
Improved Factorization of N = prqs

Jean-Sébastien Coron1 and Rina Zeitoun2

1 University of Luxembourg
jean-sebastien.coron@uni.lu

2 Oberthur Technologies, Cryptography and Security Group, France
r.zeitoun@oberthur.com

June 1, 2016

Abstract. Boneh et al. showed at Crypto 99 that moduli of the form N = prq can be factored
in polynomial time when r ≥ log p. Their algorithm is based on Coppersmith’s technique for
finding small roots of polynomial equations. Recently, Coron et al. showed that N = prqs can
also be factored in polynomial time, but under the stronger condition r ≥ log3 p. In this paper,
we show that N = prqs can actually be factored in polynomial time when r ≥ log p, the same
condition as for N = prq.

1 Introduction

Factoring N = prq. At Eurocrypt 96, Coppersmith showed how to recover small roots of
polynomial equations using lattice reduction [Cop96a,Cop96b]. Coppersmith’s technique has
found numerous applications in cryptography, in particular the factorization of N = pq when
half of the bits of p are known [Cop97].

Coppersmith’s technique was later extended to moduli N = prq by Boneh, Durfee and
Howgrave-Graham (BDH) at Crypto 99 [BDHG99]. They showed that knowing a fraction
1/(r + 1) of the bits of p is enough for polynomial-time factorization of N = prq. Therefore
when r ' log p only a constant number of bits of p must be known, hence those bits can be
recovered by exhaustive search, and factoring N = prq becomes polynomial-time [BDHG99].
Such moduli had been suggested by Takagi [Tak98] to significantly speed up RSA decryption;
the BDH result shows that Takagi’s cryptosystem should not be used with a large r.

Factoring N = prqs. In light of the BDH attack, Lim et al. in [LKYL00] extended Takagi’s
cryptosystem to moduli of the form N = prqs; namely the generalization to factoring moduli
N = prqs was left as an open problem in [BDHG99]. The authors of [LKYL00] obtained
an even faster decryption than in Takagi’s cryptosystem; in particular, for a 8192-bit RSA
modulus N = p2q3, decryption becomes 15 times faster than for a standard RSA modulus of
the same size.

However, Coron et al. have recently described in [CFRZ16] an algorithm to factor N = prqs

in deterministic polynomial time when r and/or s is greater than log3 max(p, q). Their method
consists in finding a good decomposition of the exponents r and s:{

r = u · α+ a

s = u · β + b

with large enough integer u, and small enough integers α, β, a, b, so that N = prqs can be
rewritten as N = P uQ where P = pαqβ and Q = paqb, and subsequently apply BDH on

N = P uQ to recover P and Q, and eventually p and q. In BDH the condition for polynomial-
time factorization of N = P uQ is u = Ω(logQ). Using lattice reduction and working through
tedious arithmetic, the authors show that for any exponent pair (r, s) one can always find
integers u, α, β, a and b satisfying u ' r2/3 and α, β, a, b ' r1/3, which allows them to derive
their final condition r = Ω(log3 max(p, q)) for polynomial-time factorization of N = prqs.

Our Result. In this paper, we describe an algorithm for factoring moduli of the form N =
prqs in polynomial time, under the weaker condition r = Ω(log q), the same condition as
BDH for N = prq. Apart from being more efficient than [CFRZ16], our method is also much
simpler. Our technique works as follows: since we can assume that gcd(r, s) = 1, from Bézout
identity we can find two positive integers α and β such that:

α · s− β · r = 1

This enables to decompose Nα (instead of N previously) as:

Nα = (prqs)α = pαrqαs = pαrqβr+1 =
(
pαqβ

)r
q

and apply BDH directly on Nα = P rq where P := pαqβ, and recover p and q. Since for BDH
the condition for polynomial-time factorization is r = Ω(log q), we obtain exactly the same
condition for factoring N = prqs. This shows that moduli of the form N = prqs are just as
vulnerable as moduli N = prq when the exponent r (or s) is large.

2 Background

2.1 Coppersmith’s Method

Coppersmith showed in [Cop96b,Cop97] how to find efficiently all small roots of univariate
modular polynomial equations. Given a polynomial f(x) of degree δ modulo an integer N of
unknown factorization, Coppersmith’s method allows to recover in polynomial time in logN
all integers x0 such that f(x0) ≡ 0 mod N with |x0| < N1/δ.

A variant of Coppersmith’s theorem for univariate modular polynomial equations was
obtained by Blömer and May [BM05], using Coppersmith’s technique for finding small roots
of bivariate integer equations:

Theorem 1 ([BM05, Corollary 14]). Let N be a composite integer of unknown factor-
ization with divisor b ≥ Nβ. Let f(x) =

∑
i fix

i ∈ Z[x] be a polynomial of degree δ with
gcd(f1, . . . , fδ, N) = 1. Then we can find all points x0 ∈ Z satisfying f(x0) = b in time
polynomial in logN and δ provided that |x0| ≤ Nβ2/δ.

Coppersmith’s technique has found many applications in cryptography (see [May10] for a
survey), in particular the factorization of N = pq when half of the bits of p are known [Cop97].

2.2 Factoring N = prq

Coppersmith’s technique was later extended to moduli N = prq by Boneh, Durfee and
Howgrave-Graham (BDH) at Crypto 99 [BDHG99]. They showed that knowing a fraction

2

1/(r + 1) of the bits of p is enough for polynomial-time factorization of N = prq. Therefore
when r ' log p only a constant number of bits of p must be known, hence those bits can be
recovered by exhaustive search, and factoring N = prq becomes polynomial-time [BDHG99].
We recall their main theorem.

Theorem 2 (BDH). Let N = prq where q < pc for some c. The factor p can be recovered
from N , r, and c by an algorithm with a running time of:

exp

(
c+ 1

r + c
· log p

)
· O(γ),

where γ is the time it takes to run LLL on a lattice of dimension O(r2) with entries of size
O(r logN). The algorithm is deterministic, and runs in polynomial space.

When p and q have similar bitsize we can take c = 1; in that case we have (c+1)/(r+c) =
O(1/r) and therefore the algorithm is polynomial time when r = Ω(log p). More generally
one can take c = log q/ log p, which gives:

c+ 1

r + c
· log p ≤ c+ 1

r
· log p ≤

log q
log p + 1

r
· log p ≤ log q + log p

r

Therefore a sufficient condition for polynomial-time factorization is r = Ω(log q + log p).

As observed in [CFRZ16], one can actually obtain the simpler condition r = Ω(log q),
either by slightly modifying the proof of Theorem 2 in [BDHG99], or directly from the Blömer
and May variant recalled previously (Theorem 1). We obtain the following theorem. For
completeness we provide a proof based on Theorem 1. Note that in the theorem the integer q
is prime but p can be any integer.

Theorem 3 (BDH). Let p and q be two integers with p ≥ 2 and q ≥ 2, and q a prime. Let
N = prq. The factors p and q can be recovered in polynomial time in logN if r = Ω(log q).

Proof. Given r > 1 the decomposition N = prq is unique for a prime q. One considers the
polynomial f(x) = (P+x)r where P is an integer such that p = P+x0 and the high-order bits
of P are the same as the high-order bits of p. Let b := pr be a divisor of N . The polynomial
f satisfies f(x0) = (P + x0)

r = pr = b. According to Theorem 1, one can recover x0 in time
polynomial in logN and r provided that |x0| 6 Nβ2/r, where β is such that b > Nβ. One can
take b = pr = Nβ, which gives:

Nβ2/r =
(
Nβ
)β/r

= (pr)β/r = pβ .

Therefore, one gets the condition to recover x0:

|x0| 6 pβ . (1)

Moreover from pr = Nβ = (prq)β we get:

β =
r log p

r log p+ log q
=

1

1 + log q
r log p

> 1− log q

r log p
.

3

Therefore we have:

pβ > p
1− log q

r log p = p ·
(
p

log q
log p

)−1/r
= p · q−1/r . (2)

By combining inequalities (1) and (2), one gets the following sufficient condition:

|x0| 6 p · q−1/r .

Therefore it suffices to perform exhaustive search on q1/r possible values for the high-order
bits of p. When r = Ω(log q) we have q1/r = O(1), and therefore one can recover p and q in
time polynomial in logN . ut

3 Improved Factorization of N = prqs

We show that moduli of the form N = prqs can be factored in polynomial time under the
condition r = Ω(log q); this improves [CFRZ16] which required r = Ω(log3 max(p, q)); our
technique is also much simpler. We can assume that r > s, since otherwise we can swap p
and q. We can also assume that gcd(r, s) = 1, since otherwise one should consider N ′ =
N1/ gcd(r,s). Furthermore, we assume that the exponents r and s are known; otherwise they
can be recovered by exhaustive search in time O(log2N).

Theorem 4. Let N = prqs be an integer of unknown factorization with gcd(r, s) = 1. Given
N as input, one can recover the prime factors p and q in polynomial time in logN under the
condition r = Ω(log q).

Proof. Since gcd(r, s) = 1, from Bézout’s identity there exist two positive integers α and β
such that:

α · s− β · r = 1 ,

where we can take 0 < α < r since α ≡ s−1 (mod r). Therefore we can write:

Nα = (prqs)α = pαrqαs = pαrqβr+1 =
(
pαqβ

)r
q

Therefore letting P := pαqβ, we obtain Nα = P rq. One can thus apply Theorem 3 on Nα,
which enables to recover the integers P and q from Nα = P rq in polynomial time in log(Nα),
under the condition r = Ω(log q). Since α < r < logN , this enables to recover the factorization
of N in time polynomial in logN under that condition. ut

References

[BDHG99] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham. Factoring n = prq for large r. In Advances
in Cryptology - Proc. CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 326–
337. Springer, 1999.

[BM05] Johannes Blömer and Alexander May. A tool kit for finding small roots of bivariate polynomials
over the integers. In Advances in Cryptology - Proc. EUROCRYPT ’05, volume 3494 of Lecture
Notes in Computer Science, pages 251–267. Springer, 2005.

[CFRZ16] Jean-Sébastien Coron, Jean-Charles Faugère, Guénaël Renault, and Rina Zeitoun. Factoring N =
prqs for large r and s. In Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the
RSA Conference 2016, Proceedings, pages 448–464, 2016.

4

[Cop96a] Don Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits
known. In Advances in Cryptology - Proc. EUROCRYPT ’96, volume 1070 of Lecture Notes in
Computer Science, pages 178–189. Springer, 1996.

[Cop96b] Don Coppersmith. Finding a small root of a univariate modular equation. In Advances in Cryptology
- Proc. EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages 155–165.
Springer, 1996.

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
J. Cryptology, 10(4):233–260, 1997. Journal version of [Cop96b,Cop96a].

[LKYL00] Seongan Lim, Seungjoo Kim, Ikkwon Yie, and Hongsub Lee. A generalized Takagi-cryptosystem
with a modulus of the form prqs. In Progress in Cryptology - INDOCRYPT 2000, First International
Conference in Cryptology in India, Calcutta, India, December 10-13, 2000, Proceedings, pages 283–
294, 2000.

[May10] Alexander May. Using LLL-reduction for solving RSA and factorization problems. In The LLL
Algorithm - Survey and Applications, pages 315–348. 2010.

[Tak98] Tsuyoshi Takagi. Fast RSA-type cryptosystem modulo pkq. In Advances in Cryptology - CRYPTO
’98, 18th Annual International Cryptology Conference, Santa Barbara, California, USA, August
23-27, 1998, Proceedings, pages 318–326, 1998.

5

