# Improved Factorization of $N=p^{r} q^{s}$ 

Jean-Sébastien Coron ${ }^{1}$ and Rina Zeitoun ${ }^{2}$<br>${ }^{1}$ University of Luxembourg<br>jean-sebastien.coron@uni.lu<br>${ }^{2}$ Oberthur Technologies, Cryptography and Security Group, France<br>r.zeitoun@oberthur.com

June 1, 2016


#### Abstract

Boneh et al. showed at Crypto 99 that moduli of the form $N=p^{r} q$ can be factored in polynomial time when $r \geq \log p$. Their algorithm is based on Coppersmith's technique for finding small roots of polynomial equations. Recently, Coron et al. showed that $N=p^{r} q^{s}$ can also be factored in polynomial time, but under the stronger condition $r \geq \log ^{3} p$. In this paper, we show that $N=p^{r} q^{s}$ can actually be factored in polynomial time when $r \geq \log p$, the same condition as for $N=p^{r} q$.


## 1 Introduction

Factoring $\boldsymbol{N}=\boldsymbol{p}^{r} \boldsymbol{q}$. At Eurocrypt 96, Coppersmith showed how to recover small roots of polynomial equations using lattice reduction [Cop96a,Cop96b]. Coppersmith's technique has found numerous applications in cryptography, in particular the factorization of $N=p q$ when half of the bits of $p$ are known [Cop97].

Coppersmith's technique was later extended to moduli $N=p^{r} q$ by Boneh, Durfee and Howgrave-Graham (BDH) at Crypto 99 [BDHG99]. They showed that knowing a fraction $1 /(r+1)$ of the bits of $p$ is enough for polynomial-time factorization of $N=p^{r} q$. Therefore when $r \simeq \log p$ only a constant number of bits of $p$ must be known, hence those bits can be recovered by exhaustive search, and factoring $N=p^{r} q$ becomes polynomial-time [BDHG99]. Such moduli had been suggested by Takagi [Tak98] to significantly speed up RSA decryption; the BDH result shows that Takagi's cryptosystem should not be used with a large $r$.

Factoring $\boldsymbol{N}=\boldsymbol{p}^{\boldsymbol{r}} \boldsymbol{q}^{\boldsymbol{s}}$. In light of the BDH attack, Lim et al. in [LKYL00] extended Takagi's cryptosystem to moduli of the form $N=p^{r} q^{s}$; namely the generalization to factoring moduli $N=p^{r} q^{s}$ was left as an open problem in [BDHG99]. The authors of [LKYL00] obtained an even faster decryption than in Takagi's cryptosystem; in particular, for a 8192-bit RSA modulus $N=p^{2} q^{3}$, decryption becomes 15 times faster than for a standard RSA modulus of the same size.

However, Coron et al. have recently described in [CFRZ16] an algorithm to factor $N=p^{r} q^{s}$ in deterministic polynomial time when $r$ and/or $s$ is greater than $\log ^{3} \max (p, q)$. Their method consists in finding a good decomposition of the exponents $r$ and $s$ :

$$
\left\{\begin{array}{r}
r=u \cdot \alpha+a \\
s=u \cdot \beta+b
\end{array}\right.
$$

with large enough integer $u$, and small enough integers $\alpha, \beta, a, b$, so that $N=p^{r} q^{s}$ can be rewritten as $N=P^{u} Q$ where $P=p^{\alpha} q^{\beta}$ and $Q=p^{a} q^{b}$, and subsequently apply BDH on
$N=P^{u} Q$ to recover $P$ and $Q$, and eventually $p$ and $q$. In BDH the condition for polynomialtime factorization of $N=P^{u} Q$ is $u=\Omega(\log Q)$. Using lattice reduction and working through tedious arithmetic, the authors show that for any exponent pair $(r, s)$ one can always find integers $u, \alpha, \beta, a$ and $b$ satisfying $u \simeq r^{2 / 3}$ and $\alpha, \beta, a, b \simeq r^{1 / 3}$, which allows them to derive their final condition $r=\Omega\left(\log ^{3} \max (p, q)\right)$ for polynomial-time factorization of $N=p^{r} q^{s}$.

Our Result. In this paper, we describe an algorithm for factoring moduli of the form $N=$ $p^{r} q^{s}$ in polynomial time, under the weaker condition $r=\Omega(\log q)$, the same condition as BDH for $N=p^{r} q$. Apart from being more efficient than [CFRZ16], our method is also much simpler. Our technique works as follows: since we can assume that $\operatorname{gcd}(r, s)=1$, from Bézout identity we can find two positive integers $\alpha$ and $\beta$ such that:

$$
\alpha \cdot s-\beta \cdot r=1
$$

This enables to decompose $N^{\alpha}$ (instead of $N$ previously) as:

$$
N^{\alpha}=\left(p^{r} q^{s}\right)^{\alpha}=p^{\alpha r} q^{\alpha s}=p^{\alpha r} q^{\beta r+1}=\left(p^{\alpha} q^{\beta}\right)^{r} q
$$

and apply BDH directly on $N^{\alpha}=P^{r} q$ where $P:=p^{\alpha} q^{\beta}$, and recover $p$ and $q$. Since for BDH the condition for polynomial-time factorization is $r=\Omega(\log q)$, we obtain exactly the same condition for factoring $N=p^{r} q^{s}$. This shows that moduli of the form $N=p^{r} q^{s}$ are just as vulnerable as moduli $N=p^{r} q$ when the exponent $r$ (or $s$ ) is large.

## 2 Background

### 2.1 Coppersmith's Method

Coppersmith showed in [Cop96b,Cop97] how to find efficiently all small roots of univariate modular polynomial equations. Given a polynomial $f(x)$ of degree $\delta$ modulo an integer $N$ of unknown factorization, Coppersmith's method allows to recover in polynomial time in $\log N$ all integers $x_{0}$ such that $f\left(x_{0}\right) \equiv 0 \bmod N$ with $\left|x_{0}\right|<N^{1 / \delta}$.

A variant of Coppersmith's theorem for univariate modular polynomial equations was obtained by Blömer and May [BM05], using Coppersmith's technique for finding small roots of bivariate integer equations:

Theorem 1 ([BM05, Corollary 14]). Let $N$ be a composite integer of unknown factorization with divisor $b \geq N^{\beta}$. Let $f(x)=\sum_{i} f_{i} x^{i} \in \mathbb{Z}[x]$ be a polynomial of degree $\delta$ with $\operatorname{gcd}\left(f_{1}, \ldots, f_{\delta}, N\right)=1$. Then we can find all points $x_{0} \in \mathbb{Z}$ satisfying $f\left(x_{0}\right)=b$ in time polynomial in $\log N$ and $\delta$ provided that $\left|x_{0}\right| \leq N^{\beta^{2} / \delta}$.

Coppersmith's technique has found many applications in cryptography (see [May10] for a survey), in particular the factorization of $N=p q$ when half of the bits of $p$ are known [Cop97].

### 2.2 Factoring $N=p^{r} \boldsymbol{q}$

Coppersmith's technique was later extended to moduli $N=p^{r} q$ by Boneh, Durfee and Howgrave-Graham (BDH) at Crypto 99 [BDHG99]. They showed that knowing a fraction
$1 /(r+1)$ of the bits of $p$ is enough for polynomial-time factorization of $N=p^{r} q$. Therefore when $r \simeq \log p$ only a constant number of bits of $p$ must be known, hence those bits can be recovered by exhaustive search, and factoring $N=p^{r} q$ becomes polynomial-time [BDHG99]. We recall their main theorem.

Theorem 2 (BDH). Let $N=p^{r} q$ where $q<p^{c}$ for some $c$. The factor $p$ can be recovered from $N, r$, and $c$ by an algorithm with a running time of:

$$
\exp \left(\frac{c+1}{r+c} \cdot \log p\right) \cdot \mathcal{O}(\gamma)
$$

where $\gamma$ is the time it takes to run LLL on a lattice of dimension $\mathcal{O}\left(r^{2}\right)$ with entries of size $\mathcal{O}(r \log N)$. The algorithm is deterministic, and runs in polynomial space.

When $p$ and $q$ have similar bitsize we can take $c=1$; in that case we have $(c+1) /(r+c)=$ $\mathcal{O}(1 / r)$ and therefore the algorithm is polynomial time when $r=\Omega(\log p)$. More generally one can take $c=\log q / \log p$, which gives:

$$
\frac{c+1}{r+c} \cdot \log p \leq \frac{c+1}{r} \cdot \log p \leq \frac{\frac{\log q}{\log p}+1}{r} \cdot \log p \leq \frac{\log q+\log p}{r}
$$

Therefore a sufficient condition for polynomial-time factorization is $r=\Omega(\log q+\log p)$.
As observed in [CFRZ16], one can actually obtain the simpler condition $r=\Omega(\log q)$, either by slightly modifying the proof of Theorem 2 in [BDHG99], or directly from the Blömer and May variant recalled previously (Theorem 1). We obtain the following theorem. For completeness we provide a proof based on Theorem 1. Note that in the theorem the integer $q$ is prime but $p$ can be any integer.

Theorem 3 (BDH). Let $p$ and $q$ be two integers with $p \geq 2$ and $q \geq 2$, and $q$ a prime. Let $N=p^{r} q$. The factors $p$ and $q$ can be recovered in polynomial time in $\log N$ if $r=\Omega(\log q)$.

Proof. Given $r>1$ the decomposition $N=p^{r} q$ is unique for a prime $q$. One considers the polynomial $f(x)=(P+x)^{r}$ where $P$ is an integer such that $p=P+x_{0}$ and the high-order bits of $P$ are the same as the high-order bits of $p$. Let $b:=p^{r}$ be a divisor of $N$. The polynomial $f$ satisfies $f\left(x_{0}\right)=\left(P+x_{0}\right)^{r}=p^{r}=b$. According to Theorem 1, one can recover $x_{0}$ in time polynomial in $\log N$ and $r$ provided that $\left|x_{0}\right| \leqslant N^{\beta^{2} / r}$, where $\beta$ is such that $b \geqslant N^{\beta}$. One can take $b=p^{r}=N^{\beta}$, which gives:

$$
N^{\beta^{2} / r}=\left(N^{\beta}\right)^{\beta / r}=\left(p^{r}\right)^{\beta / r}=p^{\beta}
$$

Therefore, one gets the condition to recover $x_{0}$ :

$$
\begin{equation*}
\left|x_{0}\right| \leqslant p^{\beta} \tag{1}
\end{equation*}
$$

Moreover from $p^{r}=N^{\beta}=\left(p^{r} q\right)^{\beta}$ we get:

$$
\beta=\frac{r \log p}{r \log p+\log q}=\frac{1}{1+\frac{\log q}{r \log p}} \geqslant 1-\frac{\log q}{r \log p}
$$

Therefore we have:

$$
\begin{equation*}
p^{\beta} \geqslant p^{1-\frac{\log q}{r \log p}}=p \cdot\left(p^{\frac{\log q}{\log p}}\right)^{-1 / r}=p \cdot q^{-1 / r} . \tag{2}
\end{equation*}
$$

By combining inequalities (1) and (2), one gets the following sufficient condition:

$$
\left|x_{0}\right| \leqslant p \cdot q^{-1 / r} .
$$

Therefore it suffices to perform exhaustive search on $q^{1 / r}$ possible values for the high-order bits of $p$. When $r=\Omega(\log q)$ we have $q^{1 / r}=\mathcal{O}(1)$, and therefore one can recover $p$ and $q$ in time polynomial in $\log N$.

## 3 Improved Factorization of $N=p^{r} q^{s}$

We show that moduli of the form $N=p^{r} q^{s}$ can be factored in polynomial time under the condition $r=\Omega(\log q)$; this improves [CFRZ16] which required $r=\Omega\left(\log ^{3} \max (p, q)\right)$; our technique is also much simpler. We can assume that $r>s$, since otherwise we can swap $p$ and $q$. We can also assume that $\operatorname{gcd}(r, s)=1$, since otherwise one should consider $N^{\prime}=$ $N^{1 / \operatorname{gcd}(r, s)}$. Furthermore, we assume that the exponents $r$ and $s$ are known; otherwise they can be recovered by exhaustive search in time $\mathcal{O}\left(\log ^{2} N\right)$.

Theorem 4. Let $N=p^{r} q^{s}$ be an integer of unknown factorization with $\operatorname{gcd}(r, s)=1$. Given $N$ as input, one can recover the prime factors $p$ and $q$ in polynomial time in $\log N$ under the condition $r=\Omega(\log q)$.

Proof. Since $\operatorname{gcd}(r, s)=1$, from Bézout's identity there exist two positive integers $\alpha$ and $\beta$ such that:

$$
\alpha \cdot s-\beta \cdot r=1,
$$

where we can take $0<\alpha<r$ since $\alpha \equiv s^{-1}(\bmod r)$. Therefore we can write:

$$
N^{\alpha}=\left(p^{r} q^{s}\right)^{\alpha}=p^{\alpha r} q^{\alpha s}=p^{\alpha r} q^{\beta r+1}=\left(p^{\alpha} q^{\beta}\right)^{r} q
$$

Therefore letting $P:=p^{\alpha} q^{\beta}$, we obtain $N^{\alpha}=P^{r} q$. One can thus apply Theorem 3 on $N^{\alpha}$, which enables to recover the integers $P$ and $q$ from $N^{\alpha}=P^{r} q$ in polynomial time in $\log \left(N^{\alpha}\right)$, under the condition $r=\Omega(\log q)$. Since $\alpha<r<\log N$, this enables to recover the factorization of $N$ in time polynomial in $\log N$ under that condition.

## References

[BDHG99] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham. Factoring $n=p^{r} q$ for large $r$. In Advances in Cryptology - Proc. CRYPTO '99, volume 1666 of Lecture Notes in Computer Science, pages 326337. Springer, 1999.
[BM05] Johannes Blömer and Alexander May. A tool kit for finding small roots of bivariate polynomials over the integers. In Advances in Cryptology - Proc. EUROCRYPT '05, volume 3494 of Lecture Notes in Computer Science, pages 251-267. Springer, 2005.
[CFRZ16] Jean-Sébastien Coron, Jean-Charles Faugère, Guénaël Renault, and Rina Zeitoun. Factoring $N=$ $p^{r} q^{s}$ for large $r$ and $s$. In Topics in Cryptology - CT-RSA 2016-The Cryptographers' Track at the RSA Conference 2016, Proceedings, pages 448-464, 2016.
[Cop96a] Don Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits known. In Advances in Cryptology - Proc. EUROCRYPT '96, volume 1070 of Lecture Notes in Computer Science, pages 178-189. Springer, 1996.
[Cop96b] Don Coppersmith. Finding a small root of a univariate modular equation. In Advances in Cryptology - Proc. EUROCRYPT '96, volume 1070 of Lecture Notes in Computer Science, pages 155-165. Springer, 1996.
[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptology, 10(4):233-260, 1997. Journal version of [Cop96b,Cop96a].
[LKYL00] Seongan Lim, Seungjoo Kim, Ikkwon Yie, and Hongsub Lee. A generalized Takagi-cryptosystem with a modulus of the form $p^{r} q^{s}$. In Progress in Cryptology - INDOCRYPT 2000, First International Conference in Cryptology in India, Calcutta, India, December 10-13, 2000, Proceedings, pages 283294, 2000.
[May10] Alexander May. Using LLL-reduction for solving RSA and factorization problems. In The LLL Algorithm - Survey and Applications, pages 315-348. 2010.
[Tak98] Tsuyoshi Takagi. Fast RSA-type cryptosystem modulo $p^{k} q$. In Advances in Cryptology - CRYPTO '98, 18th Annual International Cryptology Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings, pages 318-326, 1998.

