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Abstract. Quantum-mechanical devices have the potential to trans-
form cryptography. Most research in this area has focused either on the
information-theoretic advantages of quantum protocols or on the secu-
rity of classical cryptographic schemes against quantum attacks. In this
work, we initiate the study of another relevant topic: the encryption of
quantum data in the computational setting.

In this direction, we establish quantum versions of several fundamental
classical results. First, we develop natural definitions for private-key and
public-key encryption schemes for quantum data. We then define no-
tions of semantic security and indistinguishability, and, in analogy with
the classical work of Goldwasser and Micali, show that these notions
are equivalent. Finally, we construct secure quantum encryption schemes
from basic primitives. In particular, we show that quantum-secure one-
way functions imply IND-CCA1-secure symmetric-key quantum encryp-
tion, and that quantum-secure trapdoor one-way permutations imply
semantically-secure public-key quantum encryption.
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1 Introduction

Quantum mechanics changes our view of information processing: the ability to
access, operate and transmit data according to the laws of quantum physics
opens the doors to a vast realm of possible applications. Cryptography is one
of the areas that is most seriously impacted by the potential of quantum in-
formation processing, since the security of most cryptographic primitives in use
today relies on the hardness of computational problems that are easily broken
by adversaries having access to a quantum computer [Sho94].

While the impact of quantum computers on cryptanalysis is tremendous,
quantum mechanics itself predicts physical phenomena that can be exploited in
order to achieve new levels of security. These advantages were already mentioned
in the late 1970’s in pioneering work of Wiesner [Wie83], and have led to the very
successful theory of quantum key distribution (QKD) [BB84], which has already
seen real-world applications [ABBT14]. QKD achieves information-theoretically
secure key expansion, and has the advantage of relatively simple hardware re-
quirements (notwithstanding a long history of successful attacks to QKD at the
implementation level [ABB*14]).

The cryptographic possibilities of quantum information go well beyond QKD.
Indeed, quantum copy-protection [Aar09], quantum money [Wie83,AC12,MS10]
and revocable time-release encryption [Unrl4] are just some examples where
properties unique to quantum data enable new cryptographic constructions.
Thanks in part to these tremendous cryptographic opportunities, we envisage
an increasing need for an information infrastructure that enables quantum in-
formation. Such an infrastructure will be required to support:

— Quantum functionality: honest parties can store, exchange, and compute
on quantum data;

— Quantum security: quantum functionality is protected against quantum
adversaries.

The current state-of-the-art is lacking even the most basic cryptographic
concepts in the context of quantum functionality and quantum adversaries. In
particular, the study of encryption of quantum data (which is arguably one of
the most fundamental building blocks) has so far been almost exclusively limited
to the quantum one-time pad [AMTdWO00] and other aspects of the information-
theoretic setting [Des09,DD10] (one notable exception being [BJ15]). The achiev-
ability of other basic primitives such as public-key encryption has not been thor-
oughly investigated for the case of fully quantum cryptography. This situation
leaves many open questions about what can be achieved in the quantum world.

1.1 Summary of Contributions and Techniques

In this work, we establish quantum versions of several fundamental classical
(i.e. “non-quantum”) results in the setting of computational security. Following



Broadbent and Jeffrey [BJ15], we consider private-key and public-key encryp-
tion schemes for quantum data. In these schemes, the key is a classical bitstring”,
but both the plaintext and the ciphertext are quantum states. Key generation,
encryption, and decryption are implemented by polynomial-time quantum al-
gorithms. Such schemes admit an appropriate definition of indistinguishability
security, following the classical approach [BJ15]: the quantum adversary is given
access to an encryption oracle, and must output a challenge plaintext; given
either the corresponding ciphertext or the encryption of |0)(0| (each with prob-
ability 1/2), the adversary must decide which was the case.

Our main contributions are the following. First, we give several natural for-
mulations of semantic security for quantum encryption schemes, and show that
all of them are equivalent to indistinguishability. This cements the intuition
that possession of the ciphertext should not help the adversary in computing
anything about the plaintext. Second, we give two constructions of encryption
schemes with semantic security: a private-key scheme, and a public-key scheme.
The private-key scheme satisfies a stronger notion of security: indistinguishabil-
ity against chosen ciphertext attacks (IND-CCA1). A more detailed summary of
these contributions follows.

1.1.1 Semantic Security vs. Indistinguishability Semantic security for-
malizes the notion of security of an encryption scheme under computational
assumptions. Originally introduced by Goldwasser and Micali [GM84], this def-
inition posits a game: an adversary is given the encryption of a message = and
some side information h(z), and is challenged to output the value of an objec-
tive function f evaluated at x. An encryption scheme is deemed secure if every
adversary can be closely approximated by a simulator who is given only h(z);
crucially, the simulator must work for every possible choice (h, f) of side in-
formation and objective function. This models the intuitive notion that having
access to a ciphertext gives the adversary essentially no advantage in computing
functions related to the plaintext.

While semantic security corresponds to a notion of security that is intuitively
strong, it is cumbersome to use in terms of security proofs. In order to address
this problem, Goldwasser and Micali [GM84] showed the equivalence of seman-
tic security with another cryptographic notion, called indistinguishability. The
intuitive description of indistinguishability is also in terms of a game, this time
with a single adversary. The adversary prepares a pair of plaintexts xg and x
and submits them to a challenger, who chooses a uniformly random bit b and
returns the encryption of z,. The adversary then performs a computation and
outputs a bit v; the adversary wins the game if v = b and loses otherwise. An
encryption scheme is deemed secure if no adversary wins the game with prob-
ability significantly larger than 1/2. This definition models the intuitive notion
that the ciphertexts are indistinguishable: whatever the adversary does with one
ciphertext, the outcome is essentially the same if run on the other ciphertext.

” While quantum keys might be of interest, they are not necessary for constructing
secure schemes [BJ15].



In Section 4, we define semantic security for the encryption of gquantum
data—thus establishing a parallel with the notions and results of encryptions as
laid out by Goldwasser and Micali. When attempting to transfer the definition
of semantic security to the quantum world, the main question one encounters is
to determine the quantum equivalents of h(z) and f(z) as described above (be-
cause of the no-cloning theorem [WZ82], we cannot postulate a polynomial-time
experiment that simultaneously involves some quantum plaintext and a function
of the plaintext—see Section 4.2 for further discussions related to this issue). We
propose a number of alternative definitions in order to deal with this situation
(Definition 8, Definition 22, and Definition 25.) Perhaps the most surprising is
our definition of SEM (Definition 8), which does away completely with the need
to explicitly define analogues of the functions h and f, instead relying on a mes-
sage generator that outputs three registers, consisting of the “plaintext”, “side
information” and “target output” (there is no further structure imposed on the
contents of these registers). Intuitively, we think of the adversary’s goal being to
output the value contained in the “target output” register. Formally, however,
Definition 8 shows that the role of the “target output” register is actually to
help the distinguisher: semantic security corresponding to the situation where
no distinguisher has a non-negligible advantage in telling apart the real scenario
(involving the adversary) and the ideal scenario (involving the simulator), even
given access to the “target output” system. Our main result in this direction (see
Section 4.3) is the equivalence between semantic security and indistinguishability
for quantum encryption schemes:

Theorem 1. A quantum encryption scheme is semantically secure if and only
if it has indistinguishable encryptions.

What is more, because our definitions and proofs hold when restricted to the
classical case (and in fact can be shown as generalizations of the standard clas-
sical definitions), our contribution sheds new light on semantic security: to the
best of our knowledge, this is the first time that semantic security has been
defined without the need to explicitly refer to functions h and f.

1.1.2 Quantum Encryption Schemes In Section 5, we give two construc-
tions of quantum encryption schemes that achieve semantic security (and thus
also indistinguishability, by Theorem 1.) Our constructions make use of two ba-
sic primitives. The first is a quantum-secure one-way function (QOWF). This is
a family of deterministic functions which are efficiently computable in classical
polynomial time, but which are impossible to invert even in quantum polynomial
time. It is believed that such functions can be constructed from certain alge-
braic problems [MRV07,KKO07]. The existence of qOWF's implies the existence
of quantum-secure pseudorandom functions (qPRFs) [Zhal2]. We show that a
gPRF can, in turn, be used to securely encrypt quantum data with classical
private keys. More precisely, we have the following:

Theorem 2. If quantum-secure one-way functions exist, then so do IND-CCA1-
secure private-key quantum encryption schemes.



The second basic primitive we consider is a quantum-secure one-way permuta-
tion with trapdoors (qTOWP). In analogy with the classical case, a qTOWP is a
qOWF with an additional property: each function in the family is a permutation
whose efficient inversion is possible if one possesses a secret string (the trapdoor).
While our results appear to be the first to consider applications to quantum data,
the notion of quantum security for trapdoor permutations is of obvious rele-
vance in the security of classical cryptosystems against quantum attacks. Some
promising candidate gTOWPs from lattice problems are known [PW08,GPV0g].
We show that such functions can be used to give secure public-key encryption
schemes for quantum data, again using only classical keys.

Theorem 3. If quantum-secure trapdoor one-way permutations exist, then so
do semantically secure public-key quantum encryption schemes.

We remark that Theorem 2 and Theorem 3 are analogues of standard results
in the classical literature [Gol04a].

1.2 Related Work

Prior work has considered the computational security of quantum methods
to encrypt classical data [OTU00,Kos07,XY12]. Information-theoretic security
for the encryption of quantum states has been considered in the context of
the one-time pad [AMTdWO00,BR03,HLSW04,Leu02], as well as entropic secu-
rity [Des09,DD10]. Computational indistinguishability notions for encryption
in a quantum world were proposed in two independent and concurrent works
[BJ15,GHS15]. While [BJ15] considers the encryption of quantum data (and
proposes the first constructions based on hybrid classical-quantum encryption),
[GHS15] considers the security of classical schemes which can be accessed in a
quantum way by the adversary.

The results of [GHS15] are part of a line of research of “quantum-secure clas-
sical cryptography”, which investigates the security of classical schemes against
quantum adversaries, with the goal of finding “quantum-safe” schemes. In this
scenario, [BZ13] considers quantum indistinguishability under chosen plaintext
and chosen ciphertext attacks. This definition was improved in [GHS15] to al-
low for a quantum challenge phase. The latter paper also initiates the study of
quantum semantic security of classical schemes and gives the first classical con-
struction of a quantumly secure encryption scheme from a family of quantum-
secure pseudorandom permutations. Another quantum indistinguishability no-
tion in the same spirit has been suggested (but not further analyzed) in [Vell3,
Def. 5.3].

Several previous works have considered how classical security proofs change
in the setting of quantum attacks (see, e.g., [Unr10,FKS*13,Son14].) Our results
can be viewed as part of this line of work; one distinguishing feature is that we are
able to extend classical security proofs to the setting of quantum functionality se-
cure against quantum adversaries. This setting has seen increasing interest in the
past decade, with progress being made on several topics: multi-party quantum



computation [BOCGT06], secure function evaluation [DNS10,DNS12], one-time
programs [BGS13], and delegated quantum computation [BFK09,Brol5].

Owutline. The remainder of the paper is structured as follows. In Section 2, we
set down basic notation and recall a few standard facts regarding classical and
quantum computation. In Section 3, we define symmetric-key and public-key
encryption for quantum states (henceforth “quantum encryption schemes”), as
well as a notion of indistinguishability (including IND-CPA and IND-CCA1)
for such schemes. Section 4 defines semantic security for quantum encryption
schemes, and shows equivalence with indistinguishability. Section 5 gives our
two constructions for quantum encryption schemes. Finally, we close with some
discussion of future work in Section 6.

2 Preliminaries

We introduce some basic notation for classical (Section 2.1) and quantum (Sec-
tion 2.2) information processing and information-theoretic encryption. Section 2.3
concerns basic issues in efficient algorithms and Section 2.4 discusses the use of
oracles.

2.1 Classical States, Maps, and the One-Time Pad

Let N be the set of positive integers. For n € N, we set [n] = {1,--- ,n}. Define
{0,1}* := U, {0,1}"™. An element = € {0, 1}* is called a bitstring, and |z| denotes
its length, i.e., its number of bits. We reserve the notation 0™ (resp., 1™) to denote
the n-bit string with all zeroes (resp., all ones).

For a finite set X, the notation z < X indicates that z is selected uniformly at
random from X. For a probability distribution S, the notation = < S indicates
that x is sampled according to S. Given finite sets X and Y, the set of all
functions from Y to X is denoted XY (or sometimes {X — Y}). We will usually
consider functions f acting on binary strings, that is, of the form f : {0,1}" —
{0,1}™, for some positive integers n and m. We will also consider function
families f : {0,1}* — {0,1}* defined on bitstrings of arbitrary size. One can
construct such a family simply by choosing one function with input size n, for
each n. We will sometimes abuse notation by stating that f: {0,1}™ — {0,1}™
defines a function family; in that case, it is implicit that n is a parameter that
indexes the input size and m is some function of n (usually a polynomial) that
indexes the output size. Given a bitstring y and a function family f, the preimage
of f under y is defined by f~!(y) := {z € {0,1}* : f(x) = y}.

We will often write negl(-) to denote a function from N to N which is “negligi-
ble” in the sense that it grows at an inverse-superpolynomial rate. More precisely,
negl(n) < 1/p(n) for every polynomial p : N — N and all sufficiently large n. A
typical use of negligible functions is to indicate that the probability of success
of some algorithm is too small to be amplified to a constant by a feasible (i.e.,
polynomial) number of repetitions.



Given two bitstrings x and y of equal length, we denote their bitwise XOR, by
x @ y. Recall that the classical one-time pad encrypts a plaintext x € {0,1}" by
XORing it with a uniformly random string (the key) r <£{0, 1}"™. Decryption is
performed by repeating the operation, i.e., by XORing the key with the cipher-
text. Since the uniform distribution on {0,1}" is invariant under XOR by z, the
ciphertext is uniformly random to parties having no knowledge about r [Sha49)].
A significant drawback of the one-time pad is the key length. In order to reduce
the key length, one may generate r pseudorandomly; this key-length reduction
requires making computational assumptions about the adversary.

2.2 Quantum States, Maps, and the One-Time Pad

Given an n-bit string z, the corresponding quantum-computational n-qubit basis
state is denoted |z). The 2"-dimensional Hilbert space spanned by n-qubit basis
states will be denoted

H,, :=span{|z) : z € {0,1}"} .

We denote by ©(H,,) the set of density operators (i.e., valid quantum states)
on H,,. These are linear operators on ®(H,,) which are positive-semidefinite and
have trace equal to 1. When considering different physical subsystems, we will
denote them with uppercase Latin letters; when a Hilbert space corresponds to
a subsystem, we will place the subsystem label in the subscript. For instance,
if FUGUH = [n] then H,, = Hr ® Hg ® Hp. Sometimes we will write
explicitly the subsystems a state belongs to as subscripts; this will be useful when
considering, e.g., the reduced state on some of the subspaces. For example, we
will sometimes express the statement p € D(Hr @ He ® Hy) simply by calling
the state ppgr; in that case, the state obtained by tracing out the subsystem H
will be denoted prg.

Given p,o € D(H), the trace distance between p and o is given by half the
trace norm ||p — ol|; of their difference. When p and o are classical probability
distributions, the trace distance reduces to the total variation distance. Physi-
cally realizable maps from a state space ©(#) to another state space ©(H’) are
called admissible—these are the completely positive trace-preserving (CPTP)
maps. For the purpose of distinguishability via input/output operations, the
appropriate norm for CPTP maps is the diamond norm, denoted || - ||,. The
set of admissible maps coincides with the set of all maps realizable by compos-
ing (i.) addition of ancillas, (ii.) unitary evolutions, (iii.) measurements in the
computational basis, and (iv.) tracing out subspaces. We remark that unitaries
U € U(H,) act on D(H,) by conjugation: p + UpUT. The identity opera-
tor 1,, € U(H,,) is thus both a valid map, and (when normalized by 27™) a valid
state in D (H,,)—corresponding to the classical uniform distribution.

Recall the single-qubit Pauli operators defined as:

T B ) B () B )



The Pauli operators are Hermitian and unitary quantum gates, i.e. Pt = P and
PtP=PPt=P2=Tforall Pc{I,X,Y,Z}. It is easy to check that applying
a uniformly random Pauli operator to any single-qubit density operator results
in the maximally mixed state:

1,

p+XpX +YpY 4+ ZpZ) = — for all p € D(H4) .

1
7
Since the Pauli operators are self-adjoint, we may implement the above map
by choosing two bits s and ¢ uniformly at random and then applying

ps X3ZpZt X5 .

To observers with no knowledge of s and ¢, the resulting state is information-
theoretically indistinguishable from 1 /2. Of course, if we know s and ¢, we can
invert the above map and recover p completely.

The above map can be straightforwardly extended to the m-qubit case in
order to obtain an elementary quantum encryption scheme called the quantum
one-time pad. We first set X; = 19771 @ X ® 19777 and likewise for Y; and Z;.
We define the n-qubit Pauli group P,, to be the subgroup of SU(H,,) generated
by {X;,Y;,Z; : j =1,...,n}. Note that Hermiticity is inherited from the single-
qubit case, i.e. PT = P for every P € P,,.

Definition 4 (quantum one-time pad). For r € {0,1}*", we define the
quantum one-time pad (QOTP) on n qubits with classical key r to be the map:

n
H X7 e Py

The effect of P, on any quantum state p € ©(H,,) is simply

1 1,
s 2. DePr=g0
re{0,1}2n

As before, the map p — P,.pP. (for uniformly random key r) is an information-
theoretically secure symmetric-key encryption scheme for quantum states.

Just as in the classical case [Sha49], any reduction in key length is not pos-
sible without compromising information-theoretic security [AMTdW00,BR03].
Of course, in practice the key length of the one-time pad (quantumly or clas-
sically) is highly impractical. This is a crucial reason to consider—as we do in
this work—encryption schemes which are secure only against computationally
bounded adversaries.

2.3 Efficient Classical and Quantum Computations

We will refer to several different notions of efficient algorithms. The most basic of
these is a deterministic polynomial-time algorithm (or PT). A PT A is defined by



a polynomial-time uniform® family A := {A, },en of classical Boolean circuits
over some gate set, with one circuit for each possible input size. For a bitstring x,
we define A(z) := A} (z). We say that a function family f : {0,1}" — {0,1}"
is PT-computable if there exists a PT A such that A(z) = f(z) for all z; it is
implicit that m is a function of n which is bounded by some polynomial, e.g.,
the same one that bounds the running time of A.

A probabilistic polynomial-time algorithm (or PPT) is again a polynomial-
time uniform family of classical Boolean circuits, one for each possible input
size n. The nth circuit still accepts n bits of input, but now also has an addi-
tional “coins” register of p(n) input wires. Note that uniformity enforces that the
function p is bounded by some polynomial. For a PPT A, n-bit input  and p(n)-
bit coin string r, we set A(z;r) := A, (z;r). In contrast with the PT case, the
notation A(z) will now refer to the random variable A(x; ) where r &-{0, 1}7(").
Overloading notation slightly, .A(z) can also mean the corresponding probability
distribution; for example, the set of all possible outputs of A on the input 1™ is
denoted supp A(1™).

We define a quantum polynomial-time algorithm (or QPT) to be a polynomial-
time uniform family of quantum circuits, each composed of gates that may per-
form general admissible operations, chosen from some finite, universal set. A
commonly-used alternative is to specify that the elements of the gate set are
unitary. In terms of computational power, the models are the same [AKN9S],
however using admissible operations (versus unitary ones only) allows us to
formalize a wider range of oracle-enabled QPT machines (see Section 2.4). In
general, a QPT A defines a family of admissible maps from input registers to out-
put registers: A : D(H,) — D (H,). As before, the nth circuit in the family will
be denoted by A,,. When p is an n-qubit state, A(p) denotes the corresponding
u(n)-qubit output state (by uniformity, w is bounded by some polynomial). Over-
loading the notation even further, for n-bit strings « we set A(x) := A(|z)(z|).
The expression A(x) = y for classical y is taken to evaluate to true if the output
register of the circuit contains the state |y)(y| exactly. Unless explicitly stated,
any statements about the probability of an event involving a QPT are taken over
the measurements of the QPT, in addition to any indicated random variables.
For instance, the expression Prye (0,13~ [A(7) = y] means the probability that,
given a uniformly random input string x, the output register of the nth circuit
of the QPT A executed on |z)(z|, after all gates and measurements have been
applied, is in the state |y)(y|.

At times, we will define QPTs with many input and output quantum regis-
ters. In these cases, some straightforward bookkeeping (e.g., via an additional
classical register) may be required; for the sake of clarity, we will simply assume
that this has been handled.

Throughout this work, we are concerned only with polynomial-time uniform
computation. That is to say, the circuit families that describe any PT, PPT, or

8 Recall that polynomial-time uniformity means that there exists a polynomial-time
Turing machine which, on input n in unary, prints a description of the nth circuit
in the family.



QPT will always be both of polynomial length and generatable by some fixed
(classical) polynomial-time Turing machine. In particular, we consider uniform
adversaries only—although all of our results carry over appropriately to the
non-uniform setting as well.

2.4 Oracles

We denote by A7 an algorithm which has oracle access to some function family f.
Such an algorithm (whether PT, PPT, or QPT) is defined as above, except each
circuit in the algorithm can make use of additional “oracle gates” (one for each
possible input size) which evaluate f. In the case of PTs and PPTs, oracles can
implement any function from bitstrings to bitstrings. In the case of QPTs, we
consider two different oracle types.

First, we allow purely classical oracles. Just as in the case of PTs and PPTs, a
classical oracle implements a function f from bitstrings to bitstrings. In the case
of a QPT with a classical oracle, queries can be made on classical inputs only
(this is sometimes referred to as “standard-security” [Zhal2]). We emphasize that
we do not require that the oracle is made reversible, nor do we allow the QPT
to input superpositions. Note that any such oracle can be implemented by an
admissible map, such that classical inputs x are deterministically mapped to f(x)
(to see this, start with a Boolean circuit for f, make it reversible, and then recall
that adding ancillas and discarding output bits are admissible operations). While
it might seem that disallowing superposition inputs is an artificial and unrealistic
restriction, in our case it actually strengthens results. For instance, we will show
that secure quantum encryption can be achieved using pseudorandom functions
which are secure only against quantum adversaries possessing just classical oracle
access. One can of course also ask for more powerful functions (which are secure
against superposition access, or “quantum-secure” [Zhal2]) but this turns out
to be unnecessary in our case. Second, we also allow oracles that are admissible
maps. More precisely, for an admissible map family C, we write A to denote
a QPT whose circuits can make use of special “oracle gates” which implement
admissible maps from the family C. Each such gate accepts a quantum register
as input, to which it applies the appropriate admissible map from the family, and
returns an output register. It is not necessary for the input and output registers
to have the same number of qubits.

In any case, each use of an oracle gate counts towards the circuit length, and
hence also towards the total computation time of the algorithm. In particular,
no PT, PPT or QPT algorithm may make more than a polynomial number of
oracle calls.

3 Quantum Encryption and Indistinguishability

In this section, we give general definitions of encryption schemes for quantum
data (Section 3.1) and a corresponding notion of indistinguishability, including
IND-CPA and IND-CCA1 (Section 3.2.)
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3.1 Quantum Encryption Schemes

We start by defining secret-key encryption for quantum data. In the following we
assume that the secret key is a classical bitstring, while the plaintext and the ci-
phertext can be arbitrary quantum states. We refer to IC, H s and He as the key
space, the message (or plaintext) space, and the ciphertext space, respectively.
We remark that these are actually infinite families of spaces, each with a number
of (qu)bits which scales polynomially with n. We assume that K := {0,1}", so
that the key-length is n bits, and the plaintext and the ciphertext lengths are
m < poly(n) and ¢ < poly(n) qubits, respectively. The key-generation algorithm
accepts a description of the security parameter n in unary and outputs a classical
key of length n. Later, we will define an additional Hilbert space H g in order to
model auxiliary information used by some adversary. Encryption accepts a clas-
sical key and a plaintext, and outputs a ciphertext; decryption accepts a classical
key and a ciphertext, and outputs a plaintext. The correctness guarantee is that
plaintexts are preserved (up to negligible error) under encryption followed by
decryption under the same key.

Definition 5. A quantum symmetric-key encryption scheme (or qSKE) is a
triple of QPTs:

1. (key generation) KeyGen : 1" +— k € K
2. (encryption) Enc : K x D(Hy) — D(He)
3. (decryption) Dec : K x D(Hc) — D(Hur)

such that |Decy o Ency, — Lp/||o < negl(n) for all k € supp KeyGen(1™).

In the above, we used a convenient shorthand notation for encryption and
decryption maps with a fixed key k (which is classical), formally defined by
Ency : p — Enc(k, p) and Decy, : 0 — Dec(k, o).

Next, we define a notion of public-key encryption for quantum data. In ad-
dition to the usual spaces from the symmetric-key setting above, we now also
have a public key of length p(n) < poly(n) bits. We define the related public-key
space as Kpyp C {0,1}? and reuse K for the corresponding private-key space.

Definition 6. A quantum public-key encryption scheme (or qPKE) is a triple
of QPTs:

1. (key-pair generation) KeyGen : 1™ — (pk, sk) € Kpup x K
2. (encryption with public key) Enc : Kpup x D(Hunr) = D(He)
3. (decryption with private key) Dec : K x D(He) — D (Hu)

such that |Decgg, 0 Encpr, — L |lo < negl(n) for all (pk, sk) € supp KeyGen(1™).
In this case, we again placed the relevant keys in the subscript, i.e.,
Encyy : p — Enc(pk, p) and Decgy : 0 — Dec(sk, o).

We remark that some variations of the above two definitions are possible. For
instance, one could demand that encryption followed by decryption is exactly
equal to the identity operator. The schemes we present in Section 5 will in fact
satisfy this stronger condition.
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3.2 Indistinguishability of Encryptions

Following the classical definition, the security notion of quantum indistinguisha-
bility under chosen plaintext attacks has been considered previously for the case
of quantum encryption schemes in [BJ15] and for classical encryption schemes
in [GHS15]. Here, we extend the definition of [BJ15] to the CCA1 (chosen cipher-
text attack) setting. The security definitions are formulated with the public-key
(or asymmetric-key) setting in mind, and we clarify when meaningful differences
in the symmetric-key setting arise.

Our definition models a situation in which an honest user encrypts messages
of the adversary’s choice; the adversary then attempts to match the ciphertexts
to the plaintexts. In our formulation, an IND adversary consists of two QPTs:
the message generator and the distinguisher. The message generator takes as
input the security parameter and a public key, and outputs a challenge state
consisting of a plaintext and some auxiliary information. The auxiliary informa-
tion models, for instance, the fact that the output state might be entangled with
some internal state of the adversary itself. Then the distinguisher receives this
auxiliary information, and a state which might be either the encryption of the
original challenge state or the encryption of the zero state. The distinguisher’s
goal is to decide which of the two is the case.

Security in this model requires that the adversary does not succeed with
probability significantly better than guessing. We also define two standard vari-
ants: indistinguishability under chosen plaintext attack (IND-CPA) and indis-
tinguishability under chosen-ciphertext-attack (IND-CCA1). We leave the def-
inition of CCA2 (adaptive chosen ciphertext attack) security as an interesting
open problem. As before, all circuits are indexed by the security parameter.

Definition 7 (IND). A ¢PKFE scheme (KeyGen, Enc, Dec) has indistinguishable
encryptions (or is IND secure) if for every QPT adversary A = (M, D) we have:

|Pr[ D{(Encpr ® 1p)pue} =1
— Pr[ D{(Encyr ® 1£)(|0) (0, © pr)} = 1]| < negl(n)

where pyp < M(pk), pg = Try(pume), and the probabilities are taken over
(pk, sk) < KeyGen(1™) and the internal randomness of Enc, M, and D.

— IND-CPA: In addition to the above, M and D have oracle access to Encyy.
— IND-CCA1: In addition to IND-CPA, M has oracle access to Decyy.

Here we use |0) (0[,, to denote |0™) (0™, where m is the number of qubits
in the M register.

The definition is illustrated in Figure 1. The symmetric-key scenario is the
same, except pk = sk, and M receives only a blank input. We remark that in the
public-key setting, IND implies IND-CPA: an adversary with knowledge of pk
can easily simulate the Encpj oracle. Note that, under CPA, the IND definition
is known to be equivalent to IND in the multiple-message scenario [BJ15].
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Encpk
pk— M E D —

—M_D [0y —— Encpk I

pk— M E D =

Fig. 1. IND posits that a QPT (M, D) cannot distinguish between these two scenarios.

4 Quantum Semantic Security

This section is devoted to defining quantum semantic security (Section 4.2), and
showing its equivalence with quantum indistinguishability (Section 4.3).

Following the classical definition, the security notion of quantum semantic
security under chosen plaintext attacks has been given previously in [GHS15] for
the case of a special class of quantum states arising when considering quantum
access to classical encryption schemes. Here, we give a more general definition
for arbitrary quantum plaintexts. As we outlined the classical situation with
semantic security in Section 1.1.1, we start with a discussion of some difficul-
ties in transitioning to the quantum setting. A similar discussion can be found
in [GHS15] and we explain below where and why we make different choices.

4.1 Difficulties in the Quantum Setting

When attempting to transfer the definition of semantic security to the quantum
world, the main question one encounters is to determine the quantum equivalents
of h(xz) and f(x) (as it is relatively clear that the plaintext z would have as
quantum equivalent a quantum state pys, in a message register, M).

For the case of the side-information, h(z), one might attempt to postulate
that this side information is available via the output of a quantum map @;,, evalu-
ated on pjs. There are, however, two obvious problems with this approach: firstly,
it is unclear how to simultaneously generate both ppr and @p(par) (the main
obstacle stemming from the quantum no-cloning theorem [WZ82], according to
which it is not possible to perfectly copy an unknown quantum state)?. Secondly,
it is well-established that the most general type of quantum side-information in-
cludes entanglement (contrary to the scenario studied in [GHS15]). We therefore
conclude that side information should be modelled simply as an extra register
(called FE) such that pp/g are in an arbitrary quantum state (as generated by
some process—for a formal description, see Definition 8).

9 [GHS15] solves the issue by requiring a quantum circuit that takes classical random-
ness as input and outputs plaintext states. Hence, multiple plaintext states can be
generated by using the same randomness.
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For the case of the target function f, one might also postulate a quantum
map Py, the goal then (for both the adversary and simulator), being to output
D¢ (par). However, given that quantum states and maps form a continuum, one
must exercise care in quantifying when a simulator has successfully simulated
the adversary. We propose three possible tests for quantifying “success” in the
semantic security game, each leading to its own definition. Since we show that
all three definitions are equivalent, we conclude that it is a matter of taste (or
context) which definition to label as the definition of quantum semantic security.
We focus in this section on the first one, which we called SEM, because we find
that it the most natural. We give formal definitions and proofs of equivalence
for all three definitions in Appendix A. Here is an overview of the three different
notions:

— SEM. In Definition 8, a state pp/gp is generated; intuitively, the contents
of register F' can be seen as a “target” output that the adversary tries to
achieve (however, this is not quite the case as we point out shortly). We
then postulate a quantum polynomial time distinguisher who is given the F
register and charged with distinguishing the output of the adversary from
the output of the simulator, with security being associated with the inability
of the distinguisher in telling the two situations apart. We thus see that the
role of register I is actually to assist the distinguisher: semantic security
corresponds to the situation where the distinguisher essentially cannot tell
the real from ideal apart, even with access to the F' system.

— SEM2. In Definition 22, we specify instead that the state py;prp be a
classical-quantum state. That is, pasp is quantum, but the register F' con-
tains a classical state. Thus, correlations shared between the two systems
are classical only. The requirement for security is that the simulator should
provide a classical output that equals the contents of F', essentially just as
well as the adversary can.

— SEMS3. In Definition 25, we introduce a classical function f, thus closely
mimicking the classical definition. Namely, we specify as in SEM2 that F
contains a classical state y, which we furthermore assume to be precisely the
results of any measurements used to generate py/g (thus, y is, in a sense,
a full “classical description” of pprg). The requirement for security is that
the simulator is able to output f(y) (for any f) with essentially the same
probability as the adversary.

4.2 Definition of Semantic Security

As before, we work primarily in the public-key setting; adaptation to the sym-
metric-key setting is again straightforward. In our concrete formulation of SEM
(Definition 8), we define the following QPT machines: the message generator
M (which generates pyrr), the adversary A, the simulator S and the distin-
guisher D.

Definition 8. [SEM] A ¢PKE scheme (KeyGen, Enc, Dec) is semantically secure
if for any QPT adversary A, there exists a QPT simulator S such that for all
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QPTs M and D,

|Pr[ D{(A® 1p)(Encyr ® Lpr)pmpr} =1
—Pr[D{(S®1r)ppr} =1]| < negl(n),

where pyrpr — M(pk), ppr = Tra(pumer), and the probability is taken over
(pk, sk) + KeyGen(1™) and the internal randomness of Enc, A, S and D.

— SEM-CPA: In addition to the above, all QPTs have oracle access to Encyy,.
— SEM-CCA1: In addition to IND-CPA, M has oracle access to Decgy.

The interactions among the QPT's are illustrated in Figure 2. A few remarks
are in order. First, all the registers above are uniformly of size polynomial in n.
Second, the input and output registers of the relevant QPT's are understood from
context, e.g., the expression (S ® 1p)ppr makes clear that the input register
of § is E. Third, we note that SEM implies SEM-CPA in the public-key setting,
since access to the public key implies simulatability of Encyy. Finally, just as in
the case of IND, adapting to the symmetric-key setting is simply a matter of
setting pk = sk and positing that M receives only a blank input.

Encpy

[ S

pk— M

SIS

Fig. 2. SEM: for all adversaries A there exists a simulator & such that these two
scenarios are indistinguishable.

The classical (uniform) definition of semantic security is recovered as a special
case, as follows. All of the QPTs are PPTs, and the message generator M out-
puts classical plaintext m, side information h(m) and target function f(m). The
distinguisher D simply checks whether the adversary’s (or simulator’s) output is
equal to the contents of the F' register.

4.3 Semantic Security is Equivalent to Indistinguishability

While semantic security gives a strong and intuitively meaningful definition of
security, indistinguishability is typically easier to prove and work with. In this
section we show that—just as in the classical setting—the two notions are equiv-
alent. This proves Theorem 1. The equivalence holds for all of the variants of
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Definition 7 and Definition 8: under either public or private-key, we have equiva-
lence of IND with SEM, IND-CPA with SEM-CPA, and IND-CCA1 with SEM-
CCALl. Here, we focus on the SEM definition; see Appendix A for the equivalence
with the SEM2 and SEM3 definitions.

Theorem 9 (IND = SEM). If a quantum encryption scheme
(KeyGen, Enc, Dec) has indistinguishable encryptions (IND), then it is semanti-
cally secure (SEM).

Proof. Suppose that an encryption scheme (KeyGen, Enc, Dec) has indistinguish-
able encryptions. Let A be QPT SEM attacker against semantic security as in
Definition 8. We define the QPT SEM simulator S as follows: S does not re-
ceive Encyi(par), but instead runs A on input (Ency, ® 1x)(]0) (0] ® pg) and
outputs whatever A outputs. Let M be a QPT SEM message generator that
outputs ppeF.

Assume for a contradiction the existence of a QPT SEM distinguisher D
which successfully distinguishes the output of A from the output of S (with the
help of register F'), then the combination of A and D successfully distinguishes
(Encpr ® Ipr)pymer from (Ency, ® Igr)(|0) (0] ® per), hence contradicting the
indistinguishability. O

In the private-key setting without CPA oracle access, S runs KeyGen(1™) to
generate his own secret key &', and then encrypts |0™) (0™] using &’ instead of k.
The ciphertexts Ency, [0) (0| and Ency- |0) (0] will be distributed identically since
k and k' are. Hence, the success probability of the SEM simulator & does not
change.

In case of CPA and CCA1 oracles, both for the public- and private-key set-
ting, the simulator S forwards A’s oracle queries to his own oracle(s), and S
obtains A’s input state by a call to his encryption oracle on state |0) (0|, joined
with his auxiliary information pg.

Theorem 10 (SEM =— IND). If a quantum encryption scheme
(KeyGen, Enc, Dec) is semantically secure (SEM), then it has indistinguishable
encryptions (IND).

Proof. Let (M, D) be an IND adversary such that D distinguishes (Encpy ®
1g)pme from (Encyr, @ 15)(|0) (0| ® pg) with advantage e(n) if pyg < M. Let
us consider the SEM message generator M’ which runs py g < M and outputs
(with probability 3 each) either the state pprp ® [0) (0] or the state [0) (0], ®
pe ® |1) (1| z. Next we consider the SEM attacker A which runs D and outputs
the classical bit that D outputs. We also consider the SEM attacker A@® 1, which
outputs the opposite bit. As SEM distinguisher, let us consider the procedure
which compares A’s output bit to a measurement (in the computational basis)
of the qubit in register F. Any SEM simulator S that does not have access to the
encrypted M-register has to guess the state of the random bit in F' and will be
correct with probability 1/2. Then e(n) is twice the maximum of the advantages
that A and A @ 1 have in successfully predicting F' over 1/2, the probability of
success of any simulator. By SEM, both of these advantages are negligible, and
hence so is g(n). O
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5 Quantum Encryption Schemes

We now turn to the question of existence for encryption schemes for quantum
data. We present two schemes based on the existence of classical functions which
are difficult to invert for quantum computers. The first scheme (Section 5.1) is
symmetric-key and IND-CCA1-secure; the second scheme (Section 5.2) is public-
key and IND-CPA-secure. By the results of Section 4, these schemes are also
semantically secure.

5.1 Quantum Symmetric-Key Encryption from One-Way Functions

In this section, we prove Theorem 2: If quantum-secure one-way functions exist,
then so do IND-CCA1-secure private-key quantum encryption schemes.

The proof proceeds in two steps. First, we define quantum-secure one-way
functions (qQOWFs) and quantum-secure pseudo-random functions (qPRFs); we
can argue as in the classical world that gPRF's exist if qOWFs do (Theorem 13.)
Second, we show that any qPRF can be used to construct an explicit IND-CCA1-
secure symmetric-key scheme for quantum data.

We begin with the formal definitions of OWFs and qPRFs, and a statement
of the result connecting the two.

Definition 11. A PT-computable function f: {0,1}* — {0,1}* is a quantum-
secure one-way function (qQOWF) if for every QPT A,

Pr [A(f(x),1") € f71(f(2))] < negl(n) .

z <& {013

Definition 12. A PT-computable function family f : {0,1}"x{0,1}™ — {0,1}*
is a quantum-secure pseudorandom function (qPRF) if for every QPT D equipped
with a classical oracle,

Pr [D/r(1")=1] - Pr [DY(1™) = 1]| < negl(n).
k<{0,1}n g & {{0,13m—{0,1}¢}

We remark that, to some readers, the restriction to classical oracles might seem
artificial. While one can certainly consider functions with the stronger guaran-
tee of resistance to quantum adversaries with quantum oracle access, stronger
functions are not necessary to establish our results. We thus opt for the weaker
primitive. In either case, the following holds.

Theorem 13. If qOWFs exist, then qPRF's exist.

Since our definitions are in terms of classical oracles, the classical proof that
shows that qOWFs imply qPRF's carries through [HILL99,GGMS86] . We remark
that Zhandry [Zhal2] extended this result to the case of functions secure against
quantum superposition queries, what he calls “quantum-secure PRF's.” It should
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be noted that the proof of the Theorem 13 actually implies the existence of a
qPRF for any (polynomial) choice of the parameters m and ¢ in Definition 12.

We are now ready to proceed with the second part of the proof of Theorem 2,
namely the construction of an encryption scheme from a given qPRF. Essentially,
this scheme encrypts a quantum state p by first selecting a random string r, then
inputing r into a qPRF; the output f () is then used as an encryption key for
the quantum one-time pad, Py, .

Scheme 1 Let f:{0,1}" x {0,1}*" — {0,1}*" be a ¢PRF. Let ¢PRF-SKE be
the following triple of QPT algorithms:

1. (key generation) KeyGen(1™): output k <{0,1}";

2. (encryption) Enci(p): choose r <{0,1}*" and output |r) (r| @ Py, ()pPf, (1)

3. (decryption) Deci (o) : measure the first 2n qubits in the computational basis
to obtain r' € {0,1}*"; apply Py, 7y to remaining 2n qubits and output the
result.

For simplicity, we chose ©(H,) for the key space and the plaintext space,
and D (Ha,) for the ciphertext space; we can easily adapt the above to other
polynomially-related cases by selecting a qPRF with different parameters. Cor-
rectness of Scheme 1 is easily verified:

Decy.(Enci(p)) = Decy.(|r) (r| @ Pr,(rypPro(r)) = Pritr) Py PPrr) Proir) = 9

where the second equality follows from the definition of the decryption function
and the last step is due to the fact that the Pauli operators are self-inverse.
Next, we show that the scheme is secure against non-adaptive chosen ciphertext
attacks. The classical version of this result is standard, and we use essentially
the same proof; see, e.g., Proposition 5.4.18 in Goldreich’s textbook [Gol04b].

Lemma 14. If f is a ¢PRF, then Scheme 1 is an IND-CCA1-secure symmetric-
key quantum encryption scheme as defined in Definition 7.

Proof. First, we analyse the security of the scheme in an idealized scenario where
f is a truly random function. We claim that in this case, A correctly guesses
the challenge with probability at most 1/2 + negl(n)(see Definition 27). In fact,
this bound holds for a stronger adversary .A’, who has access to a classical oracle
for f prior to the challenge, and access to polynomially-many pairs (r;, f(r;)) for
random r;, 1 < i < ¢, after the challenge. This adversary is stronger than A since
it can simulate A by implementing Ency and Decy oracles using its f oracles.
Since the input r into f in the challenge ciphertext is uniformly random, the
probability that any of the polynomially-many oracle calls of A’ uses the same
r is negligible. In the case that no oracle calls use r, the mixtures of the inputs
to A’ (including the pairs (r;, f(r;))) are the same for the original challenge and
the zero challenge. This fact can be verified by first averaging over the values
of f(r): since f is uniformly random, f(r) is also uniformly random as well
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as independent of the other values of f. In both cases, applying the quantum
one-time pad results in the state:

Ir) (rl® 2%]1 @ pr @ |r1) (r| @ [f(ro) (Fr)[ @ @rg) {rql @ |f(rq)) (£ (rq)l,

and indistinguishability follows.

Next, we consider the case that f is a pseudorandom function. We show
that a successful IND-CCA1 adversary A (i.e., one that distinguishes challenges
with better than negligible probability) can be used to construct a successful
f-adversary Ag (i.e., one that distinguishes f from random with non-negligible
probability.) The adversary A is a QPT with classical oracle access to a function
¢ {0,1}*" — {0,1}?", and aims to output 0 if ¢ is perfectly random and 1 if
@ = fi for some k. Define the simulated oracles

Enc, : p (r, P¢(r)pP@(T)> for 7 <£{0,1}*", and
Decy, : 1) (| ® p = Py PPy »

where, as before, we assume that Dec, measures the first register before decrypt-
ing the second. Note that if ¢ = fi then these are exactly the encryption and
decryption oracles (with key k) of the qPRF-SKE scheme.

The QPT Aj proceeds as follows. First, it simulates A, and replies to its
queries to the encryption oracle with Enc, and its queries to the decryption
oracle with Dec,. When it transmits the challenge, A replies with either the
encryption of the challenge, or the encryption of |0™) (0"|, each with probability
1/2. If A responds correctly, A5 outputs 1; otherwise it outputs 0. If ¢ = fj,
then we have exactly simulated the IND-CCA1 game with adversary A; in that
case, since A is IND-CCA1l-breaking, A§ outputs 1 with probability at least
1/2 4+ 1/p(n) for some polynomial p, for infinitely many n.

We conclude that

1
Pr [Alr(1") =1] - Pr [AF (1) = 1]| > ———negl(n),

k<S{0,1}n ¢ < {{0,1327 —{0,1}2n} p(n)

for infinitely many n, i.e., f is not a qPRF. a

The proof of Theorem 2 thus follows from Theorem 13 and Lemma 14.

5.2 Quantum Public-Key Encryption from Trapdoor Permutations

For the construction of public-key schemes, we will need qOWFs with an ad-
ditional property: the existence of trapdoors which enable efficient inversion.
Following the classical approach of Diffie and Hellman [DHT76], we set down
the notion of a quantum-secure trapdoor one-way permutation (or qgTOWP),
and then show how to use any qTOWP to construct IND-CPA secure public-
key encryption schemes for quantum data. This will establish Theorem 3: If
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quantum-secure trapdoor one-way permutations exist, then so do semantically
secure public-key quantum encryption schemes..

We begin with a definition of TOWPs. We require a slight (but standard)
variation of Definition 11, namely the notion of a quantum-secure one-way per-
mutation (or qOWP). A qOWP is a qOWF whose input domains are sets D;;
moreover, the function restricted to any such domain must be a permutation
(from the domain to the corresponding range.) When we augment such a qOWP
with trapdoors, we arrive at the following definition.

Definition 15. A quantum-secure trapdoor one-way permutation (qTOWP) is
a qOWF

{fi: Di = {0,1}" }ier
(where each f; is a bijection), together with a triple of PPTs (G,S,T) which

1. (generate (indez, trapdoor) pair) suppG(1™) C (I n{0,1}") x {0,1}";
2. (sample from domain) for all i € I, suppS(i) = D;;
3. (invert) for all (i,t) € supp G(1™) and all x € D;, Z(f;(x),t) = x.

Before we can describe the public-key scheme and prove its security, we
need two additional (well-known) primitives which can be constructed from any
qOWP, with or without trapdoors. The first is a quantum-secure “hard-core”
predicate, which is a “yes” or “no” question about inputs x which is difficult to
answer if one only knows f(x).

Definition 16. A PT-computable b : {0,1}* — {0,1} is a hard-core of a qOWP
[ if for every QPT A,

Pr JA(@), 1) = ()] < 5 +negl(n).
z <—{0,1}n

Theorem 17. ([AC02], quantum analogue of [GL89]) If qOWPs exist, then
qOWPs with hard-cores exist.

The other primitive we need is a quantum-secure pseudorandom generator, which
is defined below. The classical proof that hard-cores imply pseudorandom gen-
erators carries over with little modification (see Lemma 19).

Definition 18. A PT-computable deterministic function G : {0,1}™ — {0,1}™
is a quantum-secure pseudorandom generator ((qPRG) if for every QPT D,

Pr [D(G(s))=1 - Pr [D(y)=1]| <negl(n).
s {01} y<{0,1}m

Lemma 19. Suppose f is a gqOWP, b its hard-core predicate, and let t be poly-
nomial in n. Then G : s+ b(f1=1(s))b(f72(s))...b(s) is a ¢PRG.
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Proof (Sketch). The proof proceeds almost identically as in the classical case
(see, e.g., [Gol04a].) Let D be a quantum adversary that distinguishes G(U,,)
from uniform. Note that, as stated in Definition 18, D gets only classical bitstring
outputs from the pseudorandom generator. In the classical proof, one constructs
an adversary A which uses D as a black-box subroutine, and breaks the hard-
core of f. We use the exact same A now; in particular, we only need to invoke
D on classical inputs and read out its (post-measurement) classical outputs (0
or 1). Of course, by virtue of needing to invoke D, A itself will now be a QPT.
In slightly greater detail, we use a standard hybrid argument to give a
“predictor” algorithm A that, for some index 7 < ¢, can predict the 7 + 1%¢
bit of G(U,), given as input the first ¢ bits of the output of G. A succeeds
with non-negligible advantage over random, i.e., the probability over s that
A(f1(s)) ... b(f11(s))) outputs b(f~ 1) (s) is at least 1/2 + 1/p(n) where
p(n) is some polynomial. Crucially, since f implements a permutation over
{0,1}", we have that b(f=*(U,))...b(U,) is distributed identically to
b(f=1(U)) ... b(f1=%(U,)). Therefore, given uniform z, and y = f(z), we can
use the output of the predictor, A(b(f:=1(y))...b(y)) = Ab(fi(x))...b(f(x)))
to predict b(z) with non-negligible advantage, in violation of the security guar-
antee of the hard-core predicate. a

We now have all of the ingredients needed to describe a public-key scheme
for encrypting quantum data.

Scheme 2 Let f be a qTOWP, and let b and G : {0,1}" — {0,1}*" be a cor-
responding hard-core and ¢qPRG, respectively. Let qTOWP-PKE be the following
triple of algorithms:

1. ((public, private) key-pair generation) KeyGen(1™): output G(1™) = (i,t) €
{0, 1} x {0, 1}";
2. (encryption with public key) Enc;(p):
— apply S(i) to select d € D;, and compute r := G(d);
— output |F2(d)) (2" (d)] @ PupP,
3. (decryption with private key) Decy(|s) (s| ® o) :
— for j =1,...,2n, apply bo (T)? to (s,t); concatenate the resulting bits
to get u € {0,1}";
— output P,oP,.

Correctness of the scheme is straightforward; fix a key-pair (i,t), a randomly
sampled d € D;, and the corresponding r. Then

Dec;(Enc;(p)) = Dect(|fl—2”(d)> <fz2n(d)| ® PTPPT) = P P.pP.P, = p,

where the last step follows from the fact that v = r for valid ciphertexts. It
remains to show that this scheme is secure against chosen-plaintext attacks. We
begin by proving indistinguishability of ciphertexts for the quantum one-time
pad which uses randomness supplied by a qPRG. We first set the following
notation. Recall from Section 2.2 that a string r of 2n bits determines a Pauli
group element P, € U(2"). Given an n-qubit register A, an arbitrary register B,
and p € ®(Ha @ Hp), define P,.4(p) :== (P, @ 1g)p(P, @ 1p).
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Lemma 20. Suppose G : {0,1}™ — {0,1}™ is a ¢PRG. Then for any efficiently
preparable states pap € D(Ha @ Hp) and o4 € D(Ha), and any QPT D

Pr [D(Pg(syalpan)) =1]— Pr [D(Pg(sya(ca®pp)) = 1]| < negl(n)
s&fo1m s<&{0,13n
(1)

Proof. The two key observations are (i.) distinguishability as in Equation (1)
is impossible if we replace G(s) with uniform randomness, and (ii.) with only
classical input/output access to G, we can simulate D(Pg(s);4(-)) Putting these
two facts together, it follows that achieving (1) implies that outputs of G can be
distinguished from uniformly random.

Formally, let us assume that there is an adversary D that violates our hypoth-
esis, i.e., that distinguishes some pair of inputs (Pg(s);4(paB), Pa(s);a(04®@pB))
with probability at least 1/p(n) for some polynomial p. Then we’ll show an al-
gorithm D', that breaks the pseudorandom generator G. On input y € {0,1}™,
algorithm D’ does the following:

— with probability 1/2, run D on input Py, 4(paB);
— with probability 1/2, run D on input Py.4(04 ® ppg).

Now if D is able to correctly determine which of the cases we gave it, D’ decides
that y must have been distributed pseudorandomly and outputs 1, else it decides
that y is uniformly distributed and outputs 0.

Notice that if y = G(s), by definition D’ outputs 1 when D correctly distin-
guishes the two inputs, which occurs with probability at least 1/24+1/p(n) by the
assumption on D. On the other hand, suppose y <-{0,1}™; then the register A is
mapped to the maximally mixed state, and hence Py. 4(pap) = Py.a(ca®pp) =
14®pp. In that case, D is correct with probability at most 1/2-+negl(n) (indeed,
this is true for any QPT.) We conclude that D’ distinguishes the case y = G(s)
from the case y<-{0,1}™ with non-negligible probability; this contradicts the
assumption that G is a qPRG. a

Finally, to prove that the construction in Scheme 2 is IND-CPA-secure, and
thus establish Theorem 3, it remains to extend the above proof to a slightly
more general scenario. Recall that Enc;(p) = |f2"(d)){f?"(d)| ® P,.pP, where
r = G(d). Lemma 20 already shows that essentially no QPT adversary can
distinguish (P, ® 1g)pyme(Pr @ 1g) from (P, @ 1)(|0) (0] ® pg)(Pr @ 1g), for
any efficiently preparable bipartite state pp;p over the message space and the
environment. It remains to show that this indistinguishability still holds if the
adversary is also provided the classical advice f?"(d). We can prove this extended
indistinguishability by extending the hybrid argument in the proof of Lemma 19
in a standard way. To sketch the argument, first recall that the “predictor”
algorithm succeeds at predicting the i + 1%* bit of G(U,,) given as input the first
1 bits of the output of G. Now we also allow the predictor to read the bits of
f2™(d). Success implies breaking the hard-core of f (which is used to define and
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ensure the security of the qPRG G). We conclude that the states

2 @) (D)] @ Pogsynr(pyp)  and [ f2 ()" ()] @ P ()

are computationally indistinguishable for uniformly random s, r’. The right-hand
side encryption above obviously satisfies IND-CPA, so we also have computa-
tional indistinguishability of

@V (d)] @ Prar(pars) and  [f20(d)) (24 (d)] © Brras (10) (0] © pi)

By transitivity of computational indistinguishability, we conclude that

L2 (@) (F (D @Pe(sy;nr (10) 0y, @pp)  and  [f2(d) (£ (D)|@Po(syn (prre)

which completes the proof of Theorem 3.

6 Conclusion

We have defined semantic security for the encryption of quantum data and shown
its equivalence with indistinguishability; these results are given in the uniform
model for quantum computations, but as is standard classically (see Chapter 5
of Goldreich’s text [Gol04a]), these definitions can be adjusted to the case of
“non-uniform” (but still polynomial-time) adversaries, whose messages need not
be generated efficiently. While the proof is somewhat different, the equivalence
of IND and SEM still hold in this case. The constructions of encryption schemes
(IND-CCA1 symmetric-key and IND-CPA public-key) presented above carry
over as well, except that we now require primitives (QPRFs and qTOWPs, re-
spectively) which are secure against non-uniform adversaries.

6.1 Extensions and Future Work

We now briefly discuss some possible extensions of the above results. In most
cases, these extensions are a matter of modifying our definitions and proofs in a
fairly straightforward way. We leave the other cases as interesting open problems.

— Our definitions of IND-CPA, IND-CCA1 and SEM assume that all of the
relevant messages are generated in polynomial time. In other words, our
results assume “uniform” adversaries. As is standard classically (see Chapter
5 of Goldreich’s text [Gol04a]), these definitions can be adjusted to the case of
“non-uniform” (but still polynomial-time) adversaries, whose messages need
not be generated efficiently. While the proof is of course somewhat different,
the equivalence of IND and SEM still hold in this case. The encryption
schemes (IND-CCA1 symmetric-key and IND-CPA public-key) presented
above carry over as well, except that we now require primitives (qPRFs and
qTOWPs, respectively) which are secure against non-uniform adversaries.
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— Our symmetric-key encryption scheme assumes that the decryption algo-
rithm measures a portion of the input in order to recover a classical ran-
domness string, prior to decrypting. One might find this requirement sus-
picious, e.g., if a perfect measurement device is too much to assume. This
requirement can be removed, but we then need to assume that the relevant
primitives (OWFs and qPRFs) are secure against superposition queries. This
can also be achieved (see [Zhal2]).

— One outstanding open problem is to define and construct schemes for CCA2
(adaptive chosen ciphertext attack) security in the case of the encryption
of quantum states. Classically, CCA2 security is defined as CCA1, with the
further property that the adversary is allowed to query the decryption or-
acle even after the challenge query, provided he does not query about the
challenge ciphertext itself (otherwise the challenger aborts the game.) The
obvious way to define this in the quantum world is to require that every
decryption query performed by the adversary after the challenge query is
‘very different’ from the challenge query itself (e.g., it is orthogonal to the
challenge ciphertext.) But the problem here is that this condition might
be impossible for the challenger to check: for example, the adversary might
embed in a decryption query a component non-orthogonal to the challenge
query, but with such a small amplitude that the challenger cannot detect
it with high probability. Even if it is unclear whether this issue could raise
problems in any actual reduction, it would be anyway a striking asimmetry
to the classical case, because there would be no way for the challenger to
check that the adversary actually fulfilled the required condition. Hence, giv-
ing a satisfactory definition for CCA2 security in the quantum world remains
an interesting open problem.
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A Alternative Definitions of Quantum Security

Here, we present further definitions of quantum semantic security and indistin-
guishability, and prove their equivalence. The full chain of equivalencies is given
in Figure 3.

A.1 SEM2

Definition 21 (Message-classical function generator). A message-classical
function generator M is a QPT message generator (as in SEM (Definition 8))
such that for each pk € Kpup and p in the range of M(pk), there is some binary
string y such that |y) € Hr and pyer = pue @ ly) (yl.

That is, the F' system is classical, unentangled from and uncorrelated with
the rest of p.
In particular, pr = |y) (y|.
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Thm. 9 IND
SEM Prop.28
Prop. 23 IND'
SEM?2 Thid. 29
Prop..26 SEM3

Fig. 3. Relationship between security definitions.

Definition 22 (SEMZ2). A ¢PKE scheme (KeyGen, Enc, Dec) is SEM2-secure
if for any QPT adversary A, there exists a QPT simulator S such that for all
message-classical function generators M,

|Pr [ A{(Encpr ® Lp)pme} = pr | — Pr[S(pe) = pr ]| < negl(n)

where the outputs of A and S are measured in the computational basis be-
fore equality is checked, pyrpr — M(pk), and the probabilities are taken over
(pk, sk) + KeyGen(1™) and the internal randomness of Enc, A, S and D.

— SEM2-CPA: In addition to the above, all QPTs have oracle access to Encyy,.
— SEM2-CCA1: In addition to SEM2-CPA, M has oracle access to Decgy,.

Proposition 23. If a quantum encryption scheme (KeyGen, Enc, Dec) is seman-
tically secure, then it is SEM2 secure.

Proof. A message-classical function generator is also a message. In SEM, have
the distinguisher D implement an equality test (simulate any efficient classical
circuit implementing it; if the input lengths aren’t the same, output 0 immedi-
ately). O

A.2 SEM3

Definition 24 (Message Generator-Function Pair). A message generator-
function pair is a tuple (M, f), such that M is a QPT message generator (as
in IND (Definition 7)) and f = (fu)n ts a QPT algorithm, such that fp, =
fn(pk) is the description of a boolean circuit, for pk € Kyyup, with the number
of input bits to fpr equal to the number of measurement gates in the quantum
circuit My,. In the symmetric-key scenario, f, has no input.
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Definition 25 (SEM3). A ¢PKE scheme (KeyGen, Enc, Dec) is SEM3-secure
if for any QPT adversary A, there exists a QPT simulator S such that for all
message generator-function pairs (M, f),

|Pr [A{(Encp;c ® ]lE),oME} = for(z) } —Pr [S(pE) = for(z) } ’ < negl(n)

where the outputs of A and S are measured in the computational basis before
equality is checked, pypp < M(pk), © is the string of measurement results gen-
erating pypr e, and the probabilities are taken over (pk, sk) < KeyGen(1™) and the
internal randomness of Enc, A, S and D.

— SEMB3-CPA: In addition to the above, all QPTs have oracle access to Encyy.
— SEM3-CCA1: In addition to SEM3-CPA, M has oracle access to Decyy,.

We note that fpy, is a function of the random input and measurement results,
which completely determine the state. Hence, if f,, is the identity for all pk, and
it can be computed given a ciphertext, this means we can compute measurement
results necessary to prepare the state. Simulating the message generator but
selecting for the correct measurement results would allow the preparation of the
same state again, although this is not in general efficient.

Proposition 26 (SEM2 implies SEM3). If a quantum encryption scheme
(KeyGen, Enc, Dec) is SEM2 secure, then it is SEMS3 secure.

Proof. A message generator-function pair (M, f) can be turned into a message-

classical function generator M by copying the measurement results x1, 2, ..., Ty
after each measurement gate, and applying f,r to z122... 2, and letting the
result be the F' system. a
A.3 IND’

Definition 27 (IND’). A ¢PKE scheme (KeyGen, Enc, Dec) is IND’ secure if
for every QPT adversary A = (M, D) we have:

Pr [ D{(Ency ® Le)pfip} = b] < § + negl(n)
where pyrg — M(pk), for b a uniformly random bit, ps\}[)E = pyE and pg\(/)[)E =
|0) (0], ® pr, and the probabilities are taken over (pk, sk) < KeyGen(1™), b and
the internal randomness of Enc, M, and D.

— IND’-CPA: In addition to the above, M and D have oracle access to Enc,y,.
— IND’-CCA1: In addition to IND’-CPA, M has oracle access to Decgy,.

Proposition 28 (IND’ <= IND). A quantum encryption scheme
(KeyGen, Enc, Dec) is IND’ secure if and only if it is IND secure.
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Proof. We drop brackets and the register subcripts where possible.

Pr[D(Encyr @ 15)p® = b]

r[D(Encyr, @ 15)p® =b | b= 1]Pr[b = 1]

r[D(Encpr @ 1)p™ = b | b= 0] Pr[b = 0]

(Pr[D(Encpr @ 1g)p = 1] + Pr[D(Encpy 0) (0] ® p) = 0])
(Pr[D(Encpr ® 1g)p = 1] + 1 — Pr[D(Ency |0) (0] ® pg) = 1])
= 5 + 3(Pr[D(Encyr @ 1p)p = 1] — Pr[D(Encyy |0) (0] ® pp) = 1]).

= Nl N + av]
",

Note that we only get < since D may output some binary string other than
0 or 1. So:

Pr[D(Ency, ® 15)p® =b] — 1
< 3| Pr[D((Encyr ® 1)p = 1] — Pr[D(Encyy |0) (0] @ pp) = 1]|.

Thus, IND = IND’.

Now consider replacing D with the distinguisher which starts the same as D,
but if D would have output something other than 0 or 1, it simply outputs O.
Then the quantity | Pr[D((Encpr @ 1g)(p))) = 1] — Pr[D(Encyy [0) (0| ® pg) = 1]
is the same for this new distinguisher, so without loss of generality, D only
outputs 0 or 1.

Then the first < becomes an = , i.e.

Pr[D(Encyr ® ]1E)p(b) = - %
_ %(PF[D(EnCpk X ]lE)P = 1] - PI‘['D(EnCp;€ |0> <()| ® PE) _ 1])

and, similarly,

Pr[D(Encyr @ 15)p® = b@ 1]

= Pr[D(Enc,r @ 1)p® =b@®1 | b=1]Pr[b = 1]

Pr[D(Encyr, @ 15)p® =b@® 1 | b= 0]Pr[b = 0]

(Pr[D(Encpr ® 1)p = 0] + Pr[D(Encyy [0) (0| ® pp) = 1])

(1 — Pr[D(Encyr ® 15)p = 1] 4+ Pr[D(Encyy [0) (0| @ pg) = 1])
+ 3 (Pr[D(Encyy, [0) (0| ® pg) = 1] — Pr[D(Encyr ® 1g)p = 1])

I
W= o= = 4 g

S0,
(b — 1
Pr[D(Encpr @ 1p)p™ =b® 1] — 3
— L(Pr[D(Encyr 0) (0] © pir) = 1] — Pr[D(Encyr @ L)p = 1)),
Combining the above,

3| Pr[D(Encpy ® 1p)p = 1] — Pr[D(Encyy [0) (0| ® pr) = 1]]
= max{Pr[D(Enc,x ® 1p)p” = b] — 3, Pr[D(Ency, ®@ 15)p® =b@ 1] - 1
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Hence IND’ = IND by applying IND to both D and D @& 1 (the lat-
ter outputs the answer opposite to D), for Pr[D(Encyy @ 1g)p® = b] and
Pr[D(Encyr @ 15)p® = b @ 1], respectively. The maximum of two negligible
functions is again negligible. a

Theorem 29 (SEM3 — IND’). If a quantum encryption scheme
(KeyGen, Enc, Dec) is SEMS3 secure, then it is IND’ secure.

Proof. We drop brackets and the register subcripts where possible.

Let (M, D) be an IND’ adversary.

Let us consider the SEM3 message generator M’ which runs py g < M and
outputs (with probability 4 each) either the state pasg or the state |0) (0],,® pg,
and we denote its output by p},5 In particular, it prepares a random bit b to
do so by measuring a ancilary qubit to which the Hadamard was applied.

Define fpi(zb) = 0.

Define the SEM3 adversary A := D.

In this way, the SEM3 game simulates the indistinguishability game, and

PrA((Encyr @ 1) (phrp))) = for(ab)] = Pr[D((Encyr, @ 1g) (")) = b]
Now, by SEM3, there is some simulator S for A so that
| PrlA(Encyr @ 1g)php = for(xb)] — Pr(Sply = for(ad)]| < negl(n)
ie.
| Pr[D((Encye @ 15)(p"))) = b] — PrlSply = for(ab)]| < negl(n)
Note that S’s input p is independent of b. Hence
Pr[Spls = fpr(zb)] < %

Finally, by the triangle inequality applied to the last two inequalities,

Pr[D(Encyr ® 15)p® = b] < 1 + negl(n)
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