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Abstract

Under the Decisional Diffie-Hellman (DDH) assumption, we present a 2-out-of-2 secret shar-
ing scheme that supports a compact evaluation of branching programs on the shares. More
concretely, there is an evaluation algorithm Eval with a single bit of output, such that if an
input w ∈ {0, 1}n is shared into (w0, w1), then for any deterministic branching program P of
size S we have that Eval(P,w0)⊕ Eval(P,w1) = P (w) except with at most δ failure probability.
The running time of the sharing algorithm is polynomial in n and the security parameter λ, and
that of Eval is polynomial in S, λ, and 1/δ. This applies as a special case to boolean formulas
of size S or boolean circuits of depth logS. We also present a public-key variant that enables
homomorphic computation on inputs contributed by multiple clients.

The above result implies the following DDH-based applications:

• A secure 2-party computation protocol for evaluating any branching program or formula
of size S, where the communication complexity is linear in the input size and only the
running time grows with S.

• A secure 2-party computation protocol for evaluating leveled boolean circuits of size S
with communication complexity O(S/ logS).

• A 2-party function secret sharing scheme, as defined by Boyle et al. (Eurocrypt 2015), for
general branching programs (with inverse polynomial error probability).

• A 1-round 2-server private information retrieval scheme supporting general searches ex-
pressed by branching programs.

Prior to our work, similar results could only be achieved using fully homomorphic encryption.
We hope that our approach will lead to more practical alternatives to known fully homomorphic
encryption schemes in the context of low-communication secure computation.

Keywords: Secure computation, fully homomorphic encryption, function secret sharing,
private information retrieval

1 Introduction

In this paper we introduce a simple new technique for low-communication secure computation
that can be based on the Decisional Diffie-Hellman (DDH) assumption and avoids the use of
fully homomorphic encryption. We start with some relevant background.

∗A preliminary version of this paper appears in [11].
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Since the seminal feasibility results of the 1980s [58, 35, 6, 14], a major challenge in the
area of secure computation has been to break the “circuit size barrier.” This barrier refers
to the fact that all classical techniques for secure computation required a larger amount of
communication than the size of a boolean circuit representing the function to be computed, even
when the circuit is much bigger than the inputs. The circuit size barrier applied not only to
general circuits, but also to useful restricted classes of circuits such as boolean formulas (namely,
circuits with fan-out 1) or branching programs (a stronger computational model capturing non-
uniform logarithmic-space computations). Moreover, the same barrier applied also to secure
computation protocols that can rely on a trusted source of correlated randomness, provided
that this correlated randomness needs to be reusable.

The first significant progress has been made in the context of private information retrieval
(PIR), where it was shown that for the bit-selection function f(x, i) = xi it is possible to
break the circuit size barrier either in the multi-server model [17, 15], where a client holds i
and two or more servers hold x, or in the two-party model [42] under standard cryptographic
assumptions. However, progress on extending this to other useful computations has been slow,
with several partial results [16, 25, 47, 8, 38] that do not even cover very simple types of circuits
such as general DNF or CNF formulas, let alone more expressive ones such as general formulas
or branching programs.1

All this has changed with Gentry’s breakthrough on fully homomorphic encryption (FHE) [52,
28]. FHE enables local computations on encrypted inputs, thus providing a general-purpose so-
lution to the problem of low-communication secure computation. On the down side, even the
best known implementations of FHE [36, 23] are still quite slow. Moreover, while there has
been significant progress on basing the feasibility of FHE on more standard or different assump-
tions [55, 12, 30], the set of cryptographic assumptions on which FHE can be based is still very
narrow, and in particular it does not include any of the “traditional” assumptions that were
known in the 20th century.

1.1 Our Contribution

Our new approach was inspired by the recent work on function secret sharing (FSS) [10]. A
(2-party) FSS scheme for a function class F allows a client to split (a representation of) f ∈ F
into succinctly described functions f0 and f1 such that for any input x we have that f(x) =
f0(x) + f1(x) (over some Abelian group), but each fb hides f .

The notion of FSS was originally motivated by applications to multi-server PIR and related
problems. FSS schemes for simple classes of functions such as point functions were constructed
from one-way functions in [31, 10]. However, a result from [10] shows that 2-party FSS for richer
circuit classes, from AC0 and beyond, would imply (together with a mild additional assumption)
breaking the circuit size barrier for similar classes.

The idea is that by encrypting the inputs and applying FSS to the function f ′ that first
decrypts the inputs and then computes f , the parties can shift the bulk of the work required for
securely evaluating f to local evaluations of f ′0 and f ′1. Thus, breaking the circuit size barrier
reduces to securely distributing the generation of f ′0 and f ′1 from f and the secret decryption
keys, which can be done using standard secure computation protocols and reused for an arbitrary
number of future computations. This was viewed in [10] as a negative result, providing evidence
against the likelihood of basing powerful forms of FSS on assumptions that are not known to
imply FHE.

We turn the tables by constructing FSS schemes for branching programs under DDH, which
implies low-communication secure 2-party computation protocols under DDH.

1In the homomorphic encryption for branching programs from [38] (see also [41]), the size of the encrypted output
must grow with the length of the branching program. When simulating a boolean formula by a branching program,
the length of the branching program is typically comparable to the formula size.
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Homomorphic secret sharing. For the purpose of presenting our results, it is more conve-
nient to consider a dual version of FSS that can also be viewed as a form of “homomorphic secret
sharing,” or alternatively a variant of threshold FHE [28, 4]. Concretely, a client wants to split a
secret input w ∈ {0, 1}n into a pair of shares (w0, w1), each of which is sent to a different server.
Each individual share should computationally hide w. Each server, holding (a representation
of) a function f ∈ F , can apply an evaluation algorithm to compute yb = Eval(f, wb), so that
y0 + y1 = f(w). Note that this is precisely the original notion of FSS with the roles of the
function and input reversed.2

Cast in the this language, our main technical contribution is such a homomorphic secret
sharing scheme, based on DDH, with output group Z2 (or any other Zp), and the class F of
functions represented by deterministic3 branching programs. The scheme only satisfies a relaxed
form of the above correctness requirement: for every input w and branching program P , the
probability of producing local outputs that do not add up to the correct output P (w) is upper
bounded by an error parameter δ > 0 which affects the running time of Eval. This probability
is over the randomness of the sharing.4 The running time of the sharing algorithm is n ·poly(λ),
where λ is a security parameter. The running time of Eval is polynomial in S, λ, and 1/δ.

We would like to stress that branching programs are quite powerful and capture many useful
real-life computations. In particular, a branching program of size S can simulate any boolean
formula of size S or boolean circuit of depth log2 S, and polynomial-size branching programs
can simulate any computation in the complexity classes NC1 or (non-uniform) deterministic
log-space.

We also present a public-key variant of the homomorphic secret sharing scheme. This variant
can be viewed as a threshold homomorphic encryption scheme with secret evaluation keys and
additive reconstruction. That is, there is a key generation algorithm that outputs a single public
key and a pair of secret evaluation keys. Given the public key, an arbitrary number of clients
can encrypt their inputs. Each server, given the public ciphertexts and its secret evaluation key,
can locally compute an additive share of the output.

The above results imply the following applications, all based on the DDH assumption alone.

Succinct secure computation of branching programs. The general transformation from
FSS to secure two-party computation described above can be used to obtain succinct two-party
protocols for securely evaluating branching programs with reusable preprocessing. However, the
public-key variant of our construction implies simpler and more efficient protocols. The high level
approach is similar to that of other low-communication secure protocols from different flavors
of FHE [28, 4, 46], except for requiring secret homomorphic evaluation keys and an additional
error-correction sub-protocol. For a two-party functionality with a total of n input bits and
m = m(n) output bits, where each output can be computed by a polynomial-size branching
program (alternatively, logarithmic space Turing Machine or NC1 circuit), the protocol can be
implemented with a constant number of rounds and n+m ·poly(λ) bits of communication, where
λ is a security parameter. To reduce the n ·poly(λ) cost of a bit-by-bit encryption of the inputs,
the protocol employs a hybrid homomorphic encryption technique from [29]. Security against

2One can always switch between the notions by changing the class F . However, for classes F that contain universal
functions [54, 19] and are additionally closed under restrictions, the switch can be done with polynomial overhead
without changing F . This will be the case for all function classes considered in this work.

3In fact, our construction can handle a larger class of arithmetic branching programs over the integers, but
correctness only holds as long as all integers involved in intermediate computations are bounded by some fixed
polynomial. This type of branching programs captures the complexity class ReachFewL, which contains only few
natural problems not known to be computable in deterministic logspace [43, 27]. However, even this limited type of
arithmetic branching programs can be useful for improving the asymptotic and concrete efficiency of homomorphic
arithmetic computations.

4We also realize a stronger variant in which Eval gets an additional input id, and errors in multiple executions of
Eval are essentially independent as long as the id’s are different.
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malicious parties can be achieved in a generic way via a communication-preserving GMW-style
compiler [35, 47]. Such a compiler can be based on the existence of collision-resistant hash
functions, which again follows from DDH.

Breaking the circuit size barrier for “well structured” circuits. In the case
of evaluating general (possibly deep) boolean circuits, we can make the total communication
slightly sublinear in the circuit size by breaking the computation into segments of logarithmic
depth and homomorphically computing additive shares of the outputs of each segment given
additive shares of the inputs. For instance, we can evaluate a leveled circuit of size S using
O(S/ logS) bits of communication (ignoring lower order additive terms; see Section 4 for a
more precise statement). We employ error-correcting codes with encoding and decoding in
NC1 to ensure that errors introduced by the computation of a segment are corrected before
propagating to the next segment. More generally, we can evaluate any “circuit over branching
programs” (i.e., a circuit whose gates can evaluate an arbitrary branching program on their
inputs) with total communication complexity which is linear in the number of gates and with
total computational complexity which is polynomial in the size of the branching programs.

Function secret sharing. Using a universal branching program we can reverse the roles of
P and w in the above homomorphic secret sharing scheme, obtaining a polynomial-time 2-party
FSS scheme for branching programs. Unlike the main definition of FSS from [10] here we can
only satisfy a relaxed notion that allows an inverse polynomial error probability. However, the
error probability can be made negligible in the context of natural applications. An m-party FSS
scheme for circuits was recently obtained by Dodis et al. [22] under the Learning with Errors
(LWE) assumption, by making use of multi-key FHE [45, 18, 46]. Our construction gives the
first FSS scheme that applies to a rich class of functions and does not rely on FHE.

Private information retrieval. Following the application of FSS to PIR from [10] with
a simple repetition-based error-correction procedure, a consequence of the above result is a 1-
round 2-server (computational) PIR scheme in which a client can privately search a database
consisting of N documents for the existence of a document satisfying a predicate P , where P
is expressed as a branching program applied to the document. For instance, any deterministic
finite automaton can be succinctly expressed by such a branching program. The length of the
query sent to each server is polynomial in the size of the branching program and a computational
security parameter, whereas the length of the answer is a statistical security parameter times
logN .

1.2 Overview of Techniques

We now describe the main ideas behind our construction. It will be convenient to use the
homomorphic secret sharing view: a client would like to secretly share an input w between 2
servers so that the servers, on input P , can locally compute additive shares of P (w).

Let G be a DDH group of prime order q with generator g. Our construction employs three
simple ideas.

The first is that a combination of a natural threshold version of ElGamal [21] and linear
secret sharing allows the servers to locally multiply an encrypted input w with an additively
secret-shared value x, such that the result z = wx is shared between the servers in the following
way: each server b has a group element gzb such that the product of the two group element is gz.
This idea alone is already useful, as it gives an (m− 1)-private m-server protocol for computing
any degree-2 polynomial P with small integer coefficients held by the servers on a vector w
of small integers held by the client, where the communication complexity in each direction is
essentially optimal.

To see how this step is possible, consider a simplified version of the world, where (instead of
requiring ElGamal) it holds that gw is a secure encryption of w. In this world, we can secret
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share input w by giving both servers a copy of the encryption gw. Then, given an additive secret
sharing x0, . . . , xm−1 of another value x, the servers can generate a multiplicative sharing of wx,
by each computing (gw)xi . Indeed,

∏
i g
wxi = gwx. Extending this idea to ElGamal (as, alas,

gw is not a secure encryption) can be done via comparable “linear algebra in the exponent”
given additive shares of x as well as for cx, where c is the ElGamal secret key.

What seems to stop us at degree-2 polynomials is the fact that gz is now shared multi-
plicatively rather than z being shared linearly, so the servers cannot multiply z by a new input
encrypted by the client. Moreover, converting multiplicative shares to additive shares seems
impossible without the help of the client, due to the intractability of computing discrete loga-
rithms in G. The second, and perhaps most surprising, idea is that if we allow for an inverse
polynomial error probability, and assuming there are only m = 2 servers, the servers can convert
multiplicative shares of gz into linear shares of z without any interaction. For simplicity, suppose
z ∈ {0, 1}. Taking the inverse of the second server’s share, the servers now hold group elements
g0, g1 such that g0 = g1 if z = 0 and g0 = g · g1 if z = 1. Viewing the action of multiplication by
g as a cycle over Zq, the elements g0, g1 are either in identical positions, or g0 is one step ahead.
Conversion is done by picking a pseudo-random δ-sparse5 subset G′ ⊂ G and having each server
b ∈ {0, 1} locally find the minimal integer zb ≥ 0 such that gb · gzb ∈ G′. The first such zb is
expected to be found in roughly 1/δ steps and if it is not found in O((1/δ) log(1/δ)) steps, we
set zb = 0. The key observation is that except with O(δ) probability, both searches will find the
same point in G′ and the servers end up with integers z0, z1 such that z1 − z0 = z, yielding the
desired linear sharing of z.

Once we have a linear sharing of z, we can freely add it to other values that have a similar
linear representation. We cannot hope to multiply two linearly shared values, but only to
multiply them with another encrypted input. As noted previously, each such multiplication
requires additive shares not only of z, but also of cz for the ElGamal key c. Therefore, the
servers must compute multiplicative shares of gcz and convert them to additive shares of cz.

The third idea is that the client can assist the conversion by also providing an encryption
of each input w multiplied by the secret key. This introduces two problems: the first is that
semantic security may break down given a circular encryption of the secret key, which we handle
either by assuming circular security of ElGamal or (with some loss of efficiency) by using the
circular-secure variant of Boneh et al. [9] instead of standard ElGamal. A more basic problem is
that for the conversion to produce correct results with high probability, the secrets must be small
integers, whereas c (and so cz) is a large number. This is handled by providing an encryption
of each input w multiplied by each bit ci of the secret key, and applying a linear combination
whose coefficients are powers of 2 to the linear shares of the products ciwx to obtain additive
shares of cz for z = wx.

These ideas allow the servers to compute a restricted type of “straight-line programs” on the
client’s input, consisting of a sequence of instructions that either: load an input into memory, add
the values of two memory locations, multiply a memory location by an input, or output the value
of a memory location modulo some integer β ≥ 2. (Note that we cannot multiply two memory
locations, which would allow evaluation of arbitrary circuits.) Such programs, referred to as
restricted multiplication straight-line (RMS) programs, can emulate any branching program of
size S by a sequence of O(S) instructions.

It is instructive to note that the only limit on the number of instructions performed by the
servers is the accumulation of error probabilities. This is analogous to the accumulation of
noise in FHE schemes. However, the mechanisms for coping with errors are very different: in
the context of known FHE schemes the simplest way of coping with noise is by using larger
ciphertexts, whereas here we can reduce the error probability by simply increasing the running
time of the servers, without affecting the ciphertext size or the complexity of encryption and

5Ideally, such a sparse subset would include each h ∈ G independently with probability δ. To emulate this
efficiently we include each h ∈ G in G′ if φ(h) = 0dlog 1/δe, where φ is a pseudorandom function.
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decryption at all. We can also further trade running time for succinctness: the share size in our
basic construction can be reduced by replacing the binary representation of the secret key with
a representation over a larger basis, which leads to a higher homomorphic evaluation time.

The surprising power of local share conversions, initially studied in [20], has already been
observed in the related contexts of information-theoretic PIR and locally decodable codes [59,
24, 5]. However, the type of share conversion employed here is very different in nature, as it is
inherently tied to efficient computation rather than information.

Interestingly, our share conversion technique has resemblance to a cryptanalytic technique
introduced by van Oorschot and Weiner for the purpose of parallel collision finding [56], where
a set of “distinguished points” is used to synchronize two different processors.

1.3 Future Directions

This work gives rise to many natural open questions and future research directions. Can one
bootstrap from branching programs to general circuits without relying on FHE? Can similar
results be obtained for more than 2 parties? Can similar results be based on other assumptions
that are not known to imply FHE? Can the dependence on the error parameter δ be eliminated
or improved? To what extent can our protocols be optimized for practical use?

We hope that our approach will lead to faster solutions for some practical use-cases of FHE.

2 Preliminaries

In this section we define the primitives we implement and the assumptions we rely on. We refer
the reader to Appendix A for standard definitions and facts about branching programs.

Function representations. We capture a function representation (such as a circuit, for-
mula, or branching program) by an infinite collection P of bit strings P (called “programs”),
each specifying an input length n and an output length m, together with an efficient algorithm
Evaluate, such that y ← Evaluate(P,w) (denoted by shorthand notation “P (w)”), for any input
w ∈ {0, 1}n, defines the output of P on w. We also associate with every program P a size pa-
rameter, which may be different from the bit-length of the string P . We will sometimes consider
programs defined over a larger (non-binary) alphabet; the above definition extends naturally to
this case. Finally, we will sometimes allow P (w) to return a special ⊥ symbol, specifying that
the output is undefined. The following “correctness” requirements are automatically satisfied
for such a choice of P and w.

While our constructions natively support programs that perform arithmetic computations
over (small) integers, the following definitions consider binary inputs and outputs for simplicity.
In the arithmetic version of our constructions, described in Section 3, programs include an
additional parameter that specifies an upper bound on the size of intermediate values. In the
case of evaluating standard (binary) branching programs, this bound can be fixed to 1.

2.1 Homomorphic Secret Sharing

We now define our basic notion of homomorphic secret sharing. We consider the case of 2-out-
of-2 secret sharing, where an algorithm Share is used to split a secret w = (w1, . . . , wn) ∈ {0, 1}n
into two shares, such that each share computationally hides w. The homomorphic evaluation
algorithm Eval is used to locally evaluate a program P ∈ P on the two shares, such that the two
outputs of Eval add up to P (w) modulo a positive integer β (where β = 2 by default), except
with δ error probability. The running time of Eval is polynomial in the size of P and 1/δ.

One could alternatively consider a relaxed notion that only requires the output representation
to be “compact,” in the sense that its length is independent of the size of P. With such an
alternative representation, one could make δ negligible via independent repetition. We require
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an additive representation as above because it is crucial for some of the applications we consider
and is achieved by our constructions. See [10] for further discussion in the context of the dual
notion of Function Secret Sharing.

Definition 2.1 (Homomorphic Secret Sharing). A (2-party, 1/poly-error) Homomorphic Secret
Sharing (HSS) scheme for a class of programs P consists of algorithms (Share,Eval) with the
following syntax:

• Share(1λ, (w1, . . . , wn)): On security parameter 1λ and (w1, . . . , wn) ∈ {0, 1}n, the sharing
algorithm outputs a pair of shares (share0, share1). We assume that the input length n is
included in each share.

• Eval(b, share, P, δ, β): On input party index b ∈ {0, 1}, share share (which also specifies
an input length n), a program P ∈ P with n input bits and m output bits, an error
bound δ > 0 and integer β ≥ 2, the homomorphic evaluation algorithm outputs yb ∈ Zmβ ,
constituting party b’s share of an output y ∈ {0, 1}m. When β is omitted it is understood
to be β = 2.

The algorithm Share is a PPT algorithm, whereas Eval can run in time polynomial in its input
length and in 1/δ.
The algorithms (Share,Eval) should satisfy the following correctness and security requirements:

• Correctness: For every polynomial p there is a negligible ν such that for every positive
integer λ, input (w1, . . . , wn) ∈ {0, 1}n, program P ∈ P with input length n, error bound
δ > 0 and integer β ≥ 2, where |P |, 1/δ ≤ p(λ), we have

Pr[(share0, share1)← Share(1λ, (w1, . . . , wn)); yb ← Eval(b, shareb, P, δ, β), b = 0, 1 :

y0 + y1 = P (w1, . . . , wn)] ≥ 1− δ − ν(λ),

where addition of y0 and y1 is carried out modulo β.

• Security: Each share keeps the input semantically secure. Formally, for any b ∈ {0, 1},
pair of polynomial-length input sequences v1, v2, . . . and w1, w2, . . . such that |vi| = |wi|,
and nonuniform polynomial-time distinguisher A, there is a negligible function ν, such that
for every positive integer λ we have |Pr[A(V bλ ) = 1] − Pr[A(W b

λ) = 1]| ≤ ν(λ), where V bλ
(resp., W b

λ) is obtained by letting (share0, share1)← Share(1λ, vλ) (resp., (share0, share1)←
Share(1λ, wλ)) and outputting shareb.

2.2 Public Key Variant

We further consider a stronger variant of the homomorphic secret sharing primitive that supports
homomorphic computations on inputs contributed by different clients. In fact, what we achieve
is stronger: there is a single public key that can be used to encrypt inputs as in a standard public-
key encryption scheme. However, similar to the original notion of homomorphic secret sharing
(and in contrast to standard homomorphic encryption schemes), homomorphic computations
on encrypted inputs are done in a distributed way and require two separate (secret) evaluation
keys. Moreover, unlike standard homomorphic encryption schemes (and similarly to the above
notion of HSS), the “encrypted” output is not represented by a single ciphertext, but rather by
a pair of shares that add up to the output.

The corresponding security notion guarantees computational secrecy of an encrypted input
given the public key, the ciphertext, and evaluation key of any single server. In a setting
consisting of two servers and an arbitrary number of clients, the above security notion implies
that inputs contributed by a set of uncorrupted clients remain secure even if one of the two
servers colludes with all the remaining clients.
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Definition 2.2 (Distributed-Evaluation Homomorphic Encryption). A (2-party, 1/poly-error)
Distributed-Evaluation Homomorphic Encryption (DEHE) for a class of programs P consists of
algorithms (Gen,Enc,Eval) with the following syntax:

• Gen(1λ): On input a security parameter 1λ, the key generation algorithm outputs a public
key pk and a pair of evaluation keys (ek0, ek1).

• Enc(pk, w): On a public key pk and a secret input value w ∈ {0, 1}, the encryption algo-
rithm outputs a ciphertext ct.

• Eval(b, ek, (ct1, . . . , ctn), P, δ, β): On input party index b ∈ {0, 1}, evaluation key ek, vector
of n ciphertexts, a program P ∈ P with n input bits and m output bits, error bound
δ > 0, and an integer β ≥ 2, the homomorphic evaluation algorithm outputs yb ∈ Zmβ ,
constituting party b’s share of an output y ∈ {0, 1}m. When β is omitted it is understood
to be β = 2.

The algorithms Gen and Enc are PPT algorithms, whereas Eval can run in time polynomial in its
input length and in 1/δ. The algorithms (Gen,Enc,Eval) should satisfy the following correctness
and security requirements:

• Correctness: For every polynomial p there is a negligible ν such that for every positive
integer λ, input (w1, . . . , wn) ∈ {0, 1}n, program P ∈ P with input length n, error bound
δ > 0 and integer β ≥ 2, where |P |, 1/δ ≤ p(λ), we have

Pr

 (pk, (ek0, ek1))← Gen(1λ);
(ct1, . . . , ctn)← (Enc(pk, w1), . . . ,Enc(pk, wn));
yb ← Eval(b, ekb, (ct1, . . . , ctn), P, δ, β), b = 0, 1

: y0 + y1 = P (w1, . . . , wn)

 ≥ 1−δ−ν(λ),

where addition of y0 and y1 is carried out modulo β.

• Security: For b = 0, 1, the two distribution ensembles C0(λ) and C1(λ) are computation-
ally indistinguishable, where Cw(λ) is obtained by letting (pk, (ek0, ek1)) ← Gen(1λ) and
outputting (pk, ekb,Enc(pk, w)).

2.3 Standard Cryptographic Definitions

We start by defining the DDH assumption on which our results rely.

Definition 2.3 (DDH). We say that the Decisional Diffie-Hellman assumption (DDH) holds if
there exists a PPT group generator IG with the following properties. The output of IG(1λ) is
a pair (G, g), where G describes a cyclic group of a prime order q (where we use multiplicative
notation for the group operation) and g describes a group generator. We assume that q is
included in the group description G. We also assume the existence of an efficient algorithm that
given G and descriptions of group elements h1, h2 outputs a description of h1h2. Finally, we
require that for every nonuniform polynomial-time algorithm A there is a negligible function ε
such that

|Pr[(G, g)← IG(1λ); (a, b)← Z2
q : A(G, g, ga, gb, gab) = 1]−

Pr[(G, g)← IG(1λ); (a, b, c)← Z3
q : A(G, g, ga, gb, gc) = 1]| ≤ ε(λ)

Public-key encryption and ElGamal encryption. A public-key encryption is defined
by PPT algorithms (Gen,Enc,Dec), where the key generation algorithm Gen(1λ) outputs a key
pair (pk, sk), the encryption algorithm Enc(m) outputs the encryption of a message m (where
we view m as a non-negative integer), and the decryption algorithm Dec(sk, c) outputs the
decryption of a ciphertext c. We refer the reader to [32] for the standard security definition.
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The ElGamal encryption scheme, whose security is based on the DDH assumption, is defined
as follows. Let IG be as promised in Definition 2.3. The key generation algorithm GenElGamal(1

λ)
lets (G, g) ← IG(1λ), picks a random c ∈ Zq (recall that q = |G|) and outputs (pk, sk) for
pk = (G, g, gc) and sk = c. The encryption algorithm is defined by EncElGamal(pk = gc,m) =
(gr, gm · gcr) and the decryption algorithm DecElGamal(sk, ct = (a, b)) outputs m such that gm =
b/ac (we assume that 0 ≤ m ≤ poly(λ) so that m can be found in brute-force). We will omit
the group G and the generator g when they are clear from the context.

A more efficient variant of our construction requires a circular security assumption on the
underlying bit encryption scheme, in which an efficient adversary cannot distinguish encryptions
of the bits of the secret key from encryptions of 0. We present a simplified (weaker) version of
the more general notion of key-dependent security as introduced by Black et al. [7].

Definition 2.4 (Circular Security). We say that a public-key encryption scheme (Gen,Enc,Dec)
with secret key length `(λ) and message space containing {0, 1} is circular secure if there exists
a negligible function ν(λ) for which the following holds for every nonuniform polynomial-time
A:

Pr

 (pk, sk)← Gen(1λ),
b← {0, 1},
b′ ← AOb(pk)

: b′ = b

 ≤ 1

2
+ ν(λ),

where the oracle Ob takes no input and outputs the following (where sk(i) denotes the ith bit
of sk):

(C1, . . . , C`), where

{
∀i ∈ [`], Ci ← Enc(pk, 0) if b = 0

∀i ∈ [`], Ci ← Enc(pk, sk(i)) if b = 1
.

We remark that circular security implies standard semantic security.

Pseudorandom functions. We will rely on pseudorandom functions [34] mapping (rep-
resentations of) DDH group elements to bit-strings. We write φ ← PRFGen(1λ) to denote the
choice of a key defining a PRF φ whose (polynomial-length) domain and range will be specified.

3 Homomorphic Secret Sharing for Branching Programs

In this section, we present constructions of homomorphic secret sharing schemes that enable non-
interactive evaluation of a certain class of programs, known as restricted multiplication straight-
line programs. In particular, programs from this class can simulate deterministic branching
programs with constant overhead.

Definition 3.1 (RMS programs). The class of Restricted Multiplication Straight-line (RMS)
programs consists of a magnitude bound 1M and an arbitrary sequence of the four following
instructions, each with a unique identifier id:

• Load an input into memory: (id, ŷj ← ŵi).

• Add values in memory: (id, ŷk ← ŷi + ŷj).

• Multiply value in memory by an input value: (id, ŷk ← ŵi · ŷj).

• Output value from memory, as element of Zβ : (id, β, Ôj ← ŷi).

If at any step of execution the size of a memory value exceeds the bound M , the output of the
program on the corresponding input is defined to be ⊥. We define the size of an RMS program
P as the number of its instructions.

9



Algorithm 1 DistributedDLogG,g(h, δ,M, φ)

1: Set h′ ← h, i← 0. Let T := [2M loge(2/δ)]/δ.
2: while (φ(h′) 6= 0dlog(2M/δ)e and i < T ) do
3: h′ ← h′ · g, i← i+ 1.
4: end while
5: Output i.

Our construction will support homomorphic evaluation of straight-line programs of this form
over inputs wi ∈ Z, provided that all intermediate computation values in Z remain “small,”
bounded by a parameter M (where the required runtime grows with this size bound).

Our final result is a public-key variant—i.e., a homomorphic encryption scheme with dis-
tributed evaluation (as per Definition 2.2)—based on DDH, with ciphertext size O(`) group
elements per input (where ` is the logarithm of the DDH group size), and where runtime for
homomorphic evaluation of an RMS program of size S with intermediate computation values
bounded by M is poly(λ, S,M, 1/δ).

An important sub-procedure of our homomorphic evaluation algorithms is a local share
conversion procedure DistributedDLog, which intuitively converts a multiplicative secret sharing
of gx to an additive secret sharing of the value x, with inverse polynomial probability of error.

In the following subsections, we present: (1) The share conversion procedure DistributedDLog,
(2) a simplified version of the homomorphic secret sharing scheme (in the secret-key setting)
assuming circular security of ElGamal encryption, (3) the analogous public-key construction,
and (4) the final public-key construction based on standard DDH.

3.1 Share Conversion Procedure

We now describe the local share conversion procedure DistributedDLog, which receives as input
a group element h ∈ G and outputs an integer i. Loosely speaking, DistributedDLog outputs
the distance on the cycle generated by g ∈ G between h and the first h′ ∈ G such that a
pseudo-random function (PRF) outputs 0 on z. Once the PRF is fixed, DistributedDLog is
a deterministic procedure and consequently two invocations of the procedure with the same
element h result in the same output i. Two invocations of the procedure on inputs h and h · gx
for a small x result, with good probability (over the initial choice of PRF seed), in outputs i and
i− x for some i ∈ Z. Therefore, the DistributedDLog procedure converts a difference of small x
in the cycle generated by g in G to the same difference over Z.

The detailed description of DistributedDLogG,g is given in Algorithm 1. The procedure is
hard-wired with a description of a cyclic group G and a generator g ∈ G. DistributedDLogG,g
receives as input a group element h ∈ G, an allowable error probability δ, a maximum difference
boundM ∈ N (where the correctness property described above will hold only for integers 0 ≤ x <
M), and a pseudo-random function φ : G → {0, 1}dlog(2M/δ)e. The value T = [2M loge(2/δ)]/δ
corresponds to the bound on how many steps the procedure will take along G without reaching
a “special” point before giving up. In the following proposition, we analyze the correctness of
DistributedDLog in a simplified setting where φ is a truly random function. (The use of PRF
will be incorporated in the subsequent subsections).

Proposition 3.2. Let G be a cyclic group of order q. Let δ > 0, M ∈ N with M,T < q. Let
R be the family of all functions R = {φ : G → {0, 1}dlog(2M/δ)e}. Then, for any h ∈ G and
x ≤M , it holds that

Pr
[
φ← R : DistributedDLogG,g(h, δ,M, φ)− DistributedDLogG,g(h · gx, δ,M, φ) = x

]
≥ 1− δ.
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Proof. Let Zone1 = {0, . . . , x − 1} and Zone2 = {x, . . . , T}. The zones are defined such that
i ∈ Zone1 when the element h · gi lies “between” h and h · gx, and i ∈ Zone2 when the element
h · gi lies outside (“to the right”) of this window but within the range that will be reached by
the DistributedDLog procedure before the timeout condition T . For simplicity of notation, we
will denote 0 := 0dlog(2M/δ)e.

Given a choice of φ← R, we are in one of three possible cases:

1. φ(h · gi) = 0 for some i ∈ Zone1.

2. φ(h · gi) = 0 for no i ∈ Zone1, and for some i ∈ Zone2.

3. φ(h · gi) = 0 for no i ∈ Zone1 ∪ Zone2.

The second case is the good case for us, where both executions of DistributedDLog (on input
h and h · gx) will output the respective distances to the same distinguished point h · gi with
φ(h · gi) = 0, and hence the respective outputs will be precisely i and i − x. By showing that
the second case occurs with probability at least 1− δ over the choice of φ← R we complete the
proof. Since cases 1, 2, and 3 partition the probability space, it suffices to bound the probability
of cases 1 and 3 by δ.

Case 1: Over the choice of φ ← R, the probability that φ(h · gi) = 0 for some i ∈ Zone1
is at most 1 − (1 − δ/(2M))M since |Zone1| = M and q > T > M (so that h · gi 6= h · gi′ for
i 6= i′ ∈ Zone1). By induction, this value is at most 1− (1−Mδ/(2M)) = δ/2.

Case 3: Similarly, we have that

Pr
[
φ← R : φ(h · gi) 6= 0 ∀i ∈ Zone1 ∪ Zone2

]
≤
(

1− δ

2M

)[2M loge(2/δ)]/δ

< e− loge 2/δ =
δ

2
.

Note that executing DistributedDLog requires O(T ) = O(M log(1/δ)/δ) group operations.

3.2 Homomorphic Secret Sharing

We now construct a simple version of the homomorphic secret sharing scheme, using the pro-
cedure DistributedDLog from the previous section as a sub-routine. The resulting scheme will
be a “secret-key” version. Further, the security of the scheme will rely on the assumption
that ElGamal encryption is circular secure. These restrictions will be removed in the following
subsections.

Consider a DDH group (G, g) ← IG(1λ) of prime order q (see Definition 2.3), and ` =

dlog2 qe. We will use c = c(`), . . . , c(1) to denote bits of an element c ∈ Zq (i.e., c =
∑`
i=1 2i−1c(i)).

Overview of construction. All values generated within the secret sharing and homomorphic
evaluation sit within three “levels.” We will maintain notation as in the top portion of Figure 1.
Namely,

Level 1: ElGamal Ciphertexts [[w]]c.

Input values w will be initially “uploaded” into the homomorphic evaluation system by
generating an ElGamal encryption [[w]]c of the value w with respect to a common secret
key c, as well as encryptions [[c(i)w]]c of each of the products c(i)w for the bits c(i) of the
corresponding key c.

Level 2: Additive secret shares 〈y〉.
Each value y in memory of the RMS program will be maintained via two sets of Zq additive
secret shares: 〈y〉 itself, and 〈cy〉—namely, a secret sharing of the product of y with the

11



Notation. For small x ∈ Z (or x ∈ Zq for the case of 〈x〉).
Items in which both parties receive same value.

• [[x]]c = (h1, h2) ∈ G2 for which h2/(h1)
c = gx. I.e., ElGamal ciphertext of x w.r.t. key c.

Items in which each party receives a separate share.

• 〈x〉 = Additive secret shares (x1, x2) ∈ Z2
q for which x1 + x2 = x ∈ Zq.

• 〈〈x〉〉 = “Multiplicative” secret shares (h1, h2) ∈ G2 for which h1 · h2 = gx ∈ G.

Pairing Operations.
Let φ : {0, 1}λ ×G→ {0, 1}` be a given PRF

• MultShares
(

[[x]]c, 〈y〉, 〈cy〉
)
→ 〈〈xy〉〉.

1. Denote [[x]]c = (h1, h2) ∈ G2.

2. Compute 〈〈xy〉〉 = h
〈y〉
2 h

−〈cy〉
1 .

• ConvertShares(b, 〈〈x〉〉, id, δ,M) → 〈x〉, with party identifier b ∈ {0, 1}, execution identifier id,
error parameter δ and max size bound M .

1. Denote by φ′ : G→ {0, 1}dlog(2M/δ)e the appropriate prefix output of φ(id, ·).
2. Let xb denote the present party b’s share of 〈〈x〉〉.

If b = 1, then replace xb ← x−1b // i.e., convert so that x0/x1 = gx (not x0x1 = gx)

3. Let ib ← DistributedDLogG,g(〈〈x〉〉, δ,M, φ′).

4. If b = 0, output −i0 (mod q) ∈ Zq. If b = 1, output i1 (mod q). // Additive shares

Figure 1: Notation for components of the homomorphic secret sharing scheme, and pairing opera-
tions for transforming between different components.

ElGamal secret key c of the system. We start with secret shares of this form for each
input value (e.g., in the secret-key setting, these will be generated as part of the Share
procedure). Then, after each emulated RMS instruction, we will maintain the invariant
that each newly computed memory value is also stored as secret shares in this fashion.

Level 3: “Multiplicative” secret shares 〈〈z〉〉.
Multiplicative secret shares appear only as intermediate values during the execution of
homomorphic evaluation (of multiplication), and are then converted back to additive shares
via DistributedDLog. Note that our use of “multiplicative” shares 〈〈z〉〉 refers here to a
sharing of gz as opposed to z itself (see Figure 1).

Remark 3.3 (Valid vs Random). We emphasize that a “valid” encoding (e.g., [[x]]c, 〈x〉, or 〈〈x〉〉)
speaks only to the correctness of decoding, and does not imply that the encoding is a random
such encoding (e.g., a randomly sampled ciphertext, or fresh secret shares).

The bottom portion of Figure 1 describes two pairing operations that constitute cross-level
computations. The first, MultShares, “multiplies” a level-1 encoding by a level-2 encoding.
Namely, it takes as input a level-1 (ElGamal ciphertext) encoding of x under key c, and level-2
(additive secret sharing) encodings of y, and of cy (the product of y with the ElGamal secret key
c), and outputs a level-3 (multiplicative secret sharing) encoding of the product xy. The second
pairing procedure, ConvertShares, converts from a level-3 (multiplicative) encoding back down
to a level-2 (additive) encoding, with some probability of error, as dictated by given parameters.

12



Roughly, the intermediate memory values of homomorphic evaluation will be maintained in
level-2 (additive) secret shared form. Any linear combination of such shares can be performed
directly. Multiplication between a value in memory and an input value will be performed by
performing the MultShares between the input value (encoded in level 1) and the relevant memory
value (encoded in level 2). This will yield an encoding of the product, but in level 3 (i.e., as
multiplicative shares). To return the computed product back to level 2, the parties will execute
the pairing procedure ConvertShares, which essentially runs the DistributedDLog procedure from
the previous subsection.

Remark 3.4 (Variable Types). Note that the relevant values are nearly all elements of G (e.g.,
elements of ElGamal ciphertexts) or of Zq (e.g., the values cyi, as well as all additive secret
shares). An important exception to this are the values wi, yi, which are interpreted as (small)
integers. When necessary for computation, we will sometimes perform a type cast back and
forth between Z and Zq, using the notation (int)(x) ∈ Z for x ∈ Zq, and (x mod q) ∈ Zq for
x ∈ Z.

Remark 3.5 (Additive versus “Subtractive” Sharing). We describe our HSS scheme using
standard additive (respectively, multiplicative) secret sharing, where x0+x1 = x (resp., h0 ·h1 =
gx). However, one can obtain a slightly more efficient version by implementing the scheme
with asymmetric “subtractive” (resp., “division”) secret sharing, where x0 − x1 = x (resp.,
h0/h1 = gx). For example, the latter approach removes the need for the multiplicative Zq-
inversion in Step 2 of ConvertShares together with the additive Zq-inversion in Step 4.

Before we present the complete homomorphic secret sharing scheme, we first analyze these
individual pairing procedures.

Claim 3.6 (MultShares). Let x, y ∈ Z with 0 ≤ x, y, xy < q, and c ∈ Zq. Then, on input a valid
level-1 encoding [[x]]c with respect to key c, and valid level-2 encodings 〈y〉, 〈cy〉, the output of
MultShares([[x]]c, 〈y〉, 〈cy〉) is a valid level-3 encoding 〈〈xy〉〉 of the product xy ∈ Z.

Proof. Denote the ciphertext [[x]]c = (h1, h2) ∈ G2, and shares 〈y〉 = (y0, y1) ∈ Z2
q, 〈cy〉 =

(z0, z1) ∈ Z2
q. Recall that the output of each party b ∈ {0, 1} upon execution of MultShares is

the share outputb = hyb2 h
−zb
1 ∈ G. Now,

(output0)(output1) =
(
hy02 h

−z0
1

) (
hy12 h

−z1
1

)
= hy0+y12 h

−(z0+z1)
1

= hy2h
−cy
1 From definition of the additive shares

= (h2h
−c
1 )y

= (gx)y From definition of level-1 CT encoding (h1, h2)

That is, the resulting shares output0, output1 of MultShares satisfy precisely the multiplicative
reconstruction property output0 · output1 = gxy of a level-3 encoding of xy mod q, and thus
(since 0 ≤ xy < q), of xy ∈ Z itself.

We next analyze the correctness of ConvertShares. Here, a slight subtlety arises regarding
the PRF used to define the “δ-sparse” subset of G within the DistributedDLog sub-routine.
The reason is that the share values on which we run ConvertShares are the results of partial
computations and previous ConvertShares executions, meaning in particular that they depend
on the choice of the sampled PRF φ. However, this is not an issue due to two reasons: (1)
this dependence is efficiently computable given oracle access to the PRF outputs (as specified
in the algorithm DistributedDLog), and (2) we will explicitly ensure the PRF is never used on
the same input twice, by use of unique identifier prefixes id. In such case, the PRF will still act
as a random function in each ConvertShares invocation, and yield the required share conversion
correctness guarantee.
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The following claim states that for any pair of multiplicative shares 〈〈x〉〉 = (h, h−1gx) gener-
ated efficiently as a function of previous calls to ConvertShares corresponding to previous instruc-
tions (i.e., with arbitrary identifiers id′ 6= id where id is the current identifier), the algorithm
ConvertShares will correctly yield additive secret shares of x, except with error probability δ.

Claim 3.7 (ConvertShares). For every nonuniform polynomial-time A and polynomial p there
is a negligible function ν, such that for every λ ∈ N, id ∈ {0, 1}λ, δ > 0, and M ∈ N, where
M, 1/δ ≤ p(λ), we have

Pr[φ← PRFGen(1λ); (h, x)← AConvertShares(·,·,id′,·,·)(1λ) : x ∈ {0, 1, . . . ,M} ∧
ConvertShares(0, h, id, δ,M) + ConvertShares(1, h−1gx, id, δ,M) 6= x] < δ + ν(λ), (1)

where ConvertShares is executed with PRF φ, and where ConvertShares(·, ·, id′, ·, ·) denotes oracle
access for any input with identifier id′ 6= id.

Proof. We first prove the claim assuming φ is a truly random function, and then show that a
significant deviation would contradict the pseudorandomness of the PRF.

Note that the computation and output of ConvertShares(·, ·, id′, ·, ·) depends only on the
outputs of the PRF φ on inputs of the form (id′, ·) with prefix id′. If φ were a random function,
then even conditioned on all evaluations of φ on inputs of the form (id′, ·) for id′ 6= id, the values
of φ on inputs with the special prefix id are still uniformly distributed. In particular, they are
uniformly distributed conditioned on the choice of h and x. This means, by Proposition 3.2,
that if 0 ≤ x < M , then with probability at least 1 − δ over the choice of φ on the relevant
inputs (with prefix id),

ConvertShares(0, h, id, δ,M) + ConvertShares(1, h−1gx, id, δ,M)

= −DistributedDLog(h, δ,M, φ) + DistributedDLog(hg−x, δ,M, φ)

= −(−x) = x.

Now, we claim this condition must hold with probability at least 1− δ− ν(λ) for some negli-
gible function ν when φ is instead chosen as a pseudorandom function (with security parameter
λ). Suppose there exists a nonuniform polynomial-time A, polynomial p, id sequence {idλ}λ
with idλ ∈ {0, 1}λ, function δ with δ(λ) ≥ 1/p(λ) for every λ ∈ N, and function M with integer
output with 0 ≤M(λ) ≤ p(λ) for every λ ∈ N such that for every λ the probability expression in
Equation (1) is at least δ(λ)+ε(λ) for some ε(λ). Consider the following PRF adversary B. First,
B runs the algorithm A, answering A’s ConvertShares queries on inputs of the form (·, ·, id′, ·, ·)
by forwarding the underlying PRF calls on input (id′, ·) to his PRF challenge oracle. (Note that
the evaluation of ConvertShares depends only on outputs of the PRF, and that the running time
is polynomial in λ by the bound on M and δ.) As a result, B receives from A a pair (h, x). B
then internally evaluates ConvertShares(0, h, id, δ,M)+ConvertShares(1, h−1gx, id, δ,M), making
the appropriate PRF queries (id, ·) to the challenge oracle. If the resulting value is x, B outputs
“random,” otherwise B outputs “pseudorandom.” By construction, the advantage of B in the
PRF distinguishing game is at least ε(λ), and thus by the security of the PRF, ε(λ) must be
negligible.

We present our homomorphic secret sharing scheme Share in Figure 2, and the corresponding
homomorphic operations on shares Eval in Figure 3.

We remark that our construction obtains a generalization of the notion of HSS, allowing
multiple outputs of the program from possibly different groups Zβ (as specified by the program
description P ).
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Homomorphic Secret Sharing Scheme - Share(1λ, w1, . . . , wn)
Let AdditiveShareq(x) for x ∈ Zq return a random pair 〈x〉 = (x0, x1) ∈ Z2

q subject to x0 + x1 = x.
(For x ∈ Z, this is done for x (mod q) ∈ Zq).

Inputs: 1λ and input values w1, . . . , wn ∈ Z

• Sample a DDH-hard group (G, g)← IG(1λ).

• Sample a PRF φ← PRFGen(1λ) with input {0, 1}λ ×G and output {0, 1}`.
• Sample an ElGamal secret key: c← Zq, where q = |G|.
• For each input wi, sample the following values:

1. ElGamal encryptions:

(a) of wi ∈ Z: let [[wi]]c ← EncElGamal(g
c, wi) ∈ G2. //gc is ElGamal public key of c

(b) of (c(t)wi) ∈ Z: i.e., for each t ∈ [`], let [[c(t)wi]]c ← EncElGamal(g
c, c(t)wi).

2. Additive secret sharings:

(a) of wi ∈ Z: let 〈wi〉 ← AdditiveShareq(wi).

(b) of cwi ∈ Zq: let 〈cwi〉 ← AdditiveShareq(cwi).

• For each b ∈ {0, 1}, output shareb =
{
φ,
(

[[wi]]c,
{

[[c(t)wi]]c
}
t∈[`] , 〈wi〉b, 〈cwi〉b

)
i∈[n]

}
.

Figure 2: Share generation procedure Share for secret sharing an input w via the homomorphic
secret sharing scheme.

Theorem 3.8 (Homomorphic Secret Sharing for RMS). Assume that ElGamal is circular secure
(as per Definition 2.4). Then the scheme (Share,Eval) as specified in Figures 2 and 3 is a secure
homomorphic secret sharing scheme for the class of RMS programs.

In particular, (as per Claim A.2), for the special case of RMS programs with magnitude
bound M = 1, this implies a construction of HSS for deterministic branching programs.

Corollary 3.9 (HSS for Branching Programs). Assume that ElGamal is circular secure. Then
there exists a secure homomorphic secret sharing scheme for the class of deterministic branching
programs.

Theorem 3.8 follows from the next two correctness and security lemmas.

Lemma 3.10 (Correctness of Eval). For every polynomial p there exists a negligible ν such
that for every positive integer λ ∈ N, input (w1, . . . , wn) ∈ Zn, error bound δ > 0, RMS
program P (as in Definition 3.1) of input length n, size S, and magnitude bound M , and where
1/δ, S,M ≤ p(λ), we have

Pr[(share0, share1)← Share(1λ, w1, . . . , wn) :

EvalG,g(share0, P, δ) + EvalG,g(share1, P, δ) = P (w1, . . . , wn)] ≥ 1− δ − ν(λ).

Proof. Let p be a polynomial. We first address the probability of error due to execution of the
share conversion procedure ConvertShares. Observe:

• Each call to ConvertShares within Eval takes place with a unique identifier (id, t) (where id
is the instruction id, and within a given instruction we use distinct values t ∈ {0, 1, . . . , `}).
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Homomorphic Share Evaluation of RMS Programs - EvalG,g(b, share, P, δ)
Inputs: Party identifier b ∈ {0, 1}, homomorphic secret share value share, RMS program description
P of size ≤ S, error bound δ.

Parse share as in Figure 2. Parse P as in Definition 3.1, as a magnitude bound 1M and sequence
of instructions. Take δ′ = δ/((`+ 1)MS).

For each sequential instruction in P , perform the corresponding sequence of operations:

Instruction (id, ŷj ← ŵi):

1: Let 〈yj〉 ← 〈wi〉 and 〈cyj〉 ← 〈cwi〉, where 〈wi〉, 〈cwi〉 are as in share.

Instruction (id, ŷk ← ŷi + ŷj):

1: Compute 〈yk〉 ← 〈yi〉+ 〈yj〉, directly on the additive shares (over Zq).
2: Compute 〈cyk〉 ← 〈cyi〉+ 〈cyj〉, directly on the additive shares (over Zq).

Instruction (id, ŷk ← ŵi · ŷj):
1: Let [[wi]]c and {[[c(t)wi]]c}t∈[`] be the ElGamal ciphertexts associated with wi, and let 〈yj〉

and 〈cyj〉 the additive secret shares associated with yj .
2: Compute the pairing 〈〈wiyj〉〉 = MultShares([[wi]]c, 〈yj〉, 〈cyj〉), as in Figure 1.
3: Execute Share Conversion: 〈wiyj〉 = ConvertShares(b, 〈〈wiyj〉〉, (id, 0), δ′,M, φ), as in Fig-

ure 1.
4: for t = 1 to ` do // Repeat above process for each c(t)wi in the place of wi
5: Compute 〈〈c(t)wiyj〉〉 = MultShares([[c(t)wi]]c, 〈yj〉, 〈cyj〉).
6: Execute 〈c(t)wiyj〉 = ConvertShares(b, 〈〈c(t)wiyj〉〉, (id, t), δ′,M, φ).
7: end for
8: Compute 〈cwiyj〉 =

∑`
t=1 2t−1〈c(t)wiyj〉.

9: Set 〈yk〉 ← 〈wiyj〉 (from Step 3) and 〈cyk〉 ← 〈cwiyj〉.

Instruction (id, β, Ôj ← ŷi):

1: If b = 0, let 〈z〉 ← 〈yi〉; otherwise, if b = 1, let 〈z〉 ← −〈yi〉 be the Zq additive inverse.
// I.e., convert to subtractive secret sharing

2: Shift 〈z〉 share by rerandomization offset: 〈z〉 ← 〈z〉+ φ(id, g), over Zq.
// Note that shifting both shares does not change the shared value in Zq

3: Convert share from Zq to Zβ: 〈Oj〉 ← 〈z〉 mod β.
4: Output 〈Oj〉.

Figure 3: Procedures for performing homomorphic operations on secret shares. Note that we
distinguish variables of the straight-line program from the actual values by using ŷi as opposed to
yi, etc. Here, notation 〈y〉 is used to represent this party’s share of the corresponding additive secret
sharing. Evaluation maintains the invariant that each of the additive secret shares 〈yi〉 encode the
correct current computation value of ŷi.

16



• For each ConvertShares execution, the group elements h, h′ input by the respective parties
are an efficient function of previous executions of ConvertShares, with different identifiers
(id′, t′) 6= (id, t).

Thus Claim 3.7 guarantees there is a negligible ν′ such that for every positive integer λ ∈ N, input
w1, . . . , wn ∈ Z, error bound δ > 0 with 1/δ ≤ p(λ), and RMS program P of size S ≤ p(λ) and
magnitude bound M ≤ p(λ), that each individual ConvertShares execution with error parameter
δ′ results in a correct set of additive secret shares with probability at least 1 − δ′ − ν′(λ) for
negligible ν′.

Note that the homomorphic evaluation of program P performs at most S(`+1) executions of
the share conversion procedure, with error parameter δ′ = δ/(`+ 1)MS. Therefore, by a union
bound, this implies that as long as no intermediate computation value exceeds the specified
magnitude bound M (in which case correctness holds trivially) no conversion errors will occur
with probability [δ′ + ν′(λ)](`+ 1)MS = δ + ν(λ) for negligible ν.

Assume, then, that every Share Conversion execution returns without error; that is, that for
every such (h, x) we have ConvertShares(0, h, id, δ,M) + ConvertShares(1, h−1gx, id, δ,M) = x.
We prove that following invariant is maintained at each step of homomorphic evaluation:

Invariant: For every memory item ŷi, let yi ∈ Z denote the correct value that
should be presently stored in memory. Then the shares 〈yi〉 = (yAi , y

B
i ) ∈ Z2

q and

〈cyi〉 = (vA, vB) ∈ Z2
q held by the parties satisfy:

(a) (int)(yAi + yBi ) = yi ∈ Z (where addition is in Zq).
(b) vA + vB = cyi ∈ Zq.

Note that the invariant holds vacuously at the start of Eval, as all memory locations are empty.
Consider each instruction type of P .

1. Loading memory items (id, ŷj ← ŵi). By construction of Share, we have that 〈wi〉 and
〈cwi〉 are valid Zq secret sharings of wi and cwi. This directly gives us invariant (b).
Further, we have 〈wi〉 = (wAi , w

B
i ) ∈ Z2

q such that wAi + wBi = wi mod q. Since wi ∈ Z is

bounded by 0 ≤ wi ≤M < q, this implies that (int)(wAi + wBi ) = wi ∈ Z.

2. Linear combination (id, ŷk ← ŷi + ŷj). The additive secret sharing scheme is linearly
homomorphic with respect to Zq (implying invariant (b)). Recall we are guaranteed that
no intermediate computation value (in particular, yk, yi, yj ∈ Z) will ever have magnitude
greater than M < q. Thus, as above, the desired invariant (a) holds as well for 〈yk〉.

3. Multiplication of memory value with input (id, ŷk ← ŵi · ŷj). Consider the resulting shares
〈yk〉 and 〈cyk〉.
By Claim 3.6, the shares 〈〈wiyj〉〉 computed via MultShares constitute a valid multiplicative
sharing of gwiyj (a level-3 encoding, as per Figure 1). Since we are in the case where
ConvertShares does not err, the resulting converted additive shares 〈wiyj〉 encode exactly
the value wiyj mod q ∈ Z. Since wiyj is an intermediate computation value yk in the
evaluation of P , we have 0 ≤ wiyj ≤ M < q, so that wiyj mod q = wiyj ∈ Z. Thus,
invariant (a) holds.

Consider now 〈cyk〉. From precisely the same argument as above (since we are in the case
where ConvertShares does not err), we have for each t ∈ [`] that the computed intermedi-
ate value 〈c(t)wiyj〉 is an additive (level-2) encoding of the corresponding value c(t)wiyj
mod q ∈ Z. Since c(t) ∈ {0, 1} and wiyj is an intermediate computation value in P we
have 0 ≤ c(t)wiyj ≤ M < q, and so the corresponding shares (vAt , v

B
t ) further satisfy

(int)(vAt − vBt ) = c(t)wiyj ∈ Z.

Combining the respective values over t ∈ [`], it holds
(∑

t∈[`] 2t−1vAt
)

+
(∑

t∈[`] 2t−1vBt
)

=∑
t∈[`] 2t−1(vAt +vBt ) =

∑
t∈[`] 2t−1c(t) ·wi ·yj = cwiyj ∈ Zq. Therefore, invariant (b) holds.
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4. Output value from memory (id, β, Ôj ← ŷi). The invariants (a),(b) hold inductively for the
existing shares of yi. In particular, 〈yi〉 = (yAi , y

B
i ) ∈ Z2

q for which (int)(yAi +yBi ) = yi ∈ Z
(where addition is in Zq), and so 〈z〉 = (zA, zB) for which (int)(zA − zB) = yi ∈ Z.

Consider the validity of the output value Oj . Since both parties apply the identical offset
φ(id, g) ∈ Zq to their shares, we have

(int)
[
(zA + φ(id, g))− (zB + φ(id, g))

]
= yi.

Since 0 ≤ yi < M , then either

(int)
(
zA + φ(id, g)

)
− (int)

(
zB + φ(id, g)

)
= yi, (2)

or

(int)
(
zA + φ(id, g)

)
− (int)

(
zB + φ(id, g)

)
= yi − q (3)

and (int)(zB + φ(id, g)) ≥ q −M. (4)

In the case of Equation (2), it holds that

(int)
(
zA + φ(id, g)

)
mod β − (int)

(
zB + φ(id, g)

)
mod β =

yi (mod β),

as desired; it remains to bound the probability of case (2). By the pseudo-randomness of φ,
then over the random sampling of φ← PRFGen(1λ), the probability of (int)(x+φ(id, g)) ≥
q −M for any of the S partial computation value shares x encountered during the course
of execution is bounded by S(M/q) + ν(λ) for some negligible function λ. Note that this
holds unconditionally, as it constitutes an efficient test for φ. Finally, since q = |G| and G
is a DDH-hard group, then necessarily q ∈ λω(1), implying for sufficiently large λ that this
probability S(M/q) + ν(λ) is bounded above by our choice of allowable per-instruction
error δ′.

Note that the invariants (a), (b) are trivially maintained for future computations, as the
shares 〈yi〉, 〈cyi〉 themselves are untouched.

Lemma 3.11 (Security of Share). Suppose that ElGamal is a circular secure encryption scheme
(as per Definition 2.4). Then Share is a computationally secure secret sharing scheme.

Proof. We prove that the distribution of a single party’s share resulting from Share is computa-
tionally indistinguishable from a distribution that is independent of the shared values w1, . . . , wn,
via two hybrids.

Hybrid 0: Honest share distribution for party b ∈ {0, 1}. That is, HonestShare(1λ, w1, . . . , wn, b)
defined by

{shareb : (share0, share1)← Share(1λ, w1, . . . , wn)}.

Hybrid 1: Distribution SimAddShare(1λ, w1, . . . , wn, b), consisting of honest secret shares, but
with additive secret shares replaced by uniform values:

1. Sample shareb ← HonestShare(1λ, w1, . . . , wn, b), and parse the resulting value as

shareb =

{
φ,
(

[[wi]]c,
{

[[c(t)wi]]c
}
t∈[`] , 〈wi〉b, 〈cwi〉b

)
i∈[n]

}
.

2. Sample random shares vi, v
′
i ← Zq∀i ∈ [n] (replacing the shares 〈wi〉b, 〈cwi〉b), and

output

{
φ,
(

[[wi]]c,
{

[[c(t)wi]]c
}
t∈[`] , vi, v

′
i

)
i∈[n]

}
.
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Hybrid 2: Distribution SimCircSec(1λ, w1, . . . , wn, b), consisting of shares as in the previous
distribution, but with the encryptions [[c(t)wi]]c replaced by encryptions of 0:

1. Sample shareb ← SimAddShare(1λ, w1, . . . , wn, b), and parse the output as shareb ={
φ,
(

[[wi]]c,
{

[[c(t)wi]]c
}
t∈[`] , vi, v

′
i

)
i∈[n]

}
.

2. For each i ∈ [n], sample ` ElGamal encryptions of 0: [[0i,t]]c ← EncElGamal(e, 0), for
t ∈ [`].

3. Output

{
φ,
(

[[wi]]c, {[[0i,t]]c}t∈[`] , vi, v
′
i

)
i∈[n]

}
.

Hybrid 3: Fully simulated shares, as follows.
Distribution SimShare(1λ, n, b):

1. Sample a PRF φ← PRFGen(1λ) with input {0, 1}λ ×G and output {0, 1}`.
2. Sample an ElGamal secret key c← Zq, and compute the public key e = gc.

3. For each input i ∈ [n],

(a) Sample (` + 1) ElGamal encryptions of 0: [[0i,t]]c ← EncElGamal(e, 0), for t ∈
{0, 1, . . . , `}.

(b) Sample two random secret shares vi, v
′
i ← Zq.

4. Output

{
φ,
(

[[0i,0]]c, {[[0i,t]]c}t∈[`] , vi, v
′
i

)
i∈[n]

}
.

Lemma 3.11 follows from the following three claims:

Claim 3.12. For any w1, . . . , wn ∈ Z and b ∈ {0, 1} the distributions HonestShare(1λ, w1, . . . , wn, b)
and SimAddShare(1λ, w1, . . . , wn, b) are identically distributed.

Proof. Follows by the perfect security of the 2-out-of-2 additive secret sharing scheme.

Claim 3.13. Assume the circular security of ElGamal. Then for any w1, . . . , wn ∈ Z and
b ∈ {0, 1} the distributions SimAddShare(1λ, w1, . . . , wn, b) and SimCircSec(1λ, w1, . . . , wn, b) are
computationally indistinguishable.

Proof. Suppose to the contrary there exists b∗ ∈ {0, 1}, inputs w∗1 , . . . , w
∗
n ∈ Z each satisfying

0 ≤ w∗i ≤ q, a nonuniform polynomial-time adversary A∗, and non-negligible function ε for
which

Pr
[
chall← {0, 1}; shareb∗ ← ChallengeGen(1λ, w∗1 , . . . , w

∗
n, b
∗, chall);

guess← A(1λ, shareb∗) : guess = chall
]
> ε(λ),

where ChallengeGen(1λ, w∗1 , . . . , w
∗
n, b
∗, chall) is sampled for chall = 0 as SimAddShare(1λ, w∗1 , . . . , w

∗
n, b
∗),

and for chall = 1 as SimCircSec(1λ, w1, . . . , wn, b
∗). Such an adversary can directly be used to

break the circular security of the ElGamal encryption.
Indeed, consider an adversary B′ in the circular security game (see Definition 2.4) for ElGa-

mal, with b∗, w∗1 , . . . , w
∗
n ∈ {0, 1} hardcoded, who proceeds as follows:

1. B receives a challenge ElGamal public key pk (including G, g).

2. For every i ∈ [n], generate an encryption of w∗i : [[w∗i ]]c ← Enc(pk, w∗i ).

3. For every i ∈ [n] for which w∗i 6= 0, query the Circular Security oracle O, and receive a
vector of ElGamal ciphertexts ([[xi,1]]c, . . . , [[xi,`]]c), which are either encryptions of xi,t =
0 ∀t ∈ [`], or encryptions of the bits xi,t = c(t) of the secret key c.

For each t ∈ [`], take [[xi,tw
∗
i ]]c := ([[xi,t]]c)

w∗i .
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4. For every i ∈ [n] for which w∗i = 0, sample ` encryptions of 0: i.e., for each t ∈ [`], take
[[xi,t]]c ← EncElGamal(pk, 0).

5. Sample a PRF φ← PRFGen(1λ) with input {0, 1}λ ×G and output {0, 1}`.
6. Sample 2n random values for the “additive secret shares”: i.e., vi ← Zq, v′i ← Zq for each

i ∈ [n].

7. Let shareb∗ :=

{
φ,
(

[[w∗i ]]c, {[[xi,tw∗i ]]c}t∈[`] , vi, v
′
i

)
i∈[n]

}
.

8. Output guess← A∗(1λ, shareb∗).
Note that for any w = 0, it holds that c(t)w∗i = 0, and so the corresponding ciphertexts
[[c(t)w∗i ]]c are encryptions of 0 in both distributions. Consider now w∗i 6= 0. For any 0 <
w < q, the distribution {r · w ∈ Zq : r ← Zq} is identically distributed to {r ← Zq} since
Zq is a field (and thus w 6= 0 has a multiplicative inverse). This means for any x ∈ Zq, the
distribution {([[x]]c)

w : [[x]]c ← EncElGamal(pk, v)} = {((gr)w, (grc+x)w) : ri,t ← Zq} is identical
to {(gr, grc+wx) : r ← Zq} = {[[wx]]c ← EncElGamal(pk, wx)}. Therefore, if the circular security
oracle O provided encryptions of the bits of the secret key c then shareb∗ is distributed precisely
as SimAddShare(1λ, w∗1 , . . . , w

∗
n, b
∗), and if it provided encryptions of 0 then shareb∗ is distributed

precisely as SimCircSec(1λ, w∗1 , . . . , w
∗
n, b
∗). By the assumed circular security of ElGamal, the

claim follows.

Claim 3.14. For any w1, . . . , wn ∈ Z and b ∈ {0, 1} the distributions SimCircSec(1λ, w1, . . . , wn, b)
and SimShare(1λ, n, b) are computationally indistinguishable.

Proof. Follows by the semantic security of ElGamal, together with a standard hybrid argument
(over the n ciphertexts [[wi]]c). In particular, the distribution SimCircSec(1λ, w1, . . . , wn, b) con-
tains all simulatable information aside from the n encryptions [[wi]]c. Thus, given a challenge
ElGamal public key pk as well as challenge ciphertexts that encrypt either the true message wi
or encrypt 0, a semantic security adversary can generate an output that is distributed either
as SimCircSec(1λ, w1, . . . , wn, b) or SimShare(1λ, b), depending on the plaintext value underlying
the challenge ciphertexts.

Security of the scheme Share follows.

Complexity Analysis. The complexities of the various algorithms are:

• Share(1λ, w1, . . . , wn) performs O(n`) exponentiations in G. The resulting share size is
comparable to O(n`) group elements of G, corresponding to (` + 1) ElGamal ciphertexts
(each a constant number of group elements G) and two additive secret sharings (each an
element of Zq) for each of the n inputs.

• EvalG,g(share, P, δ) requires O(`2S2M/δ) group operations, where S = |P | is the size of
the evaluated program and M is its specified magnitude bound. This is because O(`) calls
to DistributedDLog with error parameter δ′ ∼ δ/(`MS) take place per step (or rather, per
multiplication step, which in worst case is all S) of the executed program, each of which
requires O(`SM/δ) operations.

3.3 Public-Key HSS for Branching Programs

In the construction of the previous section, secret shares of an input w consisted of ElGamal
encryptions [[w]]c, {[[c(t)w]]c}t∈[`] and additive secret shares 〈w〉, 〈cw〉, where c was a (freshly
sampled) key for ElGamal. At face value, it would seem that one must know the value of the
key c in order to generate these values—meaning, in turn, that homomorphic computation can
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only be performed on the data of a single user who generates the key c. In this section, we
demonstrate that by leveraging the homomorphic properties of ElGamal encryption, we can
in fact generate all required values for a secret sharing of w while maintaining security, given
only “public key” information independent of the input w. That is, we obtain homomorphic
encryption with distributed evaluation, as discussed in Section 2.

More formally, we now consider a separate procedure Gen for generating common setup
information pk and secret evaluation keys ek0, ek1 (which we consider to be given to two servers).
Given access to pk, a user can “upload” his input w to the system via Enc. Then, given their
respective evaluation keys, two servers can perform non-interactive homomorphic computations
on all users’ inputs via Eval.

In our construction, the algorithm Gen samples an ElGamal key pair, and outputs pk consist-
ing of encryptions [[1]]c, {[[c(t)]]c}t∈[`], and evaluation keys ekb corresponding to additive secret

shares of 〈c〉. In Enc, a user computes the necessary ciphertexts [[w]]c and {[[c(t)w]]c}t∈[`] for his
input w by exponentiating the ciphertexts in pk componentwise by w (i.e., using multiplicative
homomorphism of ElGamal). The final required values 〈w〉, 〈cw〉 can be obtained directly by
the servers within Eval by performing the procedure for a homomorphic multiplication between
the “input value” w (i.e., given [[w]]c, {[[c(t)]]c}t∈[`]) together with “memory value” 1 (i.e., given
a trivial sharing 〈1〉 together with 〈c〉 from ek).

A formal description of the algorithms Gen,Enc,Eval is given in Figure 4. As before, we state
the result for the special case of deterministic branching programs (but can support the wider
class of RMS programs with magnitude bound M > 1).

Theorem 3.15 (DEHE). Assume that ElGamal is circular secure (as per Definition 2.4). Then
the scheme (Gen,Enc,Eval) as given in Figure 4 is a secure Distributed-Evaluation Homomorphic
Encryption scheme for the class of deterministic branching programs.

Proof. Correctness. To reduce to Theorem 3.8, it suffices to demonstrate: (1) the values
[[w]]c, {[[c(t)w]]c}t∈[`] as generated in Enc are valid level-1 encodings of w and {c(t)w}t∈[`]; and
(2) the values 〈w〉, 〈cw〉 as generated in Eval are valid level-2 encodings of w and cw. Property
(1): Recall [[w]]c was obtained as (hw1 , h

w
2 ) for (h1, h2) a valid level-1 encoding of 1. This means

h2h
−c
1 = g1, which implies (hw2 )(hw2 )−c = gw, as desired. Same for each [[c(t)w]]c. Property

(2): Holds by the correctness of homomorphic RMS multiplication evaluation of Eval as per
Theorem 3.8.

Security. For a fixed value of b ∈ {0, 1}, consider the distribution Cw := {pk, ekb,Enc(pk, w)}.
We observe that Cw is in fact a subset of the information contained within a (secret-key) secret
sharing of the input pair v1 = 1, v2 = w, using the scheme of the previous section.

Namely, as per Figure 2 in the previous section, shareb ← Share(1λ, v1 = 1, v2 = w) con-
tains: group description G, g, PRF φ, fresh ElGamal ciphertexts [[1]]c, [[w]]c, {[[c(t)]]c, [[c(t)w]]c}t∈[`]
(rerandomized with respect to the published ciphertexts [[c(t)]]c), and additive secret shares
〈1〉, 〈c〉, 〈w〉, 〈cw〉. In comparison, the distribution Cw contains: pk = (G, g, [[1]]c, {[[c(t)]]c}t∈[`]),
ekb = (pk, 〈1〉, 〈c〉), and Enc(pk, w) = ([[w]]c, {[[c(t)w]]c}t∈[`]). Thus, by the security of the previ-
ous scheme (Theorem 3.8), based on DDH the distributions C0 and C1 are indistingiushable.

Comparing the complexity of the public-key scheme (Gen,Enc,Eval) to that of the secret-key
scheme (Share,Eval) from the previous section, we see that the computation cost to the user for
uploading inputs w1, . . . , wn via Enc is essentially equivalent to the cost of sharing the inputs via
Share (exponentiating given ciphertexts by the respective inputs in one case, versus encrypting
the values directly in the other), but the cost of each “load input” instruction (id, ŷj ← ŵi) within
the homomorphic evaluation now incurs the cost of a multiplication step to generate additive
secret shares 〈wi〉, 〈cwi〉 given only 〈c〉 and the uploaded ElGamal ciphertexts associated with
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Distributed-Evaluation Homomorphic Encryption: Gen,Enc,Eval

Gen(1λ):

1. Sample a PRF φ← PRFGen(1λ) with input {0, 1}λ ×G and output {0, 1}`.
2. ElGamal key setup:

(a) Sample a DDH-hard group and generator (G, g)← IG(1λ).

(b) Sample an ElGamal secret key: c← Zq, where q = |G|.
Let e = gc be the corresponding ElGamal encryption key.

3. Sample ElGamal encryptions:

(a) The constant 1 ∈ Zq: let [[1]]c ← EncElGamal(e, 1).

(b) The bits of the secret key c: ∀t ∈ [`], let [[c(t)]]c ← EncElGamal(e, c
(t)).

4. Sample 2-out-of-2 additive secret sharings:

(a) The constant 1 ∈ Zq: 〈1〉 ← AdditiveShareq(1). // Included for notational convenience

(b) The secret key c: let 〈c〉 ← AdditiveShareq(c).

5. Output pk =
(
G, g, e, [[1]]c, {[[c(t)]]c}t∈[`]

)
, ekb = (pk, 〈1〉, 〈c〉).

EncG,g(pk, w):

1. Parse pk as in Gen above.

2. Compute the following ElGamal ciphertexts:

(a) Of w ∈ Z: let [[w]]c ← EncElGamal(e, w).

(b) Of c(t)w ∈ Z: for each t ∈ [`], parse [[c(t)]]c = (h
(t)
1 , h

(t)
2 ), sample a fresh encryption of 0

(h′1, h
′
2)← EncElGamal(e, 0), and let [[c(t)w]]c = ((h

(t)
1 )w · h′1, (h

(t)
2 )w · h′2).

3. Output ([[w]]c, {[[c(t)w]]c}t∈[`]).

EvalG,g(b, ek, ct, P, δ):

1. Parse ek as in Gen above; interpret 1̂ as loaded into memory, via 〈1〉, 〈c〉 as given.

2. Parse P as a sequence of instructions (as in Definition 3.1).

3. For each instruction (id, ŷk ← ŷi + ŷj), (id, ŷk ← ŵi · ŷj), or (id, Ôj ← ŷi), perform the
corresponding sequence of operations as given in Figure 3.

4. For each instruction (id, ŷj ← ŵi), execute (id, ŷj ← ŵi · 1̂).

Figure 4: Construction of “public-key” variant of homomorphic secret sharing: i.e., homomorphic
encryption with distributed evaluation.
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wi, as opposed to being essentially for free for the client to generate 〈wi〉, 〈cwi〉 when he knew
the values of wi, cwi.

3.4 Removing the Circular Security Assumption

We now show how to remove the ElGamal circular security assumption in the construction in
the previous section, yielding a scheme that relies solely on DDH. As in the setting of fully
homomorphic encryption, this can be achieved directly in exchange for a multiplicative blowup
of the computation depth in the share size, by considering a leveled version of the scheme: i.e.,
replacing the circular encryptions of bits of c under key c by bits of the ith key ci under the
next key ci+1 for a depth-length sequence of keys. However, we now demonstrate an alter-
native approach, which does not require increasing the share size with respect to the size of
computation.

Our new construction replaces ElGamal encryption with the ElGamal-like cryptosystem of
Boneh, Halevi, Hamburg, and Ostrovsky (BHHO) [9], which is provably circular secure based on
DDH. At a high level, BHHO ciphertexts possess an analogous structure of “linear algebra in the
exponent,” which allows us to mirror the procedure we used with ElGamal for multiplicatively
pairing a ciphertext with an additively shared value.

It will be convenient to consider a slightly modified version of the BHHO scheme, given
below, in which the message space is a subset of the exponent space Zq instead of the group G
itself: Namely, multiplication by the message m in encryption is replaced with multiplication by
gm. (Note that since decryption of such scheme requires taking discrete log, efficient decryption
will hold for a polynomial-size message space). Accordingly, we will also view the secret key
directly as a bit string skBHHO = (s1, . . . , s`) in the place of group elements (gs1 , . . . , gs`) as is
typically considered.

Definition 3.16 (BHHO Encryption [9]). The BHHO public-key encryption scheme for message
space Msg is as follows:

• Key Generation. Sample (G, g) ← IG(1λ). Let ` := d3 log2 qe, where q = |G|. Choose
random g1, . . . , g` ← G and a random secret key vector s = (s1, . . . , s`) ← {0, 1}`. Let
h = (gs11 · · · g

s`
` )−1 and define the public and secret keys to be

pkBHHO := (g1, . . . , g`, h), skBHHO = (s1, . . . , s`).

• Encryption. To encrypt m ∈ Msg, choose a random r ← Zq and output the ciphertext
(gr1, . . . , g

r
` , h

r · gm). (Recall g is a fixed generator of G).

• Decryption. Let (c1, . . . , c`, d) be a ciphertext and skBHHO = (s1, . . . , s`) a secret key.
Output m ∈ Msg for which gm = d · (cs11 · · · c

s`
` ).

In [9], Boneh et al. proved (in particular) that based on DDH, BHHO encryptions of the
secret key bit vector (s1, . . . , s`) are indistinguishable from encryptions of the 0 vector (0, . . . , 0).

Theorem 3.17 (Circular Security of BHHO [9]). Assuming DDH, the BBHO encryption scheme
satisfies circular security, as per Definition 2.4.

In order to emulate the homomorphic evaluation procedure of the previous sections, there
are two steps we must modify:

First, we must provide a means for pairing a BHHO ciphertext of an input w with additive
secret sharings of a value x to obtain a multiplicative secret sharing of gwx. For ElGamal this

was done given 〈x〉 and 〈cx〉, and computing h
〈x〉
2 h

−〈cx〉
1 . Now, for BHHO, we can perform an

analogous “partial decryption” procedure given shares 〈x〉 and {〈six〉}i∈[`], for the bits si of the
BHHO secret key. The corresponding pairing computation is given as MultShares in Figure 5.

Once we obtain a multiplicative secret sharing of gwx, we can perform the same share-
conversion procedure DistributedDLog from the previous sections to return to an additive secret
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DDH-Based Notation and Pairing Operations
Let s = (s1, . . . , s`) ∈ {0, 1}`.
• Notation: [[x]]s = (g′1, . . . , g

′
`, h
′) ∈ G`+1 for which gx = h′ ·

∏
t∈[`](g

′
t)
st .

That is, the new level-1 encoding [[x]]s is a BHHO ciphertext of x ∈ Zq w.r.t. secret key s.

• Pairing: MultShares
(

[[x]]s, 〈y〉, {〈sty〉}t∈[`]
)
→ 〈〈xy〉〉.

1. Denote [[x]]s = (g′1, . . . , g
′
`, h
′) ∈ G`+1.

2. Compute 〈〈xy〉〉 = (h′)〈y〉 ·
∏
t∈[`](g

′
i)
〈sty〉.

• Pairing: ([[x]]s)
y, for ciphertext [[x]]s ∈ G`+1 and plaintext y ∈ Zq, given public key e ∈ G.

1. Denote [[x]]s = (g′1, . . . , g
′
`, h
′) ∈ G`+1.

2. Sample a fresh encryption of 0 (for rerandomization): (g′′1 , . . . , g
′′
` , h
′′)← EncBHHO(e, 0).

3. Output [[xy]]s :=
(
(g′1)

yg′′1 , . . . , (g
′
`)
yg′′` , (h

′)yh′′
)
∈ G`+1.

Figure 5: Modified DDH-based notation and pairing operations, using BHHO [9] encryption.

sharing of wx (with some error probability δ). But, to be able to perform a future pairing as
above, we additionally must generate additive secret sharings 〈siwx〉 for each of the bits si of the
secret key (analogous to generating 〈cwx〉 in the ElGamal case). Conveniently, this BHHO task
is actually slightly simpler than that for ElGamal: whereas before we had to deal with the large
size of the secret key c ∈ Zq by operating on a bit decomposition of c and then reconstructing,
here the secret key (s1, . . . , s`) is already interpreted as a binary vector. This means we can
perform the multiplication steps directly without requiring the decomposition/reconstruction
steps.

We remark that BHHO ciphertexts are multiplicatively homomorphic in the same fashion as
ElGamal, which allows us to obtain a public-key variant of the secret sharing scheme precisely
as in the previous section. The required procedure of modifying a ciphertext of some message
x to one encrypting xy given y is explicitly described as ([[x]]s)

y in Figure 5.
In Figure 5, we provide the modified notation and pairing procedures for this setting. The

remaining notations 〈x〉, 〈〈x〉〉 and pairing operation ConvertShares will remain as in the previous
sections (Figure 1). Given these sub-procedures, we present in Figures 6 and 7 the corresponding
algorithms Gen,Enc,Eval. We now proceed to analyze the complexity, correctness, and security
of the scheme.

Theorem 3.18 (DEHE from DDH). Assuming DDH, then the scheme (Gen,Enc,Eval) as given
in Figures 6, 7 is a secure Distributed-Evaluation Homomorphic Encryption scheme for the class
of deterministic branching programs.

Proof. Correctness. It suffices to prove the following correctness of the new pairing procedure.

Claim 3.19 (Correctness of DHH-Based MultShares). For any x, y ∈ Z with 0 ≤ x, y, xy <
q, any valid BHHO ciphertext [[x]]s with respect to secret key s = (s1, . . . , s`) ∈ {0, 1}`, and
additive secret shares 〈y〉, {〈sty〉}t∈[`], then the output of MultShares([[x]]s, 〈y〉, {〈sty〉}t∈[`]) is a
valid multiplicative sharing 〈〈xy〉〉 of the product xy ∈ Z.

Proof. Denote the ciphertext [[x]]s = (g′1, g
′
2, . . . , g

′
`, h
′) ∈ G`+1, and shares 〈y〉 = (y0, y1) ∈ Z2

q,

〈sty〉 = (z
(t)
0 , z

(t)
1 ) ∈ Z2

q, for each t ∈ [`]. Recall that the output of each party b ∈ {0, 1} upon

24



DDH-Based Distributed-Evaluation HE: Gen and Enc Algorithms

Gen(1λ):

1. Sample a PRF φ← PRFGen(1λ) with input {0, 1}λ ×G and output {0, 1}`.
2. BHHO Key Setup:

(a) Sample a DDH-hard group and generator (G, g)← IG(1λ). Let q = |G|.
(b) Sample a BHHO secret key: s← {0, 1}`, where ` := d3 log qe.

Let e = (g1, . . . , g`, h = (gs11 · · · g
s`
` )−1) be the BHHO public key for s.

3. Sample BHHO encryptions:

(a) The constant 1 ∈ Zq: let [[1]]c ← EncBHHO(e, 1).

(b) The bits of the secret key s: ∀i ∈ [`], let [[si]]s ← EncBHHO(e, si).

4. Sample 2-out-of-2 additive secret sharings:

(a) The constant 1 ∈ Zq: 〈1〉 ← AdditiveShareq(1). // (Included for notational convenience)

(b) The bits of the secret key s: ∀i ∈ [`], let 〈si〉 ← AdditiveShareq(si).

5. Output pk =
(
G, g, e, φ, [[1]]s, {[[si]]s}i∈[`]

)
, ekb =

(
pk, 〈1〉, {〈si〉}i∈[`]

)
.

EncG,g(pk, w):

1. Compute the following values:

(a) BHHO encryption of w ∈ Z: let [[w]]s ← EncBHHO(e, w).

(b) BHHO encryptions of (w · si) ∈ Z: i.e., for each i ∈ [`], let [[siw]]s = ([[si]]s)
w ∈ G`+1,

as in Figure 5 (note this includes ciphertext rerandomization).

2. Output ([[w]]s, {[[siw]]s}i∈[`]).

Figure 6: DDH-based homomorphic encryption with distributed evaluation, making use of the
BHHO cryptosystem. (See notations in Figure 5).

25



DDH-Based Homomorphic Evaluation - EvalG,g(ek, b, share, P, δ)
Inputs: Evaluation key ek, party identifier b ∈ {0, 1}, shared value share, RMS program description
P of size ≤ S, error bound δ.

Parse ek as in Figure 6, and interpret the value 1̂ as loaded into memory, via 〈1〉, {〈st〉}t∈[`] as given.

Parse P as in Definition 3.1, as a magnitude bound 1M and sequence of instructions.
Let δ′ = δ/((k + 1)MS).

For each sequential instruction in P , perform the corresponding sequence of operations:

Instruction (id, ŷj ← ŵi):

1: Execute the multiplication operation (id, ŷj ← ŵi · 1̂), as described below.

Instruction (id, ŷk ← ŷi + ŷj):

1: Compute 〈yk〉 ← 〈yi〉+ 〈yj〉, directly on the additive shares (over Zq).
2: For each t ∈ [`], compute 〈styk〉 ← 〈styi〉+ 〈styj〉 (over Zq).

Instruction (id, ŷk ← ŵi · ŷj):
1: Let [[wi]]s and {[[stwi]]s}t∈[`] be the BHHO ciphertexts associated with wi, and let 〈yj〉 and
{〈styj〉}t∈[`] be the additive secret shares associated with yj .

2: Compute 〈〈wiyj〉〉 = MultShares([[wi]]s, 〈yj〉, {〈styj〉}t∈[`]), as in Figure 5.
3: Execute Share Conversion: 〈wiyj〉 = ConvertShares(b, 〈〈wiyj〉〉, δ′,M, φ).
4: for t = 1 to ` do // Repeat above process for each stwi in the place of wi
5: Compute 〈〈stwiyj〉〉 = MultShares([[stwi]]s, 〈yj〉, {〈styj〉}t∈[`]).
6: Execute Share Conversion: 〈stwiyj〉 = ConvertShares(b, 〈〈stwiyj〉〉, δ′,M, φ).
7: end for
8: Let 〈yk〉 ← 〈wiyj〉 and 〈styk〉 ← 〈stwiyj〉, for each t ∈ [`].

Instruction (id, β, Ôj ← ŷi):

1: If b = 0, let 〈z〉 ← 〈yi〉; otherwise, if b = 1, let 〈z〉 ← −〈yi〉 be the Zq additive inverse.
// I.e., convert to subtractive secret sharing

2: Shift 〈z〉 share by rerandomization offset: 〈z〉 ← 〈z〉+ φ(id, g), over Zq.
// Note that shifting both shares does not change the shared value in Zq

3: Convert share from Zq to Zβ: 〈Oj〉 ← 〈z〉 mod β.
4: Output 〈Oj〉.

Figure 7: Procedures for performing homomorphic operations on secret shares. Here, notation
〈y〉 is used to represent this party’s share of the corresponding additive secret sharing. Evaluation
maintains the invariant that each of the additive secret shares 〈yi〉 encode the correct current
computation value of ŷi.
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execution of MultShares is the share outputb = (h′)yb ·
∏
t∈[`](g

′
t)
z
(t)
b . Now,

(output0)(output1) =

(
(h′)y0 ·

∏
t∈[`]

(g′t)
z
(t)
0

)(
(h′)y1 ·

∏
t∈[`]

(g′t)
z
(t)
1

)
= (h′)y0+y1 ·

∏
t∈[`]

(g′t)
z
(t)
0 +z

(t)
1

= (h′)y ·
∏
t∈[`]

(g′t)
sty From definition of the secret shares

=

(
h′ ·

∏
t∈[`]

(g′t)
st

)y
= (gx)y From definition of level-1 encoding

That is, the resulting shares output0, output1 of MultShares satisfy precisely the multiplicative
reconstruction property output0 · output1 = gxy of a level-3 encoding of xy mod q, and thus
(since 0 ≤ xy < q) of xy ∈ Z, as desired.

Security. By an identical reduction as in the proof of Theorems 3.8, 3.15, the security of
(Gen,Enc,Eval) holds if we assume circular security of the BHHO cryptosystem. However, from
Theorem 3.17, this property is in fact provably true under the DDH assumption. The claim
follows.

The complexity of the resulting scheme corresponds essentially to an extra factor of the
security parameter λ as compared to the ElGamal scheme in the previous section (in both size
and runtime), coming from the replacement of ElGamal ciphertexts (each consisting of 2 group
elements) with BHHO ciphertexts (each consisting of (λ+ 1) group elements).

4 Applications

In this section we describe applications of our homomorphic secret sharing scheme and its public-
key variant in the context of secure computation. We restrict the attention to security against
semi-honest parties; to obtain similar asymptotic efficiency in the presence of malicious parties,
one can apply a communication-efficient variant of the GMW compiler that relies on succinct in-
teractive zero-knowledge arguments [35, 47]. Such a compiler can be based on collision-resistant
hash functions, whose existence is implied by the DDH assumption.

The model. We refer the reader to [13, 33] for standard definitions of secure computation in
the standalone model. Here we will mostly consider protocols in which two PPT parties, Party 0
and Party 1, wish to securely evaluate a given public “program” (e.g., branching program or
boolean circuit) on their local inputs (x0, x1). We assume without loss of generality that the
output is only revealed to Party 0.

In the beginning of the protocol, each party is given its local input and both parties receive
common inputs 1λ (a security parameter) and P (a program). In the end of the protocol, Party 0
should output P (x0, x1) except with negl(λ) failure probability. This correctness requirement
should hold for any sequence of programs and inputs of size poly(λ). The security requirement
is that the view of each individual party in an honest execution of the protocol can be simulated
(up to computational indistinguishability) given its input and output alone. That is, there is a
PPT simulator SIM0 such that for every polynomial-length input sequences P i, xi0, x

i
1, the output
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of SIM0(1λ, Pλ, xλ0 , P
λ(xλ0 , x

λ
1 )) is computationally indistinguishable from the view of Party 0

in the protocol execution on common inputs 1λ, Pλ and local inputs (xλ0 , x
λ
1 ). Similarly, there

is another PPT simulator SIM1 such that the output of SIM1(1λ, Pλ, xλ1 ) is computationally
indistinguishable from the view of Party 1.

We rely on the following feasibility result for the class of programs P consisting of all boolean
circuits:

Theorem 4.1 (Yao’s protocol [58, 44]). Suppose that a constant-round oblivious transfer proto-
col exists. Then there exists a constant-round secure 2-party protocol for evaluating any boolean
circuit of size S using S · poly(λ) bits of communication.

We note that a 2-message oblivious transfer protocol can be based on the DDH assump-
tion [48, 1]. Also, while we only defined secure computation for deterministic, single-output
functionalities, a similar theorem applies to the more general case of randomized, two-output
functionalities.

4.1 Succinct Protocols for Branching Programs

In this section we present secure protocols for branching programs with near-optimal communi-
cation complexity. We start with an informal overview and then proceed to a formal description.

4.1.1 Overview

Our protocols for branching programs can be based either on the weaker HSS primitive via the
transformation from [10], or can be built more directly from the public-key variant (Gen,Enc,Eval)
as in Definition 2.2. We present here the latter approach, which gives rise to somewhat simpler
protocols with better concrete efficiency. For simplicity, we start by restricting the attention
to the case of evaluating a single branching program P on inputs x0, x1 held by Party 0 and
Party 1 respectively.

The simplest protocol proceeds as follows. The two parties run a general-purpose protocol
(such as Yao’s protocol) to jointly emulate the key generation Gen. In the end of this sub-
protocol, both parties hold a public key pk and each holds a secret evaluation key ekb. While this
step may be expensive, its complexity depends (polynomially) only on the security parameter λ,
and moreover the same key setup can be used for evaluating an arbitrary number of branching
programs on an arbitrary number of inputs. In this basic version of the protocol, the key
generation protocol is the only step that does not make a black-box use of the underlying DDH
group.

Next, each party uses Enc(pk, ·) to encrypt every bit of its input, and sends the encryptions
to the other party. Finally, the two parties locally run Eval to generate additive (mod-2) shares
of the output P (x0, x1). If Eval had negligible error, the parties could simply exchange their
shares of the output, since the share sent to Party b is determined by the output and the share
computed by Party b.

The fact that Eval has a non-negligible error δ is problematic for two reasons. First, it poses
a correctness problem. This can be fixed by setting δ to be a constant (say, δ = 1/4), running
σ independent instances of Eval, for a statistical security parameter σ,6 and outputting the
majority value. However, this modification alone will not suffice, because the existence of errors
within the homomorphic evaluation is dependent on the intermediate computation values, and
as such the σ output bits may leak information about the inputs. Instead, the parties apply
the σ instances of Eval locally (as before), and then jointly evaluate the reconstruction function
(computing majority of XORs) using general-purpose secure computation. This ensures that

6Here we assume that the events of error in different instances of Eval are independent. This can be enforced by
using a fresh set of pseudorandom values for each share conversion.
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only the correct output is revealed (and no further information) with negligible correctness and
secrecy error.

The communication complexity of the above protocol is n · poly(λ), where n = |x0|+ |x1| is
the combined length of the two parties’ inputs. This can be improved to n + poly(λ) by using
the following hybrid encryption technique [29]. Let Fr be a pseudorandom function computable
in NC1, which can be based on DDH [49]. (Better concrete efficiency can be obtained by using
a polynomial-stretch local pseudorandom generator [37, 2, 3].) Following the key generation
phase, each party encrypts a random key rb for F in the place of its input. Then, instead of
encrypting the bits of xb using Enc, Party b simply masks each bit i of its input using Frb(i) and
sends to the other party the encryption of rb together with all of the masked bits. The value of
program P on the inputs can now be expressed as the value of a (polynomially larger) publicly
known branching program P ′ on the inputs r0, r1, where P ′ is determined by P and the masked
inputs. The evaluation of P ′ is repeated σ times as before.

4.1.2 Technical details

Here and in the following, it will be useful to rely on a variant of DEHE which ensures that
when running polynomially many instances of Eval, the events of error are indistinguishable from
being independent. (We do not achieve full independence because all instances share a common
PRF key used for share conversion.) To keep Eval deterministic, we include an additional input
id where the independence condition is guaranteed as long as all values of id are distinct. We
provide the formal definition below.

Definition 4.2 (Multi-evaluation DEHE). A (2-party) Multi-evaluation DEHE scheme for a
class of programs P consists of algorithms (Gen,Enc,Eval) where Gen and Enc have the same
syntax as a standard DEHE (see Definition 2.2) and Eval has an additional input id. The
algorithms should satisfy the same security requirement as in Definition 2.2 and the following
augmented correctness requirement.

Multi-evaluation correctness: For every polynomial m, s and nonuniform polynomial-
time distinguisher A there is a negligible function ν such that the following holds. For every pos-
itive integer λ, input w = (w1, . . . , wn) ∈ {0, 1}n, programs P1, . . . , Pm(λ) ∈ P of size s(λ) with

input length n, error bound δ > 0, integer β ≥ 2 and distinct identifiers id1, . . . , idm(λ) ∈ {0, 1}λ,
there are error probabilities p1, . . . , pm(λ) ≤ δ such that the advantage of A in distinguishing
between the outputs of the following two experiments is at most ν(λ):

• Experiment 1: Output a bit sequence τ1, . . . , τm(λ) where Pr[τi = 1] = pi and the τi are
statistically independent.

• Experiment 2:

– (pk, (ek0, ek1))← Gen(1λ);

– (ct1, . . . , ctn)← (Enc(pk, w1), . . . ,Enc(pk, wn));

– For i = 1, . . . ,m(λ): Let yib ← Eval(idi, b, ekb, (ct1, . . . , ctn), Pi, δ, β), b = 0, 1; Output
0 if yi0 + yi1 = Pi(w) (where addition is modulo β) and 1 otherwise.

Theorem 4.3 (Multi-evaluation DEHE from DDH). Under the DDH assumption, there exists
a multi-evaluation DEHE scheme for the class P of branching programs.

Proof sketch. A multi-evaluation DEHE can be obtained by applying the DEHE construction
from Section 3 (Figures 6, 7), where the identifier id given as input to Eval is concatenated
to the identifier used in DistributedDLog to ensure that every PRF invocation uses a distinct
input. Multi-evaluation correctness follows by observing that if the PRF is replaced by a random
function, then the error probabilities in different invocations of Eval are statistically independent
(but each individual probability may depend on the input w and the program Pi).
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We note that one can similarly define a multi-evaluation variant of HSS; our HSS construction
(which is slightly simpler than the DEHE construction) extends to the multi-evaluation case in
a similar way.

We proceed to formally describe the basic version of the secure computation protocol, where
each input bit is encrypted separately. Here and in the following, we will cast the protocol in
a hybrid model that uses an ideal two-party oracle for performing “simple” secure computation
tasks, for which we can afford to use standard general-purpose secure computation protocols.
Using suitable composition theorems [13, 33], each oracle call can be emulated by an arbitrary
secure computation protocol for the corresponding functionality. For our purposes, oracle calls
can always be emulated using Yao’s protocol (see Theorem 4.1).

Basic protocol for branching programs:

• Local inputs: For b = 0, 1, Party b holds input xb = (xb,1, . . . , xb,nb
).

• Common inputs: Security parameter 1λ, a sequence of branching programs P = (P1, . . . , Pm),
where each Pi has n = n0 + n1 inputs.

• Output: Party 0 outputs (P1(x0, x1), . . . , Pm(x0, x1)).

• Given primitive: Multi-evaluation DEHE (Gen,Enc,Eval) for branching programs.

1. Invoke an oracle to compute the following (randomized) two-party functionality: on input
1λ, let (pk, (ek0, ek1))← Gen(1λ) and deliver (pk, ek0) to Party 0 and (pk, ek1) to Party 1;

2. For b = 0, 1 and i = 1, . . . , nb, Party b lets ctb,i ← Enc(pk, xb,i) and sends ctb,i to Party 1−b;
3. For b = 0, 1, j = 1, . . . ,m and k = 1, . . . , λ, Party b lets yb,j,k ← Eval(id = (j, k), b, ekb,

(ct0,1, . . . , ct0,n0 , ct1,1, . . . , ct1,n1), Pj , δ = 1/3, β = 2);

4. Invoke an oracle to compute the following two-party functionality:
On inputs ((y0,j,k)j∈[m],k∈[λ] , (y1,j,k)j∈[m],k∈[λ]), deliver to Party 0 the output (y1, . . . , ym)
where yj = MAJ(y0,j,1 ⊕ y1,j,1, . . . , y0,j,λ ⊕ y1,j,λ).

5. Party 0 outputs (y1, . . . , ym).

Correctness. Since every output bit is computed λ times with error bound δ = 1/3, the multi-
evaluation correctness requirement of Definition 4.2 and a Chernoff bound guarantee that, except
with negl(λ) probability, at most 0.4λ of the copies of each output bit are evaluated incorrectly.
Thus, for m ≤ poly(λ), all majority values will be correct except with negl(λ) probability.

Security. For each party b, the simulator SIMb needs to simulate the entire view of Party b.
Without loss of generality, this includes the random coins of Party b and two types of incoming
messages: messages from the other party and messages from oracle calls. (Outgoing messages to
the other party and oracles are determined by the above.) The simulator SIMb can proceed by
just running the protocol with the other input set to 0n1−b and outputting the view of Party b,
where SIM0 replaces the final oracle message by the actual output (which it gets as input for
the simulation). The indistinguishability of the simulated view from the actual view follows
from the semantic security of ciphertexts encrypted using Enc given pk and ekb alone and, in the
case of SIM0, the correctness of the protocol (which guarantees that the simulated final oracle
message is the same as in the real execution except with negl(λ) probability).

Applying Theorem 4.3, and using Yao’s protocol (Theorem 4.1) to implement the oracle
calls, we get the following:

Theorem 4.4 (Secure computation of branching programs: basic version). Under the DDH
assumption, there exists a constant-round secure 2-party protocol for evaluating any sequence of
m branching programs of total size S on inputs (x0, x1) of total length n, using (n+m) · poly(λ)
bits of communication and poly(λ, S) computation.
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We now present an asymptotic improvement that compresses the n input ciphertexts using
a hybrid encryption technique.

Compressed-input protocol for branching programs:

• Local inputs: For b = 0, 1, Party b holds input xb = (xb,1, . . . , xb,nb
).

• Common inputs: Security parameter 1λ, a sequence of branching programs P = (P1, . . . , Pm),
where each Pi has n = n0 + n1 inputs. We assume n ≤ 2λ.

• Output: Party 0 outputs (P1(x0, x1), . . . , Pm(x0, x1)).

• Given primitives:

– Multi-evaluation DEHE (Gen,Enc,Eval) for branching programs;

– A pseudorandom function F : {0, 1}λ × {0, 1}λ → {0, 1} such that Fr(α) := F (r, α)
is computed by a poly(λ)-time computable branching program PF .

1. Invoke an oracle to compute the following (randomized) two-party functionality: on input
1λ, let (pk, (ek0, ek1))← Gen(1λ) and deliver (pk, ek0) to Party 0 and (pk, ek1) to Party 1;

2. For b = 0, 1, Party b picks a random PRF key rb ∈ {0, 1}λ, lets ctb,i ← Enc(pk, rb,i) for
i = 1, . . . , λ, and sends ctb,i to Party 1− b;

3. For b = 0, 1 and i = 1, . . . , nb, Party b lets x′b,i ← xb,i ⊕ Frb(i) (where each index i is
represented by a distinct λ-bit string) and sends x′b,i to Party 1− b;

4. For b = 0, 1 and j = 1, . . . ,m, Party b lets P ′j be a branching program for the function
f(r0, r1) = Pj((x

′
b,i ⊕ Frb(i))b∈{0,1},i∈[nb]);

// P ′j can be computed in time poly(λ, |Pj |) given λ, PF , Pj and the n bits x′b,i.

5. For b = 0, 1, j = 1, . . . ,m and k = 1, . . . , λ, Party b lets yb,j,k ← Eval(id = (j, k), b, ekb,
(ct0,1, . . . , ct0,λ, ct1,1, . . . , ct1,λ), P ′j , δ = 1/3, β = 2);

6. Invoke an oracle to compute the following two-party functionality:
On inputs ((y0,j,k)j∈[m],k∈[λ] , (y1,j,k)j∈[m],k∈[λ]), deliver to Party 0 the output (y1, . . . , ym)
where yj = MAJ(y0,j,1 ⊕ y1,j,1, . . . , y0,j,λ ⊕ y1,j,λ);

7. Party 0 outputs (y1, . . . , ym).

Analysis. The correctness and security proofs are similar to those of the basic protocol de-
scribed above. The only difference is that instead of directly encrypting their input bits, the
parties encrypt bits of their secret PRF keys rb, and use distinct PRF outputs to mask the
inputs. This hybrid encryption scheme keeps the inputs of each party semantically secure.

Using Yao’s protocol again to implement oracle calls, the communication complexity is dom-
inated by the n bits used for communicating the masked inputs and the m · poly(λ) bits of
reconstructing the outputs. Thus, we get the following theorem.

Theorem 4.5 (Secure computation of branching programs: compressed version). Under the
DDH assumption, there exists a constant-round secure 2-party protocol for evaluating any se-
quence of m branching programs of total size S on inputs (x0, x1) of total length n, using
n+m · poly(λ) bits of communication and poly(λ, S) computation.

4.2 Breaking the Circuit Size Barrier for “Well Structured” Circuits

We now show how to use the succinct protocols for branching programs to reduce the com-
munication complexity of securely evaluating deep boolean circuits that cannot be efficiently
represented by branching programs.
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4.2.1 Overview

Our general approach is to extend the standard model of boolean circuits to a much richer model
of circuits in which a single gate can evaluate any branching program on its inputs. For such
circuits, we can get a protocol in which the communication complexity is linear in the number
of gates (regardless of the size of the branching program labeling each gate) and where only the
computation complexity depends (polynomially) on the size of the branching programs. The
main technical challenge in achieving this result is to cope with the errors introduced by the
share conversion without increasing the asymptotic communication complexity.

Intuitively, one can think of a protocol as above as a general-purpose secure computation
protocol in which every log-space (or NC1) sub-computation is performed with communication
cost which is comparable to the total length of the inputs and outputs, independently of the
computation time or the circuit size of the sub-computation. Since useful circuits that arise
naturally can typically be broken into large NC1 sub-circuits (think for example of circuits
obtained by compiling a C-program), this approach will typically make the communication
complexity much smaller than the circuit size.

Below we show that the circuit size barrier can be broken not only for “natural” circuits but
even for general classes of circuits. Consider a boolean circuit C of size S and depth D. Assume
that the circuit is leveled in the sense that its S gates can be partitioned into D + 1 levels such
that the gates from level i (except input gates) receive their inputs from gates of level i− 1.

Given a leveled circuit as above, we divide the levels into intervals of dlogSe consecutive
levels, and pick for every interval the level that has the smallest number of gates (except for
the input level). Overall, we have at most D/ logS “special” levels, whose total size is at most
S/ logS. In addition, the output level is considered the last special level.

The crucial observation is that each output of a new special level can be expressed as a circuit
of depth O(logS) applied to values of the previous special level. The protocol will compute the
values of the special levels one at a time, by using the previous protocol for branching programs,
except that the reconstruction protocol is only applied in the end. That is, given additive
shares of special level i, each party encrypts his shares using the hybrid encryption scheme from
Section 4.1, and the parties apply Eval on a function (computable by polynomial-size branching
programs) that first reconstructs the value and then computes shares of the outputs of special
level i+ 1.

To avoid a multiplicative factor of σ in communication, we need to apply a more efficient
error correction procedure for intermediate levels. To this end, we apply an asymptotically
good error-correcting code, with encoding and decoding in NC1, for encoding the values of each
special level. Such codes can be explicitly constructed, see, e.g., [53]; moreover, by using a
Las-Vegas type variant of the share conversion algorithm (see Section 5) it suffices to correct
erasures, in which case one can use any explicit asymptotically good linear code, such as [40].

The computation performed by Eval will start by reconstructing the noisy encoding of level i
(using XOR), then apply a decoder to recover the actual values of level i, then compute the
outputs of level i+ 1, and then encode these outputs. Here it is crucial that a separate instance
of Eval is applied for every bit of the output of level i + 1, which ensures that the errors are
essentially independent. If the error probability δ of Eval is smaller than the relative error
correction radius of the code, the error rate in the encoded output will be within the error-
correction radius with overwhelming probability. Thus, we can use a general-purpose protocol
for decoding the correct outputs from the shared noisy encoding. This approach yields a protocol
for leveled circuits whose communication complexity is O(S/ logS) bits, ignoring lower order
additive terms.
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4.2.2 Technical details

We start by describing a general result for “circuits over branching programs,” namely circuits
in which each gate can evaluate an arbitrary branching program on its inputs. We then derive
a result for a class of “well-structured” (standard) circuits as a corollary.

Definition 4.6 (Circuit over branching programs). A circuit over branching programs is a
circuit C in which every non-input gate gi (i.e., node with nonzero in-degree) is labeled by
a branching program Pi. The function computed by C is defined naturally by applying the
branching program labeling every gate to the values of the inputs of this gate. The size of C,
denoted by |C|, is the number of nodes, its weight is the total size of branching programs Pi
labeling its nodes, and its depth is the length of the longest path from an input to an output.
The depth of gate gi is the length of the longest path from an input to gi.

In order to present our error-correction method in a modular way, we define the following
fault-tolerant version of circuits over branching programs. Informally, an η-fault-tolerate im-
plementation of f computes the correct output of f with overwhelming probability even if the
output of each gate gi is flipped (independently) with probability pi ≤ η. Such an implementa-
tion may employ a trusted output decoder D that is not subject to faults.

Definition 4.7 (Fault tolerant implementation). Let f : {0, 1}n → {0, 1}m and η, ε > 0. An
(η, ε)-fault-tolerant implementation of f (or a circuit C computing f) is a pair (C′,D) with the
following properties.

• Syntax: C′ : {0, 1}n → {0, 1}m′ is a circuit over branching programs and D : {0, 1}m′ →
{0, 1}m is a standard boolean circuit.

• Fault tolerance: For every input x ∈ {0, 1}n and probabilities 0 ≤ pi ≤ η, where i ranges
over all gates of C′ except input gates, we have Pr[D(C̃′(x)) 6= f(x)] ≤ ε, where C̃′ is a prob-
abilistic circuit obtained from C′ by flipping the output of every gate gi (independently)
with probability pi.

We now present a general transformation that adds fault tolerance to any circuit over branch-
ing programs. The transformation incurs only a constant multiplicative overhead to the size (up
to lower order additive terms) and a polynomial overhead to the weight.

Lemma 4.8 (Adding fault tolerance). There is η > 0 such that the following holds. For every
ε > 0 and circuit over branching programs C : {0, 1}n → {0, 1}m of size S, weight W and depth
D, there is an (η, ε)-fault-tolerant implementation (C′,D) of the function computed by C, where
C′ has size O(S + D log(D/ε) + m log(m/ε)), weight poly(W, log 1/ε) and depth D, and D has
size O(m log(m/ε)). Moreover C′ and D can be computed in time poly(W, log 1/ε) given C, ε.

Proof. Let ENC : {0, 1}k → {0, 1}ck be an explicit, asymptotically good family of linear error-
correcting codes with a poly(k)-size O(log k)-depth decoder DEC that can correct a θ-fraction of
errors, for constants c > 1 and 0 < θ < 1/4 that are independent of the block length. Such codes
are known to exist (e.g., [53]). By linearity, the encoding function ENC can also be computed
by a poly(k)-size O(log k)-depth circuit.

Let η = θ/2. Partition the gates of C into D + 1 levels L0, . . . , LD where gates in Lj are
of depth j. Let σ be the smallest integer such that the probability of at least θσ errors in σ
independent trials, where each error occurs with η probability, is at most ε/(2D). By a Chernoff
bound, σ = O(log(D/ε)). We assume without loss of generality that each level Lj contains at
least σ gates. Otherwise pad it with dummy gates, adding at most O(D log(D/ε)) to the size
and weight of C.

By definition of depth, all inputs of a gate from Lj belong to levels Lh with h < j. The
circuit C′ is defined as follows. Similarly to C, it has D + 1 levels L′0, . . . , L

′
D. The input level

L′0 is identical to L0. For any 1 ≤ j ≤ D, we will maintain the invariant that the outputs of
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gates L′j in C′ encode the outputs yj of gates Lj in C. Concretely, we have |L′j | = c · |Lj | where
the value of the i-th gate g′j,i in L′j is computed as follows:

1. For every level h < j on which level Lj in C depends, apply DEC to decode the values yh
of Lh from the values y′h of L′h;

2. Apply the branching programs labeling the nodes of Lj to compute the values yj of Lj ;

3. Let g′j,i ← ENCi(yj), where ENCi is the i-th output bit of ENC.

In addition to gates g′j,i as above, for every output gate oj,i in Lj we add σ′ output gates o′j,i,`
to C′, 1 ≤ ` ≤ σ′, where the value of each of these gates is obtained by applying only Steps 1
and 2 above and outputting the i-th bit of yj . That is, the output is encoded via a simple
repetition code. The parameter σ′ is chosen to be the smallest integer such that the probability
of at least σ′/2 errors in σ′ independent trials, where each error occurs with θ probability, is at
most ε/(2m). Since θ < 1/2, by a Chernoff bound we have σ′ = O(log(m/ε)). This completes
the description of C′. The output decoder D simply computes the majority value of the σ′ copies
of each output.

We turn to analyze the efficiency and fault tolerance of the above construction. By closure
properties of branching programs (see Appendix A), the computation of each gate g′j,i or output
gate o′j,i,` from its inputs can be done by a branching program of size poly(W, log 1/ε). Thus,
C′ can be implemented with size S′ = O(S + Dσ + mσ′) = O(S + D log(D/ε) + m log(m/ε)),
weight poly(W, log 1/ε), and depth D, as required. An implementation of D with the specified
circuit complexity follows from the fact that majority has linear-size circuits.

To analyze the error probability in the presence of η = θ/2 noise probability, note that the
output is correct if the following two conditions hold: (1) for every level L′j of C′, less than a
θ fraction of the gates are flipped; (2) for every output bit, less than half of its σ′ copies are
flipped. By the choice of σ we have that (1) occurs except with at most D · ε/(2D) = ε/2
probability. By the choice of σ′ we have that (2) occurs except with at most m · ε/(2m) = ε/2
probability. It follows that the output is incorrect with at most ε probability, as required.

We now use multi-evaluation DEHE for communication-efficient secure computation of fault-
tolerant circuits over branching programs. The high level approach is similar to the compressed-
input protocol for branching programs, except that every level L′j is evaluated based on shares of
the previous levels Lh, h < j. Once the outputs of C′ are shared, the decoder D is implemented
via general-purpose secure computation. We formally describe the protocol below.

Secure computation of fault-tolerant circuits over branching programs:

• Local inputs: For b = 0, 1, Party b holds input xb ∈ {0, 1}nb .

• Common inputs: Security parameter 1λ, an (η, 2−λ)-fault tolerant implementation (C′,D)
(over branching programs) of f : {0, 1}n0 × {0, 1}n1 → {0, 1}m, where the gates of C′ are
partitioned into levels L′0, . . . , L

′
D according to their depth. We assume |C′| ≤ 2λ.

• Output: Party 0 outputs f(x0, x1).

• Given primitives:

– Multi-evaluation DEHE (Gen,Enc,Eval) for branching programs;

– A pseudorandom function F : {0, 1}λ × {0, 1}λ → {0, 1} such that Fr(α)
4
= F (r, α) is

computed by a poly(λ)-time computable branching program PF .

1. Invoke an oracle to compute the following (randomized) two-party functionality: on input
1λ, let (pk, (ek0, ek1))← Gen(1λ) and deliver (pk, ek0) to Party 0 and (pk, ek1) to Party 1;

2. Party b picks a random PRF key rb ∈ {0, 1}λ, lets ctb,i ← Enc(pk, rb,i) for i = 1, . . . , λ,
and sends ctb,i to Party 1− b;
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3. Party 0 lets y00 ← (x0, 0
n1) and Party 1 lets y01 ← (0n0 , x1);

// yhb is Party b’s share of the values of level h

4. For h = 1, . . . , D: // generate shares of level h from shares of level h− 1

(a) Encrypt the shares yh−1b : For b = 0, 1 and i = 1, . . . , |L′h−1|, Party b lets sh−1b,i ←
yh−1b,i ⊕ Frb(h− 1, i) and sends sh−1b,i to Party 1− b;

(b) Compute the shares yhb : For b = 0, 1 and i = 1, . . . , |L′h|, Party b lets Phi be
a branching program computing the output of the i-th gate in L′h from (r0, r1).
This branching program is determined by the branching program labeling the gate
and by the encrypted shares sh

′

∗,∗ for h′ < h. Party b then lets yhb,i ← Eval(id =

(h, i), b, ekb, (ct0,1, . . . , ct0,λ, ct1,1, . . . , ct1,λ), Phi , δ = η, β = 2);

5. Invoke an oracle to compute D on the shares of the output gates of C′, delivering the
output y ∈ {0, 1}m to Party 0.

6. Party 0 outputs y.

Correctness. If Eval were perfect, the protocol would compute correct shares of every wire
in the circuit. By the multi-evaluation correctness requirement of Definition 4.2, we can assume
(with only a negligible difference in the error probability) that every invocation of Eval incurs
an independent error probability pi ≤ η. It follows from the (η, 2−λ)-fault-tolerance of (CD)
that the output is correct except with negligible probability.

Security. Consider the messages received by Party b. In Step 2, it gets a semantically secure
encryption of a random secret PRF key r1−b (semantic security holds even when given the
information received from the oracle in Step 1). The rest of the view does not depend on the
PRF keys but only on their encryptions and the PRF outputs. It follows that the view of a
party is indistinguishable from its view in a hybrid game where the PRF outputs are replaced
by the outputs of a random function. In this game, the message received in each iteration of
Step 4a is uniformly random and can therefore be trivially simulated.

Combining the above protocol with our (multi-evaluation) DEHE from DDH, we get the
following protocol for fault tolerant circuits over branching programs. Here the class of programs
includes fault-all tolerant circuit implementations that are promised to realize some function f
with a constant noise parameter η > 0 and error parameter ε = 2−λ.

Claim 4.9 (Protocol for fault tolerant circuits over branching programs). Let 0 < η < 1/2 be
a constant. Under the DDH assumption, there exists a secure 2-party protocol for evaluating
any (η, 2−λ)-fault-tolerant implementation (C′,D) (over branching programs) of some function
f on inputs (x0, x1) of total length n with |C′|+ |D| · poly(λ) bits of communication, poly(λ,W )
computation and D+O(1) rounds, where D and W are the depth and weight of C′, respectively.

Combining Claim 4.9 with Lemma 4.8 we get the following theorem.

Theorem 4.10 (Protocol for circuits over branching programs). Under the DDH assumption,
there exists a secure 2-party protocol for evaluating any circuit over branching programs C :
{0, 1}n → {0, 1}m of size S, weight W , and depth D with O(S) + (D + m) · poly(λ) bits of
communication, poly(λ,W ) computation, and D +O(1) rounds.

We note that the above is nontrivial even for standard boolean circuits, since previous
DDH-based protocols required poly(λ) bits of communication per gate. As we show below, for
natural classes of “well structured” circuits we can use the extra power of circuits over branching
programs to make the communication sublinear in the circuit size.

Definition 4.11 (Leveled circuit). Let C : {0, 1}n → {0, 1}m be a boolean circuit. We say that
C is leveled if its gates can be partitioned into levels L0, . . . , LD such that for every 1 ≤ i ≤ D
and gate gi ∈ Li, the inputs of gi are in Li−1.
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We show how to convert any leveled boolean circuit into a circuit over branching programs
that has asymptotically smaller size and polynomial weight.

Lemma 4.12 (Compact circuits over branching programs from leveled circuits). Let C :
{0, 1}n → {0, 1}m be a leveled boolean circuit of size S and depth D. Then there is a circuit
over branching programs C of size O(S/ logS) + n+m, weight poly(S), and depth O(D/ logS).
Moreover, C can be computed in polynomial time from C.

Proof. Given a leveled circuit C as above, we divide the D levels into intervals of dlogSe
consecutive levels, and pick for every interval the level that has the smallest number of gates
(except for the input level). Overall, we have at most D/ logS “special” levels, whose total size
is at most S/ logS. In addition, the output level is considered the last special level.

Since two special levels are at most 2 logS far apart, each gate g in a special level can be
expressed as a circuit of depth 2 logS in the values of the previous special level (or the inputs
for the first special level), and this computation can be performed by a poly(S)-size branching
program Pg. We can thus construct C as follows. The nodes include all input gates and all
gates in the special levels. Every non-input gate g is labeled by the branching program Pg that
computes its value from values of the previous special level (or inputs). The circuit C has size,
weight, and depth as required.

The requirement of being leveled can be relaxed in several ways. For instance, if the inputs
of gates in level Li come from a level Lj such that i− j is bounded by a constant ∆, the proof of
Lemma 4.12 can be generalized by picking a sub-interval of ∆ consecutive special layers (instead
of a single special layer) from each interval. More generally, for any set T of gates in C such
that the length of any directed path in C which avoids T is bounded by `, we can convert C
into a circuit C over branching programs, where C has size |T | and weight O(|T | · 2`).

Combining Lemma 4.12 with Theorem 4.10, we get the following theorem.

Theorem 4.13 (Sublinear-communication protocol for leveled circuits). Under the DDH as-
sumption, there exists a secure 2-party protocol for evaluating any leveled boolean circuit C :
{0, 1}n → {0, 1}m of size S and depth D using O(S/ logS) + n + (D + m) · poly(λ) bits of
communication, poly(λ, S) computation, and O(D/ logS) rounds.

4.3 Function Secret Sharing

As discussed in the Introduction, homomorphic secret sharing can be viewed as a “dual” notion
of function secret sharing from [10]. In an HSS for a class of programs P, given a share of a
secret input w and a public program P ∈ P, one can locally compute a share of P (w). In a
function secret sharing (FSS) scheme for a class of programs P, given a share of a secret function
represented by program P ∈ P and a public input x, one can locally compute a share of P (x).

Below we define the notion of FSS, specialized to the case of two parties and additive re-
construction modulo β, as well as the notion of δ-FSS, a relaxation of FSS that allows for an
inverse polynomial error probability.

Definition 4.14 (Function Secret Sharing). A (2-party) Function Secret Sharing (FSS) scheme
for a class of programs P consists of PPT algorithms (Gen,Eval) with the following syntax:

• Gen(1λ, P ): On security parameter 1λ and program P ∈ P, the key generation algorithm
outputs a pair of keys (k0, k1). Each key is assumed to include the description of the input
and output domains DP , RP of P , where we assume that DP = {0, 1}n and RP = Zβ for
some β ≥ 2.

• Eval(b, kb, x): On party index b ∈ {0, 1}, key kb (specifying input domain DP = {0, 1}n
and output domain RP = Zβ), and input x ∈ {0, 1}n, the evaluation algorithm outputs a
value yb ∈ Zβ , corresponding to Party b’s share of P (x).
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The algorithms (Gen,Eval) should satisfy the following correctness and security requirements:

• Correctness: For every positive integer λ, program P ∈ P with input domain {0, 1}n
and output domain Zβ , and input x ∈ {0, 1}n,

Pr[(k0, k1) ← Gen(1λ, P ); yb ← Eval(b, kb, x), b = 0, 1 : y0 + y1 = P (x)] = 1,

where addition of y0 and y1 is carried out modulo β.

• Security: Each kb keeps P semantically secure (except for revealing the input and output
domains and the program size). Formally, for every b ∈ {0, 1}, pair of polynomial-length
program sequences P 1, P 2, . . . and Q1, Q2, . . . over P such that P i and Qi have the same
size, input domain and output domain, and every nonuniform polynomial-time distin-
guisher A, there is a negligible function ν, such that for every positive integer λ we have
|Pr[A(V bλ ) = 1] − Pr[A(W b

λ) = 1]| ≤ ν(λ), where V bλ (resp., W b
λ) is obtained by letting

(k0, k1)← Gen(1λ, Pλ) (resp., (k0, k1)← Gen(1λ, Qλ)) and outputting kb.

The relaxed notion of δ-FSS is defined similarly, except that Eval has an additional input δ and its
running time is polynomial in the input length and 1/δ. The correctness requirement is relaxed
to hold with at least 1−δ−ν(λ) probability for a negligible function ν, provided that |P |, 1/δ ≥
1/poly(λ). A multi-evaluation variant of δ-FSS is defined analogously to Definition 4.2.

We now show how to apply universal branching programs for obtaining a δ-FSS for branching
programs from our HSS for branching programs.

Theorem 4.15 (δ-FSS for branching programs). Under the DDH assumption, there exists a
δ-FSS scheme for the class of deterministic branching programs.

Proof. By Theorem 3.18, the DDH assumption implies the existence of an HSS scheme (ShareHSS,
EvalHSS) for branching programs. Let US,n(P̂ , x) denote a universal branching program for

branching programs of size S over n inputs, where P̂ denotes the encoding of P as an input
for US,n. That is, for every branching program P : {0, 1}n → {0, 1} of size S and x ∈ {0, 1}n
we have US,n(P̂ , x) = P (x). Such a universal branching program can be generated in time

poly(S, n) (see Corollary A.6). Note that the bit-length |P̂ | of P̂ is determined by S and n.
We define a δ-FSS scheme (GenFSS,EvalFSS) for branching programs as follows. To share a

branching program P : {0, 1}n → {0, 1} of size S, where the output is viewed as an element of Zβ ,

the algorithm GenFSS(1λ, P ) computes the encoding P̂ required by US,n, lets (share0, share1)←
GenHSS(1λ, P̂ ), and outputs keys (k0, k1) where kb = (shareb, β). The algorithm EvalFSS(b, kb =

(shareb, β), x, δ) returns EvalHSS(b, shareb, Px, δ, β), where Px : {0, 1}|P̂ | → {0, 1} is the branching
program obtained from US,n by restricting the last n inputs to x (this can be done by just
changing the edge labels of nodes that depend on the last n variables to the constants determined
by x). Correctness is easy to verify. Security is inherited from the security of the HSS scheme,
noting that if P and P ′ have the same input domain and the same size, then |P̂ | = |P̂ ′|.

A multi-evaluation δ-FSS can be obtained in the natural way by using a multi-evaluation
HSS instead of standard HSS.

Finally, we note that δ-FSS can be used to realize a different relaxation of FSS, in which
correctness is guaranteed with all but negl(λ) probability, but where reconstruction of the output
from the (compact) output shares yb need not be linear. This can be done by executing λ
independent instances of a δ-FSS in parallel with, say, δ = 1/3, and decoding via majority of
the executions. In fact, using the multi-evaluation variant of δ-FSS, it suffices to execute Gen
once and only use multiple executions of Eval.
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4.4 Private Information Retrieval

One of the motivating applications of function secret sharing is that of multi-server private
information retrieval (PIR) for expressive query classes [10]. Such a PIR protocol allows a
client to search a remote database DB = (xi)i∈N , replicated among k ≤ 2 servers, for entries
satisfying a secret predicate P while hiding P from each individual server. Furthermore, the
communication complexity is required to be sublinear in the size of DB. This rules out the
trivial solution of having the entire database sent to the client. In fact, we will require the
communication complexity to be polynomial in logN and the size of P .

As we demonstrate, such PIR protocols can be achieved with negligible error even when
starting with δ-FSS that has inverse polynomial error. Together with our construction of such
δ-FSS, this gives us DDH-based 2-server PIR for queries expressed by branching programs.
Useful examples include counting or retrieving matches that are specified by conjunction queries
or fuzzy match predicates (e.g., requiring that a document contains at least a given threshold
of keywords from a given list).

For simplicity, we restrict the attention to querying the count of database entries satisfying
a secret predicate P ∈ P.7 We formalize the notion of generalized PIR in this setting, naturally
extending standard definitions of PIR [17, 15, 42].

Definition 4.16 (Generalized PIR). A (1-round, 2-server, computational) private information
retrieval (PIR) scheme for a class of programs P is defined by a triple of PPT algorithms (Q,A,R)
with the following syntax:

• Q(1λ, P ): On security parameter 1λ and query program P : {0, 1}n → {0, 1}, where P ∈ P,
the query generation algorithm outputs a pair of queries (q0, q1). Each query is assumed
to include the parameters n,N .

• A(1λ, b, qb, DB): On security parameter 1λ, server index b ∈ {0, 1}, query qb (specifying
an input length n), and database DB = (x1, . . . , xN ), the answer algorithm outputs an
answer yb.

• R(y0, y1): On answers (y0, y1), the reconstruction algorithm outputs an integer y.

The algorithms (Q,A,R) should satisfy the following correctness and security requirements:

• Correctness: For every polynomial p there is a negligible function ν such that for every
positive integer λ, query program P : {0, 1}n → {0, 1} with P ∈ P, and database DB =
(x1, . . . , xN ) with entries xi of length n, where n,N, |P | ≤ p(λ), we have

Pr[(q0, q1)← Q(1λ, P ); yb ← A(b, qb, DB), b = 0, 1 : R(y0, y1) =

N∑
i=1

P (xi)] ≥ 1−ν(λ).

• Security: Each query qb keeps P semantically secure, except perhaps for leaking the input
length and the size of P . This is formalized similarly to Definition 4.14.

• Efficiency: The total communication complexity, namely |q0|+|q1|+|y0|+|y1|, is bounded
by poly(λ, n, logN) bits.

We now show how to use δ-FSS to construct generalized PIR schemes. We describe the
construction using a multi-evaluation variant of δ-FSS for better concrete efficiency; however,
a standard δ-FSS suffices at the cost of increasing the communication complexity by at most a
factor of λ.

7Using sketching or coding techniques (e.g., [50, 26]), this approach can be extended to recovery of data entries
satisfying a hidden predicate.
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Generalized PIR from δ-FSS:

• Given primitive: a multi-evaluation δ-FSS scheme (Gen,Eval) for a class of programs P;
we assume that for every P : {0, 1}n → {0, 1}, with P ∈ P, and positive integer β, the
program Pβ obtained by viewing the output of P as an element of Zβ is also in P and has
the same size as P .

1. Q(1λ, P ): let (q0, q1)← Gen(1λ, Pβ) for β = 2λ; output (q0, q1);
// The input length n of P as well as β are specified in the queries.

2. A(1λ, b, qb, DB = (x1, . . . , xN )): For j = 1, . . . , λ, let yb,j ←
∑N
i=1 Eval(id = j, b, qb, xi, δ),

where δ = 1/(3N) and summation is carried out modulo β. Output yb = (β, yb,1, . . . , yb,λ);

3. R(y0, y1): Output the most common value of (y0,j + y1,j) over j ∈ [λ], where addition is
modulo β (ties are broken arbitrarily).

Analysis. Since correctness only needs to hold for N ≤ poly(λ), we can assume that N <
β = 2λ. By the correctness of the δ-FSS we have that Pr[Eval(id = j, 0, q0, xi, δ) + Eval(id =
j, 1, q1, xi, δ) 6= P (xi)] ≤ 1/(3N) + negl(λ) for every i, j. By a union bound, it follows that

Pr[y0,j + y1,j 6=
∑N
i=1 P (xi)] ≤ 1/3 + negl(λ) for 1 ≤ j ≤ λ. Finally, it follows from the

multi-evaluation correctness of the δ-FSS and a Chernoff bound that the majority of the sums
y0,j + y1,j are equal to the correct output

∑N
i=1 P (xi) except with negl(λ) probability. The

security of the above PIR scheme follows directly from that of the underlying δ-FSS.

Combining the above protocol with Theorem 4.15, we get the following theorem.

Theorem 4.17 (Generalized PIR for branching programs). Under the DDH assumption, there
exists a generalized 2-server PIR scheme for the class of deterministic branching programs.

5 Examples and Optimizations

There are several possible optimizations and trade-offs between computation and communication
in our HSS construction. We describe these optimizations and trade-offs and show how they can
be applied in two concrete scenarios. We first consider a toy example of a client who computes
the AND of n bits x1, . . . , xn by homomorphic secret sharing and then discuss a two-party
computation of a formula. Throughout this section we assume the circular security of ElGamal
encryption. Forgoing this assumption, similar results can be derived for BHHO encryption.

The communication complexity of our homomorphic secret sharing scheme is dominated by
the ` + 1 ElGamal ciphertexts, or 2(` + 1) group elements encoding each input bit (where ` =
dlog2 qe = dlog2 |G|e for DDH group G). The computation is dominated by running MultShares
and ConvertShares `+ 1 times for each product of a memory variable and input variable.

MultShares consists of raising two group elements to the power of a secret share and adding
the two results over the group. Given a sliding window implementation of exponentiation,
raising a group element to a positive integer smaller than q requires less than 3`/2 group oper-
ations and therefore MultShares requires at most 3` group operations. The computation time of
ConvertShares with target error δ′ and maximum difference between two shares M is dominated

by 4M ln(4/δ′)
δ′ group operations and PRF evaluations.

Consider the following optimizations and trade-offs.

1. Ciphertext description reduction. The first optimization is heuristically secure (or alterna-
tively, secure in the random oracle model) and uses a PRG G : {0, 1}` → G`+1 to reduce
the communication by almost half. Let G(σ) = (gr, gr1 , . . . , gr`) for a seed σ ∈ {0, 1}`.
To encode an input bit, instead of sending ` + 1 complete ElGamal ciphertexts, a party
will now send (a random) σ and the `+1 group elements (grc+wi , gr1c+wic1 , . . . , gr`c+wic`),
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corresponding to the second terms of the prescribed ciphertexts, using the outputs of G(σ)
implicitly as the first terms. Given this information, each party can locally generate the
full `+ 1 ciphertexts, and compute as before.

2. Modified key representation. A trade-off reducing communication and increasing compu-
tation is possible by changing the representation of the key c from

∑`−1
j=0 cj2

j in base 2

to
∑d`/be−1
j=0 c′jB

j in base B = 2b for some b > 1. Communication complexity and the
number of MultShares and ConvertShares operations are reduced by a factor of b, as en-
crypting the ` values {cjwi}j∈[`] encoding input wi is replaced by encrypting the d`/be
values {cj′wi}j′∈[`′]. However, in ConvertShares the possible difference M between the
shares held by the two parties (equivalently, the size of encoded values) increases from 1
to 2b − 1, increasing the computation time by a factor of 2b − 1.

3. Las-Vegas algorithm. A Las-Vegas type algorithm for share conversion can be used to
relax the target error probability and reduce the computation time. ConvertShares poten-
tially induces an error in one of two situations (these are the two error cases in the proof
of Proposition 3.2) which can both be identified by the second party. In the proposed
optimization, the second party outputs a flag indicating failure in each of these cases.
In applications that involve a client and two servers the client is sure that the result is
correct if the second player does not return a failure. Given target error probabilities δ
for the whole protocol and, e.g., 1/4 for a single execution, we require that the number of

independent executions of the algorithm γ satisfies (1/4)γ < δ, or γ > ln 1/δ
ln 4 . Note that

this optimization may reveal information on intermediate computation values, since errors
are input dependent. However, this type of leakage is harmless for applications like PIR.
On the other hand, for applications such as two-party computation, revealing intermediate
values in this way is unacceptable.

4. Breaking computation into chunks. The final trade-off increases communication and de-
creases computation by breaking the computation into “chunks” and encrypting (and
communicating) the input to each chunk separately. Loosely speaking, if the computation
is split into ζ chunks, then the required communication increases by a factor of ζ, and
computation is reduced by a factor of ζ because the quadratic overhead in computing n
gates is reduced to ζ times computing a quadratic overhead in n/ζ gates. In general this
method requires up to ζ communication rounds, but in certain applications (like PIR for
NC1 predicates) it does not require additional interaction.

Homomorphic n-bit AND. In the first (toy) example application without applying any opti-
mization, the communication complexity is dominated by 2(`+1)n group elements, to encode n
bits. The operations are n− 1 homomorphic evaluations of AND of bits, which amount to less

than n` applications of MultShares and ConvertShares or a total of less than 3n`2 + 4n2` ln 4n/δ
δ

group operations and PRF evaluations.
In this example, communication is minimized by using the ciphertext reduction optimization

and by representing c in base B = 2b. Communication complexity is about (`+1)n
b group elements

and computation is dominated by 3n`2

b2 + 4Bn2` ln 4n/δ
bδ group operations and PRF evaluations.

Computation is minimized using the Las-Vegas algorithm and breaking into chunks. The

communication complexity is increased by a factor of ζ for each of the d ln 1/δ
ln 4 e invocations of

the Las Vegas algorithm or d ln 1/δ
ln 4 eζn` group elements altogether. The computation requires at

most ⌈
ln 1/δ

ln 4

⌉(
3n`2 +

16n2` ln(16n/ζ)

ζ

)
group operations (and PRF evaluations) altogether.
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2PC formula evaluation. The second example is a two-party computation of a formula
ψ. This application requires the public-key variant of our protocol. The unoptimized version
of this protocol is roughly similar in performance to the unoptimized version of homomorphic
secret sharing. However, two of the optimizations, ciphertext reduction and the Las-Vegas
algorithm do not apply in this case. Communication can be minimized by representing c in
base B, reducing communication by logB and increasing computation by B compared to the
unoptimized version. Computation can be minimized by breaking ψ into ζ chunks increasing
communication by ζ and reducing computation by ζ compared to the unoptimized version.
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A Branching programs

In this section we review some standard definitions of Branching Programs (BP) and prove
several simple properties of these programs. We refer the interested reader to [57, 39] for
a comprehensive study of branching programs, their various flavors and their computational
power. Branching programs generalize several interesting computational models. Some very
useful special cases of branching programs include finite automata, decision trees, and OBDDs.

We wish to show that RMS programs imply branching programs and therefore our results
on RMS carry over to BP. Given the well known inclusion of NC1 circuits in non-uniform log
space and the equivalence of non-uniform log-space and BP we deduce that our HSS protocol
applies to log space computation and NC1 circuits.

We then present two additional results on BP. The first shows how to compose several
branching programs that each compute a binary-valued function to compute the composed
function. We then construct a universal branching program for branching programs of a given
size. The universal program UBP accepts as input a branching program P and an input x for
P and reaches an accepting state if and only if P accepts when it runs on input x.

We start by defining deterministic branching programs and their oblivious variant.

Definition A.1 (Branching program). A deterministic branching program over the variables
x = (x1, . . . , xn) with input domain {0, 1} is defined by a tuple P = (G = (V,E), v0, T, ψv, ψe)
where:

• G is a directed acyclic graph.

• v0 ∈ V is an initial node of in-degree 0. We assume without loss of generality that every
u ∈ V − {v0} is reachable from v0.

• T = {va, vr} ⊆ V is a set of two terminal nodes of out-degree 0. va is called the accept
state and vr is called the reject state.

• ψv : V \ T → [n] is a node labeling function assigning a variable index from [n] to every
non-terminal level.
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• ψe : E → 2{0,1} is an edge labeling function, such that every edge is mapped to a non-
empty set, and for every node v the sets labeling its outgoing edges form a partition of
{0, 1}.

We say that P is a (leveled and) oblivious BP if V can be partitioned into ` + 1 disjoint levels

V =
⋃`
i=0 Vi, such that V0 = {v0}, V` = T , and the node labeling function ψv assigns the same

variable index to the nodes in each level. In this case we can write ψv as ψv : {V0, V1, . . . , V`−1} →
[n]. The size of a BP P , denoted by |P |, is the number of nodes. For an oblivious BP, we say
that it has length ` and width w if the number of levels is ` + 1 and the maximum number of
nodes in a level is w. Finally, a canonical oblivious BP with parameters n,w, d is an oblivious
BP of width w and length ` = dn over n inputs, where ψv(i) = i mod n+ 1 (i.e., the variables
are read in the order x1, . . . , xn, x1, . . . , xn, . . . and each variable is read d times).

BP evaluation. For a program P and an input x, the successor of node u is the unique node
u′ such that xψv(u) ∈ ψe(u, u

′). P accepts x if and only if the path from v0 defined by the
successor relation reaches va. This defines the function f : {0, 1}n → {0, 1} computed by P ,
where f(x) = 1 iff P accepts x.

Every boolean formula of size S over AND, OR, and NOT gates has an equivalent branching
program of size S+3 [57]. It follows that every NC1 function can be computed by polynomial-size
branching programs.

We show that a Restricted Multiplication Straight-line (RMS) program can efficiently sim-
ulate a branching program.

Claim A.2. (BP to RMS) For any deterministic branching program P of size |P | over input
x ∈ {0, 1}n there exists an (efficiently computable) RMS R of size O(|P |) with magnitude bound
M = 1 which outputs 1 if P accepts and outputs 0 otherwise.

Proof. R has the same inputs x1, . . . , xn as P and uses a memory cell ŷv for each node v in P .
The first instructions of the program load 1 to ŷv0 and load 0 to all other cells.

The order of the instructions of R follows a breadth-first search of the graph G underlying P .
For every node u in the traversal and for b ∈ {0, 1} let Su,b ⊆ Vi denote all the nodes v ∈ V that
have an edge to u labeled b. Assume that node v is labeled by xv. R simulates the transition
to u by computing ŷu ←

∑1
b=0

∑
v∈Su,b

ŷv · (bxv + (1− b)(1− xv)), which uses the addition and
multiply by input value instructions of RMS.

After the initialization of the program the only variable which has value 1 is ŷv0 , while
all other variables have value 0. Assume that after R evaluates i inputs xk1 , . . . , xki the only
variable that stores 1 in the program is ŷv and that v is the current node in P after it evaluates
xk1 , . . . , xki . Assume further that there is an edge from v to u labeled by the value of xk. Then,
the computation that R runs ensures that ŷu is loaded with the value 1 while all other variables
are loaded with 0. This property propagates to all levels including the last implying that the
value of ŷva which R outputs is 1 if and only if P accepts.

Since there is a constant number of instructions in R for every edge in P the size of R is
O(|P |).

We now show that branching programs can compute composed functions in an efficient
manner.

Claim A.3. Let f : {0, 1}n → {0, 1} and gj : {0, 1}nj → {0, 1}, j = 1, . . . , n. Suppose that
P, P1, . . . , Pn are branching programs that compute f, g1, . . . , gn respectively. Then there is a
branching program P (P1, . . . , Pn) that computes the composed function f(g1, . . . , gn) whose size
is polynomial in |P |+

∑n
i=1 |Pi|.
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Proof. The program P (P1, . . . , Pn) is defined over all the input variables for the component
programs P, P1, . . . , Pn. The structure of P (P1, . . . , Pn) is identical to P except that we replace
any node labeled by xj , j = 1, . . . , n by the branching program Pj in the following way.

Assume that in P a node v has an edge labeled 0 and an edge labeled 1 to nodes u0, u1
respectively and that ub is labeled by xkb for b = 0, 1. In P (P1, . . . , Pn) the node v is replaced
by a copy of Pj except for the last level of Pj . Every edge in Pj to the accepting state is replaced
by an edge to the initial state of the copy of Pk1 that replaces u1. Similarly, every edge in Pj to
the rejecting state is replaced by an edge to the initial state of the copy of Pk0 that replaces u0.

It follows immediately that P (P1, . . . , Pn) computes f(g1, . . . , gn) and its size is at most
|P | ·max{|P1|, . . . , |Pn|}.

Towards constructing universal branching programs, we will need to convert a given branch-
ing program into a canonical oblivious form.

Claim A.4 (cf. [51]).

Theorem A.5. For every w, n, d there exists a polynomial-time encoding mapping branching
programs P to bit-strings P̂ and a (poly(w, n, d)-time computable) universal branching program
UBPw,n,d such that for every canonical oblivious P with parameters w, n, d and input x ∈ {0, 1}n
we have UBPw,n,d(P̂ , x) = P (x).

Proof. We first describe the high level idea for the encoding and the universal branching pro-
gram. The encoding of a program P is a binary string which has 1 for each possible pair of nodes
(in adjacent levels) that have an edge between them and 0 for any other pair of nodes. The
universal branching program has a block of levels for each level Vi of P such that the first level
in the block mirrors Vi and the last level in the block encodes for each node in Vi its children in
Vi+1. The values of P̂ move the evaluation from a node v in the first level of the block (which
is identical to a node v in Vi evaluating the same input) to a node (v, u0, u1) in the last block,
such that in V there is a 0 edge from v to u0 and a 1 edge from v to u1. The input to that last
level is a variable from the input x which moves the evaluation to either u0 or u1 in the first
level of the next block, again reflecting the evaluation of P . The details follow.

Let P be defined by a tuple (G = (V,E), v0, T, ψV , ψE) over input x = (x1, . . . , xn) ∈ {0, 1}n
and let the leveling of V be V =

⋃`
i=0 Vi where ` = nd. Denote the number of nodes in a level

Vi by wi.
The encoding P̂ of P works as follows. For any node vj ∈ Vi, and nodes v′k0 , v

′
k1
∈ Vi+1,

0 ≤ i ≤ ` − 1, 1 ≤ j, k0, k1 ≤ w, let α0 = (j, k0), α1 = (j, k1) and let yα0
, yα1

be two additional
input variables. For a given branching program P and for b = 0, 1 the variable yαb

is assigned
the value 1 if and only if there is an edge in P from vj to v′kb , which the edge labeling function

ψe marks b, i.e. b ⊆ ψe(v, v′kb). The encoding P̂ is the sequence of values of all variables yα.
We next define UBPn,w,d to be an oblivious branching program in which there are ` + 1 =

nd+ 1 blocks of levels W0,W1, . . . ,W`. The number of levels in Wi, 0 ≤ i ≤ `− 1 is 2wi ·wi + 1
denoted by U0, . . . , U2wiwi+1 and the number of levels in W` is one.

The single level of W` has the two terminal nodes va and vr. Each of the other blocks of
levels, Wi, 0 ≤ i ≤ `− 1 simulates the operation of level Vi of an input BP P . U0 is of width w
and has a node uj for every vj ∈ Vi. Uwiwi+1

is of width wiwi+1 and has a node uα for every
pair α = (j, k), vj ∈ Vi, v′k ∈ Vi+1. U2wiwi+1 is of width wiw

2
i+1 and has a node uβ for every

tuple β = (jj , k0, k1), vj ∈ Vi, v′k0 , v
′
k1
∈ Vi+1.

We define the nodes of the levels of Wi inductively as follows. Let U0 = {u1, . . . , uwi
}. For

0 ≤ m < wiwi+1 let m = jwi+1 + k, 0 ≤ j ≤ wi, 1 ≤ k ≤ wi+1 and assume that Um = {uα|α =
(c, d), 1 ≤ c ≤ j, 1 ≤ d ≤ k}

⋃
{uj+1, . . . , uwi

}. Define U ′m = {u′α|uα ∈ Um}
⋃
{u′j+1, . . . , u

′
w}
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and define the next level, Um+1 by:

Um+1 =

{
U ′m

⋃
{u′α} if k + 1 < wi+1, α = (j, k + 1)

U ′m \ {uj}
⋃
{u′α} if k + 1 = wi+1, α = (j, k + 1)

Define the set of edges E′m between Um and U ′m by all the pairs of analogous nodes, i.e.

E′m = {(uj+1, u
′
j+1), . . . (uwi

, u′wi
)}
⋃
{(uα, u′α)|uα ∈ Um, u′α ∈ U ′m}.

Define the set of edges Em+1 between Um and Um+1 by

Em+1 =

{
E′m

⋃
{(uj , u′α)} if k + 1 < wi+1, α = (j, k + 1)

E′m \ {(uj , u′j)}
⋃
{(uj , u′α)} if k + 1 = wi+1, α = (j, k + 1)

.

All edges in Em+1 are marked 0, 1 except for the two edges (uj , u
′
j) and (uj , u

′
j,k+1) when

k + 1 < wi+1. The two edges are marked {0} and {1} respectively in this case.
The construction of the first wiwi+1+1 levels of Wi expands each node uj in U0 to wi+1 nodes

uj,1, . . . , uj,wi+1
in Uwiwi+1

. We repeat the same construction in parallel expanding each node
uα in Uwiwi+1

to uα,1, . . . , uα,wi+1
in U2wiwi+1

for every α = (j, k), 1 ≤ j ≤ wi, 1 ≤ k ≤ wi+1.
The last component of the construction is linking the nodes of last level of block Wi, {uβ |β =

(j, k0, k1), 1 ≤ j ≤ wi, 1 ≤ k0, k1 ≤ wi+1} with the nodes of the first level of block Wi+1,
{u1, . . . , uw+1}. For every such β there is an edge from uβ to uk0 marked 0 and an edge from
uβ to uk1 marked 1.

Let P be an oblivious BP and x ∈ {0, 1}n. Then, formatting the pair (P, x) for input to UBP
requires first computing the encoding P̂ of P . For every block of levels Wi, the input to level Um
for m < wiwi+1, i.e. m = jwi+1 + k, 1 ≤ j ≤ wi, 1 ≤ k ≤ wi+1 is yα0

for α0 = (j, k). The input
to level Um for wiwi+1 ≤ m < 2wiwi+1, i.e. m = wiwi+1 + jwi+1 + k, 1 ≤ j ≤ wi, 1 ≤ k ≤ wi+1

is yα1 for α1 = (j, k). The input to level 2wiwi+1 is xi.
It follows that for every program P , every i, 0 ≤ i < ` and every vj ∈ Vi there is a path

in Wi from uj ∈ U0 to uβ ∈ U2wiwi+1+1, β = (j, k0, k1) marked by the variables of P̂ iff there
are edges from vj to vk0 and vk1 marked by 0 and 1 respectively. This in turn implies that

UBP(P̂ , x) = P (x).

Combining Theorem A.5 and Claim A.4, we get the following corollary.

Corollary A.6. For every S, n there exists a polynomial-time encoding mapping branching
programs P to bit-strings P̂ and a (poly(S, n)-time computable) universal branching program
UBPS,n such that for every branching program P of size S with n inputs and every x ∈ {0, 1}n
we have UBPS,n(P̂ , x) = P (x).
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