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Abstract. Cloud services keep gaining popularity despite the security
concerns. While non-sensitive data is easily trusted to cloud, security
critical data and applications are not. The main concern with the cloud
is the shared resources like the CPU, memory and even the network
adapter that provide subtle side-channels to malicious parties. We argue
that these side-channels indeed leak fine grained, sensitive information
and enable key recovery attacks on the cloud. Even further, as a quick
scan in one of the Amazon EC2 regions shows, high percentage -55%- of
users run outdated, leakage prone libraries leaving them vulnerable to
mass surveillance.
The most commonly exploited leakage in the shared resource systems
stem from the cache and the memory. High resolution and the stability
of these channels allow the attacker to extract fine grained information.
In this work, we employ the Prime and Probe attack to retrieve an RSA
secret key from a co-located instance. To speed up the attack, we reverse
engineer the cache slice selection algorithm for the Intel Xeon E5-2670
v2 that is used in our cloud instances. Finally we employ noise reduction
to deduce the RSA private key from the monitored traces. By processing
the noisy data we obtain the complete 2048-bit RSA key used during the
decryption.

Keywords: Amazon EC2, Co-location Detection, RSA key recovery, Virtual-
ization, Prime and Probe Attack.

1 Motivation

Cloud computing services are more popular than ever with their ease of access,
low cost and real-time scalability. With increasing adoption of cloud, concerns
over cloud specific attacks have been rising and so has the number of research
studies exploring potential security risks in the cloud domain. A main enabler
for cloud security is the seminal work of Ristenpart et al. [39]. The work demon-
strated the possibility of co-location as well as the security risks that come
with it. The co-location is the result of resource sharing between tenant Virtual
Machines (VMs). Under certain conditions, the same mechanism can also be ex-
ploited to extract sensitive information from a co-located victim VM, resulting in



security and privacy breaches. Methods to extract information from VMs have
been intensely studied in the last few years however remain infeasible within
public cloud environments, e.g. [47, 36, 28, 40]. The potential impact of attacks
on crypto processes can be even more severe, since cryptography is at the core
of any security solution. Consequently, extracting cryptographic keys across VM
boundaries has also received considerable attention lately. Initial studies explored
the Prime and Probe technique on L1 cache [48, 19]. Though requiring the at-
tacker and the victim to run on the same physical CPU core simultaneously,
the small number of cache sets and the simple addressing scheme made the L1
cache a popular target. Follow up works have step by step removed restrictions
and increased the viability of the attacks. The shared Last Level Cache (LLC)
now enables true cross-core attacks [44, 8, 29] where the attacker and the victim
share the CPU, but not necessarily the CPU core. Most recent LLC Prime and

Probe attacks no longer rely on de-duplication [14, 25] or core sharing, making
them more widely applicable.

With the increasing sophistication of attacks, participants of the cloud indus-
try ranging from Cloud Service Providers (CSPs), to hypervisor vendors, up all
the way to providers of crypto libraries have fixed many of the newly exploitable
security holes through patches [1, 4, 3]—many in response to published attacks.
However, many of the outdated cryptographic libraries are still in use, opening
the door for exploits. A scan over the entire range of IPs in the South America
East region yields that 55% of TLS hosts installed on Amazon EC2 servers have
not been updated since 2015 and are vulnerable to an array of more recently
discovered attacks. Consequently, a potential attacker such as a nation state,
hacker group or a government organization can exploit these vulnerabilities for
bulk recovery of private keys. Besides the usual standard attacks that target
individuals, this enables mass surveillance on a population thereby stripping the
network from any level of privacy. Note that the attack is enabled by our trust in
the cloud. The cloud infrastructure already stores the bulk of our sensitive data.
Specifically, when an attacker instantiates multiple instances in a targeted avail-
ability zone of a cloud, she co-locates with many vulnerable servers. In particular,
an attacker trying to recover RSA keys can monitor the LLC in each of these
instances until the pattern expected by the exploited hardware level leakage is
observed. Then the attacker can easily scan the cloud network to build a public
key database and deduce who the recovered private key belongs to. In a similar
approach, Heninger et al. [21] scan the network for public keys with shared or
similar RSA modulus factors due to poor randomization. Similarly Bernstein et
al. [10] compiled a public key database and scanned for shared factors in RSA
modulus commonly caused by broken random number generators.

In this work, we explore the viability of full RSA key recovery in the Ama-
zon EC2 cloud. More precisely, we utilize the LLC as a covert channel both to
co-locate and perform a cross-core side-channel attack against a recent crypto-
graphic implementation. Our results demonstrate that even with complex and
resilient infrastructures, and with properly configured random number genera-
tors, cache attacks are a big threat in commercial clouds.
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Our Contribution

This work presents a full key recovery attack on a modern implementation of
RSA in a commercial cloud and explores all steps necessary to successfully re-
cover both the key and the identity of the victim. This attack can be applied
under two different scenarios:

1. Targeted Co-location: In this scenario, we launch instances until we co-
locate with the victim as described in [41, 24]. Upon co-location the secret
is recovered by a cache enabled cross-VM attack.

2. Bulk Key Recovery: We randomly create instances and using cross-VM
cache attacks recover imperfect private keys. These keys are subsequently
checked and against public keys in public key database. The second step
allows us to eliminate noise in the private keys and determine the identity
of the owner of the recovered key.

Unlike in earlier bulk key recovery attacks [21, 10] we do not rely on faulty
random number generators but instead exploit hardware level leakages.

Our specific technical contributions are as follows:

– We first demonstrate that the LLC contention based co-location detection
tools are plausible in public clouds

– Second, we reverse-engineer the undocumented non-linear slice selection al-
gorithm implemented in Intel Xeon E5-2670 v2 [2] used by our Amazon EC2
instances, and utilize it to automate and accelerate the attack

– Third, we describe how to apply the Prime and Probe attack to the LLC
and obtain RSA leakage information from co-located VMs

– Last, we present a detailed analysis of the necessary post-processing steps
to cope with the noise observed in a real public cloud setup, along with a
detailed analysis on the CPU time (at most 30 core-hours) to recover both
the noise-free key and the owner’s identity (IP).

2 Related Work

This work combines techniques needed for co-location in a public cloud with
state-of-the art techniques in cache based cross-VM side channel attacks.

Co-location detection: In 2009 Ristenpart et al. [39] demonstrated that a
potential attacker has the ability to co-locate and detect co-location in public
IaaS clouds. In 2011, Zhang et al. [46] demonstrated that a tenant can detect
co-location in the same core by monitoring the L2 cache. Shortly after, Bates et
al. [7] implemented a co-location test based on network traffic analysis. In 2015,
Zhang et al. [47] demonstrated that de-duplication enables co-location detection
from co-located VMs in PaaS clouds. In follow-up to Ristenpart et al.’s work [39],
Zhang et al. [43] and Varadarajan et al. [41] explored co-location detection in
commercial public cloud in 2015. Both studies use the memory bus contention
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channel explored by Wu et al. in 2012 [42] to detect co-location. Finally in 2016,
İnci et al. [24] explored co-location detection on Amazon EC2, Microsoft Azure
and Google Compute Engine using three detection methods namely memory bus
locking, LLC covert channel and LLC software profiling.

Recovering cache slice selection methods: A basic technique based on
hamming distances for recovering and exploiting linear cache slice selection
was introduced in [23]. Irazoqui et al. [26] and Maurice et al. [35] used a more
systematic approach to recover linear slice selection algorithms in a range of
processors, the latter pointing out the coincidence of the functions across pro-
cessors. Recently, Yarom et al. [45] recovered a 6 core slice selection algorithm
with a similar technique as the one presented in this work.

Side-channel attacks: RSA have been widely studied and explored with re-
gards to diverse covert channels such as time [32, 12], power [31], EM emana-
tions [15, 16], and even acoustic channels [17]. Micro-architectural side-channel
attacks also succeeded on recovering secret keys used in symmetric cryptog-
raphy. After the first theoretical [22, 38] and practical [9, 37] attacks utilizing
micro-architectural covert channels, Aciicmez et al. [5, 6] demonstrated the pos-
sibility of recovering RSA secret keys using the instruction cache and the branch
prediction unit as covert channels. Later, Zhang et al. [48] recovered El-Gamal
secret keys across co-located VMs exploiting leakage in the upper level caches.

While all the previously mentioned side-channel attacks used a private core
resource (i.e., attacker needs to be running in the same CPU core as the victim),
in 2014 Yarom et al. [44] proved to be able to recover RSA secret keys across co-
located VMs by using the Flush and Reload attack in the presence of memory
de-duplication. Recently Liu et al. [14] implemented an attack against El-Gamal
using the Prime and Probe attack in the LLC, whereas Bhattacharya et al. [11]
utilized the branch prediction performance counters to recover RSA keys.

In addition to the attacks on public key cryptography schemes cache attacks
also have been applied to AES [25, 29], ECDSA [8], TLS messages [30], the
number of items in a shopping cart [47] or even the key strokes typed in a
keyboard [18]. Even further, they recently have been applied to PaaS clouds [47],
across processors [27] and in smartphones [34].

3 Prime and Probe in the LLC

In computer systems, the physical memory is protected and not visible to the
user, who only sees the virtual addresses that the data resides at. Therefore a
memory address translation stage is required to map virtual addresses to physi-
cal. However, there are some bits of the virtual address that remain untranslated,
i.e, the least significant plow bits with 2plow size memory pages. These are called
the page offset, while the remaining part of the address is called the page frame
number and their combination make the physical address. The location of a
memory block in the cache is determined by its physical address. Usually the
physical address is divided in three different sections to access n-way caches: the
byte field, the set field and the tag field. The length of the byte and set fields
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are determined by the cache line size and the number of sets in the cache, re-
spectively. The more sets a cache has, more bits are needed from the page frame
number to select the set that a memory block occupies in the cache.

The Prime and Probe attack has been widely studied in upper level caches [48,
5], but was first introduced for the LLC in [14, 25] with the use of hugepages.
Unlike regular memory pages that reveal only 12 bits of the physical address,
hugepages reveal 21 bits, allowing the LLC monitoring. Also, profiling the LLC
in contrast to the L1 or L2 cache has various advantages. Firstly, unlike the
upper level caches, the LLC is shared across cores, providing a cross-core covert
channel. Moreover, the time distinguishability of accesses in upper level caches
is much lower than those between the LLC and memory. On the other hand, due
to the size of LLCs, we cannot simultaneously profile the whole cache, but rather
a small portion of it at a time. In addition to that, modern processors divide
their LLC into slices with a non-public hash algorithm, making it difficult to
predict where the data will be located. Taking all these into account, the Prime

and Probe attack is divided in two main stages:

Prime stage: The attacker fills a portion of the LLC with his own data and
waits for a period of time for the victim to access the cache.

Probe stage: The attacker probes (reloads) the primed data. If the victim
accessed the monitored set of the cache, one (or more) of the attacker’s lines will
not reside in the cache anymore, and will have to be retrieved from the memory.

As stated before, profiling a portion of the cache becomes more difficult when
the LLC is divided into slices. However, as observed by [14] we can create an
eviction set without knowing the algorithm implemented. This involves a step
prior to the attack where the attacker finds the memory blocks colliding in a
specific set/slice. This can be done by creating a large pool of memory blocks,
and access them until we observe that one of them is fetched from the memory.
The procedure will be further explained in section 4. A group of memory blocks
that fill one set/slice in the LLC will form an eviction set for that set/slice.

4 Co-locating on Amazon EC2

In order to perform our experiments across co-located VMs we first need to
make sure that they are running in the same server. We present the LLC as
an exploitable covert channel with the purpose of detecting co-location between
two instances. For the experiments, we launched 4 accounts (named A, B, C and
D) on the South American Amazon EC2 region and launched 20 m3.medium
instances in each of these accounts, 80 instances in total.

On these instances, we performed our LLC co-location detection test and
obtained co-located instance pairs. In total, out of 80 instances launched from
different accounts, we were able to obtain 7 co-located pairs and one triplet.
Account A had 5 co-located instances out of 20 while B and C had 4 and 7
respectively. As for the account D, we had no co-location with instances from
other accounts. Overall, assuming that the account A is the target, next 60
instances launched in accounts B, C, D have 8.3% probability of co-location

5



with the target. Note that all co-locations were between machines from different
accounts. The experiments did not aim at obtaining co-location with a single
instance, for which the probability of obtaining co-location would be lower.

4.1 The LLC Co-location Method

The LLC is shared across all cores of most modern Intel CPUs, including the
Intel Xeon E5-2670 v2 used (among others) in Amazon EC2. Accesses to LLC
are thus transparent to all VMs co-located on the same machine, making it the
perfect domain for covert communication and co-location detection.

Our LLC test is designed to detect cache lines that are needed to fill a
specific set in the cache. In order to control the location that our data will
occupy in the cache, the test allocates and works with hugepages.1 In normal
operation with moderate noise, the number of lines to fill one set is equal to
LLC associativity, which is 20 in Intel Xeon E5-2670 v2 used in our Amazon
EC2 instances. However, with more than one user trying to fill the same set at
the same time, one will observe that fewer than 20 lines are needed to fill one
set. By running this test concurrently on a co-located VM pair, both controlled
by the same user, it is possible to verify co-location with high certainty. The test
performs the following steps:

– Prime one memory block b0 in a set in the LLC
– Access additional memory blocks b1, b2, . . . , bn that occupy the same set, but

can reside in a different slice.
– Reload the memory block b0 to check whether it has been evicted from the

LLC. A high reload time indicates that the memory block b0 resides in the
RAM. Therefore we know that the required m memory blocks that fill a slice
are part of the accessed additional memory blocks b1, b2, . . . , bn.

– Subtract one of the accessed additional memory blocks bi and repeat the
above protocol. If b0 is still loaded from the memory, bi does not reside in
the same slice. If b0 is now located in the cache, it can be concluded that bi
resides in the same cache slice as b0 and therefore fill the set.

– Count the number of memory blocks needed to fill a set/slice pair. If the
number is significantly different than the associativity, it can be concluded
that we have cache contention across co-located VMs.

The LLC is not the only method that we have tried in order to verify co-
location (see Appendix for more information). However, the experiments show
that the LLC test is the only decisive and reliable test that can detect whether
two of our instances are running in the same CPU in Amazon EC2. We performed
the LLC test in two steps as follows:

1 The co-location test has to be implemented carefully, since the heavy usage of
hugepages may yield into performance degradation. In fact, while trying to achieve
a quadruple co-location Amazon EC2 stopped our VMs due to performance issues.
For a more detailed explanation see Appendix.
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1. Single Instance Elimination: The first step of the LLC test is the elimi-
nation of single instances i.e. the ones that are not co-located with any other
in the instance pool. To do so, we schedule the LLC test to run at all in-
stances at the same time. Instances not detecting co-location is retired. For
the remaining ones, the pairs need to be further processed as explained in
the next step. Note that without this preliminary step, one would have to
perform n(n − 1)/2 pair detection tests to find co-located pairs, i.e. 3160
tests for 80 instances. This step yielded 22 co-located instances out of 80.

2. Pair Detection: Next we identify pairs for the possibly co-located instances.
The test is performed as a binary search tree where each instance is tested
against all the others for co-location.

4.2 Challenges and Tricks of Co-location Detection

During our experiments on Amazon EC2, we have observed various problems
and interesting events related to the underlying hardware and software. Here we
discuss what to expect when experimenting on Amazon EC2.

Instance Clock Decay: In our experiments using Amazon EC2, we have no-
ticed that instance clocks degrade slowly over time. More interestingly, after de-
tecting co-location using the LLC test, we discovered that co-located instances
have the same clock degradation with 50 nanoseconds resolution. We believe
that this information can be used for co-location detection.

Hardware Complexity: Modern Amazon EC2 instances have much more ad-
vanced and complex hardware components like 10 core, 20 thread CPUs and
SSDs. Thus, our cache profiling techniques have to be adapted to handle servers
with multiple slices that feature non-linear slice selection algorithms.

Co-located VM Noise: Compute cloud services including Amazon EC2 main-
tain a variety of services and servers. Most user-based services, however, quiet
down when users quiet down, i.e. after midnight. Especially between 2 a.m. and
4 a.m. Internet traffic as well as computer usage is significantly lower than the
rest of the day. We confirmed this assumption by measuring LLC noise in our
instances and collected data from 6 instances over the course of 4 week days.
Results are shown in Figure 1. LLC noise and thus server load are at its peak
around 8 p.m. and lowest at 4 a.m. We also measured the noise observed in the
first 200 sets of the LLC for one day in Figure 2. The y-axis shows the proba-
bility of observing a cache access by a co-located user other than victim during
a Prime and Probe interval of the spy process (i.e. the attacker cannot detect
the cache access of the victim process). The measurements were taken every 15
minutes. A constant noise floor at approx. 4.5% is present in all sets. Sets 0
and 3 feature the highest noise, but high noise (11%)is observed at the starting
points of other pages as well. In fact, certain set numbers (0,3,26,39,58) mod 64
seem to be predictably more noisy and not well suited for the attack.

Dual Socket machines: We did not find evidence of dual socket machines
among the medium instances that we used in both co-location and attack steps.
Indeed once co-located, our LLC co-location test always succeeded over time,
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Fig. 1. LLC Noise over time of day, by day (dotted lines) and on average (bold line).
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Fig. 2. Average noise for the first 200 sets in a day. Red lines are the starting points
of pages. Sets 0 and 3 feature the highest amount of noise, with a repeating pattern
every 64 sets (which is the width of a page in the LLC).

even after a year. If the instances were to reside in dual socket machines and
the VM processes moved between CPUs, the co-location test would have failed.
However, even in that case, repeated experiments would still reveal co-location
just by repeating the test after a time period enough to allow a socket migration.

5 Obtaining The Non-linear Slice Selection Algorithm

The LLC attack that will later be performed is based on the ability of generating
colliding memory blocks, i.e., blocks that collide for a specific set and slice. In
modern processors, each set in the LLC is divided into slices (usually one slice
per core) to respond to multiple requests at a time. The usage of a sliced LLC
as a covert channel becomes simpler when we deal with a power of two number
of slices. In these cases, due to the linearity, the set bits does not affect the slice
bits in the eviction set created for one of the slices. Thus, we could create an
eviction set for a specific set-slice pair composed by b1, b2, ..bn memory blocks
choosing a random set s. If we later want to target a different set, we could still
use b1, b2, ...bn by changing only the set bits and they will fill the same slice. This
fact was used in [14, 25] to perform LLC side channel attacks. This peculiarity is
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not observed in non-linear slices, i.e., the same b1, b2, .., bn will only slice-collide
for a small number of sets. The slice colliding blocks can either be empirically
observed for each set, or guessed if the non-linear slice selection algorithm is
known. Our particular EC2 instance type utilizes a Intel Xeon E5-2670 v2, which
features a 25MB LLC distributed over 10 LLC slices (i.e., non power of two).
We decide to reverse-engineer the non-linear slice selection algorithm to speed
up our eviction set creation algorithm. Note that the approach that we follow
can be utilized to reverse engineer any non-linear slice selection algorithm.

We describe the slice selection algorithm as

H(p) = h3(p)‖h2(p)‖h1(p)‖h0(p) (1)

where each H(p) is a concatenation of 4 different functions corresponding to
the 4 necessary bits to represent 10 slices. Note that H(p) will output results
from 0000 to 1001 if we label the slices from 0-9. Thus, a non-linear function is
needed that excludes outputs 10-15. Further note that p is the physical address
and will be represented as a bit string: p = p0p1 . . . p35. In order to recover the
non-linear hash function implemented by the Intel Xeon E5-2670 v2, we use
a fully controlled machine featuring the same Intel Xeon E5-2670 v2 found in
Amazon’s EC2 servers. We first generate ten equation systems (one per slice)
based on slice colliding addresses by applying the same methodology explained
to achieve co-location and generating up to 100,000 additional memory blocks.

Up to this point, one can solve the non-linear function after a re-linearization
step given sufficiently many equations. Since we are not be able to recover enough
addresses (due to RAM limitations) we take a different approach. Figure 3 shows
the distribution of the 100,000 addresses over the 10 slices. Note that 8 slices
are mapped to by 81.25% of the addresses, while 2 slices get only about 18.75%,
i.e., a 3/16 proportion. We will refer to these two slices as the non-linear slices.

We proceed to first solve the first 8 slices and the last 2 slices separately
using linear functions. For each we try to find solutions to the equation systems

Pi · Ĥi = 0̂, (2)

Pi · Ĥi = 1̂ . (3)

Here Pi is the equation system obtained by arranging the slice colliding addresses
into a matrix form, Ĥi is the matrix containing the slice selection functions and
0̂ and 1̂ are the all zero and all one solutions, respectively. This outputs two sets
of linear solutions both for the first 8 linear slices and the last 2 slices.

Given that we can model the slice selection functions separately using linear
functions, and given that the distribution is non-uniform, we model the hash
function is implemented in two levels. In the first level a non-linear function
chooses between either of the 3 linear functions describing the 8 linear slices or
the linear functions describing the 2 non-linear slices. Therefore, we speculate
that the 4 bits selecting the slice looks like:

H(p) =

{
h0(p) = h0(p) h1(p) = ¬(nl(p)) · h′1(p)

h2(p) = ¬(nl(p)) · h′2(p) h3(p) = nl(p)
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Fig. 3. Number of addresses that each slice takes out of 100,000. The non-linear slices
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Table 1. Results for the hash selection algorithm implemented by the Intel Xeon
E5-2670 v2

f Hash function H(p) = h0(p)‖¬(nl(p)) · h′1(p)‖¬(nl(p)) · h′2(p)‖nl(p)
h0 p18 ⊕ p19 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p30 ⊕ p32 ⊕ p33 ⊕ p34
h′1 p18 ⊕ p21 ⊕ p22 ⊕ p23 ⊕ p24 ⊕ p26 ⊕ p30 ⊕ p31 ⊕ p32
h′2 p19 ⊕ p22 ⊕ p23 ⊕ p26 ⊕ p28 ⊕ p30
nl v0 · v1 · ¬(v2 · v3)
v0 p9 ⊕ p14 ⊕ p15 ⊕ p19 ⊕ p21 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p29 ⊕ p32 ⊕ p34
v1 p7 ⊕ p12 ⊕ p13 ⊕ p17 ⊕ p19 ⊕ p22 ⊕ p23 ⊕ p24 ⊕ p25 ⊕ p27 ⊕ p31 ⊕ p32 ⊕ p33
v2 p9 ⊕ p11 ⊕ p14 ⊕ p15 ⊕ p16 ⊕ p17 ⊕ p19 ⊕ p23 ⊕ p24 ⊕ p25 ⊕ p28 ⊕ p31 ⊕ p33 ⊕ p34
v3 p7 ⊕ p10 ⊕ p12 ⊕ p13 ⊕ p15 ⊕ p16 ⊕ p17 ⊕ p19 ⊕ p20 ⊕ p23 ⊕ p24 ⊕ p26 ⊕ p28 ⊕ p30

⊕p31 ⊕ p32 ⊕ p33 ⊕ p34

where h0,h1 and h2 are the hash functions selecting bits 0,1 and 2 respectively,
h3 is the function selecting the 3rd bit and nl is a nonlinear function of an
unknown degree. We recall that the proportion of the occurrence of the last two
slices is 3/16. To obtain this proportion we need a degree 4 nonlinear function
where two inputs are negated, i.e.:

nl = v0 · v1 · ¬(v2 · v3) (4)

Where nl is 0 for the 8 linear slices and 1 for the 2 non-linear slices. Observe that
nl will be 1 with probability 3/16 while it will be zero with probability 13/16,
matching the distributions seen in our experiments. Consequently, to find v0 and
v1 we only have to solve Equation (3) for slices 8 and 9 together to obtain a 1
output. To find v2 and v3, we first separate those addresses where v0 and v1
output 1 for the linear slices 0 − 7. For those cases, we solve Equation (3) for
slices 0− 7. The result is summarized in Table 1. We show both the non-linear
function vectors v0, v1, v2, v3 and the linear functions h0, h1, h2. These results
describe the behavior of the slice selection algorithm implemented in the Intel
Xeon E5-2670 v2. With this result, we can now easily predict the slice selection
on the target processor in the EC2 cloud.
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6 Cross-VM RSA Key Recovery

To prove the viability of the Prime and Probe attack in Amazon EC2 across co-
located VMs, we present an expanded version of the attack implemented in [14]
by showing its application to RSA. It is important to remark that the attack is
not processor specific, and can be implemented in any processor with inclusive
last level caches. In order to perform the attack:

– We make use of the fact that the offset of the address of each table position
entry does not change when a new decryption process is executed. Therefore,
we only need to monitor a subsection of all possible sets, yielding a lower
number of traces.

– Instead of the monitoring both the multiplication and the table entry set (as
in [14] for El-Gamal), we only monitor a table entry set in one slice. This
avoids the step where the attacker has to locate the multiplication set and
avoids an additional source of noise.

The attack targets a sliding window implementation of RSA-2048 where each
position of the pre-computed table will be recovered. We will use Libgcrypt
1.6.2 as our target library, which not only uses a sliding window implementation
but also uses CRT and message blinding techniques [33]. The message blinding
process is performed as a side channel countermeasure for chosen-ciphertext

attacks, in response to studies such as [17, 16].
We use the Prime and Probe side channel technique to recover the positions

of the table T that holds the values c3, c5, c7, . . . , c2
W−1 where W is the window

size. For CRT-RSA with 2048 bit keys, W = 5 for both exponentiations dp, dq.
Observe that, if all the positions are recovered correctly, reconstructing the key
is a straightforward step.

Recall that we do not control the victim’s user address space. This means that
we do not know the location of each of the table entries, which indeed changes
from execution to execution. Therefore we will monitor a set hoping that it will
be accessed by the algorithm. However, our analysis shows a special behavior:
each time a new decryption process is started, even if the location changes, the
offset field does not change from decryption to decryption. Thus, we can directly
relate a monitored set with a specific entry in the multiplication table.

The knowledge of the processor in which the attack is going to be carried out
gives an estimation of the probability that the set/slice we monitor collides with
the set/slice the victim is using. For each table entry, we fix a specific set/slice
where not much noise is observed. In the Intel Xeon E5-2670 v2 processors,
the LLC is divided in 2048 sets and 10 slices. Therefore, knowing the lowest 12
bits of the table locations, we will need to monitor one set/slice that solves s
mod 64 = o, where s is the set number and o is the offset for a table location. This
increases the probability of probing the correct set from 1/(2048 · 10) = 1/20480
to 1/((2048 · 10)/64) = 1/320, reducing the number of traces to recover the key
by a factor of 64. Thus our spy process will monitor accesses to one of the 320
set/slices related to a table entry, hoping that the RSA encryption accesses it
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when we run repeated decryptions. Thanks to the knowledge of the non linear
slice selection algorithm, we can easily change our monitored set/slice if we see a
high amount of noise in one particular set/slice. Since we also have to monitor a
different set per table entry, it also helps us to change our eviction set accordingly.
The threshold is different for each of the sets, since the time to access different
slices usually varies. Thus, the threshold for each of the sets has to be calculated
before the monitoring phase. In order to improve the applicability of the attack
the LLC can be monitored to detect whether there are RSA decryptions or not
in the co-located VMs as proposed in [24]. After it is proven that there are RSA
decryptions the attack can be performed.

In order to obtain high quality timing leakage, we synchronize the spy process
and the RSA decryption by initiating a communication between the victim and
attacker, e.g. by sending a TLS request. Note that we are looking for a particular
pattern observed for the RSA table entry multiplications, and therefore processes
scheduled before the RSA decryption will not be counted as valid traces. In
short, the attacker will communicate with the victim before the decryption.
After this initial communication, the victim will start the decryption while the
attacker starts monitoring the cache usage. In this way, we monitor 4,000 RSA
decryptions with the same key and same ciphertext for each of the 16 different
sets related to the 16 table entries.

We investigate a hypothetical case where a system with dual CPU sockets
is used. In such a system, depending on the hypervisor CPU management, two
scenarios can play out; processes moving between sockets and processes assigned
to specific CPUs. In the former scenario, we can observe the necessary number
of decryption samples simply by waiting over a longer period of time. In this
scenario, the attacker would collect traces and only use the information obtained
during the times the attacker and the victim share sockets and discard the rest
as missed traces. In the latter scenario, once the attacker achieves co-location,
as we have in Amazon EC2, the attacker will always run on the same CPU as
the target hence the attack will succeed in a shorter span of time.

7 Leakage Analysis Method

Once the online phase of the attack has been performed, we proceed to analyze
the leakage observed. There are three main steps to process the obtained data.
The first step is to identify the traces that contain information about the key.
Then we need to synchronize and correct the misalignment observed in the cho-
sen traces. The last step is to eliminate the noise and combine different graphs
to recover the usage of the multiplication entries. Among the 4,000 observations
for each monitored set, only a small portion contains information about the mul-
tiplication operations with the corresponding table entry. These are recognized
because their exponentiation trace pattern differs from that of unrelated sets.
In order to identify where each exponentiation occurs, we inspected 100 traces
and created the timeline shown in Figure 4(b). It can be observed that the first
exponentiation starts after 37% of the overall decryption time. Note that among

12



timeslot
0 2000 4000 6000 8000 10000

R
el

oa
d 

tim
e

0

50

100

150

200

250

timeslot
0 2000 4000 6000 8000 10000

R
el

oa
d 

tim
e

0

50

100

150

200

250
Second Secret
Exponent (dq)

Decryption
Start

First Secret
Exponent (dp)

Fig. 4. Different sets of data where we find a) trace that does not contain information
b) trace that contains information about the key

timeslot
0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

timeslot
0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

Fig. 5. 10 traces from the same set where a) they are divided into blocks for a corre-
lation alignment process b) they have been aligned and the peaks can be extracted

all the traces recovered, only those that have more than 20 and less than 100
peaks are considered. The remaining ones are discarded as noise. Figure 4 shows
measurements where no correct pattern was detected (Fig. 4(a)), and where a
correct pattern was measured (Fig. 4(b)).

In general, after the elimination step, there are 8−12 correct traces left per
set. We observe that data obtained from each of these sets corresponds to 2
consecutive table positions. This is a direct result of CPU cache prefetching.
When a cache line that holds a table position is loaded into the cache, the
neighboring table position is also loaded due to cache locality principle.

For each graph to be processed, we first need to align the creation of the
look-up table with the traces. Identifying the table creation step is trivial since
each table position is used twice, taking two or more time slots. Figure 5(a)
shows the table access position indexes aligned with the table creation. In the
figure, the top graph shows the true table accesses while the rest of the graphs
show the measured data. It can be observed that the measured traces suffer from
misalignment due to noise from various sources e.g. RSA or co-located neighbors.

To fix the misalignment, we take most common peaks as reference and apply
a correlation step. To increase the efficiency, the graphs are divided into blocks
and processed separately as seen in Figure 5(a). At the same time, Gaussian
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filtering is applied to peaks. In our filter, the variance of the distribution is 1
and the mean is aligned to the peak position. Then for each block, the cross-
correlation is calculated with respect to the most common hit graph i.e. the
intersection set of all graphs. After that, all graphs are shifted to the position
where they have the highest correlation and aligned with each other. After the
cross-correlation calculation and the alignment, the common patterns are ob-
servable as in Figure 5(b). Observe that the alignment step successfully aligns
measured graphs with the true access graph at the top, leaving only the com-
bining and the noise removal steps. We combine the graphs by simple averaging
and obtain a single combined graph.

In order to get rid of the noise in the combined graph, we applied a threshold
filter as can be seen in Figure 6. We used 35% of the maximum peak value
observed in graphs as the threshold value. Note that a simple threshold was
sufficient to remove noise terms since they are not common between graphs.

Now we convert scaled time slots of the filtered graph to real time slot indexes.
We do so by dividing them with the spy process resolution ratio, obtaining the
Figure 7. In the figure, the top and the bottom graphs represent the true access
indexes and the measured graph, respectively. Also, note that even if additional
noise peaks are observed in the obtained graph, it is very unlikely that two
graphs monitoring consecutive table positions have noise peaks at the same
time slot. Therefore, we can filter out the noise stemming from the prefetching
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Table 2. Successfully recovered peaks on average in an exponentiation

Average Number of traces/set 4000
Average number of correct graphs/set 10
Wrong detected peaks 7.19%
Missdetected peaks 0.65%
Correctly detected peaks 92.15%

by combining two graphs that belong to consecutive table positions. Thus, the
resulting indexes are the corresponding timing slots for look-up table positions.

The very last step of the leakage analysis is finding the intersections of two
graphs that monitor consecutive sets. By doing so, we obtain accesses to a single
table position as seen in Figure 8 with high accuracy. At the same time, we have
total of three positions in two graphs. Therefore, we also get the positions of
the neighbors. A summary of the result of the leakage analysis is presented in
Table 2. We observe that more than 92% of the recovered peaks are in the correct
position. However, note that by combining two different sets, the wrong peaks
will disappear with high probability, since the chance of having wrong peaks in
the same time slot in two different sets is very low.

8 Recovering RSA Keys with Noise

We divide the section in two different scenarios, i.e., the scenario where the
identity and public key of the target is known (targeted co-location) and the
scenario where we have no information about the public key (bulk key recovery).

8.1 Targeted Co-location: The Public Key is Known

In this case we assume that the attacker implemented a targeted co-location
against a known server, and that she has enough information about the public
key parameters of the target. The leakage analysis described in the previous
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section recovers information on the CRT version of the secret exponent d, namely
dp = d mod (p−1) and dq = d mod (q−1). A noise-free version of either one can
be used to trivially recover the factorization of N = pq, since gcd(m−medp , N) =
p for virtually any m [13].

In cases where the noise on dp and dq is too high for a direct recovery with
the above-mentioned method, their relation to the known public key can be
exploited if the used public exponent e is small [20].

Almost all RSA implementations currently use e = 216 + 1 due to the heavy
performance boost over a random and full size e. For CRT exponents it holds
that edp = 1 mod (p − 1) and hence edp = kp(p − 1) + 1 for some 1 ≤ kp < e
and similarly for dq, yielding kpp = edp + kp − 1 and kqp = edq + kq − 1.

Algorithm 1 Windowed RSA Key Recovery with Noise

for kp from 1 to e− 1 do
Compute kq = (1− kp)(kpN − kp + 1)−1 (mod e)
while i < |wp| do

Process windows wp[i], wp[i+ 1]
Introduce shifts; vary ip[i]] up maxzeros
for each dp variation do

Compute X =
∑i+1

j=0 wp[j]2
ip[j]

Identify wq that overlap with wp[i], wp[i+ 1]
Compute Y =

∑i+1
j=0 wq[j]2

iq[j]

if δ(X,Y, t)=0 then
Update wp, ip, wq, iq
Create thread for i+ 1

end if
if if no check succeeded then

too many failures: abandon thread.
if maxzeros achieved then

i = i− 1
end if
Update ip, wq, iq
Create thread for i

end if
end for

end while
end for

Multiplying both equations gives us a key equation which we will exploit in
two ways

kpkqN = (edp + kp − 1)(edq + kq − 1). (5)

If we consider Equation (5) modulo e, the unknowns dp and dq disappear and
we obtain kpkqN = (kp− 1)(kq − 1) (mod e). Therefore given kp we can recover
kq and vice versa by solving this linear equation. Since 1 ≤ kp < e represents
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an exhaustible small space we can simply try all values for kp and compute
corresponding kq as shown above.

Next, assume we are given the first t bits of dp and dq, e.g. a = dp mod 2t

and b = dq mod 2t. For each kp we check whether δ(a, b, t) = 0 where

δ(a, b, t) = kpkqN − (ea+ kp − 1)(eb+ kq − 1) (mod 2t)

This means we have a simple technique to check the correctness of the least-
significant t bits of dp, dq for a choice of kp. We can

– Check parts of dp and dq by verifying if the test δ(dp(t), dq(t), t) = 0 holds
for t ∈ [1, dlog(p)e].

– Fix alignment and minor errors by shifting and varying dp(t) and dq(t),
and then sieving working cases by checking if δ(dp(t), dq(t), t) = 0,

– Recover parts of dq given dp (and vice versa) by solving the error equation
δ(dp(t), dq(t), t) = 0 in case the data is missing or too noisy to correct.

Note that the algorithm may need to try all 216 values of kp in a loop.
Further, in the last case where we recover a missing data part using the checking
equation we need to speculatively continue the iteration for a few more steps.
If we observe too many mistakes we may early terminate the execution thread
without reaching the end of dp and dq.

To see how this approach can be adapted into our setting, we need to con-
sider the error distribution observed in dp and dq as recovered by cache timing.
Furthermore, since the sliding window algorithm was used in the RSA expo-
nentiation operation, we are dealing with variable size (1-5 bit) windows with
contents wp, wq, and window positions ip, iq for dp and dq, respectively.

The windows are separated by 0 strings. We observed:

– The window wp contents for dp had no errors and were in the correct order.
There were slight misalignments in the window positions ip with extra or
missing zeros in between.

– In contrast, dq had not only alignment problems but also few windows with
incorrect content, extra windows, and missing windows (overwritten by ze-
ros). The missing windows were detectable since we do not expect unusually
long zero strings in a random dq.

– Since the iterations proceed from the most significant windows to the least
we observed more errors towards the least significant words, especially in dq.

Algorithm 1 shows how one can progressively error correct dp and dq by
processing groups of consecutive ` windows of dp. The algorithm creates new
execution threads when an assumption is made, and kills a thread after assump-
tions when too many checks fail to produce any matching on different windows.
However, then the kill threshold has to be increased and the depth of the com-
putation threads and more importantly the number of variations that need to be
tested increases significantly. In this case, the algorithm finds the correct private
key in the order of microseconds for a noise-free dp and needs 4 seconds for our
recovered dp.
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8.2 Bulk Key Recovery: The Public Key is Unknown

In this scenario, the attacker spins multiple instances and monitors the LLC,
looking in all of them for RSA leakages. If viable leakages are observed, the
attacker might not know the corresponding public key. However, she can build
up a database of public keys by mapping the entire IP range of the targeted
Amazon EC2 region and retrieve all the public keys of hosts that have the TLS
port open. The attacker then runs the above described algorithm for each of
the recovered private keys and the entire public key database. Having the list
of ’neighboring’ IPs with an open TLS port also allows the attacker to initiate
TLS handshakes to make the servers use their private keys with high frequency.

In the South America Amazon EC2 region, we have found 36000+ IP ad-
dresses with the TLS port open (Appendix Figure ??) using nmap. With a public
key database of that size, our algorithm takes between less than a second (for
noise-free dps) and 30 CPU hours (noisy dps) to check each private key with the
public key database. This approach recovers the public/private key pair, and
consequently, the identity of the key owner.

9 Countermeasures

Libgcrypt 1.6.3 update: Libgcrypt recently patched this vulnerability by mak-
ing the sliding window multiplication table accesses indistinguishable from each
other. Thus, an update to the latest version of the library avoids the leakage ex-
ploited in this work albeit only for ciphers using sliding window exponentiation.

Single-tenant Instances: Although more expensive, in most cloud services,
users have the option of having the whole physical machine to themselves, pre-
venting co-location with potentially malicious users.

Live Migration: In a highly noisy environment like the commercial cloud, an
attacker would need many traces to conduct a side-channel attack. In the live
migration scenario, the attacker would have to perform the attack in the time
period when the attacker and the victim share the physical machine.

10 Conclusion

In conclusion, we show that even with advanced isolation techniques, resource
sharing still poses security risk to public cloud customers that do not follow the
best security practices. The cross-VM leakage is present in public clouds and can
be a practical attack vector for data theft. Therefore, users have a responsibility
to use latest improved software for their critical cryptographic operations. Even
further, we believe that smarter cache management policies are needed both at
the hardware and software levels to prevent side-channel leakages.
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