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Abstract. This paper revisits the concrete security of key-alternating ciphers and key-length extension
schemes, with respect to tightness and multi-user security. The best existing bounds on the concrete
security of key-alternating ciphers (Chen and Steinberger, EUROCRYPT ’14) are only asymptotically

tight, and the quantitative gap with the best existing attacks remains numerically substantial for
concrete parameters. Here, we prove exact bounds on the security of key-alternating ciphers and extend
them to XOR cascades, the most efficient construction for key-length extension. Our bounds essentially
match, for any possible query regime, the advantage achieved by the best existing attack.
Our treatment also extends to the multi-user regime. We show that the multi-user security of key-
alternating ciphers and XOR cascades is very close to the single-user case, i.e., given enough rounds, it
does not substantially decrease as the number of users increases. On the way, we also provide the first
explicit treatment of multi-user security for key-length extension, which is particularly relevant given
the significant security loss of block ciphers (even if ideal) in the multi-user setting.
The common denominator behind our results are new techniques for information-theoretic indistin-
guishability proofs that both extend and refine existing proof techniques like the H-coefficient method.
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1 Introduction

Precise bounds on the security of symmetric constructions are essential in establishing when and
whether these constructions are to be deployed. This paper revisits the question of proving best-

possible security bounds for key-alternating ciphers and key-length extension schemes.
Our contribution is twofold. First, we prove exact bounds on the security of key-alternating

ciphers and related methods for key-length extensions (i.e, XOR cascades) which essentially match
what is achieved by the best-known attack. This is a substantial improvement over previous bounds,
which are only asymptotically optimal. Second, we extend our treatment to the multi-user setting,
where no non-trivial bounds are known to date for these constructions.

Our results are built on top of new conceptual insights in information-theoretic indistinguisha-
bility proofs, generalizing previous approaches such as the H-coefficient technique [9, 28].

Key-alternating ciphers. Key-alternating ciphers (KACs) generalize the Even-Mansour con-
struction [15] over multiple rounds. They abstract the structure of AES, and this fact has made
them the object of several recent analyses [1, 7–9, 13, 29]. Given t permutations π = (π1, . . . , πt)
on n-bit strings, as well as n-bit subkeys L0, L1, . . . , Lt, the t-round KAC construction KAC[π, t]
outputs, on input M , the value

Lt ⊕ πt(Lt−1 ⊕ πt−1(· · ·π1(M ⊕ L0) · · · )) . (1)

Here, we are specifically interested in (strong) prp security of KAC[π, t], i.e., its indistinguisha-
bility from a random permutation (under random secret sub-keys) for adversaries that can query
both the construction and its inverse. Analyses here are in the random-permutation model: The
permutations π1, . . . , πt are independent and random, and the distinguisher is given a budget of q
on-line construction queries, and p1, . . . , pt queries to each of the permutations. The currently best
bound is by Chen and Steinberger (CS) [9], who prove that the distinguishing advantage of any
such distinguisher A satisfies (using N = 2n and p1 = · · · = pt = p)

Adv
±prp
KAC[π,t](A) ≤ (t + 2)

(

q(6p)t

N t
· t2(t + 1)t+1

)1/(t+2)

. (2)

Note that the best known distinguishing attack achieves advantage roughly qpt/N t. The bound

from (2) is asymptotically “tight”, i.e., the attacker needs to spend about Ω
(

N t/(t+1)
)

queries for

the bound to become constant, as in the attack. However, there is a substantial gap between the
curve given by the bound and the advantage achieved by the best attack, and the constant hidden
inside the Ω notation (which depends on t) is fairly significant.

Exact bounds for KACs. Our first contribution is a (near-)exact bound for KACs which matches
the best-known attack (up to a small factor-four loss in the number of primitive queries necessary
to achieve the same advantage). Concretely, we show that for A as above,

Adv
±prp
KAC[π,t](A) ≤ q(4p)t

N t
. (3)

The core of our proof inherits some of the combinatorial tools from CS’s proof. However, we use
them in a different (and simpler) way to give a much sharper bound. We elaborate further at the
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end of this introduction. Clearly, our new bound substantially improves upon the CS bound from
(2). For example, for realistic AES-like parameters (n = 128 and t = 10), and q = p = 2110, the
CS bound is already vacuous (indeed, the advantage starts becoming substantial at around 2100),
and in contrast, our new bound still gives us 2−50. Another feature is that our bound does not
make any assumptions on q and p — we can for example set q = N and still infer security as long
as p is sufficiently small. In contrast, the CS bound (and the technique behind it) assumes that
p, q ≤ N/3.

We note in passing that Lampe, Patarin, and Seurin [22] already proved a similar bound for the
(simpler) case of a specific non-adaptive distinguisher. If one wants however to extend their bound
to the adaptive case, a factor-two loss in the number of rounds becomes necessary.

Multi-user security. Similar to all prior works, the above results only consider a single user. Yet,
block ciphers are typically deployed en masse and attackers are often satisfied with compromising
some user among many. This can be substantially easier. For example, given multiple ciphertexts
encrypted with a single k-bit key, a brute-force key-search attack takes effort roughly 2k to succeed.
However, if the ciphertexts are encrypted with u different keys, the effort is reduced to 2k/u.
Overall we effectively lose log(u) bits of security, which can be substantial. Note that this loss is
only inherent if exhaustive key-search is the best attack — it may be that a given design is subject
to better degradation, and assessing what is true is crucial to fix concrete parameters.

The notion of multi-user (mu) security was introduced and formalized by Bellare, Boldyreva, and
Micali [2] in the context of public-key encryption. Unfortunately, until recently, research on provable

mu security for block-cipher designs has been somewhat lacking, despite significant evidence of this
being the right metric (cf. e.g. [6] for an overview). Recent notable exceptions are the works of
Mouha and Luykx [25] and Tessaro [30]. The former, in particular, provided a tight analysis of the
Even-Mansour cipher in the mu setting, and is a special case of our general analysis for t = 1.

Multi-user security for KACs. First recall that in the mu setting, the adversary makes q
queries to multiple instances of KAC[π, t] (and their inverses), each with an independent key (but
all accessing the same π), and needs to distinguish these from the case where they are replaced by
independent random permutations. The crucial point is that we do not know a per-instance upper
bound on the number of the distinguisher queries, which are distributed adaptively across these
instances. Thus, in the worst-case, at most q queries are made on some instance and by a naive
hybrid argument,1

Adv
±mu-prp
KAC[π,t](A) ≤ u · q(4(p + qt))t

N t
≤ q2(4(p + qt))t

N t
, (4)

where u is an upper bound on the number of different instances (or “users”) for which A makes a
query, which again can be at most q. Note that such additional multiplicative factor q is significant:
e.g., for t = 1, it would enforce q < N1/3. As our second contribution, we show that this loss is not
necessary, and that in fact essentially the same bound as in the single-user case holds, i.e.,

Adv
±mu-prp
KAC[π,t](A) ≤ 2

q(4(p + qt))t

N t
. (5)

1 The increase from p to p + qt is due to the fact that in the reduction to su prp security, the adversary needs to
simulate queries to all but one of the instances with direct permutation queries.
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To get a sense of why the statement holds true, note that we could prove this bound easily if we

knew that the adversary makes at most qi queries for the i-th user, and q =
∑

i qi. In this case,
the naive hybrid argument would yield the bound from (5), but we do not have such qi’s. Our
proof relies on a “transcript-centric” hybrid argument, i.e., we use a hybrid argument to relate the
real-world and ideal-world probabilities that the oracles of the security game behave according to
a certain a-priori fixed transcript, for which the quantities qi are defined. The fact that looking at
these probabilities suffice will be at the core of our approach, discussed below.

Key-length extension and multi-user security. A fundamental problem in symmetric cryp-
tography, first considered in the design of “Triple-DES” (3DES), is that of building a cipher with
a “long” key from one with a “short” key to mitigate the effects of exhaustive key search. Analyses
of such schemes (in the ideal-cipher model) have received substantial attention [4,11,16–19,23], yet
the practical relevance of these works is often put in question given existing designs have already
sufficient security margins. However, the question gains substantial relevance in the multi-user set-

ting – indeed, the mu PRP security of an ideal cipher with key length k is at most 2k/2, i.e., 64 bits
for AES-128.

In this paper, we analyze XOR-cascades [16,23], which have been shown to give the best possible
trade-off between number of rounds and achievable security. Given a block cipher E with k-bit keys
and n-bit blocks, the t-round XOR cascade XC[E, t] uses sub-keys J1, . . . , Jt, L0, . . . , Lt, and on
input M , outputs

Lt ⊕ EJt(Lt−1 ⊕ EJt−1(· · ·EJ1(M ⊕ L0) · · · )) . (6)

A connection between analyzing XC in the ideal-cipher model and KAC in the random permutation
model was already noticed [16,17], but the resulting reduction is far from tight. Here, we give a tight
reduction, and use our result on KAC[π, t] to show that for every adversary making q construction
queries and at most p queries to an ideal cipher, if the keys J1, . . . , Jt are distinct,

Adv
±prp
XC[E,t](A) ≤ q

( 4p

2k+n

)t
. (7)

Our bound does not make any assumption on q (which can be as high as 2n) and p. If the keys
are independent (and may collide), an additional term needs to be added to the bound — a naive
analysis gives t2/2k, which is usually good enough, and this is what done in prior works. This
becomes interesting when moving to the multi-user case. For the distinct-key case, we can apply
our techniques to inherit the bound from (7) (replacing p with p+q · t), noting that we are allowing
keys to collide across multiple users, just same-user keys need to be distinct. An important feature
of this bound (which is only possible thanks to the fact that we are not imposing any restrictions
on query numbers in our original bound for KAC[π, t]) is that it also gives guarantees when q ≫ 2n

and queries are necessarily spread across multiple users. This is particularly interesting when n is
small (e.g., n = 64 for DES, or even smaller if E is a format-preserving encryption (FPE) scheme).

However, for the independent-key case, the naive analysis here gives us a term ut2/2k, where
u is the number of users (and u = q may hold). This term is unacceptably large – in particular,
if u = q ≫ 2n. To this end, we significantly improve (in the single-user case already) the additive
term t2/2k. In the multi-user setting, the resulting bound is going to be extremely close to the one
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for distinct keys, if t 6= 3.2 We leave the question open of reducing the gap (or proving its necessity)
for t = 3.

Our techniques. A substantial contribution of our work is conceptual. Section 3.1 below presents
our tools in a general fashion, making them amenable to future re-use. We give an overview here.

All of our results rely on establishing a condition we call point-wise proximity: That is, we show
that there exists an ǫ = ǫ(q) such that for all possible transcripts τ describing a possible ideal- or
real-world interaction (say with q queries), the probabilities p0(τ) and p1(τ) that the ideal and real
systems, respectively, answer consistently with τ (when asked the queries in τ) satisfy

p0(τ)− p1(τ) ≤ ǫ · p0(τ) .

This directly implies that the distinguishing advantage of any q-query distinguisher is at most ǫ.
This method was first used by Bernstein [5], and can be seen as a special case of Patarin’s H-
coefficient method [28] (recently revisited and re-popularized by Chen and Steinberger [9]) and
Nandi’s “interpolation method” [26], where we do not need to consider the possibility of some
transcripts “being bad”. It turns out that when we do not need such bad set, the notion becomes
robust enough to easily allow for a number of arguments.

Transcript-centric reductions. Our first observation is that point-wise proximity makes a
number of classical proof techniques transcript-centric, such as hybrid arguments and reductions.
For example, assume that for a pair of systems with transcript probabilities p0 and p1, we have
already established that p0(τ)− p1(τ) ≤ ǫ · p0(τ). Now, to establish that for some other p′

0 and p′
1

we also have p′
0(τ)−p′

1(τ) ≤ ǫ ·p′
0(τ), it is enough to exhibit a function ϕ, mapping transcripts into

transcripts, such that
p′

1(τ)

p′
0(τ)

=
p1(ϕ(τ))

p0(ϕ(τ))

for every τ such that p′
0(τ) > 0. This is effectively a reduction, but the key point is that the

reduction ϕ maps executions into executions (i.e., transcripts), and thus can exploit some global
after-the-fact properties of this execution, such as the number of queries of a certain particular type.
This technique will be central e.g. to transition (fairly generically) from single-user to multi-user
security in a tight way. Indeed, while a hybrid argument does not give a tight reduction from single-
user to multi-user security, such a reduction can be given when we have established the stronger
property of single-user point-wise proximity.

The expectation method. Our main quantitative improvement over the CS bound is due to a
generalization of the H-coefficient method that we call the expectation method.

To better understand what we do, we first note that through a fairly involved combinatorial
analysis, the proof of the CS bound [9] gives (implicitly) an exact formula for the ratio ǫ(τ) =

1 − p1(τ)
p0(τ) for every “good transcript” τ . The issue here is that ǫ(τ) depends on the transcript τ ,

in particular, on numbers of paths of different types in a transcript-dependent graph G = G(τ).
To obtain a sharp bound, CS enlarge the set of bad transcripts to include those where these path
numbers excessively deviate from their expectations, and prove a unique bound ǫ∗ ≥ ǫ(τ) for
all good transcripts. As these quantities do not admit overly strong concentration bounds, only

2 We note that in practice, it is easy for a user to enforce that her t keys are distinct, making this part of the key
sampling algorithm. Still, our bound shows that this is not really necessary for t 6= 3.
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Markov’s inequality applies, and this results in excessive slackness. In particular, an additional
parameter appears in the bound, allowing for a trade-off between the probability δ∗ of τ being
bad and the quality of the upper bound ǫ∗, and this parameter needs to be optimized to give the
sharpest bound, which however still falls short of being exact.

The problem here is that the H-coefficient technique takes a worst-case approach, by unneces-
sarily requiring one single ǫ∗ to give us an upper bound for all (good) transcripts. What we use
here is that given a transcript-dependent ǫ = ǫ(τ) for which the above upper bound on the ratio
holds, then one can simply replace ǫ∗ in the final bound with the expected value of ǫ(τ) for an
ideal-world transcript τ . This expected value is typically fairly straightforward to compute, since
the ideal-world distribution is very simple.

We in fact do even more than this, noticing that for KACs point-wise proximity can be estab-
lished, and this will allow us to obtain many of the applications of this paper. In fact, once we do
not need to enlarge the set of bad transcripts any more as in CS, we observe that every transcript
is potentially good. Only in combination with the key (which is exposed as part of the transcript in
CS) transcripts can be good or bad. We will actually apply the expectation method on every fixed

transcript τ , the argument now being only over the choice of the random sub-keys L0, L1, . . . , Lt –
this makes it even simpler.

A perspective. The above techniques are all fairly simple in retrospect, but they all indicate
a conceptual departure from the standard “good versus bad” paradigm employed in information-
theoretic indistinguishability proofs. CS already suggested that one can generalize their methods
beyond a two-set partition, but in a way, what we are doing here is an extreme case of this, where
every set in the partition is a singleton set.

It also seems that the issue of using Markov’s inequality has seriously affected the issue of
proving “exact bounds” (as opposed to asymptotically tight ones). Another example (which we
also revisit) is the reduction of security of XOR cascades to that of KACs [16,17].

2 Preliminaries

Notation. For a finite set S, we let x←$ S denote the uniform sampling from S and assigning
the value to x. Let |x| denote the length of the string x, and for 1 ≤ i < j ≤ |x|, let x[i, j]
denote the substring from the ith bit to the jth bit (inclusive) of x. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with randomness r on inputs x1, . . . and assigning the output
to y. We let y←$ A(x1, . . .) be the resulting of picking r at random and letting y ← A(x1, . . . ; r).

Multi-user PRP security of blockciphers. Let Π : K ×M → M be a blockcipher, which
is built on a family of independent, random permutations π : Index × Dom → Dom. (Note that
here Index could be a secret key, in this case π will model an ideal cipher, or just a small set of
indices, in which case π models a (small) family of random permutations.) We associate with Π a
key-sampling algorithm Sample. Let A be an adversary. Define

Adv
±mu-prp
Π[π],Sample(A) = Pr[RealAΠ[π],Sample ⇒ 1]− Pr[RandA

Π[π],Sample ⇒ 1]

where games Real and Rand are defined in Fig. 1. In these games, we first use Sample to sample
keys K1, K2, . . . ∈ K for Π, and independent, random permutations f1, f2, . . . on M. The adver-
sary is given four oracles Prim,PrimInv, Enc, and Dec. In both games, the oracles Prim and
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proc Initialize() RealAΠ[π],Sample

for i = 1, 2, . . . do Ki←$ Sample()

proc Enc(i, x) {return ΠKi
[π](x)}

proc Dec(i, y) {return Π−1
Ki

[π](y)}

proc Prim(J, u) {return πJ (u)}

proc PrimInv(J, v) {return π−1
J (v) }

proc Initialize() RandA
Π[π],Sample

for i = 1, 2, . . . do fi←$ Perm(M)

proc Enc(i, x) {return fi(x)}

proc Dec(i, y) {return f−1
i (y)}

proc Prim(J, u) {return πJ (u)}

proc PrimInv(J, v) {return π−1
J (v)}

Fig. 1: Games defining the multi-user security of a blockcipher Π : K×M→M. This blockcipher is based on
a family of independent, random permutations π : Index×Dom→ Dom. The game is associated with a key-sampling
algorithm Sample. Here Perm(M) denotes the set of all permutations on M.

PrimInv always give access to the primitive π and its inverse respectively. The Enc and Dec

oracles gives access to f1(·), f2(·), . . . and their inverses respectively in game Rand, and access to
Π[π](K1, ·), Π[π](K2, ·), . . . and their inverses in game Real. The adversary finally needs to output
a bit to tell which game it’s interacting.

For the special case that and adversary A only queries Prim(·),Enc(1, ·), and their inverses,
we write Adv

±prp
Π[π],Sample(A) to denote the advantage of A.

If Sample is the uniform sampling of K then we only write Adv
±prp
Π[π] (A) and Adv

±mu-prp
Π[π] (A). If

Π doesn’t use π then Adv
±prp
Π (A) coincides with the conventional (strong) PRP advantage of A

against Π.

Maclaurin’s inequality. In some proofs, we’ll need to use the following inequality.

Lemma 1 (Maclaurin’s inequality). Let m ≥ t ≥ 1 be integers, and let a1, · · · , am be non-
negative real numbers. Then,

1
(m

t

)

∑

1≤ℓ1<···<ℓt≤m

aℓ1 · · · aℓt ≤
1

mt

(

m
∑

i=1

ai

)t
.

3 Indistinguishability Proofs via Point-wise Proximity

This section discusses techniques for information-theoretic indistinguishability proofs. A reader
merely interested in our theorems can jump ahead to the next sections — the following tools are
not needed to understand the actual statements, only their proofs. Here we start with an abstract
framework for indistinguishability proofs in Section 3.1, where we also revise the H-coefficient
method within this framework. We then present the notion of point-wise proximity in Section 3.2,
together with techniques used to prove it, and conclude in Section 3.3 with an application of point-
wise proximity to generically infer tight bounds for multi-user security.

3.1 The indistinguishability framework

Let us consider the setting of a distinguisher A (outputting a decision bit) interacting with one of
two “systems” S0 and S1. These systems take inputs and produce outputs, and are randomized
and possibly stateful. We dispense with a formalization of the concept of a system, as an intu-
itive understanding will be sufficient. Still, this can be done via games [4], random systems [24],
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ITMs, or whichever other language permits doing so. In this paper, these systems will provide a
construction oracle Enc with a corresponding inversion oracle Dec, and a primitive oracle Prim

with a corresponding inversion oracle PrimInv, but our treatment here is general, and thus does
not assume this form.

The interaction between Sb and A (for b ∈ {0, 1}) defines a transcript τ = ((u1, v1), . . . , (uq, vq))
containing the ordered sequence of query-answer pairs describing this interaction. We denote by
Xb the random variable representing this transcript. In the following, we consider the problem of
upper bounding the statistical distance

SD(X0, X1) =
∑

τ

max{0, Pr[X1 = τ ]− Pr[X0 = τ ]} , (8)

of the transcripts, where the sum is over all possible transcripts. It is well known that SD(X0, X1) is
an upper bound on the distinguishing advantage of A, i.e., the difference between the probabilities
of A outputting one when interacting with S1 and S0, respectively.

Describing systems. Following [24], a useful way to formally describe the behavior of a system
S is to associate with it a function pS mapping a possible transcript τ = ((u1, v1), . . . , (uq, vq))
with a probability pS(τ) ∈ [0, 1]. This is to be interpreted as the probability that if all queries
u1, . . . , uq in τ are asked to S in this order, the answers are v1, . . . , vq. Note that this is not a
probability distribution (i.e., summing pS(τ) over all possible τ ’s does not give one). Moreover, pS

is independent of any possible distinguisher — it is a description of the system. (And in fact, this
is precisely how [24] defines a system.)

Because our distinguishers are computationally unbounded, it is sufficient to assume them
to be deterministic without loss of generality. A simple key observation is that for deterministic
distinguisher A, given the transcript distribution X of the interaction with S, we always have
Pr[X = τ ] ∈ {0, pS(τ)}. This is because, if τ = ((u1, v1), . . . , (uq, vq)), then either A is such that it
asks queries u1, . . . , uq when fed answers v1, . . . , vq (in which case Pr[X = τ ] = pS(τ)), or it is not,
in which case clearly Pr[X = τ ] = 0.

Let T denote the set of transcripts τ such that Pr[X1 = τ ] > 0. We call such transcripts valid.
Also, note that if τ ∈ T , then we also have Pr[X0 = τ ] = pS0(τ). Therefore, we can rewrite (8) as

SD(X0, X1) =
∑

τ∈T

max{0, pS1(τ)− pS0(τ)} . (9)

Note that which transcripts are valid depends on A, as well as on the system S1.

The H-coefficient method. Let us revisit the well-known H-coefficient technique [9,28] within
this notational framework. (This is also very similar to alternative equivalent treatments, like the
“interpolation method” presented in [5, 26].) The key step is to partition valid transcripts T into
two sets, the good transcripts Γgood and the bad transcripts Γbad. Then, if we can establish the

existence of a value ǫ such that for all τ ∈ Γgood, we have 1− pS0
(τ)

pS1
(τ) ≤ ǫ, then we can conclude that

SD(X0, X1) =
∑

τ

max{0, pS1(τ)− pS0(τ)}

≤
∑

τ∈Γgood

pS1(τ) ·max

{

0, 1− pS0(τ)

pS1(τ)

}

+
∑

τ∈Γbad

pS1(τ) · 1

≤ ǫ + Pr[X1 ∈ Γbad] .
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We note that in the typical treatment of this method, many authors don’t notationally differentiate
explicitly between e.g. Pr[X0 = τ ] and pS0(τ) (and likewise for X1 and S1), even though this
connection is implicitly made. (For example, for typical cryptographic systems, the order of queries
is re-arranged to compute Pr[X0 = τ ] without affecting the probability, which is a property of pS0 ,
since queries may not appear in that order for the given A.) Treating these separately will however
be very helpful in the following.

The expectation method. In the H-coefficient method, ǫ typically depends on some global prop-
erties of the distinguisher (e.g., the number of queries) and the system (key length, input length, etc).
However, this can be generalized: Assume that we can give a non-negative function g : T → [0,∞)
such that

1− pS0(τ)

pS1(τ)
≤ g(τ) (10)

for all τ ∈ Γgood, then we can easily conclude, similar to the above, that

SD(X0, X1) ≤
∑

τ∈Γgood

pS1(τ) · g(τ) + Pr[X1 ∈ Γbad]

≤ E[g(X1)] + Pr[X1 ∈ Γbad] .

Note that we have used the fact that the function g is non-negative for the first term to be upper
bounded by the expectation E[g(X1)]. We refer to this method as the expectation method, and we
will see below that this idea is very useful.

The H-coefficient technique corresponds to the special case where g is “constant”, whereas here
the value may depend on further specifics of the transcript at hand. Obviously, good choices of g,
Γgood, and Γbad are specific to the problem at hand. We also note that one can set g(τ) = 1 for
bad transcripts, and then dispense with the separate calculation of the probability. (The way we
present it above, however, makes it more amenable to the typical application.) Note that Chen and
Steinberger [9] explain that in the H-coefficient method one may go beyond the simple partitioning
in good and bad transcripts. In a sense, what we are doing here is going to the extreme, partitioning
Γgood into singleton sets.

3.2 Point-wise proximity

A core observation is that for some pairs of systems S0 and S1 (and this will be the case for those
we consider), we are able to establish a stronger “point-wise” proximity property.

Definition 1 (Point-wise proximity). We say that two systems S0 and S1 satisfy ǫ-point-wise
proximity if, for every possible transcript τ with q queries,

∆(τ) = pS1(τ)− pS0(τ) ≤ pS1(τ) · ǫ(q) . (11)

Note that ǫ is a function of q, and often we will let it depend on more fine-grained partitions of
the query complexity. (Also in some cases, the query complexity will be implicit.) In particular, for
a certain q-query distinguisher A, by Equation (9), it is clear that ǫ-point-wise proximity implies
that SD(X0, X1) ≤ ǫ, which is also a bound on A’s advantage. Observe that point-wise proximity
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is a property of a pair of systems S0 and S1, independent of the adversaries interacting with them.
Also, it is equivalent to the fact that

1− pS0(τ)

pS1(τ)
≤ ǫ

for all τ such that pS1(τ) > 0.

In other words, establishing ǫ-proximity corresponds to applying the H-coefficient method with-
out bad transcripts. This is exactly the special case considered by Bernstein [5], and a related notion
(for the special case of permutations) was also considered by Patarin [27]. Of course, this method
is not always applicable, but when it is, it will bring numerous advantages.

An example: The switching lemma. Let us look at the example where S0 is a random function,
and S1 is a random permutation, both with domain and range some N -element set. The following
uses ǫ-proximity to show what we believe to be the simplest proof of the Switching Lemma.

Simply observe that for every transcript τ = ((u1, v1), . . . , (uq, vq)) (for which we assume wlog
that u1, . . . , uq are distinct), if the v1, . . . , vq are also distinct, we have pS1(τ) > 0, and moreover

pS0(τ)

pS1(τ)
=

∏q−1
i=0 (N − i)

N q
=

q−1
∏

i=0

(

1− i

N

)

= 1− pcoll(q, N) ,

where pcoll(q, N) is the probability of a collision among q independent uniform elements from an
N -element set. We thus have pcoll(q, N) proximity, from which the bound follows.

The expectation method. We outline a general method to prove ǫ-point-wise proximity based
on the above general expectation method.

As the starting point, we extend the system S0 to depend on some auxiliary random variable S
(e.g., a secret key). In particular, we write pS0(τ, s) to be the probability that S0 answers queries
according to τ and that S = s. Further, we define pS1(τ, s) = pS1(τ) · Pr[S = s], i.e., we think of
S1 as also additionally sampling an auxiliary variable S with the same marginal distribution as in
S0, except that the behavior of S1 remains independent of S. Then, for every transcript τ ,

∆(τ) =
∑

s

pS1(τ, s)−
∑

s

pS0(τ, s) =
∑

s

pS1(τ, s)− pS0(τ, s) .

Now, we establish the following lemma, that is based on the above expectation method.

Lemma 2 (The expectation method). Fix a transcript τ for which pS1(τ) > 0. Assume that
there exists a partition Γgood and Γbad of the range U of S, as well as a function g : U → [0,∞)
such that Pr[S ∈ Γbad] ≤ δ and for all s ∈ Γgood,

1− pS0(τ, s)

pS1(τ, s)
≤ g(s) .

Then,

∆(τ) ≤ (δ + E(g(S))) · pS1(τ) .
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Proof. Note that s ∈ U implies Pr[S = s] > 0, and thus pS1(τ, s) > 0. We can easily compute

∆(τ) ≤
∑

s∈U

pS1(τ, s)− pS0(τ, s)

= pS1(τ) ·
∑

s∈U

Pr[S = s] ·
(

1− pS0(τ, s)

pS1(τ, s)

)

≤ pS1(τ) ·
(

∑

s∈Γbad

Pr[S = s] +
∑

s∈Γgood

Pr[S = s] · g(s)
)

≤ (δ + E(g(S))) · pS1(τ) . ⊓⊔

We stress that the partitioning into Γgood and Γbad, as well as the function g and the random
variable S, are all allowed to depend on τ (and in fact will depend on them in applications).

Transcript reduction. Lemma 2 gives us one possible approach to prove ǫ-point-wise proximity.
Another technique we will use is to simply reduce this property to ǫ-point-wise proximity for another
pair of systems.

Typically, we will assume that we are in the above extended setting, where we have enhanced
the systems S0 and S1 with some auxiliary random variable S. Here, in contrast to the above, we
assume that S is not necessarily independent of the behavior of the system S1. Further, assume
that we are given two other systems S′

0 and S′
1 for which ǫ-point-wise proximity holds. To this end,

we are simply going to provide an explicit reduction R which is going to map every (τ, s) for S0

and S1 into a transcript R(τ, s) for S′
0 and S′

1 such that

pS0(τ, s)

pS1(τ, s)
=

pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

.

whenever pS1(τ, s) > 0. This will be sufficient for our purposes, because (with U being the set of s
such that pS1(τ, s) > 0)

∆(τ) ≤
∑

s∈U

pS1(τ, s) ·
(

1− pS0(τ, s)

pS1(τ, s)

)

=
∑

s∈U

pS1(τ, s) ·
(

1−
pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

)

≤ ǫ · pS1(τ) .

Note that here ǫ = ǫ(q′), where q′ is the number of queries in R(τ, s).

3.3 From single-user to multi-user security

There is no generic way to derive a tight bound on the multi-user security of a construction given a
bound on its single-user security — the naive approach uses a hybrid argument, but as we have no
bounds on the per-user number of queries of the attacker (which may vary adaptively), this leads
to a loss in the reduction. Here, we show how given point-wise proximity for the single-user case, a
bound for multi-user security can generically be found via a hybrid argument.

We assume now we are in the above multi-user prp security setting presented in Section 2,
and we let preal and prand describe the oracles available in the real and random experiments (which
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we can see as systems in the framework above). Assume that we already established ǫ-point-wise
proximity for the single-user case for transcripts with at most p primitive queries and q function
queries (and we think of ǫ = ǫ(p, q) as a function of p and q). That is, we have shown that for
every transcript τ such that all function queries have form Enc(i, x) and Dec(i, y) for the same i
(whereas Prim(J, u) / PrimInv(J, v) are unrestricted),

prand(τ)− preal(τ) ≤ prand(τ) · ǫ(p, q) . (12)

Let m be the number of calls to π/π−1 that a single call to Π/Π−1 makes. Also assume now that
ǫ satisfies the following properties: (i) ǫ(x, y) + ǫ(x, z) ≤ ǫ(x, y + z), for every x, y, z ∈ N, and (ii)
ǫ(·, z) and ǫ(z, ·) are non-decreasing functions on N, for every z ∈ N. Property (ii) usually holds,
because asking more queries should only increase the adversary’s advantage. Property (i) is also
usually satisfied by typical functions we use to bound distinguishing advantages. Then, we show
the following.

Lemma 3 (From su to mu point-wise proximity). Assume all conditions above are met. Then
for all transcripts τ with at most q function queries (for arbitrary users) and p primitive queries,

prand(τ)− preal(τ) ≤ prand(τ) · 2ǫ(p + q ·m, q) (13)

Proof. Fix an arbitrary transcript τ , and assume that in τ , function queries are made for r users
u1, . . . , ur ∈ N. Wlog, assume that prand(τ) ≥ preal(τ) and ǫ(p + qm, q) ≤ 1/2; otherwise the
claimed result is vacuous. For each i ∈ {0, 1, . . . , r}, consider the hybrid system Si which provides
a compatible interface with the real and random games, and answers primitives queries in the
same way, but queries for user uj for j > i are answered with the actual construction Π and Π−1,
whereas queries for uj with j ≤ i are answered by i independent random permutations. Then clearly
pS0(τ) = preal(τ) and pSr (τ) = prand(τ). We can thus rewrite

prand(τ)− preal(τ) =
r
∑

i=1

pSi(τ)− pSi−1(τ) .

Suppose that τ contains qi queries to Enc(ui, ·)/Dec(ui, ·). We’ll prove that for any i ∈ {1, . . . , r},

pSi(τ)− pSi−1(τ) ≤ pSi(τ) · ǫ(p + qm, qi) . (14)

This claim will be justified later. Now Equation (14) implies that

pSi−1(τ) ≥ (1− ǫ(p + qm, qi)) · pSi(τ)

for every i ∈ {1, . . . , r}. Thus for any i ∈ {1, . . . , r},

pS0(τ) ≥ pSi(τ)
i
∏

j=1

(1− ǫ(p + qm, qj)) ≥ pSi(τ)
(

1−
i
∑

j=1

ǫ(p + qm, qj)
)

≥ pSi(τ)
(

1−
r
∑

j=1

ǫ(p + qm, qj)
)

≥ pSi(τ)
(

1− ǫ(p + qm, q)
)

≥ 1

2
pSi(τ) .
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The first inequality is due to the fact that (1 − x)(1 − y) ≥ 1 − (x + y) for every 0 ≤ x, y ≤ 1;
the second last inequality is due to the property (i) of function ǫ; and the last one is due to the
assumption that ǫ(p + qm, q) ≤ 1/2. Combining this with Equation (14),

r
∑

i=1

pSi(τ)− pSi−1(τ) ≤
r
∑

i=1

pSi(τ) · ǫ(p + qm, qi)

≤
r
∑

i=1

2pS0(τ) · ǫ(p + qm, qi) ≤ 2pS0(τ) · ǫ(p + qm, q),

which leads to the claimed result, due to the assumption that prand(τ) ≥ preal(τ) = pS0(τ). What’s
left is to prove Equation (14). To this end, fix i ∈ {1, . . . , r}, and we are going to use the transcript re-
duction technique presented above. First off, enhance Si−1 and Si with an auxiliary variable S which
contains (i) the transcript of all internal Prim/PrimInv caused by querying Enc(uj , ·)/Dec(uj , ·),
and (ii) the keys Kj of users uj , for j > i. Now, given (τ, s), note that if we start by removing all
queries from τ for users uj for j < i (which are answered by random permutations in both Si−1

and Si), obtaining a transcript τ ′, then we necessarily have

pSi−1(τ, s)

pSi(τ, s)
=

pSi−1(τ ′, s)

pSi(τ
′, s)

.

This is because the distribution of these answers is independent of what is in τ ′, s in both Si−1 and
Si, and in both cases the distribution is identical. Then, given τ ′ and a value s for S (in either of
the system), we can easily construct a transcript R(τ ′, s) where all function queries for users uj for
j > i are removed, all primitive queries in s are made directly to the Prim and PrimInv oracles
in τ ′, and all keys Kj of users uj for j > i are removed. It is easy to verify that

pSi−1(τ, s)

pSi(τ, s)
=

pSi−1(R(τ ′, s))

pSi(R(τ ′, s))
,

because (i) the function queries of users uj can be derived from the primitive queries and Kj , and
(ii) the keys Kj for j > i are independent of what’s used for user i. However, note R(τ ′, s) contains
qi Enc/Dec queries, all for users ui, and at most p + q · m queries to Prim / PrimInv. As for
those transcripts we have already established ǫ-point-wise proximity, Equation (14) follows by the
transcript reduction method. ⊓⊔

4 Exact Bounds for Key-Alternating Ciphers

4.1 Results and Discussion

This section provides a comprehensive single- and multi-user security analysis of key-alternating ci-
phers. After reviewing the construction, and the concrete bound proved by Chen and Steinberger [9],
we state and discuss our main results, starting with the single-user security case.

Key-alternating ciphers. Let us review the key-alternating cipher construction. Let t and n
be positive integers, and let π : N × {0, 1}n → {0, 1}n be a family of permutations on {0, 1}n. We
write πi(·) to denote π(i, ·), and N for 2n. The Key-Alternating Cipher (KAC) construction gives
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Fig. 2: Left: Illustration of KAC[π, 2]. Right: Illustration of KACX[π, 2].
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Fig. 3: Su PRP security of KAC on 3 rounds (left) and 10 rounds (right) on 128-bit strings: our bounds
versus CS’s. The solid lines depict our bounds, and the dashed ones depict CS’s bounds. In both pictures, p = q,
and the x-axis gives the log (base 2) of p, and the y-axis gives upper bounds on the PRP security of KAC.

a blockcipher KAC[π, t] : ({0, 1}n)t+1 × {0, 1}n → {0, 1}n as follows. On input x and keys K =
(L0, . . . , Lt) ∈ ({0, 1}n)t+1, KAC[π, t](K, x) returns yt, where y0 = x ⊕ L0, and yi = πi(yi−1) ⊕ Li

for every i ∈ {1, . . . , t}. It is a direct generalization of the classic Even-Mansour construction [14].
See Fig. 2 for an illustration of KAC[π, 2].

The CS bound. Chen and Steinberger (CS) [9] shows that if an adversary makes at most q queries
to Enc/Dec, and at most p ≤ N/3 queries to Prim(i, ·) and PrimInv(i, ·) for every i ∈ {1, . . . , t},
then

Adv
±prp
KAC[π,t](A) ≤ qpt

N t
· Ct2(6C)t +

(t + 1)2

C
(15)

for any C ≥ 1. Since Equation (15) holds for any C ≥ 1, to determine the best upper bound for
Adv

±prp
KAC[π,t](A) according to this inequality, one needs to find the minimum of the right-hand side

of Equation (15). For each fixed p, q and t, from the inequality of arithmetic and geometric means:

qpt

N t
· Ct2(6C)t +

(t + 1)2

C
=

qpt

N t
· Ct2(6C)t +

(t + 1)

C
+ · · ·+ (t + 1)

C

≥ (t + 2)

(

qptCt2(6C)t

N t
· (t + 1)

C
· · · (t + 1)

C

)1/(t+2)

= (t + 2)

(

q(6p)t

N t
· t2(t + 1)t+1

)1/(t+2)

.

The equality happens if C =
(

Nt(t+1)
qt2(6p)t

)(t+2)
. Equation (15) thus can be rewritten as

Adv
±prp
KAC[π,t](A) ≤ (t + 2)

(

q(6p)t

N t
· t2(t + 1)t+1

)1/(t+2)

.
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(This bound is slightly smaller than the claimed result in [9, Corollary 1].) While this bound is
asymptotically optimal, meaning that the adversary needs to spend about N t/(t+1) queries for the
bound to become vacuous, it’s concretely much weaker than the best possible bound, which is
roughly qpt/N t [16].

Single-user security of KACs. We establish the following theorem, which gives a near-exact
bound on the PRP security of the KAC[π, t] construction in the ideal-permutation model. Following
the theorem, we first give some comments. The proof is found in Section 4.2, where we also give a
high-level overview.

Theorem 1 (Su PRP security of KACs). Let t and n be positive integers, and let π : N ×
{0, 1}n → {0, 1}n be a family of ideal permutations on {0, 1}n. Let KAC[π, t] be as above. For an
adversary A that makes at most q queries to Enc/Dec, and at most pi queries to Prim(i, ·) and
PrimInv(i, ·) for every i ∈ {1, . . . , t}, it holds that

Adv
±prp
KAC[π,t](A) ≤ 4tqp1 · · · pt/N t . (16)

This bound constitutes a significant improvement over the CS bound. For example, consider n = 128
and t = 3. For p = 296 and q = 264, CS’s result yields Adv

±prp
KAC[π,3](A) ≤ 0.71, whereas according

to Theorem 1, Adv
±prp
KAC[π,3](A) ≤ 2−26. See Fig. 3 for a graphical comparison of CS’s bound and

ours for the case p = q and both t = 3 and t = 10 rounds. Note that the latter case is the one
matching AES-128 the closest. In particular, here, we see that the advantage starts to become
noticeable roughly at q = p = 2100 for the CS bound, whereas this happens only at 2113 for our
new bound. One of the issues in the CS bound is that the 1/(t + 2) exponent smoothes the actual
bound considerably, and thus gives a much less sharp transition from small advantage to large as
t increases.

Query regimes. Let us point out two important remarks on the bound. First off, it is important
that our bound does not require any bound on q and p1, . . . , pt. Any of these values can equal N ,
and the construction remains secure as long as 4tqp1 · · · pt/N t remains small enough. Dealing with
such q = N and pi = N case requires in fact a completely novel approach, which we introduce
and explain below in Section 4.2. This will be important when using our bounds in the proof for
the analysis of XOR cascades, which we want to hold true even if N is small (e.g., in the case of
format-preserving encryption (FPE) [3]) and the attacker distributes q ≫ N queries across multiple
users, possibly exhausting all possible queries for some of these users.

On the other hand, one might worry that an adversary may adaptively distribute the number
of queries among the permutations π1, . . . , πt, and want a bound in terms of p, the total number
of queries to π. Naively, the bound in Theorem 1 is only q(4p)t/N t. However, we can exploit our
point-wise proximity based approach to get a sharper bound: In each transcript τ , the number of
queries pi[τ ] to πi is completely determined, and thus Equation (17) in the proof of Theorem 1 can
be rewritten as

pS1(τ)− pS0(τ) ≤ pS1(τ) · 4tqp1[τ ] · · · pt[τ ]

N t

≤ pS1(τ) · 4tq(p1[τ ] + · · ·+ pt[τ ])t

N ttt
≤ pS1(τ) · q(4p)t

N ttt
.
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Then Adv
±prp
KAC[π,t](A) ≤ q(4p)t/(Nt)t.

Variants. Consider the following natural variant KACX[π, t] of KAC[π, t]. It uses only t subkeys
(L1, . . . , Lt) ∈ ({0, 1}n)t. On input x, it returns returns yt, where y0 = x, and yi = πi(yi−1⊕Li)⊕Li

for every i ∈ {1, . . . , t}. See Fig. 2 for an illustration of KACX. Note that KACX is KAC with
effective key (L1, L1 ⊕ L2, L2 ⊕ L3, . . . , Lt−1 ⊕ Lt, Lt), or in other words, we have chosen random
keys under the constraint that their checksum equals 0n.

While we do not give the concrete proof, we note that the same security bound and proof
will continue to work: in the proof, whenever we need to use the independence of the subkeys, we
consider only t subkeys at a time. We note that for t = 1 this is exactly the statement that the
security of Even-Mansour is not affected when one sets both keys to be equal.

We note that Gilboa, Gueron, and Nandi [20] also establish pointwise proximity for both single-
user and multi-user security of KACX[π, 1]. They however don’t realize that single-user pointwise
proximity implies multi-user security, as a direct proof for multi-user security of KACX[π, 1] is easy.
Moreover, their proofs still follow the “good versus bad” paradigm of the H-coefficient technique,
as it is enough to give tight bounds for KACX[π, 1].

4.2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We begin with a high-level overview of the
proof structure. Following the notational framework of Section 3.1, let S0 and S1 be the systems
associated by the real and ideal game in the prp security definition. In particular, transcripts τ for
these systems contain two different types of entries:

– Enc/Dec queries. Queries to Enc(1, x) returning y and Dec(1, y) returning x are associated
with an entry (enc, x, y).

– Prim/PrimInv queries. Queries to Prim(j, x), returning y, and those to PrimInv(j, y), re-
turning x, are associated with an entry (prim, j, x, y)

Note that a further distinction between entries corresponding to forward and backward queries is
not necessary, as this will not influence the probabilities pS0(τ) and pS1(τ) that a certain transcript
occurs. Similarly, these probabilities are invariant under permuting the entries of τ . We also assume
without loss of generality that no repeated entries exist in τ (this corresponds to the fact that an
attacker asks no redundant queries).

Overview. Our goal is to establish the point-wise proximity for S0 and S1, i.e., for any transcript τ
containing q entries (enc, ·, ·), and at most pi entries of form (prim, i, ·, ·) for i = 1, . . . , t, we show

pS1(τ)− pS0(τ) ≤ pS1(τ) · 4tqp1 · · · pt

N t
. (17)

In particular, the proof of (17) is made by two parts:

– Case 1. q, p1, . . . , pt ≤ N/4. Then, we give a direct proof of (17) using the expectation method
from Lemma 2, where the auxiliary variable S will consist of the secret keys L0, L1, . . . , Lt (in
S0). Our proof will resemble in some aspects that of Chen and Steinberger [9], but it will be
much simpler due to the fact that the queries are fixed by τ , and we will only argue over the
probability of S. We will still resort to the involved and elegant “path-counting” lemma of [9],
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but it will only be used to define a function g for which computing the expectation of g(S) will
be fairly easy.

– Case 2. At least one of q, p1, . . . , pt is bigger than N/4. We’ll use the transcript reduction
method, where the other two systems S′

0 and S′
1 on which we assume we have established

point-wise proximity provide the real and ideal games for a (t− 1)-round KAC.

Therefore, our proof for Equation (17) uses induction on the number of rounds of the KAC. If all
queries are smaller than N/4 then we can give a direct proof, otherwise the transcript reduction
lands us back to the induction hypothesis. To this end, note that although KAC is defined for
t ≥ 1 rounds, we can also define KAC[π, 0](K, x) = x ⊕ K for every x ∈ {0, 1}n, and the bound
degenerates to 1. This is our base case in which Equation (17) vacuously holds.

Now suppose that Equation (17) holds for KAC of 0, . . . , t − 1 rounds. We now prove that it
also holds for KAC of t rounds as well. We’ll consider the following two cases.3

Case 1: q, p1, . . . , pt ≤ N/4. Fix a transcript τ . We use the expectation method. Let S be the
random variable for the key of KAC[π, t] in S0, and let K = ({0, 1}n)t+1) be the key space. Then
S is uniformly distributed over K. For each key s = (L0, . . . , Lt) ∈ K, define the graph G(s) as
follows:

– Its set of vertices are partitioned into t + 1 sets V0, . . . , Vt, each of 2n elements. For each j ∈
{0, . . . , t}, use the elements of {j} × {0, 1}n to uniquely label the elements of Vj .

– For each entry (prim, j, x, y) in τ , connect the vertices (j − 1, x⊕ Lj−1) and (j, y).

For a path P in G(s), let |P | denote the number of edges in this path. (A vertex is a also a path
that has no edge.) We define the following notion of good and bad keys.

Definition 2 (Bad and good keys). We say that a key s = (L0, . . . , Lt) is bad if τ contains an

entry (enc, x, y) such that in the graph G(s), there’s a path P0 starting from (0, x) and a path P1

starting from (t, y ⊕ Lt) such that |P0|+ |P1| ≥ t. If a key is not bad then we’ll say that it’s good.

Let Γbad be the set of bad keys, and let Γgood = K\Γbad.

Let Zs(i, j) be the number of paths from vertices in Vi to vertices in Vj of G(s). For 0 ≤ a < b ≤ t,
let B(a, b) be the collection of sets σ = {(i0, i1), (i1, i2), . . . , (iℓ−1, iℓ)}, with a = i0 < · · · < iℓ = b.
Let the Enc entries of τ be (enc, x1, y1), . . . , (enc, xq, yq). For k ∈ {1, . . . , q}, let αk[s] be the length
of the longest path starting from (0, xk), and t− βk[s] be the length of the longest path ending at
(t, yk). For 0 ≤ a < b ≤ t, let Ra,b,k[s] = 1 if αk[s] ≥ a and βk[s] ≤ b, and let Ra,b,k[s] = 0 otherwise.
Note that if s is good then αk[s] < βk[s] for every k ∈ {1, . . . , q}.
Recall that in the expectation method, one needs to find a non-negative function g : K → [0,∞)
such that g(s) bounds 1 − pS0(τ, s)/pS1(τ, s) for all s ∈ Γgood. The function g is directly given in
the following technical lemma. The proof, which is based on the main combinatorial lemma of [9],
is in Appendix A.

Lemma 4. For any s ∈ Γgood, it holds that

1− pS0(τ, s)

pS1(τ, s)
≤

q
∑

k=1

∑

0≤a<b≤t

Ra,b,k[s] ·
∑

σ∈B(a,b)

∏

(i,j)∈σ

Zs(i, j)

N − pj − q
.

3 Note that here the unusual thing is that Case 1 is handled via a direct proof.
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Before we continue the proof, a few remarks are needed. First, note that Lemma 4 only needs
q+pi < N for every i ∈ {1, . . . , t}. Therefore, one in fact can consider Case 1 for q, p1, . . . , pt ≤ N/λ,
for an arbitrary constant λ > 2, and Case 2 for max{q, p1, . . . , pt} > N/λ. This will lead to the
bound around q(cp/N)t, where c = max{λ, 2(λ− 1)/(λ− 2)}. To minimize this, the best choice of
λ is 2 +

√
2, but we use λ = 4 for simplicity.

We finally have everything in place to apply the expectation method. Note that

E[g(S)] = E





q
∑

k=1

∑

0≤a<b≤t

Ra,b,k[S] ·
∑

σ∈B(a,b)

∏

(i,j)∈σ

ZS(i, j)

N − pj − q





≤
q
∑

k=1

E





∑

0≤a<b≤t

Ra,b,k[S] ·
∑

σ∈B(a,b)

∏

(i,j)∈σ

2ZS(i, j)

N



 ,

where the last inequality is due to the hypothesis that p1, . . . , pt, q ≤ N/4. We will need the following
technical lemma below; the proof is in Appendix B.

Lemma 5. For k ∈ {1, . . . , q},

E
(

∑

0≤a<b≤t

Ra,b,k[S] ·
∑

σ∈B(a,b)

∏

(i,j)∈σ

2ZS(i, j)

N

)

≤ (4t − t− 1)p1 · · · pt

N t
.

Note that expectation in Lemma 5 is over the uniform choices of the key vector S = (S0, S1, . . . , St),
and the proof of Lemma 5 can actually compute the exact value of this expectation. Hence, from
Lemmas 2, 4, and Lemma 5, to get our bound for Case 1, it suffices to prove that

Pr[S ∈ Γbad] ≤ (t + 1)qp1 · · · pt/N t . (18)

To justify Equation (18), let S = (S0, . . . , St). If S ∈ Γbad then τ must contain entries (enc, x, y),
(prim, 1, u1, v1), (prim, 2, u2, v2), . . . , (prim, t, ut, vt) such that one of the following happens:

• u1 = x⊕ S0, and ui = vi−1 ⊕ Si for every i ∈ {2, . . . , t}, or

• vt = y ⊕ St, and ui = vi−1 ⊕ Si for every i ∈ {2, . . . , t}, or

• u1 = x⊕ S0, vt = y ⊕ St, and there is some ℓ ∈ {2, . . . , t} such that ui = vi−1 ⊕ Si for every
i ∈ {2, . . . , t}\{ℓ}.

Since S0, . . . , St are uniformly and independently random in {0, 1}n, the chance that S is bad is at
most (t + 1)qp1 . . . pt/N t.

Case 2: N/4 < max{q, p1, . . . , pt} ≤ N . Fix a transcript τ . We have three sub-cases below, each
needs a different way to define S and uses a different transcript reduction.

We now give an intuition for the proof. We want to derive from (τ, s) a transcript R(τ, s) for a
system S′

0 that implement the real game for a (t−1)-round KAC. In most cases (Cases 2.1 and 2.2),
this KAC construction is KAC[π, t− 1], and S consists of the last subkey Lt and some additional
query-answer pairs. In this case pS1(τ, s) means the probability that S1 behaves according to the
entries in (τ, s), and that Lt←$ {0, 1}n independent of S1 agrees with the subkey in s.

The target transcript R(τ, s) consists of the Prim entries to π1, . . . , πt−1 in (τ, s), and the query-
answer pairs to KAC[π, t− 1] that one can infer from the entries (enc, ·, ·), the entries (prim, t, ·, ·),
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and the last subkey as specified in (τ, s). The random variable S and the system S′
1 that implements

the ideal game for KAC[π, t− 1] will be constructed so that for every b ∈ {0, 1}, the event that Sb

behaves according to (τ, s) consists of two independent events: (i) S′
b behaves according to R(τ, s),

and (ii) πt behaves according to the entries in (τ, s), and Lt agrees with what’s specified in s. Since
(ii) doesn’t use Enc and Dec oracles, the reduction preserves the ratio pS0(τ, s)/pS1(τ, s).

Case 2.1: p1, . . . , pt ≤ N/4 but N/4 < q ≤ N . We’ll in fact give an even stronger bound

pS1(τ)− pS0(τ) ≤ pS1(τ) · 4t−1p1 . . . pt

N t−1
.

Let S be the random variable for the last subkey Lt in S0 and the (N − q) Enc queries/answers
that τ lacks. (We stress that here S has only a single subkey, so a value s for S will have the form
〈Lt, (enc, x1, y1), . . . , (enc, xN−q, yN−q)〉.) It suffices to show that for any s such that pS1(τ, s) > 0,

pS1(τ, s)− pS0(τ, s) ≤ pS1(τ, s) · 4t−1p1 . . . pt

N t−1
. (19)

Let S′
0 be the system that implements the real game on KAC[π, t−1]. Let f be the ideal permutation

that S1 uses for answering Enc/Dec queries. Let f ′ be the permutation such that f ′(x) = π−1
t (f(x))

for every x ∈ {0, 1}n, and thus f ′ is also an ideal permutation. The permutation f can be viewed as
the cascade of f ′ and πt (meaning that f(x) = πt(f

′(x)) for every x ∈ {0, 1}n). Let S′
1 be a system

that provides the ideal game on KAC[π, t− 1] and uses f ′ to answer Enc/Dec queries.

For any b ∈ {0, 1}, although there are N Enc entries in (τ, s) for Sb, since there are only pt query-
answer pairs to πt, one can only “backtrack” pt Enc query-answer pairs for S′

b. Let R(τ, s) be
the transcript consisting of these pt backtracked pairs and the query-answer pairs to π1, . . . , πt−1.
Formally, for any entry (prim, i, u, v) in (τ, s), add this to R(τ, s) if i ≤ t− 1. Next, for any entry
(prim, t, u, v) in τ , there is exactly one entry (enc, x, y) in (τ, s) such that v ⊕ Lt = y, so add
(enc, x, u) to R(τ, s) as the corresponding backtracked query-answer pair. Then R(τ, s) has pt Enc

entries and pi query-answer pairs for πi, for every i ≤ t − 1. Now, for Sb to behave according to
(τ, s), it means that (i) S′

b must behave according to R(τ, s), (ii) the subkey in S—recall that
S contains only the last subkey Lt—must agree with what is specified in s, and (iii) πt must be
completely determined from S′

b, the last subkey Lt, and the N Enc entries of (τ, s). Since πt is
independent of S′

b and Lt,

pSb
(τ, s) =

1

N ·N !
· pS′

b
(R(τ, s)) .

Hence
pS0(τ, s)

pS1(τ, s)
=

pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

.

But from the induction hypothesis,

1−
pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

≤ 4t−1p1 . . . pt

N t−1
.

Case 2.2: p1, . . . , pt−1 ≤ N/4 but pt > N/4. We’ll in fact give an even stronger bound



19

pS1(τ)− pS0(τ) ≤ pS1(τ) · 4t−1qp1 . . . pt−1

N t−1
.

Let S be the random variable for the last subkey Lt in S0 and the (N − pt) queries/answers to πt

that τ lacks. From now on, this case is exactly the same as Case 2.1, except that since there are
now N queries to πt but only q Enc queries in (τ, s), we can only backtrack q Enc queries in S′

b.

Case 2.3: There is some index i ∈ {1, . . . , t − 1} such that N/4 < pi ≤ N . We’ll give an even
stronger bound

pS1(τ)− pS0(τ) ≤ pS1(τ) · 4t−1q

N t−1

∏

j∈{1,...,t}\{i}

pj .

Let S be the random variable for the subkey Li in S0 and the other (N − pi) query-answer pairs
to πi that τ lacks. Fix s such that pS1(τ, s) > 0. It suffices to prove that

pS1(τ, s)− pS0(τ, s) ≤ pS1(τ, s) · 4t−1q

N t−1

∏

j∈{1,...,t}\{i}

pj .

In this case, we’ll need to build another (t− 1)-round KAC. Intuitively, we “collapse” the ith and
(i+1)th round of KAC[π, t] into a single round. Formally, construct π′ : N×{0, 1}n → {0, 1}n from
π and the subkey Li in s as follows. For every j < i, we have π′(j, ·) = π(j, ·). For every j > i, let
π′(j, ·) = π(j + 1, ·). Finally, let π′(i, x) = π(i + 1, π(i, x) ⊕ Li) for every x ∈ {0, 1}n. Thus π′ is
also a family of independent, ideal permutations on {0, 1}n. Let S′

0 be a system that provides the
real game on KAC[π′, t− 1]. Let f be the ideal permutation that S1 uses for answering Enc/Dec

queries and let S′
1 be a system that provides the ideal game on KAC[π′, t− 1] and uses f to answer

Enc/Dec queries.

Now, in (τ, s), we have N query-answer pairs for πi and pi+1 query-answer pairs for πi+1. One thus
can “connect” those pairs to obtain pi+1 query-answer pairs for π′

i, which is the cascade of πi and
πi+1. Formally, for any entry (prim, j, a, b) in (τ, s), if j < i then add this entry to R(τ, s) as a
query for π′

j , and if j > i + 1 then add (prim, j − 1, a, b) to R(τ, s) as a query for π′
j−1. Next,

for every entry (prim, i + 1, u, v) in τ , there is exactly one entry (prim, i, x, y) in (τ, s) such that
y ⊕ Li = u, so add (prim, i, x, v) to R(τ, s) as the corresponding connecting query. Hence R(τ, s)
has q Enc queries and pj queries to π′

j if j < i, and pj+1 queries to π′
j if j ≥ i.

For each b ∈ {0, 1}, for Sb to behave according to (τ, s), it means that (i) S′
b must behave according

to R(τ, s), (ii) the subkey in S must agree with what’s specified in s, and (iii) πt must behave
according to the N entries specified by (τ, s). Note that π′

i is the cascade of πi and πi+1, and since
πi+1 is independent of πi, so is π′

i. Hence

pSb
(τ, s) =

1

N ·N !
· pS′

b
(R(τ, s)) .

Hence
pS0(τ, s)

pS1(τ, s)
=

pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

.

But from the induction hypothesis,

1−
pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

≤ 4t−1q

N t−1

∏

j∈{1,...,t}\{i}

pj .



20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120

Fig. 4: Mu PRP security of 10-round KAC on 128-bit strings. From left to right: the naive bound by using
the hybrid argument with CS’s result, the naive bound by using the hybrid argument with the su PRP result in
Theorem 1, and the bound in Theorem 2. We set p = q = u, where u is the number of users. The x-axis gives the log
(base 2) of p, and the y-axis gives upper bounds on the mu PRP security of KAC.

4.3 Multi-user security of KAC

In this section, we consider the multi-user security of KAC. The bounds are immediate, and rely
on the fact that the actual proof of Theorem 1 established point-wise proximity. Indeed, from
Equation (17) in the proof of Theorem 1 and Lemma 3, we obtain Theorem 2. The analogous
claims also hold for the variant KACX we discussed above.

Theorem 2 (Mu PRP security of KACs). Let t and n be positive integers, and let π : N ×
{0, 1}n → {0, 1}n be a family of ideal permutations on {0, 1}n. Let A be an adversary that makes
at most q queries to Enc/Dec, and at most pi queries to Prim(i, ·)/PrimInv(i, ·) for every i ∈
{1, . . . , t}. Then

Adv
±mu-prp
KAC[π,t](A) ≤ 2 · 4tq(p1 + qt) · · · (pt + qt)

N t
.

We note that this bound is essentially the same as the one from Theorem 1, with an additional
factor two and the additive term qt. This additive term plays a significant role when t is small, but
its role decreases as q grows. Concretely, for t = 1, we recover the Even-Mansour multi-user bound

of Mouha and Luykx [25], i.e., Adv
±mu-prp
KAC[π,1](A) ≤ 8(qp+q2)

N . The O(q2/N) term takes into account
collisions on the keys across multiple users, which allows to easily distinguish and is therefore tight.
Note that for t = 1, the distinction between single-key or two-key Even-Mansour is exactly the
distinction between KAC and KACX, and our bounds are identical.

Beating the hybrid argument. We would like to stress once more the importance of giving
direct bounds for mu security, as opposed to using a naive hybrid argument. Indeed, if we used the
hybrid argument on our su PRP result in Theorem 1 then we would obtain an inferior bound with
form

Adv
±mu-prp
KAC[π,t](A) ≤ u · 4tq(p1 + qt) · · · (pt + qt)

N t

where u is the number of users. If one used the hybrid argument on CS’s original bound, then the
bound becomes

Adv
±mu-prp
KAC[π,t](A) ≤ u(t + 2)

(

q(6p + 6qt)t

N t
· t2(t + 1)t+1

)1/(t+2)

.
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Fig. 5: Mu PRP security of 2-round KACX on 128-bit strings. From left to right: the naive bound by using
the hybrid argument with our su PRP result for KACX, the bound from CLS’s result, and our mu PRP for KACX.
We set p = q = u, where u is the number of users. The x-axis gives the log (base 2) of p, and the y-axis gives upper
bounds on the mu PRP security of KACX.
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Fig. 6: Mu PRP security of 4-round KACX on 128-bit strings. From left to right: the bound from CLS’s
result (the black dotted line), the naive bound by using the hybrid argument with our su PRP result for KACX (the
red dashed line), and our mu PRP for KACX (the blue solid line). We set p = q = u, where u is the number of users.
The x-axis gives the log (base 2) of p, and the y-axis gives upper bounds on the mu PRP security of KACX.

This makes one important point apparent: While the exponent 1/(t + 2) in CS’s bound is already
undesirable in the su PRP setting, in the mu PRP case, it’s much worse, as illustrated in Fig. 4.
If one models AES as a 10-round KAC on 128-bit strings then our mu PRP result suggests that
AES has about 110-bit security. Using the hybrid argument with our su PRP result decreases it to
100-bit security, whereas using the hybrid argument on CS’s result plummets to 45-bit security.

Mu security for KACX. Again, the bound in Theorem 2 also applies for the variant KACX
of KAC. Cogliati, Lampe, and Seurin (CLS) [10] realize the same bound for t = 1, and obtain the
following bound for t = 2:

Adv
±mu-prp
KACX[π,2](A) ≤ 30

√
q(p + q)

N
.

This bound is much better than the naive one by using the hybrid argument on our su PRP result
for KACX, but it’s still considerably weaker than our mu PRP result. See Fig. 5 for an illustration.
For t > 2, if t is even, CLS obtain the following bound:

Adv
±mu-prp
KACX[π,t](A) ≤ 4 · 2t/4√q(p + q)t/4

N t/4
.

In this case, CLS’s result is just comparable with the naive bound. An illustration is shown in
Fig. 6.
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Fig. 7: Left: The XC[E, 2] construction. Right: The 2XOR[E] construction.

5 XOR Cascades

In this section, we apply the above results to study XOR cascades for blockcipher key-length
extension. Variants of XOR cascades have been studied in the literature [16, 17, 19, 21, 23] and the
connection with KACs was already observed. However, we improve these results along two different
axes: Tightness (we give a much better reduction to the security of KACs than the one of [17], using
point-wise proximity), and multi-user security. In particular, to the best of our knowledge, this is
the first work studying multi-user key-length extension, a problem we consider to be extremely
important, given the considerable security loss in the multi-user regime.

The XOR-Cascade construction. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher.
Let t ≥ 1 be an integer, and let K = ({0, 1}k)t × ({0, 1}n)t+1. Let Sample be a sampling algo-
rithm that samples L0, . . . , Lt←$ {0, 1}n, and samples without replacement J1, . . . , Jt from {0, 1}k,
and outputs (J1, . . . , J1, L0, . . . , Lt). The XOR-Cascade construction XC[E, t], on a key K =
(J1, . . . , Jt, L0, . . . , Lt) ∈ K, describes a permutation on {0, 1}n as follows. On input x, XC[E, t](x)
returns yt, where y0 = x ⊕ L0, and yi = EJi(yi−1) ⊕ Li for every i ∈ {1, . . . , t}. See Fig. 7 for an
illustration of XC[E, 2].

We also define – in analogy with KACX above – a version of XC with t sub-keys L1, . . . , Lt

(rather than t + 1), which xor’s Li to the input and the output of EJi in the i-th round. We refer
to this as XCX[E, t], and note that it is simply the t-fold sequential composition of DESX [21].

Single-user security of XC[E, t]. The following theorem establishes the single-user security for
XC[E, t] in the ideal-cipher model, and, in contrast to previous analyses [16, 17, 23], the resulting
bound is essentially exact. We require the keys J1, . . . , Jt to be sampled by Sample as random yet
distinct. This is no big loss – an additional t2/2k term can added to take this into account, but this
term is going to be large when moving to the multi-user case. Below, we’ll develop a better bound
for the independent-key case, and for now, stick with distinct keys.

Theorem 3 (Su PRP security of XC, distinct subkeys). Let t be a positive integer. Let
E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and let XC[E, t] and Sample be as above. Then in
the ideal-cipher model, for any adversary A that makes at most q Enc/Dec queries, and at most
p Prim/PrimInv queries,

Adv
±prp
XC[E,t],Sample(A) ≤ 4tqpt

2t(k+n)
. (20)

The proof is in Appendix C. Here we point out a few remarks. First off, we note the bound above
(and its proof) can easily adapted to analyze XCX[E, t]. Moreover, the proof itself is a direct
application of point-wise proximity combined with the transcript reduction technique to reduce XC
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Fig. 8: Su PRP security (distinct subkeys) of XC on 2 iterations (left) and 6 iterations (right) on k = 56
and n = 64: our bound versus the results in [16, 17]. The solid lines depict the bound in Theorem 3, and the
dashed ones depict the bound obtained by combining the reduction in [16, 17] and our result in Theorem 1. In both
pictures, q = 2n, and the x-axis gives the log (base 2) of p, and the y-axis gives upper bounds on the su PRP security
of XC.

case to the KAC case. This will give a tight relationship, substantially improving on the previous
results by Gaži [16] and its generalization by Gaži et al. [17], which actually used an adversarial

reduction, and needed to resort to Markov-like arguments which, once again, we avoid. Concretely,
if we combine the reduction in [16,17] with our KAC result in Theorem 1, we’ll obtain the following
weak bound

Adv
±prp
XC[E,t],Sample(A) ≤ 4t · (2t + 2)

(

qpt

2t(k+n)

)1/(t+1)

.

As illustrated in Fig. 8, the gap between the bound above and ours is substantial.

Multi-user security of XC. We now consider the multi-user security of XC. Since the proof of
Theorem 3 actually establishes pointwise proximity, from Lemma 3, we obtain Theorem 4 below.
If we instead use the hybrid argument on the su PRP security then we obtain an inferior bound

Adv
±mu-prp
XC[E,t],Sample(A) ≤ u · 4tq(p + qt)t/2t(k+n)

where u is the number of users. If we use the hybrid argument on the bound obtained by combining
the reduction in [16,17] with our KAC result in Theorem 1, we’ll obtain an even weaker bound

Adv
±prp
XC[E,t],Sample(A) ≤ u · 4t(2t + 2)

(

q(p + qt)t

2t(k+n)

)1/(t+1)

.

The three bounds are illustrated in Fig. 9.

Theorem 4 (Mu PRP security of XC, distinct subkeys). Let t be a positive integer. Let
E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and let XC[E, t] and Sample be as above. Then in
the ideal-cipher model, for any adversary A that makes at most q Enc/Dec queries, and at most
p Prim/PrimInv queries,

Adv
±mu-prp
XC[E,t],Sample(A) ≤ 2 · 4tq(p + qt)t/2t(k+n) .

We stress here that q is allowed to be larger than N = 2n — nothing in the theorem limits this,
and security is obtained as long 2 · 4tq(p + qt)t/2t(k+n) is sufficiently small. This is conceptually
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Fig. 9: Mu PRP security (distinct subkeys) of 3-round XC on k = 56 and n = 64: our bound versus naive
ones from the hybrid argument. From left to right: the naive bound by using the hybrid argument with the
bound obtained by combining the reduction in [16,17] with our KAC result in Theorem 1, the naive bound by using
the hybrid argument with the su PRP result in Theorem 3, and the bound in Theorem 4. We set p = q = u, where
u is the number of users. The x-axis gives the log (base 2) of p, and the y-axis gives upper bounds on the mu PRP
security of XC.

very important. Indeed, we may want to apply our result even to ciphers for which N is very small
(these arise in the setting of FPE [3], where one could have N ≈ 230, or even less), and a multi-user
attacker can exhaust the domain for multiple keys. In passing, we note that the reason such a strong
result is possible is inherited directly from the fact that Theorem 1 does not make any restrictions
on q.

There are some variants of XC in the literature. For example, Gaži and Tessaro (GT) [19] gave a
variant of XC[E, 2] that they call 2XOR. This construction, as illustrated in Fig. 7, uses a shorter
key and saves one additional xor, compared to XC[E, 2]. While its su PRP security appears to be
the same as XC[E, 2], as GT’s result suggests, in Appendix E, we show that it has much weaker
mu PRP security by giving an attack.

On uniform subkeys. So far we have considered security of the XC construction when each key
K = (J1, . . . , Jt, L0, . . . , Lt) is chosen so that the subkeys J1, . . . , Jt are distinct. A natural question
is to bound the degradation when J1, . . . , Jt←$ {0, 1}k. First consider the su setting. A simple
solution is to add a term t2/2k to account for the probability that there are some i 6= j such that
Ji = Jj . This is fine for the su setting, but when one moves to the mu setting, this term blows up
to ut2/2k, where u is the number of users. This happens even in the ideal case where the adversary
distributes the queries evenly among users. To avoid this undesirable term, in Proposition 1 below,
we take a different approach. Intuitively, even if there are only ℓ ≤ t distinct subkeys, then at
least our construction should achieve security level ǫ(ℓ) similar to the bound in Theorem 3 for
XC[E, ℓ]. Let L be the random variable for the number of distinct subkeys in XC[E, t], for example,
Pr[L = t] ≥ 1 − t2/2k. Then our bound would be the expectation E(ǫ(L)). The gap between this
bound and the naive one with the term t2/2k may not be large on practical values of n and k, but
it allows us to use Lemma 3 to obtain a good mu PRP bound.

Proposition 1 (Su PRP security of XC, uniform subkeys). Let t ≥ 2 be an integer. Let
E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher and let XC[E, t] be as above. Then in the ideal-cipher
model, for any adversary A that makes at most q Enc/Dec queries, and at most p Prim/PrimInv
queries,

(a) If t ≥ 3 then Adv
±prp
XC[E,t](A) ≤ 4tqpt

2(n+k)t + qt2

2k

(

t
2k + 4p

2k+n

)t−2
.
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Fig. 10: Mu PRP security of XC (uniform subkeys) on 3 iterations (left) and 4 iterations (right) on
k = 56 and n = 64: our bound versus naive one. The dashed lines depict the bound obtained by adding a term
ut2/2k to the bound in Theorem 4, and the solid ones depict the bound in Theorem 5, where u is the number of
users. In both pictures, p = q = u, and the x-axis gives the log (base 2) of p, and the y-axis gives upper bounds on
the mu PRP security of XC.

(b) If t = 2 then Adv
±prp
XC[E,t](A) ≤ q(4p)2

22(n+k) + 4qp
22k+n + 2q

2k+n/2 .

The proof of Proposition 1 is in Appendix D, and it also establishes pointwise proximity. From
Lemma 3, we obtain Theorem 5 below. As illustrated in Fig. 10, this bound is much better than
the naive one obtained via adding a term ut2/2k to the bound in Theorem 4 (to account for the
probability that there is a user whose subkeys are not distinct), where u is the number of users.
When one increases the number of rounds then our bound shows that the security substantially
improves (from 80-bit to 90-bit security), but the naive bound still stays at 50-bit security, since
the bound ut2/2k is the bottleneck, and it gets worse when t increases.

Theorem 5 (Mu PRP security of XC, uniform subkeys). Let t ≥ 2 be an integer. Let
E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher and let XC[E, t] be as above. Then in the ideal-cipher
model, for any adversary A that makes at most q Enc/Dec queries, and at most p Prim/PrimInv
queries,

(a) If t ≥ 3 then Adv
±mu-prp
XC[E,t] (A) ≤ 2·4tq(p+qt)t

2(n+k)t + 2qt2

2k

(

t
2k + 4p+4qt

2k+n

)t−2
.

(b) If t = 2 then Adv
±mu-prp
XC[E,t] (A) ≤ 2q(4p+8q)2

22(n+k) + 8q(p+2q)
22k+n + 4q

2k+n/2 .

Interpreting the bounds in Theorem 5. For the case t = 3, there’s a considerable gap
compared to the matching attack. See Fig. 11 for an illustration of the degradation of the bound in
Theorem 5 compared to that in Theorem 4. This gap is probably an artifact of the proof technique
rather than reflecting a true security loss when using uniform subkeys: for example, in the su case,
if J1 = · · · = Jt then we give up, but of course even in this extreme case, the construction should
still retain some reasonable security. For t ≥ 4 and all practical choices of n and k, the bounds in
Theorem 5 and Theorem 4 are close: the former is just about t2 + 1 times worse than the latter.
To justify this, note that we can assume that 4(p + qt)/2n > 2k/2, otherwise both bounds are tiny.
Then

qt2

2k

(

t

2k
+

4p + 4qt

2k+n

)t−2

≈ qt2

2k

(

4p + 4qt

2k+n

)t−2

< t2 · 4tq(p + qt)t

2(n+k)t
.

Pictorially, as shown in Fig. 11, the two bounds are too close, and we have to choose very small
n and k so that the gap between the two lines is still visible to the naked eye. Likewise, for t = 2
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Fig. 11: Mu PRP security of XC on 3 iterations (left) and 4 iterations (right) on k = n = 32: uniform
versus distinct subkeys. The dashed lines depict the bound in Theorem 4, and the solid ones depict the bound
in Theorem 5. In both pictures, p = q, and the x-axis gives the log (base 2) of p, and the y-axis gives upper bounds
on the mu PRP security of XC. The parameters n and k are chosen to be small so that in the right picture, the gap
between the two lines is still visible to the naked eye.

and and all practical choices of n and k, the bound in Theorem 5 is about twice worse than that
of Theorem 4. ( In Proposition 1, for t = 2, if J1 = J2 then we don’t give up, but show that the
construction still retains security bound up to 4qp

2k+n + 2q
2n/2 . However, this method fails to work for

t = 3. It’s why the bound in Theorem 5 is still sharp for t = 2, but deteriorates for t = 3.)
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A Proof of Lemma 4

Let s = (L0, . . . , Lt). Recall that the Enc entries of τ are (enc, x1, y1), . . . , (enc, xq, yq). Let G0 be
G(s). For each k ∈ {1, . . . , q}, let Gk be the graph obtained by Gk−1 as follows. Let z0 ← xk ⊕ L0,
and for each i ∈ {1, . . . , t}, let zi ← πi(zi−1)⊕Li and connect vertices (i− 1, zi−1) and (i, zi ⊕Li),
if this edge is not yet in the graph Gk−1.

Fix some k ∈ {1, . . . , q}. Let G be a graph in the support of the random variable Gk−1. We
say that G is well-formed if there is a path in G connecting (0, xj) and (t, yj ⊕ Lt) for every
j ∈ {1, . . . , k − 1}. If G is well-formed then let PrG[xk → yk] be the probability that in S0, if S
agrees with s, and the Prim/PrimInv oracles behave according to the constraints specified in G
for every j ∈ {1, . . . , k − 1}, then querying xk to Enc results in yk. Let G∗ be the graph obtained
from G by deleting the path connecting (0, xi) and (t, yi ⊕ Lt) for every i ∈ {1, . . . , k − 1}. Let
UG(i, j) be the number of paths P from vertices in Vi to vertices in Vj of G∗, such that there is no
vertex in Vi−1 that is connected to the first vertex of P . Let FG(j) be the number of edges in G∗

connecting vertices in Vj−1 and those in Vj . Then UG(i, j) ≤ Zs(i, j) and FG(j) ≤ pj . We’ll need
the following result of CS.4

Lemma 6. [9, Lemma 1] Fix k ∈ {1, . . . , q} and let ℓ = k − 1. Let G be a well-formed graph in
the support of Gk−1 and let UG(i, j), and EG(j) be as above. Then

Pr
G

[xk → yk] =
1

N − ℓ

(

1−
∑

σ∈B(αk[s],βk[s])

(−1)|σ|
∏

(i,j)∈σ

UG(i, j)

N − ℓ− FG(j)

)

. �

From Lemma 6, for a well-formed G in the support of Gk−1,

Pr
G

[xk → yk]

=
1

N − k + 1

(

1−
∑

σ∈B(αk[s],βk[s])

(−1)|σ|
∏

(i,j)∈σ

UG(i, j)

N − k + 1− FG(j)

)

≥ 1

N − k + 1

(

1−
∑

σ∈B(αk[s],βk[s])

∏

(i,j)∈σ

Zs(i, j)

N − q − pj

)

. (21)

Let Badb be the event that Sb behaves according to the Prim entries in (τ, s). Then Pr[Bad0] =
Pr[Bad1]. On the one hand,

pS1(τ, s) =
Pr[Bad1]

N t+1 ·N(N − 1) · · · (N − q + 1)
.

4 [9, Lemma 1] looks like just the case k = 1 of our Lemma 6, but CS used it for a general k and said that

“Thus the shores of G will have size N − ℓ, not N . Indeed, we committed a white lie when we stated in
Lemma 1 that the shores of G would be copies of {0, 1}n. Of course, all that mattered was the size of those
shores, and we can apply Lemma 1 by replacing N with N − ℓ throughout the main bound.”

Indeed, when Dai and Steinberger [12] used this result, they rewrote it for a general k. Lemma 6 here follows the
statement in [12, Lemma 3].
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On the other hand, for S0 to behave according to (τ, s), it means that (i) S must agree with s, and
the system must behave according to the Prim entries in (τ, s), and (ii) for every k = 1, . . . , q − 1,
if condition (i) holds and querying x1, . . . , xk−1 to the Enc oracle in S0 results in y1, . . . , yk−1

respectively, then querying xk to Enc will result in yk. Then from Equation (21),

pS0(τ, s) ≥ Pr[Bad0]

N (t+1)
·

q
∏

k=1

1

N − k + 1

(

1−
∑

σ∈B(αk[s],βk[s])

∏

(i,j)∈σ

Zs(i, j)

N − q − pj

)

,

and thus

pS0(τ, s)

pS1(τ, s)
≥

q
∏

k=1

(

1−
∑

σ∈B(αk[s],βk[s])

∏

(i,j)∈σ

Zs(i, j)

N − q − pj

)

≥ 1−
q
∑

k=1

∑

σ∈B(αk[s],βk[s])

∏

(i,j)∈σ

Zs(i, j)

N − q − pj

≥ 1−
q
∑

k=1

∑

0≤a<b≤t

Ra,b,k[s] ·
∑

σ∈B(a,b)

∏

(i,j)∈σ

Zs(i, j)

N − pj − q

where the second last inequality is due to the fact that (1 − x)(1 − y) ≥ 1 − x − y for every
0 ≤ x, y ≤ 1, and the last inequality is due to the fact that Ra,b,k[s] = 1 if a = αk[s] and b = βk[s],
and Ra,b,k[s] ≥ 0 otherwise.

B Proof of Lemma 5

Fix k ∈ {1, . . . , q}. Then

E(Ra,b,k[S]) =
p1 · · · papb+1 · · · pt

N t−(b−a)
, (22)

where p1 · · · pa is interpreted as 1 if a = 0, and likewise, pb+1 · · · pt is interpreted as 1 if b = t. To
justify Equation (22), note that Ra,b,k[s] = 1 if and only if (1) there are entries (prim, 1, u1, v1), . . . ,
(prim, a, ua, va) such that u1 = xk ⊕ L0 and ur+1 = vr ⊕ Lr for every r ∈ {1, . . . , a − 1}, and (2)
there are entries (prim, b + 1, ub+1, vb+1), . . . , (prim, t, ut, vt) such that ur+1 = vr ⊕ Lr for every
r ∈ {b + 1, . . . , t− 1} and vt ⊕ Lt = yk.

Now, for σ ∈ B(a, b) and each (i, j) ∈ σ, note that the random variable ZS(i, j) depends only on the
subkeys Sa, Sa+1, . . . , Sb−1 of S, whereas the random variable Ra,b,k[S] depends only on the other
subkeys of S. Hence ZS(i, j) and Ra,b,k[S] are independent, and thus

E
(

∑

0≤a<b≤t

Ra,b,k[S]
∑

σ∈B(a,b)

∏

(i,j)∈σ

2ZS(i, j)

N

)

=
∑

0≤a<b≤t

E(Ra,b,k[S]) ·E
(

∑

σ∈B(a,b)

∏

(i,j)∈σ

2ZS(i, j)

N

)

=
∑

0≤a<b≤t

p1 · · · papb+1 · · · pt

N t−(b−a)
·E
(

∑

σ∈B(a,b)

∏

(i,j)∈σ

2ZS(i, j)

N

)

.
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We now claim that for any 0 ≤ a < b ≤ t,

E
(

∑

σ∈B(a,b)

∏

(i,j)∈σ

2ZS(i, j)

N

)

=
2 · 3b−a−1pa+1 · · · pb

N b−a
(23)

We’ll justify this claim later. Then

∑

0≤a<b≤t

p1 · · · papb+1 · · · pt

N t−(b−a)
·E
(

∑

σ∈B(a,b)

∏

(i,j)∈σ

2ZS(i, j)

N

)

=
∑

0≤a<b≤t

2 · 3b−a−1p1 · · · pt

N t
=

t−1
∑

ℓ=0

2(t− ℓ)3ℓp1 · · · pt

N t
.

To obtain the claimed result, what’s left is to prove that

H(t) =
t−1
∑

ℓ=0

2(t− ℓ)3ℓ ≤ 4t − t− 1 .

To justify this, note that

H(t) =
3H(t)

2
− H(t)

2
=

t
∑

ℓ=1

(t− ℓ + 1)3ℓ −
t−1
∑

ℓ=0

(t− ℓ)3ℓ

= 3t − t− 1 +
t−1
∑

ℓ=0

3ℓ =
3t+1 − 1

2
− t− 1 ≤ 4t − t− 1 .

We now justify Equation (23). Fix 0 ≤ a < b ≤ t. For each ℓ ∈ {1, . . . , b− a}, let Bℓ be the subset
of B(a, b) such that |σ| = ℓ for every σ ∈ Bℓ. Then

|Bℓ| =
(

b− a− 1

ℓ− 1

)

,

because there’s a one-to-one correspondence between each σ = {(i0, i1), (i1, i2), . . . , (iℓ−1, iℓ)} ∈ Bℓ

and {i1, . . . , iℓ−1} ⊆ {a, . . . , b − 1}. To justify Equation (23), note that its left-hand side can be
rewritten as

E
(

b−a
∑

ℓ=1

2ℓ

N ℓ

∑

σ∈Bℓ

∏

(i,j)∈σ

ZS(i, j)
)

=
b−a
∑

ℓ=1

2ℓ

N ℓ

∑

σ∈Bℓ

E
(

∏

(i,j)∈σ

ZS(i, j)
)

.

Moreover,

E
(

∏

(i,j)∈σ

ZS(i, j)
)

=
∏

(i,j)∈σ

E
(

ZS(i, j)
)

, (24)

because for each ℓ ∈ {1, . . . , b− a} and each σ ∈ Bℓ, the random variables ZS(i, j), with (i, j) ∈ σ,
are independent. (Indeed, the randomness of ZS(i, j) is solely from the subkeys Sa+i, . . . , Sa+j−1

of S.) On the other hand, for each ℓ ∈ {1, . . . , b − a} and each a ≤ i < j ≤ b, the expected value
of each ZS(i, j) is exactly pi+1 · · · pj/N j−i−1: entries (prim, i + 1, ui+1, vi+1), . . . , (prim, j, uj , vj) in



31

τ will form a path between a vertex in Vi and another in Vj of the graph G(s) if and only if
ur+1 = vr ⊕ Lr for every r ∈ {i, . . . , j − 1}, where s = (L0, . . . , Lt). Then

b−a
∑

ℓ=1

2ℓ

N ℓ

∑

σ∈Bℓ

∏

(i,j)∈σ

E
(

ZS(i, j)
)

=
b−a
∑

ℓ=1

2ℓ

N ℓ

∑

σ∈Bℓ

∏

(i,j)∈σ

pi+1 · · · pj

N j−i−1

=
b−a
∑

ℓ=1

2ℓ
∑

σ∈Bℓ

pa+1 · · · pb

N t

=
2pa+1 · · · pb

N t

b−a
∑

ℓ=1

|Bℓ| · 2ℓ−1

=
2pa+1 · · · pb

N t

b−a
∑

ℓ=1

(

b− a− 1

ℓ− 1

)

2ℓ−1

=
2 · 3b−a−1pa+1 · · · pb

N t
,

as claimed.

C Proof of Theorem 3

Let S0 be a system that provides the real game and S1 be a system that provides the ideal game.
Let S be the random variable for the subkeys (J1, . . . , Jt) in S0. Fix a transcript τ . Let U be the
support of S. Our goal is to show that

pS1(τ)− pS0(τ) =
∑

s∈U

pS1(τ, s)− pS0(τ, s)

≤ pS1(τ) · 4tqpt

2t(k+n)
. (25)

In τ , there are two different types of entries:

– Enc/Dec queries. Queries to Enc(1, x) returning y and Dec(1, y) returning x are associated
with an entry (enc, x, y).

– Prim/PrimInv queries. Queries to Prim(J, x), returning y, and to PrimInv(J, y), returning
x, are associated with an entry (prim, J, x, y)

Fix an s = (J1, . . . , Jt) in the support of S. Let pi[s] be the number of entries (prim, Ji, ·, ·) in τ .
We’ll employ a transcript reduction, and our systems S′

0 and S′
1 provide the real and random games

for KAC[π, t], where π(i, ·) = E(Ji, ·). Moreover, Sb and S′
b also share the same subkeys L0, . . . , Lt.

In the transcript R(τ, s), the Enc entries remain intact, and we only keep (prim, J, x, y) in τ if there
is some i ∈ {1, . . . , t} such that J = Ji. We’ll change that Prim entry to (prim, i, x, y), indicating
that we’re querying πi. Since the Prim entries that we delete from (τ, s) are independent of π,

pS0(τ, s)

pS1(τ, s)
=

pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

. (26)
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From Equation (17) in the proof of Theorem 1, the right-hand side of Equation (26) is at least

1− 4tq

2nt
· p1[s] · · · pt[s] .

Hence
∑

s∈U

pS1(τ, s)− pS0(τ, s)

≤
∑

s∈U

pS1(τ, s) · 4tq

2nt
· p1[s] · · · pt[s]

=
pS1(τ)

2k(2k − 1) · · · (2k − t + 1)

∑

s∈U

4tq

2nt
· p1[s] · · · pt[s] ,

where we have used the fact that S is independent of everything else in S1. What’s left is to prove
that

∑

s∈U

p1[s] · · · pt[s] ≤ 2k(2k − 1) · · · (2k − t + 1)

2kt
pt . (27)

For each finite set B and each integer 1 ≤ i ≤ |B|, let D(B, i) be collection of tuples (ℓ1, . . . , ℓi)
such that ℓ1, . . . , ℓi ∈ B and ℓ1, . . . , ℓi are distinct. Let V1, V2, . . . be an enumeration of {0, 1}k. Now
suppose that in τ , for each i ∈ {1, . . . , 2k}, there are δi entries (prim, Vi, ·, ·). Then

∑

s∈U

p1[s] · · · pt[s] =
∑

(ℓ1,...,ℓt)∈D({1,...,2k},t)

δℓ1 · · · δℓt

≤ 2k(2k − 1) · · · (2k − t + 1)

2kt

(

2k
∑

i=1

δi

)t

≤ 2k(2k − 1) · · · (2k − t + 1)

2kt
pt,

where the first inequality is due to Maclaurin’s inequality.

D Proof of Proposition 1

Let S0 be a system that provides the real game and S1 be a system that provides the ideal game.
Let S be the random variable for the subkeys (J1, . . . , Jt) in S0. Fix a transcript τ . In τ , there are
two different types of entries:

– Enc/Dec queries. Queries to Enc(1, x) returning y and Dec(1, y) returning x are associated
with an entry (enc, x, y).

– Prim/PrimInv queries. Queries to Prim(J, x), returning y, and to PrimInv(J, y), returning
x, are associated with an entry (prim, J, x, y)

Let U be the support of S. For a key s = (J1, . . . , Jt), we say that the subkey Ji of K is duplicate

if there’s some j 6= i such that Jj = Ji; otherwise Ji is distinct. Let Bℓ be the subset of ({0, 1}k)t

such that any key s ∈ Bℓ has exactly ℓ distinct subkeys.
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Case 1: t ≥ 3. Our goal is to show that

pS1(τ)− pS0(τ) =
∑

s∈U

pS1(τ, s)− pS0(τ, s)

≤ pS1(τ) ·
(

4tqpt

2(n+k)t
+

qt

2k

(

t

2k
+

4p

2k+n

)t−2
)

. (28)

For a key s ∈ Bℓ, let pi[s] be the number of entries (prim, Ri, ·, ·) in τ for every i ≤ ℓ, where
R1, . . . , Rℓ are the distinct subkeys of s. We claim that for any s ∈ Bℓ,

pS1(τ, s)− pS0(τ, s) ≤ pS1(τ, s) · 4ℓqp1[s] · · · pℓ[s]

2nℓ
. (29)

We’ll justify this claim later. When we sum both sides of Equation (29) over all ℓ ∈ {1, . . . , t} and
all s ∈ Bℓ, the left-hand side of Equation (28) is bounded by

pS1(τ)
t
∑

ℓ=1

4ℓq

2nℓ

∑

s∈Bℓ

Pr[S = s] · p1[s] · · · pℓ[s] . (30)

Note that Bt−1 = ∅. Moreover, from Equation (27) in the proof of Theorem 3,

∑

s∈Bt

Pr[S = s] · p1[s] · · · pℓ[s] ≤ pt

2kt
. (31)

We then claim that for each ℓ ∈ {1, . . . , t− 2},

∑

s∈Sℓ

Pr[S = s] · p1[s] · · · pℓ[s] ≤
(

t− 2

ℓ

)

(

t

2k

)t−ℓ−1 ( p

2k

)ℓ

. (32)

We postpone justifying this claim. From Equations (30), (31), and (32), the left-hand side of Equa-
tion (28) is bounded by

pS1(τ) ·
(

4tqpt

2(n+k)t
+

qt2

2(t−1)k

t−2
∑

ℓ=0

(

t− 2

ℓ

)

tt−2−ℓ(4p/2n)ℓ

)

= pS1(τ) ·
( 4tqpt

2(n+k)t
+

qt2

2(t−1)k
(t + 4p/2n)t−2

)

,

justifying the bound in Equation (28).

Justifying Equation (32). Let V1, V2, . . . be an enumeration of {0, 1}k. Now suppose that in
τ , for each i ∈ {1, . . . , 2k}, there are δi entries (prim, Vi, ·, ·). Let D(ℓ) be collection of tuples
(r1, . . . , rℓ) such that r1, . . . , rℓ ∈ {1, . . . , 2k} and r1, . . . , rℓ are distinct. Then the left-hand side of
Equation (32) is a linear combination of δr1 · · · δrℓ

for (r1, . . . , rℓ) ∈ D(ℓ). In this linear combination,
the coefficient of each term δr1 · · · δrℓ

is at most the probability that S contains exactly ℓ distinct
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subkeys, and those subkeys have indices r1, . . . , rℓ. This is bounded by

1

2k(2k − 1) · · · (2k − ℓ + 1)
·
(

t

ℓ

)

(

t− ℓ− 1

2k

)t−ℓ−1

≤ 1

2k(2k − 1) · · · (2k − ℓ + 1)
·
(

t

ℓ

)

(t− ℓ− 1)

t

(

t

2k

)t−ℓ−1

=
1

2k(2k − 1) · · · (2k − ℓ + 1)
·
(

t− 1

ℓ

)

(

t

2k

)t−ℓ−1

≤ 1

2k(2k − 1) · · · (2k − ℓ + 1)
· t ·

(

t− 2

ℓ

)

(

t

2k

)t−ℓ−1

.

Thus, to prove Equation (32), it suffices to show that

∑

(r1,...,rℓ)∈D(ℓ)

δr1 · · · δrℓ
≤ 2k(2k − 1) · · · (2k − ℓ + 1)

2kℓ





2k
∑

i=1

δi





ℓ

,

but this is implied by Maclaurin’s inequality.

Justifying Equation (29). Pick arbitrary ℓ ∈ {0, . . . , t} and s ∈ Bℓ. Let s = (J1, . . . , Jt), and
let 1 ≤ v1 < · · · < vℓ ≤ t be the indices such that each Jvi is a distinct subkey of s. Let Z
be the random variable for the subkey Lr and all N query-answer pairs of EJr of S0, for all
r ∈ {1, . . . , t}\{v1, . . . , vℓ}. We write pS0(τ, s, z) to be the probability that S0 answers queries
according to τ , and that S = s and Z = z. In this case pS1(τ, s, z) means the probability that
S1 behaves according to the entries in (τ, s, z), and that S←$ ({0, 1}k)t and Lr←$ {0, 1}n (for all
r ∈ {1, . . . , t}\{v1, . . . , vℓ}) independent of S1 agree with what’s specified in (s, z). It suffices to
prove that

pS1(τ, s, z)− pS0(τ, s, z) ≤ pS1(τ, s, z) · 4ℓqp1[s] · · · pℓ[s]

2nℓ
,

since summing both sides for all z leads to Equation (29). Wlog, we only need to consider z such
that pS1(τ, s, z) > 0. We’ll use the transcript-reduction method, in which the other systems S′

0

and S′
1 will provide the real and ideal games for an KAC[π, ℓ] respectively.

The family π is constructed as follows. Recall that z specifies subkey Li for every index i ∈
{1, . . . , t}\{v1, . . . , vℓ}. Let ρ(i, ·) = E(Ji, ·) ⊕ Li for all i ∈ {1, . . . , t}\{v1, . . . , vℓ}. For functions
f, g : {0, 1}n → {0, 1}n, let f ◦ g denote the cascade of f and g, meaning that (f ◦ g)(x) =
g(f(x)) for every x ∈ {0, 1}n. For every j ∈ {1, . . . , ℓ}, let π(j, ·) = Fj(·) ◦ E(Jvj , ·), where
Fj(·) = ρ(vj−1 + 1, ·) ◦ · · · ◦ ρ(vj − 1, ·) and v0 = 0. Then π is a family of independent, ideal
permutations on {0, 1}n.

Next, the system S′
0 uses the subkeys (Lv1 , . . . , Lvℓ

) of S0 as its key. Let Fℓ+1(·) = ρ(vℓ+1, ·) ◦ · · · ◦
ρ(t, ·) if vℓ < t, and let Fℓ+1(·) be the identity function on {0, 1}n otherwise. Let f be the ideal
permutation that S1 uses to answer Enc/Dec queries, and let f ′ be the permutation such that
f ′ ◦Fℓ+1 = f . The system S′

1 uses f ′ to answer Enc/Dec queries. Hence on each Enc query (1, x)
and each b ∈ {0, 1}, the answer of Sb is exactly Fℓ+1(y), where y is the answer of S′

b for Enc query
(1, x).
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For each b ∈ {0, 1}, note that from (τ, s, z) in Sb, since we know all queries/answers for Fℓ+1,
we can “backtrack” to obtain q Enc queries/answers for S′

b. Moreover, for each i ∈ {1, . . . , ℓ},
since we know all queries/answers for Fj , we can “connect” that with the pj [s] queries/answers for
E(Jvj , ·) to obtain pj [s] queries/answers for πj . Let R(τ, s, z) be the corresponding transcript under
this reduction. For system Sb to behave according to (τ, s, z), it means that (i) S′

b must behave
according to R(τ, s, z), and (ii) for all r ∈ {1, . . . , t}\{v1, . . . , vℓ}, EJr and Lr must be as specified
in z, and S must be s. Since S′

b is independent of (ii),

pS0(τ, s, z)

pS1(τ, s, z)
=

pS′

0
(R(τ, s, z))

pS′

1
(R(τ, s, z))

.

Hence, what’s left is to prove that

pS′

1
(R(τ, s, z))− pS′

0
(R(τ, s, z)) ≤ pS′

1
(R(τ, s, z)) · 4ℓqp1[s] · · · pℓ[s]

2nℓ
,

but this follows from Equation (17) in the proof of Theorem 1.

Case 2: t = 2. Our goal is to show that

pS1(τ)− pS0(τ) =
∑

s∈U

pS1(τ, s)− pS0(τ, s)

≤ pS1(τ) ·
(

q(4p)2

22(n+k)
+

4qp

22k+n
+

2q

2k+n/2

)

.

Note that B1 = ∅ and as in Case 1,

∑

s∈B2

pS1(τ, s)− pS0(τ, s) ≤ pS1(τ) · q(4p)2

22(n+k)
.

Since |B0| = |U|/2k, what’s left is to prove that, for any s = (J, J) ∈ B0,

pS1(τ, s)− pS0(τ, s) ≤ pS1(τ, s) ·
(4q · p[s]

2n
+

2q

2n/2

)

, (33)

where p[s] is the number of entries (prim, J, ·, ·) in τ . Fix s = (J, J) ∈ B0. If 2q > 2n/2 then

Equation (33) vacuously holds. Assume that 2q ≤ 2n/2, and thus 2q
2n/2 ≥ 4q2

2n . Hence it suffices to
prove that

pS1(τ, s)− pS0(τ, s) ≤ pS1(τ, s) · 4q(q + p[s])

2n
.

Wlog, assume that q+p[s] ≤ 2n, otherwise the bound is vacuous. Let us first explain the proof idea.
We now can’t directly employ the transcript-reduction technique to go to KAC, because both of
our rounds use the same permutation. To resolve this issue, we handicap the following information:
(i) the subkey L0, and (ii) the round-1 outputs EJ(x ⊕ L0) for all entries (enc, x, y). With this
information, the first round can be ignored, and we can go to KAC[π, 1], with π = EJ and key
(L1, L2). But now (ii) gives the adversary additional q Prim entries, and thus the adversary will
have totally q + p[s] Prim entries and q Enc entries.
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Formally, let Z be the random variable for the subkey L0 of S0 and (prim, J, x⊕ L0, EJ(x⊕ L0)),
for all entries (enc, x, y) in τ . We write pS0(τ, s, z) to be the probability that S0 answers queries
according to τ , and that S = s and Z = z. In this case pS1(τ, s, z) means the probability that S1

behaves according to the entries in (τ, s, z), and that S←$ ({0, 1}k)2 and L0←$ {0, 1}n independent
of S1 agree with what’s specified in (s, z). It suffices to prove that

pS1(τ, s, z)− pS0(τ, s, z) ≤ pS1(τ, s, z) · q(q + p[s])

2n
.

Wlog, we only need to consider z such that pS1(τ, s, z) > 0. Let π = EJ . We’ll use the transcript-
reduction method, in which the systems S′

0 and S′
1 will provide the real and ideal games for

KAC[π, 1]. The system S′
0 uses the subkeys (L1, L2) of S0 as its key. Let f be the ideal permutation

that S1 uses to answer its Enc/Dec queries. Let L be the subkey specified in z. The system S′
1 uses

the permutation f ′ such that f ′(EJ(x ⊕ L)) = f(x) for every x ∈ {0, 1}n to answer its Enc/Dec

queries; this f ′ is also an ideal permutation on {0, 1}n.

Construct R(τ, s, z) as follows. For any entry (prim, J, u, v) in (τ, z), change it to (prim, 1, u, v).
For each entry (enc, x, y) in τ , look for the unique entry (prim, 1, u, v) such that x⊕u is the subkey
specified in z, and then add (enc, v, y) to R(τ, s, z). For each b ∈ {0, 1}, for system Sb to behave
according to (τ, s, z), it means that (i) S′

b must behave according to R(τ, s, z), and (ii) L0 must be
as specified in z, and S must be s. Since S′

b is independent of (ii),

pS0(τ, s, z)

pS1(τ, s, z)
=

pS′

0
(R(τ, s, z))

pS′

1
(R(τ, s, z))

.

Hence, what’s left is to prove that

pS′

1
(R(τ, s, z))− pS′

0
(R(τ, s, z)) ≤ pS′

1
(R(τ, s, z)) · 4q(q + p[s])

2n
,

but this follows from Equation (17) in the proof of Theorem 1.

E XC’s relation with Gaži and Tessaro’s 2XOR

Gaži and Tessaro (GT) [19] consider the following variant 2XOR[E] : K × {0, 1}n → {0, 1}n
of XC[2, E], for K = {0, 1}k × {0, 1}2n. Let ∆ ∈ {0, 1}k be a nonzero constant. Then for any
K = (J, L1, L2) ∈ K and any x ∈ {0, 1}n, 2XOR[E](K, x) = EJ⊕∆(EJ(x ⊕ L1) ⊕ L2). See Fig. 7
for an illustration of the 2XOR construction. GT show that in the ideal-cipher model, for any ad-
versary A that makes 2n queries to Enc/Dec, and p queries to Prim/PrimInv, Adv

±prp
2XOR[E](A) ≤

4(p2/22k+n)1/3. If we ignore the exponent 1/3, which is an artifact of GT’s proof technique, then at
the first glance, the construction 2XOR[E] may appear as strong as XC[E, 2]. However, we’ll show
an attack to demonstrate that in the multi-user setting, the former is much weaker than the latter.
We’ll make O(2k) queries to Enc/Dec, and O(2n) queries to Prim/PrimInv, and get advantage at
least 1/2 over 2XOR[E]. On the other hand, from Theorem 4, such an attack can only hope to get
advantage about 2k−2 min{k,n} over XC[E, 2]. For practical choices of E such as AES (k = n = 128)
or DES (k = 56 and n = 64), the gap between 2XOR[E] and XC[E, 2] is large.

The attack is as follows. Let ℓ = 1 + ⌈(2k + 3)/(n − 1)⌉. Assume that ℓ = O(1) and ℓ ≤ 2n−1,
which holds for all practical values of n and k. Pick arbitrary distinct n-bit strings y1, . . . , yℓ. For
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each i = 1, . . . , 2k, query Dec(i, y1), . . . ,Dec(i, yℓ) to get answers x1[i], . . . , xℓ[i] respectively, and
store (x1[i]⊕x2[i])‖ · · · ‖(x1[i]⊕xℓ[i]) in a hash table H. Pick an arbitrary key J ∈ {0, 1}k and query
PrimInv(J, ·) on the entire domain, and maintain the queries/answers in an array R, meaning that
R[x] = PrimInv(J, x) for every x ∈ {0, 1}n. Then, query PrimInv(J ⊕∆, y1), . . . ,PrimInv(J ⊕
∆, yℓ) to get answers u1, . . . , uℓ respectively. Next, for each s ∈ {0, 1}n, process as follows. Let
vj = s⊕(u1⊕uj) for every j ≤ ℓ. If there is an entry in H matching (R[v1]⊕R[v2])‖ · · · ‖(R[v1]⊕R[vℓ])
then terminate and output 1. Finally, at the end of the loop, output 0. The cost of the attack is
O(n(2k + 2n)), in both time and space.

For analysis, first consider the real game. For each individual user, the chance that its key
J matches the corresponding key in the attack is only 1/2k. However, since we have 2k users,
the chance that there’s some user whose key J matches the corresponding key in the attack is
1− (1− 1/2k)2k ≥ 1− 1/e, where e is the base of the natural logarithm. Moreover, if there’s such
a match then the adversary will always output 1. Hence in the real game, the chance that the
adversary outputs 1 is at least 1− 1/e. On the other hand, in the ideal game, the chance that the
adversary outputs 1 is at most

22k

(2n − 1) · · · (2n − ℓ + 1)
≤ 22k

2(n−1)(ℓ−1)
≤ 1

8
.

Hence the adversary wins with advantage at least 1− 1/e− 1/8 ≥ 1/2.

In 2XOR[E], one uses two related keys J and J ⊕∆ for E. If one instead uses two keys J and
J ′, say J ′←$ {0, 1}k\{J}, then the new scheme is still vulnerable to a variant of the attack above.
Recall that in the original attack, we only query query PrimInv(J ′⊕∆, y1), . . . ,PrimInv(J ′⊕∆, yℓ)
and then search the hash table for J ′ = J ⊕∆. Now we’ll do that for every J ′ ∈ {0, 1}k\{J}. We’ll
need O(2k) queries for Enc/Dec and O(2k + 2n) queries for Prim/PrimInv. The storage cost is
still O(n(2k + 2n)) but the running time is now O(n(22k + 2n)).
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