses A as a black box nd solves the LOR-CPAm,l

task. We denote by b′ a bit that determines the oracle OLORm behavior in the
LOR-CPAm,l task.

The adversary B chooses j ∈U {0, . . . ,m−1} , keys K0, . . . , Kj−1, Kj+1, . . . , Km−1 ∈U
Vk and makes the first request j to the oracle OLORm . Receiving a pair (M0,M1) from
the adversary A the adversary B makes a request (M0

[j],M
1
[j]) to his oracle OLORm ,

where M b
[j] is the j -th section of the message M b , that consists of l blocks. He obtains

IV and a ciphertext C [j] in response and returns to the adversary A a string

IV ||C [0]|| . . . ||C [j−1]||C [j]||C [j+1]|| . . . ||C [m−1],

where
C [i] =M b

i·l ⊕ EKi
(IVi·l)|| . . . ||M b

i·l+l−1 ⊕ EKi
(IVi·l+l−1),

at that b = 0 , if i < j , and b = 1 , if i > j .
The adversary B returns as a result what the adversary A retuns.
The following inequalities hold

Pr [B = 1|b′ = 1] =
1

m

m−1∑
j=0

Pr [HybridA,j ⇒ 1] ,

Pr [B = 1|b′ = 0] =
1

m

m−1∑
j=0

Pr [HybridA,j+1 ⇒ 1] .

Then for the advantage of the adversary B the following relation holds

AdvLOR-CPAm,l

CTR (B) = Pr [B = 1|b′ = 1]− Pr [B = 1|b′ = 0] =

=
1

m

(
m−1∑
j=0

Pr [HybridA,j ⇒ 1]−
m−1∑
j=0

Pr [HybridA,j+1 ⇒ 1]

)
=

=
1

m
(Pr [HybridA,0 ⇒ 1]− Pr [HybridA,m ⇒ 1]) =

=
1

m
(Pr [A⇒ 1|b = 1]− Pr [A⇒ 1|b = 0]) =

1

m
· ε

13



The computational resources of the adversary B can be majorised with the value
t+ qmltE , where tE is the complexity of computation EK(·) .

Thus we have

AdvLOR-CPAm,l

CTR (t+ qmltE, q) > AdvLOR-CPAm,l

CTR (B) >
1

m
·AdvLOR-CPA

CTR−RKl
(A) .

Therefore

AdvLOR-CPA
CTR−RKl

(t, q,ml) 6 m ·AdvLOR-CPAm,l

CTR (t+ qmltE, q) .

Lemma 11.3. The following inequality holds

AdvLOR-CPA
CTR−RKl

(t, q,ml) 6 2m ·AdvPRF
E (t+ qmltE, ql) .

Proof. Proof of this lemma follows from the statements 11.2 and 11.1.

Remark 11.2. In the IND-KMl,m task for the cipher E before start of the work the
oracle OIND-KMl,m chooses with bit b a key K ∈ Vk and uses EK as a function F .

Lemma 11.4. The following inequality holds

AdvIND-KMl,m

Perm{Vn} (t, q) 6
8ql + 6

2n
+

(
4ql

2n

)2

.

Proof. Let A ∈ A(t, q) is an adversary, who solves the IND-KMl,m task for a set
Perm{Vn} , some l and m , and is such that AdvIND-KMl,m

Perm{Vn} (A) = AdvIND-KMl,m

Perm{Vn} (t, q) .
Let b is a bit that determines the oracle OIND-KMl,m behavior. We denote by RP (·)

a permutation, that is chosen by the oracle before start of the work and by C a set
{D1, D2, D3, D4} .

By definition,

AdvIND-KMl,m

Perm{Vn} (A) = Pr [A = 1|b = 1]− Pr [A = 1|b = 0] .

We denote by N all information that the adversary obtained during attack. The value
N is determined by the following three values: a key K ′ ∈ Vk , a set {IV } ⊂ Vn

2
of power

q and a set {RP (IV )} ⊂ Vn , that consists of ql results of the permutation RP (·) on
inputs from {IV } .

Note that if the value N = ({IV }, {RP (IV )}, K ′) is fixed then the adversary’s strat-
egy doesn’t depend on bit b , therefore

Pr [A = 1|b = 1,N ] = Pr [A = 1|b = 0,N ] = Pr [A = 1|N ] .

By the law of total probability we have

14



AdvIND-KMl,m

Perm{Vn} (A) = Pr [A = 1|b = 1]− Pr [A = 1|b = 0] =

=
∑
N

Pr [A = 1|N ] · Pr [N|b = 1]−
∑
N

Pr [A = 1|N ] · Pr [N|b = 0] =

=
∑
N

Pr [A = 1|N ]︸ ︷︷ ︸
61

· (Pr [N|b = 1]− Pr [N|b = 0]) 6

6
∑

N :Pr[N|b=1]−Pr[N|b=0]>0

(Pr [N|b = 1]− Pr [N|b = 0])

We denote by p0 the probability Pr [N|b = 0] . If b = 0 all components of the value
N are chosen independently of each other, therefore:

p0 =
1

2
n
2 · (2n

2 − 1) · . . . · (2n
2 − q + 1)︸ ︷︷ ︸

fix {IV }

· (2
n − ql)!
2n!︸ ︷︷ ︸

fix {RP (IV )}

· 1

24n︸︷︷︸
fix K′

.

Consider the probability Pr [N|b = 1] .
By the law of total probability

Pr [N = (A,B,Z)|b = 1] =
∑

{IV },RP (·)

Prb=1 [N = (A,B,Z)|{IV }, RP (·)]·Pr [{IV }, RP (·)]︸ ︷︷ ︸
independent of b

.

The following relations hold

Pr [{IV }, RP (·)] = 1

2
n
2 · (2n

2 − 1) · . . . · (2n
2 − q + 1)

· 1

2n!
= p∗, ∀ {IV }, RP (·);

Prb=1 [N = (A,B,Z)|{IV }, RP (·)] =

{
1, if A = {IV }, RP (A) = B, RP (Z) = C,
0, otherwise.

Let (A,B,Z) is «coherent», if there is a permutation RP (·) such that A =
{IV }, RP (A) = B, RP (Z) = C .

Then
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Pr [N = (A,B,Z)|b = 1] = p∗ ·
∑
{IV }

∑
RP (·)

Prb=1 [(A,B,Z)|{IV }, RP (·)] =

= p∗ ·
∑
RP (·)

Prb=1 [(A,B,Z)|A,RP (·)] =

= p∗ ·
∑

RP (·): RP (A)=B,

RP (Z)=C

1 =

= p∗ · |{RP (·) : RP (A) = B, RP (Z) = C}|.

Let the set {RP (IV )} has a Propi property, 0 6 i 6 4 , if the condition |{RP (IV )}∩
C| = i is satisfied.

Find a power of the set {RP (·) : RP (A) = B, RP (Z) = C} for all «coherent»
(A,B,Z) such that the component B has the Propi property for some fixed i . The
conditions {RP (A) = B, RP (Z) = C} assume that for the permutation RP (·) we
know ql + (4− i) transitions, i.e. pairs of input and output values, therefore

|{RP (·) : RP (A) = B, RP (Z) = C}| = (2n − (ql + 4− i))!.

We denote by p1i a probability Pr [N = (A,B,Z)|b = 1] for all «coherent» N such
that the component B has the Propi property.

Then

p1i =
1

2
n
2 · (2n

2 − 1) · . . . · (2n
2 − q + 1)

· (2
n − (ql + 4− i))!

2n!
.

Note that the inequality p1i > p0 holds for all i , 0 6 i 6 4 . Indeed,

p1i = p0 · 2
4n · (2n − (ql + 4− i))!

(2n − ql)!
> p0 ∀ 0 6 i 6 4.

Divide a set T = {N} that is a set of all possible values N , into 5 disjoint subsets
T0, T1, . . . , T4 , where the subset Ti included all N = ({IV }, {RP (IV )}, K ′) such that
the set {RP (IV )} has the Propi property.

Then
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∑
N :Pr[N|b=1]−Pr[N|b=0]>0

(Pr [N|b = 1]− Pr [N|b = 0]) =

=
4∑

i=0

∑
N∈Ti

Pr[N|b=1]>0

(p1i − p0) 6

6
4∑

i=0

| {N : N ∈ Ti, Pr [N|b = 1] > 0}︸ ︷︷ ︸
Bi

| · (p1i − p0).

Find a power of the set

Bi = {N = (A,B,Z) : (A,B,Z) is «coherent» and B has the Propi property}.

The number of B that has property Propi(
4

i

)
(ql)!

(ql − i)!
(2n − 4)!

(2n − 4− (ql − i))!
.

If the set B is fixed then a set A = {IV } can be chosen arbitrarily from Vn
2
, and a

key Z is determined for blocks that are not in the set B only.
Thus,

|Bi| =
(
4

i

)
(ql)!

(ql − i)!
(2n − 4)!

(2n − 4− (ql − i))!︸ ︷︷ ︸
fix B

·
(
2

n
2 · (2

n
2 − 1) · . . . · (2

n
2 − q + 1)

)︸ ︷︷ ︸
fix {IV }=A

· (2n − ql)!
(2n − ql − (4− i))!︸ ︷︷ ︸

fix Z

.

Therefore,

AdvIND-KMl,m

Perm{Vn} (A) =
4∑

i=0

|Bi| · (p1i − p0) =

=
4∑

i=0

(
4

i

)
(ql)!

(ql − i)!
(2n − 4)!

2n!
· (2n − ql)!
(2n − ql − (4− i))!︸ ︷︷ ︸

ai

·
(
1− (2n − ql)!

24n · (2n − (ql + 4− i))!

)
︸ ︷︷ ︸

bi

=

= a0 · b0 + a1 · b1 +
4∑

i=2

ai · bi.
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Bound the value a0 · b0 :

a0 · b0 6 1 ·
(
1− (2n − ql) · (2n − ql − 1) · (2n − ql − 2) · (2n − ql − 3)

24n

)
6

6
ql

2n
+
ql + 1

2n
+
ql + 2

2n
+
ql + 3

2n
=

4ql + 6

2n
.

For 1 6 i 6 4 we have

1− 1

2n
6 bi 6 1,

ai =

(
4

i

)
(ql)!

(ql − i)!
(2n − ql) · . . . · (2n − ql − (4− i) + 1)

2n · (2n − 1) · (2n − 2) · (2n − 3)
6

6
1

i!
· (ql)i 1

2n · (2n − 1) · . . . · (2n − i+ 1)
6

1

i!
· (ql)i ·

(
4

2n

)i

.

Then

AdvIND-KMl,m

Perm{Vn} (A) 6
4ql + 6

2n
+

4ql

2n
+

4∑
i=2

1

i!
· (ql)i ·

(
4

2n

)i

6

6
8ql + 6

2n
+

(
4ql

2n

)2 4∑
i=2

1

i!
6

8ql + 6

2n
+

(
4ql

2n

)2

.

Lemma 11.5. The following inequality holds

AdvIND-KMl,m

E (t, q) 6 2 ·AdvPRP-CCA
E

(
t+ q · n

2
, q · l, 4

)
+

8ql + 6

2n
+

(
4ql

2n

)2

.

Proof. Let A ∈ A(t, q) is an adversary who solves the IND-KMl,m task for the cipher
E , some l and m and is such that AdvIND-KMl,m

E (A) = AdvIND-KMl,m

E (t, q) . We will
use this adversary as a black box in order to construct an adversary B that solves the
PRP-CCA task.

We denote by b a bit that determines the oracles OPRP and OPRP−1 behavior in the
PRP-CCA task.

The adversary B intercepts all queries of the adversary A . Receiving from A the
first request j ∈ {0, 1, . . . ,m− 1} , the adversary B remembers the value j , sets I = ∅ ,
chooses a bit b′ ∈U {0, 1} and returns K ′ , obtained according to the CPKM algorithm
using the oracle OPRP−1 , if b′ = 1 , and K ′ ∈U Vk , if b′ = 0 . Note that the adversary B
makes at most 4 queries to the oracle OPRP−1 .
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Next queries from the adversary A are processed in the following way: the adversary
B chooses IV ∈U Vn

2
\ I , adds I = I ∪ {IV } and returns a string

IV ||OPRP(IVj·l)||OPRP(IVj·l+1)|| . . . ||OPRP(IVj·l+l−1).

Let the adversary A returns a bit a as a result. The adversary B returns 1 , if a = b′ ,
and 0 , otherwise.

Note that if b = 1 for the adversary A the environment modelled by B totally
coincides with the environment of the target IND-KMl,m task for the cipher E . If b = 0 ,
the modelled environment coincides with the environment of the IND-KMl,m task for a
set Perm{Vn} . For the advantage of the adversary B we have

AdvPRP-CCA
E (B) = Pr [B ⇒ 1|b = 1]− Pr [B ⇒ 1|b = 0] =

= Pr [A⇒ b′|b = 1]− Pr [A⇒ b′|b = 0] =

=
(
1/2 + 1/2 ·AdvIND-KMl,m

E (A)
)
−
(
1/2 + 1/2 ·AdvIND-KMl,m

Perm{Vn} (A)
)
=

= 1/2 ·AdvIND-KMl,m

E (A)− 1/2 ·AdvIND-KMl,m

Perm{Vn} (A) >

> 1/2 ·AdvIND-KMl,m

E (A)− 1/2 ·AdvIND-KMl,m

Perm{Vn} (t, q) =

= 1/2 ·AdvIND-KMl,m

E (A)− 1/2 ·

(
8ql + 6

2n
+

(
4ql

2n

)2
)
.

The adversary A is chosen arbitrarily, therefore

AdvIND-KMl,m

E (t, q) 6 2 ·AdvPRP-CCA
E (B) +

8ql + 6

2n
+

(
4ql

2n

)2

.

The adversary B makes at most 4 requests to the oracle OPRP−1 , at most q · l requests
to the oracle OPRP . So his computational resources can be majorised with value t+q ·n/2
(the adversary B needs to generate q strings IV ∈ Vn/2 ). Thus

AdvIND-KMl,m

E (t, q) 6 2 ·AdvPRP-CCA
E

(
t+ q · n

2
, q · l, 4

)
+

8ql + 6

2n
+

(
4ql

2n

)2

.

Theorem 11.3. For natural l , t , q and m , k = 4n the following inequality holds

AdvLOR-CPA
CTR-CPKMl

(t, q,ml) 6 4m ·AdvPRP-CCA
E

(
t+mlq + q · n

2
, q · l, 4

)
+

+ 2m ·AdvPRF
E (t+ qml, ql) + 2mδ,

where δ = 8ql+6
2n

+
(
4ql
2n

)2
.
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Proof. Let A ∈ A(t, q,ml) is an adversary who solves the LOR-CPA task for the
CTR-CPKMl encryption mode. We will use this adversary as a black box in order to
construct an adversary B that solves the IND-KMl,m task.

We denote by b a bit that determines the oracle OIND-KMm,l behavior in the
IND-KMl,m task and by b′ a bit that determines the oracle OLOR behavior in the
LOR-CPA task.

Determine a set of the hybrid experiments {HybridA,j} for the adversary A , where
j ∈ {0, 1, . . . ,m} . In the experiment HybridA,j the oracle OLOR is replaced in the fol-
lowing way. In response to a request (M0,M1) a string IV ||C [0]|| . . . ||C [m−1] is returned,
this string is constructed as follows: IV ∈ Vn

2
, the first j sections of the message M b′

are processed with random and independent keys K0, . . . , Kj−1 , a key for processing of
the j -th section is generated at random too, but keys for the next sections are produced
from the previous one according to the CPKM algorithm. The result of the experiment
HybridA,j is 1 , if the result of the adversary A is equal to b′ , and 0 , otherwise.

Note that
Pr [HybridA,0 ⇒ 1] =

1

2
+

1

2
·AdvLOR-CPA

CTR-CPKMl
(A) ,

Pr [HybridA,m ⇒ 1] =
1

2
+

1

2
·AdvLOR-CPA

CTR-RKl
(A) .

Construct the adversary B . At the beginning he chooses bit b′ ∈U {0, 1} and j ∈U
{0, . . . ,m− 1} , then he makes a request j to the oracle OIND-KMl,m , receiving a key K ′

in response.
Then B chooses j keys K0, . . . , Kj−1 ∈U Vk independently of each other. Intercepting

the request (M0,M1) from A , the adversary B makes an empty request to the oracle
OIND-KMl,m and receives IV and the section of gamma, that is generated with this IV
and some secret key K (used by this oracle). Note that the returned section of gamma
is generated on the blocks IVj·l, . . . , IVj·l+l−1 , i.e. this gamma is appropriate to encrypt
the j -th section of processed message M b′ . So the adversary B uses it to process j -th
section of the message M b′ .

The adversary B processes he first j section of the message M b′ using the keys
K0, . . . , Kj−1 and IV , that is obtained from the OIND-KMl,m oracle previously. He pro-
cesses the j + 1 -the section with a key Kj+1 = K ′ , and the next sections are processed
with keys Kj+2, . . . , Km−1 such that Ki = CPKM(Ki−1) . Let the adversary A retuns a
bit a as a result. The adversary B returns 1 , if a = b′ , and 0 , otherwise.

Note that
Pr [B ⇒ 1|b = 1, j] = Pr [HybridA,j ⇒ 1] ,

Pr [B ⇒ 1|b = 0, j] = Pr [HybridA,j+1 ⇒ 1] .
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For the advantage AdvIND-KMl,m (B) we have

AdvIND-KMl,m

E (B) = Pr [B ⇒ 1|b = 1]− Pr [B ⇒ 1|b = 0] =

=
m−1∑
j=0

Pr [B ⇒ 1|b = 1, j] · Pr [j]−
m−1∑
j=0

Pr [B ⇒ 1|b = 0, j] · Pr [j] =

=
1

m

m−1∑
j=0

(Pr [HybridA,j ⇒ 1]− Pr [HybridA,j+1 ⇒ 1]) =

=
1

m
· (Pr [HybridA,0 ⇒ 1]− Pr [HybridA,m ⇒ 1]) =

=
1

2m
·

AdvLOR-CPA
CTR-CPKMl

(A)− AdvLOR-CPA
CTR-RKl

(A)︸ ︷︷ ︸
62m·AdvPRF

E (t+qmltE ,ql)

 >

>
1

2m
·
(
AdvLOR-CPA

CTR-CPKMl
(t, q,ml)− 2m ·AdvPRF

E (t+ qmltE, ql)
)
.

Therefore

AdvLOR-CPA
CTR-CPKMl

(t, q,ml) 6 2m ·AdvIND-KMl,m

E (B) + 2m ·AdvPRF
E (t+ qmltE, ql) .

Bound the computational resources of the adversary B . The adversary makes (m −
1)lq computations of the function E and q requests to the oracle OIND-KMl,m .

Therefore, by the lemma 11.5,

AdvIND-KMl,m

E (B) 6 AdvIND-KMl,m

E (t+mlqtE, q) 6

6 2 ·AdvPRP-CCA
E

(
t+mlqtE + q · n

2
, q · l, 4

)
+

8ql + 6

2n
+

(
4ql

2n

)2

.

Thus,

AdvLOR-CPA
CTR-CPKMl

(t, q,ml) 6 4m ·AdvPRP-CCA
E

(
t+mlqtE + q · n

2
, q · l, 4

)
+

+ 2m ·AdvPRF
E (t+ qmltE, ql) + 2m ·

(
8ql + 6

2n
+

(
4ql

2n

)2
)
.

Remark 11.4. For a case k = 2n all tasks are formulated similarly, the corresponding
theorems are proved in the same way.
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Remark 11.5. Here we prove that the bounds for the basic CTR encryption mode and
for the extended version with the CPKM re-keying methods are achievable.

Consider an adversary A in the LOR-CPA task for the CTR encryption mode whose
advantage is approximately equal to the bound.

Let the adversary sends to an oracle OLOR-CPA q couples (M0
i ,M

1
i ) , where

M0
i ,M

1
i ∈R Vmln . The oracle returns ciphertexts Ci , 1 6 i 6 q . The adversary computes

a set G = {M0
i ⊕Ci}16i6q which consists of qml blocks. If there are two equal blocks in G

(denote this event by B ) the adversary returns 1 . Notice that for the correct plaintext the
probability to obtain two equal blocks in G is 0. If all blocks in G are pairwise different
the adversary returns a random bit according to uniform distribution.

The probability that there are two equal values among qml realization of a random
variable uniformly distributed over a set of power 2n is approximately equal to (qml)2

2n+1

(birthday paradox).
The following relation holds:

AdvLOR-CPA
CTR (A) = 2 · Pr [A⇒ b]− 1 =

= 2
(
Pr [A⇒ b| B]︸ ︷︷ ︸

=1

·Pr [B] + Pr
[
A⇒ b| B

]︸ ︷︷ ︸
= 1

2

·(1− Pr [B])
)
− 1 =

= Pr [B] ≈ (qml)2

2 · 2n
,

where b is a bit which determines the oracle behavior.
Consider an adversary A′ in the LOR-CPA task for the CTR-CPKMl encryption

mode whose advantage is approximately equal to the obtained bound. This adversary op-
erates in the same way as A operates except the step of computing the set G . Instead
he computes m sets Gi , each of them consists of ql blocks (different sets corresponds
to different keys). If there are two equal blocks in Gi for some 1 6 i 6 m (denote this
event by B′ ) the adversary returns 1 . If all blocks in Gi for all 1 6 i 6 m are pairwise
different the adversary returns a random bit according to uniform distribution.

Notice that

Pr [B′] ≈ 1−
(
1− (ql)2

2 · 2n

)m

≈ m · (ql)
2

2 · 2n

Therefore,

AdvLOR-CPA
CTR-CPKMl

(A′) = 2 · Pr [A′ ⇒ b]− 1 = Pr [B′] ≈ m · (ql)
2

2 · 2n
.
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