
Observations on the LPN Solving Algorithm from
Eurocrypt’16

Sonia Bogos and Serge Vaudenay

EPFL

Abstract. In this note we re-evaluate the Eurocrypt’16 paper by Zhang et al. [9] in the area
of LPN solving algorithms. We present the history of LPN solving algorithms and give the
general description of the algorithm from [9]. While this new algorithm claims to improve all the
previous results, we have discovered issues in its analysis. We review inconsistencies in complexity
estimates and a misconception of some new reduction algorithm. What we show is that the results
of [9] do not provide better performance compared with the results from Asiacrypt’14 [5].

1 LPN

Despite the interesting ideas from [9], we have discovered that there are inconsistencies in
the analysis of the LPN solving algorithm they introduce. In this note we explain where the
mistakes arise and we provide the updated results with the corrected algorithm.

For our explanations we keep the same notations as the ones from Zhang et al. [9]. We
present the definition of LPN as given in [9].

Definition 1 (LPN Problem). Let Berη be the Bernoulli distribution, i.e., if e ← Berη
then Pr[e = 0] = 1−η. Let 〈x,g〉 denote the scalar product of the vectors x and g, i.e., x · gT,

where gT denotes the transpose of g. Then an LPN oracle ΠLPN(k, η) for an unknown random

vector x ∈ {0, 1}k with a noise parameter η ∈ (0, 12) returns independent samples by

(g
$←− {0, 1}k , e← Berη : g, 〈x,g〉+ e).

The (k, η)-LPN problem consists of recovering the vector x according to the samples output by

the oracle ΠLPN(k, η). An algorithm S is called (n, t,m, δ)-solver if Pr[S = x : x
$←− {0, 1}k] ≥

δ, and it runs in time at most t and memory at most m with at most n oracle queries.

Thus, the LPN problem asks to recover the secret vector x, given the queries which consist
of uniformly random vectors and their noisy inner product with x.

In the history of the LPN problem there are several algorithms that solve it in subexpo-

nential time, i.e. the algorithm runs in time 2O(k
log k

) where k represents the size of the secret.
These solving algorithms can be split into two phases: a reduction phase and a solving phase.
During the reduction phase, we decrease the size of the secret to k′ ≤ k and in the solving
phase we recover the chunk of secret of k′ bits. We can also consider a third phase, the back
substitution, where we update the queries according to the result from the solving phase and
restart the process with an LPN instance where the secret is of size k−k′. We will not consider
the back substitution in this note as it is not considered in [9].

The first algorithm to solve LPN, BKW [1], is similar to a Gaussian elimination done
on blocks. During the reduction phase, the secret is reduced up to a single bit. The solving
phase recovers this bit by applying a majority rule. Improvements of it appeared in [7, 4]. The

algorithm of [7], called LF1, improves the solving phase by the use of the Walsh transform.
This work also introduces a new reduction method, called LF2. At Asiacrypt’14, Guo et al. [5]
improve the existing algorithms and introduce a new reduction method based on covering
codes. An overview of all these algorithms can be found in [2].

2 Chains

The work from [9] is proposing a new LPN solving algorithm that has the following structure:
given a (k, η)-LPN instance, the first step of their reduction phase is to do a sample selection.
It keeps from the LPN oracle only those samples that have 0 bits on an entire given window
of c bits. In this way, from a (k, η)-LPN instance we obtain a (k − c, η)-LPN instance. This
step is called sample selection.

The next step is to change the distribution of the secret. Initially, we work with a uniformly
distributed secret. It is a known result [6] that we can change this into a secret with the same
distribution of the noise. This step is entitled Gaussian elimination.

With the new secret, the algorithm is further reducing the size of the secret by xoring
pairs of vectors that have the same value on a window of b bits. This can be done by applying
the BKW reduction step (LF1), LF2 or a new method which is named LF(4). By performing
this step t times, we end up to a (k − c− t ∗ b, η′)-LPN instance, where η′ = η2

t
for LF1 and

LF2 and η′ = η4
t
for LF(4). The use of the xoring is named collision procedure.

Using the fact that the distribution of the secret is the same as the one of the initial noise,
the algorithm is further guessing k1 bits of the secret. More precisely, it tries all possible values
of the k1 bit vector that have a Hamming weight smaller than w1. To make the algorithm
succeed, we must run it several times. Afterwards it is applying the covering code reduction
to further reduce the LPN instance into a (ℓ, η2

t
)-LPN instance where we use a [k2, ℓ] code

and k2 = k − c− t ∗ b− k1.
The solving phase consists in applying the Walsh transform on the remaining ℓ bits. Given

that the algorithm is guessing k1 bits of the secret, the Walsh transform has to be instantiated
∑w

i=0

(

k1
i

)

times.
Thus, in order to recover ℓ bits of the secret vector x, the algorithm from [9] performs

these steps:

– Sample selection (ss)
– Gaussian elimination (ge)
– Collision procedure (cp)
– Partial secret guessing (psg)
– Covering-coding (cc)
– Subspace hypothesis testing (WHT)

We use this sequence of steps for the (512, 1
8), (532,

1
8) and (592, 18)-LPN instances. De-

pending on the collision procedure chosen we have different results. Using the results from [9]
we present in Tables 1-3 each reduction step for each instance. By (k, n) − op − (k′, n′) we
denote the fact that we apply one of the reduction phase operations (ss, ge, cp, psg, cc) and
from an instance where the secret is of size k and we have n samples we reach an instance
where the secret is of size k′ and we are left with n′ samples. Different results are obtained
for LF1, LF2 and LF(4).

We provide below a table with the complexities used for every step of the algorithm
from [9], where:

2

LPN instance Algorithm using LF1

(512,1/8)-LPN (271.291, 512) − ss(5) − (266.291, 507) − ge − (266.291, 507) − cp(63) − (266.135 , 444) −
cp(63) − (265.961 , 381) − cp(63) − (265.762, 318) − cp(63) − (265.533 , 255) − cp(63) −
(265.259, 192) − psg(20, 1)− (265.259, 172) − cc(172, 62) − (265.259, 62) −WHT

(532,1/8)-LPN (273.584, 532) − ss(5) − (268.584, 527) − ge − (268.584, 527) − cp(65) − (268.458 , 462) −
cp(65) − (268.320 , 397) − cp(65) − (268.168, 332) − cp(65) − (267.998 , 267) − cp(65) −
(267.805, 202) − psg(20, 1)− (267.805, 182) − cc(182, 64) − (267.805, 64) −WHT

(592,1/8)-LPN (279.557, 592) − ss(4) − (275.557, 588) − ge − (279.557, 588) − cp(73) − (279.541 , 515) −
cp(73) − (279.526 , 442) − cp(73) − (279.510, 369) − cp(73) − (279.494 , 296) − cp(73) −
(279.478, 223) − psg(16, 1)− (279.478, 207) − cc(207, 72) − (279.478, 72) −WHT

Table 1. LPN solving algorithm using LF1 [9]

LPN instance Algorithm using LF2

(512,1/8)-LPN (269.987, 512)− ss(5)− (264.987,507) − ge− (264.987,507)− cp(64)− (264.974, 443)−
cp(64) − (264.948 , 379) − cp(64) − (264.896, 315) − cp(64) − (264.792 , 251) − cp(64) −
(264.583, 187) − psg(17, 1)− (264.583, 170) − cc(170, 62) − (264.583, 62) −WHT

(532,1/8)-LPN (273.983, 532) − ss(7) − (267.983, 522) − ge − (267.983, 522) − cp(66) − (266.966 , 459) −
cp(66) − (266.932 , 393) − cp(66) − (266.863, 327) − cp(66) − (266.726 , 261) − cp(66) −
(266.453, 195) − psg(17, 1)− (266.453, 178) − cc(178, 64) − (266.453, 64) −WHT

(592,1/8)-LPN (277.985, 592) − ss(4) − (273.985, 588) − ge − (273.985, 588) − cp(73) − (273.970 , 515) −
cp(73) − (273.940 , 442) − cp(73) − (273.880, 369) − cp(73) − (273.759 , 296) − cp(73) −
(273.519, 223) − psg(14, 1)− (273.519, 209) − cc(209, 72) − (273.519, 72) −WHT

Table 2. LPN solving algorithm using LF2 [9]

– N is the initial number of queries from the LPN oracle, i.e. N = 2cn
– n is the number of queries after the sample reduction
– k is the initial size of the secret vector
– t is the number of times the collision procedure is applied with parameter b
– a and u are two parameters that are used in the optimization of the Gaussian elimination

step
– n[i] represents the number of queries after i calls of the collision procedure. For LF1

n[i] = n[i− 1]− 2b, for LF2 n[i] =
(n[i−1]

2

)

2−b and for LF(4) we have n[i] =
(n[i−1]

4

)

2−b

– f is a parameter used in the pre-computation of the collision procedure
– w1 is an upper bound for the Hamming weight of the secret of size k1
– m is the cost of performing the xor
– k2 = k − c− t ∗ b− k1
– ℓ is the size of the secret at the end of the reduction phase

The final complexity of the algorithm is given by the following formula

C = C0 +
PC11 + C1 + C2 + C3 + C4 + C5

Pr(w1, k1)
,

where Pr(w1, k1) =
∑w1

i=0(1 − η)k1−iηi
(

k1
i

)

. PC11 represents the cost of updating the queries
during the Gaussian elimination. All the steps, except the first one, have to be repeated

1
Pr(w1,k1)

times because of the assumption that the secret of k1 bits has a Hamming weight
smaller or equal to w1.

The results from [9] are displayed in Tables 5-7. We added a column to correct the time
complexity as detailed hereafter. All the results are expressed in log2.

3

LPN instance Algorithm using LF(4)

(512,1/8)-LPN (263.526, 512)−ss(10)−(253.526, 502)−ge−(253.526, 502)− cp(156) − (253.519, 346)−
cp(156)− (253.490, 190)−psg(16, 1)− (253.490, 174)− cc(174, 60)− (253.490, 60)−WHT

(532,1/8)-LPN (270.504, 532)− ss(15)− (255.504 , 517)− ge− (255.504, 517)− cp(162)− (255.433, 355)−
cp(162)− (255.149, 193)−psg(13, 1)− (255.149, 180)− cc(180, 61)− (255.149, 61)−WHT

(592,1/8)-LPN (278.513, 592)− ss(18)− (260.513 , 574)− ge− (260.513, 574)− cp(177)− (260.468, 397)−
cp(177)− (260.288, 220)−psg(16, 1)− (260.288, 204)− cc(204, 68)− (260.288, 60)−WHT

Table 3. LPN solving algorithm using LF(4) [9]

Operation Complexity

Sample selection C0 = N

Gaussian elimination C1 = (n− k + c)(a+ ⌈(k − c)/u⌉)

Update of queries from Gaussian elimination PC11 = (2s − s− 1)(k − c)a

Collision procedure (LF1) C2 =
∑t

i=1
⌈ k−c+1−ib

f
⌉(n− k − c− i2b)

Collision procedure (LF2) C2 =
∑t

i=1
⌈ k−c+1−ib

f
⌉n[i]

Collision procedure (LF(4)) C2 =
∑t

i=1
(⌈ k−c+1−ib

f
⌉n[i] + (2bn[i])1/3)

Partial secret guessing C3 = m
∑w1

i=1

(

k1

i

)

Covering-coding C4 = mh

Subspace hypothesis testing C5 = ℓ2ℓ
∑w1

i=0

(

k1

i

)

Table 4. Complexities used by the LPN algorithm from [9]

3 LF(4)

The authors of [9] introduce a new reduction technique that they call LF(4) which is based
on the Wagner algorithm [8]. This reduction method finds four vectors from a list which,
when they are xored, give a zero. They use an information theoretic estimate on the required
number of vectors for a solution to exist and the complexity results from Wagner.

If we have n vectors of b bits, information theory says we need n ≈ (4! · 2b) 1
4 . For this

n, there is an algorithm of complexity n2

2 ≈
√
6 · 2b/2 to find a solution (make a list of XOR

of two strings then look for a collision). The Wagner algorithm works with the better time
complexity of 2b/3 but needs a larger n ≈ 2b/3 because it looks for solutions such that the
XOR of the first two vectors starts with b

3 zero bits. For this, make a list of XOR of two
vectors colliding on their first b/3 bits then look for collisions of their XOR on the remaining
bits. What the authors of [9] use is a data complexity of 2b/4 and a time complexity of 2b/3

by invoking Wagner. So, they mix up the two algorithms: they take the best data complexity
of the two and the best time complexity of the two without realising that this applies to two
different ones. For their algorithm, they need more than one solution so instead of having a

complexity of 2b/3, they will have 2b/3n
1/3
sol with the Wagner algorithm (see C2 for LF(4) from

Table 4), where nsol represents the number of solutions for LF(4). The data complexity for

the information theory algorithm becomes n = (4! · nsol2
b)

1
4 . By looking at our cp step from

Table 3 in LPN(512,1/8), we can see that n = nsol = 253.5, b = 156 is consistent with this
formula.

4

LPN instance Time Initial data N Memory Pre-computation Time corrected

(512, 1/8) 75.897 71.291 75.281 66.164 81.79

(532, 1/8) 78.182 73.584 77.629 68.053 84.06

(592, 1/8) 84.715 79.557 84.764 76.391 90.75

Table 5. Performance of LPN solving algorithm using LF1 [9]

LPN instance Time Initial data N Memory Pre-computation Time corrected

(512, 1/8) 74.732 69.987 73.983 66.164 80.45

(532, 1/8) 76.902 73.983 76.028 68.053 82.53

(592, 1/8) 83.843 77.985 83.204 76.391 89.46

Table 6. Performance of LPN solving algorithm using LF2 [9]

They claim that their results are confirmed by simulations, but the results they provide
miss the time complexity of the simulations.

Using the Wagner algorithm for LF(4) would mean applying LF2 operation two consecu-
tive times.

4 Data Complexity

The data complexity N presented in Tables 5, 6, 7 and in [9] is given in k-bit strings while
the memory complexity M is given in bits. So, when seeing a data complexity of 269.987

for LF2 with (512, 1/8)-LPN instance (Table 6 of [9] and Table 6 in this note), one should
understand 278.987 bits. This is larger than the claimed time complexity and the claimed
memory complexity.

Also, the cost of the first step, the sample selection, is taken to be C0 = N , i.e. the number
of queries. During this step, the algorithm discards any vector that is not 0 on a window of c
bits. In order to check this, one would require to read the corresponding c bits, leading to a
complexity of cN . The work of [9] assumes a random access to the input data. The input data
needs not to be scanned nor to be stored. So, the complexity could be (1 + 1

2 + . . .+ 1
2c−1)N ,

i.e. twice more than N . But this already hides a cost which is larger than what is claimed.

5 Complexity of Gaussian Elimination Step

In the second step, the algorithm is changing the distribution of the secret to that of the
noise. We take the LPN instance of (512, 1/8) for our explanation.

For this step, the memory complexity M essentially consists in storing the useful data in
a k×n matrix G. For our instance, we have a matrix of k×n = 273.983 bits with k = 512 and
n = 264.983. The time complexity of 274.732 is less than 2M as we can see in the Table 6 (and
Table 6 of [9]). One operation of this reduction step consists of doing a Gaussian elimination
on this big matrix G: compute Ĝ = D · G for a k × k matrix D then zĜ for a k-bit vector
z. Computing zĜ takes complexity M so [9] manages to compute D · G in less than k · n
operations, with k · n being the size of G.

The authors of [9] claim to compute D ·G in time C1 = (n− k + c)(a + (k − c)/u) using
many precomputed tables. For LPN(512,1/8), we have n = 264.987 and k − c = 507 (See
Table 1) and C1 = 271.184 (they use a = 10 and u = 8 for this instance). First, they split

5

LPN instance Time Initial data N Memory Pre-computation Time corrected

(512, 1/8) 72.844 63.526 68.197 68.020 117.14

(532, 1/8) 74.709 70.504 69.528 69.231 120.71

(592, 1/8) 81.963 78.513 70.806 69.231 131.28

Table 7. Performance of LPN solving algorithm using LF(4) [9]

D = (D1, ...,Da) and g = (g1, ..., ga) in a pieces and make the full tables of the gi → Di · gTi
functions. For each column gT of G, they just need to compute a = 10 lookup tables and the
sum D1 ·gT1 + ...+Da ·gTa of a k-bit vectors. If we do it normally, it costs n ·a ·k bit operations
(for all the n columns). This would represent a complexity of 277.304 just for the cost of this
sum.

Instead, in [9] the sum of the k-bit vectors is computed by assembling k/u sums of a u-bit
vectors. To make a sum of a u-bit vectors, they rely on a table giving the sum at a cost of 1
lookup table for a table with 2au entries of u bits.

One problem is that they assume that computing each Di ·gTi costs 1 (not even the cost to
read the k bits it is supposed to produce) and computing the a-sum of each u-bit chunk costs
1 (not even the cost of reading the a · u bits of index for lookup). This is how they obtain a
complexity of a+ k/u to treat each column of G. If instead we count the cost of reading the
output of the Di ·gTi lookup tables, we already have the cost of ak that they wanted to avoid.

The second problem is in the size of the second lookup table which is u · 2au which is
too big. For the (512, 1/8) instance of LPN, u = 8 and a = 10 this would give 283. To solve
this issue, they say that we can only store in the table instances of this sum problem which
have non-repeating and non-zero terms, as we know how to simplify other sums without more
tables. But this assumes that instead of summing a = 10 bytes (since u = 8), we first have to
eliminate zero-bytes and repetitions of bytes. This would imply to test if the bytes are zero
or not and to compare them pairwise, or at least to sort them. The cost of this operation is
clearly larger than the cost of summing 10 bytes, which counts at 80 bit-operations.

Considering that Gaussian elimination should rather take a complexity of at least (n−k)ak
and that we need to repeat 1/Pr(w1, k1) times this procedure, we obtain that solving the
(512, 1/8) instance of LPN with LF2 must be larger than 278.81 (take a = k/s in Table 6 of [9]).
This is only the cost of computing Ĝ to which we have to add other costs (the pre-computation,
computing zĜ, and other operations in the solving algorithm). Since a complexity of 279.7

with the same type of method was already presented at Asiacrypt 2014 [5], we believe that
careful computation on both algorithms with the same method will show there is no better
result.

6 Complexity of the Hypothesis Testing

The complexity of the hypothesis testing in [9] is taken to be ℓ2ℓ, where ℓ is the size of the
secret vector which is recovered. If we consider the complexity in bit operations (as it is done
for other operations presented in [9]), the total complexity of computing the Walsh transform

is ℓ2ℓ log2 n
′+1

2 . This is because the entries of the transform have a magnitude of order
√
n′,

where n′ represents the number of vectors we have at this phase.

Also, before applying the Walsh transform, we require first to construct the function f on
which we apply the transform. Thus, we need to add the cost of scanning the ℓ-bit vectors

6

which is nℓ. The total complexity becomes now nℓ + ℓ2ℓ log2 n+1
2 . Also, the Walsh transform

is computed for each vector guessed in the partial secret guessing step. For the (512, 1/8)
instance, with n = 264.583, ℓ = 62, k1 = 17, w1 = 1 this gives 277.401 which is much larger
than the total complexity from Table 6 (and Table 6 from [9]).

7 Conclusion

We reran the results of [9] with the updated formulae. For LF(4) we use the information theo-
retical algorithm. The exact complexity formulae used for this computation can be found in [3].
We present below the complexity for each reduction step for the LPN instances (512, 1/8),
(532, 1/8) and (592, 1/8) with LF1, LF2 and LF(4). These results explain the columns ”Time
corrected” from Table 5-7.

LF1

(512,1/8)-LPN

(271.291, 512) − ss(5)− (266.291, 507) comp = 272.245

(266.291, 507) − ge− (266.291, 507) comp = 279.225

(266.291, 507) − cp(63) − (266.135, 444) comp = 275.277

(266.135, 444) − cp(63) − (265.961, 381) comp = 274.930

(265.961, 381) − cp(63) − (265.762, 318) comp = 274.535

(265.762, 318) − cp(63) − (265.533, 255) comp = 274.076

(265.533, 255) − cp(63) − (265.259, 192) comp = 273.527

(265.259, 192) − psg(20, 1) − (265.259, 172)

(265.259, 172) − cc(172, 62) − (265.259, 62) comp = 272.686

WHT (62) comp = 273.371

total comp = 281.79

(532,1/8)-LPN

(273.584, 532) − ss(5)− (268.584, 527) comp = 274.538

(268.584, 527) − ge− (268.584, 527) comp = 281.476

(268.584, 527) − cp(65) − (268.458, 462) comp = 277.626

(268.458, 462) − cp(65) − (268.320, 397) comp = 277.310

(268.320, 397) − cp(65) − (268.168, 332) comp = 276.954

(268.168, 332) − cp(65) − (267.998, 267) comp = 276.544

(267.998, 267) − cp(65) − (267.805, 202) comp = 276.059

(267.805, 202) − psg(20, 1) − (267.805, 182)

(267.805, 182) − cc(182, 64) − (267.805, 64) comp = 275.313

WHT (64) comp = 275.597

total comp = 284.06

7

(592,1/8)-LPN

(279.557, 592) − ss(4)− (275.557, 588) comp = 280.464

(275.557, 588) − ge− (279.557, 588) comp = 288.675

(279.557, 588) − cp(73) − (279.541, 515) comp = 284.757

(279.541, 515) − cp(73) − (279.526, 442) comp = 284.297

(279.526, 442) − cp(73) − (279.510, 369) comp = 283.746

(279.510, 369) − cp(73) − (279.494, 296) comp = 283.056

(279.494, 296) − cp(73) − (279.478, 223) comp = 282.124

(279.478, 223) − psg(16, 1) − (279.478, 207)

(279.478, 207) − cc(207, 72) − (279.478, 72) comp = 280.517

WHT (72) comp = 283.443

total comp = 290.75

LF2

(512,1/8)-LPN

(269.987, 512) − ss(5)− (264.987, 507) comp = 270.941

(264.987, 507) − ge− (264.987, 507) comp = 278.045

(264.987, 507) − cp(64) − (264.974, 443) comp = 273.973

(264.974, 443) − cp(64) − (264.948, 379) comp = 273.765

(264.948, 379) − cp(64) − (264.896, 315) comp = 273.514

(264.896, 315) − cp(64) − (264.792, 251) comp = 273.195

(264.792, 251) − cp(64) − (264.583, 187) comp = 272.764

(264.583, 187) − psg(17, 1) − (264.583, 170)

(264.583, 170) − cc(170, 62) − (264.583, 62) comp = 271.993

WHT (62) comp = 273.232

total comp = 280.45

(532,1/8)-LPN

8

(273.983, 532) − ss(7)− (267.983, 522) comp = 274.972

(267.983, 522) − ge− (267.983, 522) comp = 280.115

(267.983, 522) − cp(66) − (266.966, 459) comp = 276.019

(266.966, 459) − cp(66) − (266.932, 393) comp = 275.808

(266.932, 393) − cp(66) − (266.863, 327) comp = 275.550

(266.863, 327) − cp(66) − (266.726, 261) comp = 275.217

(266.726, 261) − cp(66) − (266.453, 195) comp = 274.756

(266.453, 195) − psg(17, 1) − (266.453, 178)

(266.453, 178) − cc(178, 64) − (266.453, 64) comp = 273.932

WHT (64) comp = 275.293

total comp = 282.53

(592,1/8)-LPN

(277.985, 592) − ss(4)− (273.985, 588) comp = 278.892

(273.985, 588) − ge− (273.985, 588) comp = 286.931

(273.985, 588) − cp(73) − (273.970, 515) comp = 283.185

(273.970, 515) − cp(73) − (273.940, 442) comp = 282.978

(273.940, 442) − cp(73) − (273.880, 369) comp = 282.728

(273.880, 369) − cp(73) − (273.759, 296) comp = 282.407

(273.759, 296) − cp(73) − (273.519, 223) comp = 281.969

(273.519, 223) − psg(14, 1) − (273.519, 209)

(273.519, 209) − cc(209, 72) − (273.519, 72) comp = 280.517

WHT (72) comp = 283.496

total comp = 289.46

LF4
(512,1/8)-LPN

(263.526, 512) − ss(10) − (253.526, 502) comp = 264.525

(253.526, 502) − ge − (253.526, 502) comp = 266.734

(253.526, 502) − cp(156) − (253.519, 346) comp = 2115.024

(253.519, 346) − cp(156) − (253.490, 190) comp = 2114.473

(253.490, 190) − psg(16, 1) − (253.490, 174)

(253.490, 174) − cc(174, 60) − (253.490, 60) comp = 260.934

WHT (60) comp = 270.675

total comp = 2117.14

9

(532,1/8)-LPN

(270.504, 532) − ss(15) − (255.504, 517) comp = 271.504

(255.504, 517) − ge − (255.504, 517) comp = 268.792

(255.504, 517) − cp(162) − (255.433, 355) comp = 2119.022

(255.433, 355) − cp(162) − (255.149, 193) comp = 2118.334

(255.149, 193) − psg(13, 1) − (255.149, 180)

(255.149, 180) − cc(180, 61) − (255.149, 61) comp = 262.631

WHT (61) comp = 271.743

total comp = 2120.71

(592,1/8)-LPN

(278.513, 592) − ss(18) − (260.513, 574) comp = 279.513

(260.513, 574) − ge − (260.513, 574) comp = 273.677

(260.513, 574) − cp(177) − (260.468, 397) comp = 2129.191

(260.468, 397) − cp(177) − (260.288, 220) comp = 2128.567

(260.288, 220) − psg(16, 1) − (260.288, 204)

(260.288, 204) − cc(204, 68) − (260.288, 60) comp = 267.956

WHT (60) comp = 279.025

total comp = 2131.28

Thus, the computations with the correct LF(4) give worse results than LF1 and LF2. This
is because an LF(4) with the Wagner algorithm means 2 LF2 consecutive reductions and the
LF(4) with the information theory approach brings no improvement. Also, the results of LF1
and LF2 don’t bring an improvement over the results from [5].

To conclude, we believe that the results from [9] need to be updated and corrected and
that the LF(4) operation is misleading. While the authors presented good ideas in how to
improve the LPN solving algorithm, some of their methods (LF(4) and the pre-computation
for Gaussian elimination) prove to be wrong.

References

1. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second

Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 435–440.
ACM, 2000.

2. Sonia Bogos, Florian Tramèr, and Serge Vaudenay. On Solving LPN using BKW and Variants. Cryptography
and Communications, 2015. (to appear).

3. Sonia Bogos and Serge Vaudenay. Optimization of LPN Solving Algorithms. Cryptology ePrint Archive,
Report 2016/288, 2016. http://eprint.iacr.org/.

4. Marc P. C. Fossorier, Miodrag J. Mihaljevic, Hideki Imai, Yang Cui, and Kanta Matsuura. An Algorithm
for Solving the LPN Problem and Its Application to Security Evaluation of the HB Protocols for RFID
Authentication. In Rana Barua and Tanja Lange, editors, INDOCRYPT, volume 4329 of Lecture Notes in

Computer Science, pages 48–62. Springer, 2006.

10

5. Qian Guo, Thomas Johansson, and Carl Löndahl. Solving LPN Using Covering Codes. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on

the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December

7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages 1–20. Springer,
2014.

6. Paul Kirchner. Improved Generalized Birthday Attack. IACR Cryptology ePrint Archive, 2011:377, 2011.
7. Éric Levieil and Pierre-Alain Fouque. An Improved LPN Algorithm. In Roberto De Prisco and Moti

Yung, editors, Security and Cryptography for Networks, 5th International Conference, SCN 2006, Maiori,

Italy, September 6-8, 2006, Proceedings, volume 4116 of Lecture Notes in Computer Science, pages 348–359.
Springer, 2006.

8. David Wagner. A generalized birthday problem. In Moti Yung, editor, Advances in Cryptology - CRYPTO

2002, 22nd Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22,

2002, Proceedings, volume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer, 2002.
9. Bin Zhang, Lin Jiao, and Mingsheng Wang. Faster Algorithms for Solving LPN. volume 9665 of Lecture

Notes in Computer Science, pages 168–195, 2016. http://eprint.iacr.org/.

11

