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Abstract. Walsh-Hadamard transform is used in a wide variety of scien-
tific and engineering applications, including bent functions and cryptan-
alytic optimization techniques in cryptography. In linear cryptanalysis,
it is a key question to find a good linear approximation, which holds
with probability (1 + d)/2 and the bias d is large in absolute value. Lu
and Desmedt (2011) take a step toward answering this key question in
a more generalized setting and initiate the work on the generalized bias
problem with linearly-dependent inputs. In this paper, we give fully ex-
tended results. Deep insights on assumptions behind the problem are
given. We take an information-theoretic approach to show that our bias
problem assumes the setting of the maximum input entropy subject to
the input constraint. By means of Walsh transform, the bias can be ex-
pressed in a simple form. It incorporates Piling-up lemma as a special
case. Secondly, as application, we answer a long-standing open problem
in correlation attacks on combiners with memory. We give a closed-form
exact solution for the correlation involving the multiple polynomial of
any weight for the first time. We also give Walsh analysis for numerical
approximation. An interesting bias phenomenon is uncovered, i.e., for
even and odd weight of the polynomial, the correlation behaves differ-
ently. Thirdly, we introduce the notion of weakly biased distribution, and
study bias approximation for a more general case by Walsh analysis. We
show that for weakly biased distribution, Piling-up lemma is still valid.
Our work shows that Walsh analysis is useful and effective to a broad
class of cryptanalysis problems.
Keywords. (Sparse) Walsh-Hadamard Transform, Linear cryptanalysis,
Bias analysis, Maximum entropy principle, Piling-up lemma.

1 Introduction

Walsh-Hadamard transform is powerful in a variety of applications in
image and video coding, speech processing, data compression, communi-
cations [10,41] (including the classic application bent functions [38] used
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in cryptography). Most recently, it is demonstrated that Walsh trans-
form4 plays an essential role in a generic sampling problem for which
we know nothing about the signal source a priori and the sample size is
bounded [20]. As this transform only performs addition and subtraction,
it is extremely easy for digital implementation. Similar to the Fast Fourier
Transform, it has a fast and efficient algorithm - Fast Walsh Transform
(FWT). For an array of size N , where N is an integer power of two,
the total number of arithmetic operations to compute FWT is N log2N .
The simplicity of Walsh transform intrigued research efforts in crypt-
analytic techniques for symmetric crypto-systems two decades ago [3].
Interestingly, due to the hardware bottleneck, the computing technology
before millennium thwarted applicability of Walsh transform to practical
cryptanalysis. It is not until the beginning of new millennium that it has
become feasible to do giga-scale Walsh-Hadamard transforms on a sin-
gle PC. The topic of Walsh transform in practical cryptanalysis emerges
since then (cf. [6, 7, 22,23]).

To analyze the security of symmetric crypto-systems, there exist two
mainstream generic techniques, i.e., differential cryptanalysis and linear
cryptanalysis (cf. [31]). Linear cryptanalysis was invented by Matsui [25]
for the 64-bit block cipher Data Encryption Standard (DES). It proves
widely applicable to both block ciphers and stream ciphers. The basic
idea is to find a linear approximation for (part of) the symmetric crypto-
system, which holds with probability (1 + d)/2 for the correct guess on
the key bit and probability 1/2 for all the wrong guesses. The critical
parameter d (i.e., the bias) affects both the data and time complexities.
It is known that the data complexity needs to be on the order of 1/d2

for a high probability of success. Therefore, the key question in linear
cryptanalysis is to find a good linear approximation, which holds with
largebias d. Herein, we loosely say that the bias d is large if |d| is large.
It is not a trivial question, because of the fact5 that there exists a large
gap between the sizes of crypto-systems and those of the core functions
which can be constructed with strong cryptographic strength. Further,
as pointed out in [20], this key question is connected with the famous

4 Throughout the paper, we occasionally abuse the use of Walsh-Hadamard transform
by Walsh transform for short.

5 On one hand, the size of internal states of crypto-systems evolves from the traditional
64 bits, to the less common 128 bits, the common 256 bits and the emerging 512
bits or more nowadays. On the other hand, the design of cryptographically strong
functions targets at the main building blocks of the crypto-systems, which have
small or medium sizes.
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problem of sparse Walsh-Hadamard Transform [5, 16, 39] in the signal
processing domain.

It is known that Walsh-Hadamard transform is useful in regular bias
computing in the setting of uniformly-distributed inputs. In [21], Lu and
Desmedt take a step toward answering this key question in a more gener-
alized setting. Suppose6 that the compound function consists of the core
functions F1, . . . , Fk (for fixed k), which are defined over the same space
of modest size, e.g., the binary vector space of 32 bits. Assuming that the
inputs are all independent, Maximov and Johansson showed that certain
class of large distributions (of the compound function) can be efficiently
computed by transform domain analysis [26]. In practical crypto-systems,
by the design principle of confusion, the inputs, though random and uni-
formly distributed individually, are jointly dependent in a rather com-
plicated manner. It remains an open question whether or not one can
perform the analysis on the compound function without the central in-
dependence assumption. This initiates the generalized bias problem [21]
with linearly-dependent inputs, which might have potentially large state
space. Suppose the compound Boolean function f1(a1) ⊕ · · · ⊕ fk(ak),
where fi is derived7 from Fi. Assume that the sum (modulo 2) of all in-
puts follows a known distribution D. By means of Walsh transform, the
total bias of the compound function, subject to this input constraint, can
be expressed in a simple form. It incorporates Piling-up lemma as one
extreme case when D is a uniform distribution. Note that Kukorelly [15]
showed that in the context of block ciphers, Piling-up lemma approxima-
tion can differ considerably from the real bias.

In this paper, we give fully extended results on [21]. Our new re-
sults can be summarized as follows. Firstly, deep insights on assumptions
behind the main theorems (i.e., Theorem 1 and Theorem 2) are given in
Theorem 3 and Theorem 4. We take an information-theoretic approach to
show that our main theorems assume the setting of the maximum entropy
for the input variables subject to the linearly-dependent input constraint.
In particular, the joint entropy of input variables is maximized if and only
if two input requirements are satisfied. Further, we show that under the
assumptions of the main theorems, if D is a uniform distribution, the
inputs are all independent, and vice versa.

6 It becomes common practice that several core functions, which are not necessarily
identical, are combined together (e.g., by block-wise simple operations), in order to
construct a new function with large state space.

7 The detail of how fi is derived is not relevant in this paper (and fi can be derived
by just taking the inner product between a fixed binary vector and Fi).
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Secondly, as application with identical fi’s and strongly biased D, we
answer a long-standing open problem in correlation attacks on combiners
with memory (cf. [19, 23, 24, 27]). This is inspired by the work of Mol-
land and Helleseth [32]. They studied a special case for irregular clocked
and filtered keystream generators; however, the underlying assumptions
on the inputs were not explicitly given in [32]. In our work, we assume a
model of generalized combiners with memory by Lu and Vaudenay [24].
Given the correlation between keystream outputs and LFSR8 outputs,
we give a closed-form exact solution for correlation involving the multiple
polynomial of any weight for the first time. We also give Walsh analysis
for numerical approximation. This allows to compare with the Piling-up
lemma approximation with respect to the absolute values and the signs
respectively. It is no surprise to see that Piling-up lemma approximation
could give misleading results. Meanwhile, an interesting bias phenomenon
is uncovered, i.e., for even and odd weight of the polynomial, the total
correlation behaves differently, which is never the case under the inde-
pendence assumption. As a practical example, an improved attack [1] on
Bluetooth encryption E0 core is given. Due to recent coding theoretic
technique [18], a slightly better attack strategy is possible. It leads to the
best key-recovery attack results with preprocessing O(235) and runtime
O(236) using data O(233).

Thirdly, based on Walsh analysis, our numerical approximation method
is extended for a more general D. We introduce the notion of weakly bi-
ased distribution. We prove that for a weakly biased D, Piling-up lemma
is still valid.

The rest of the paper is organized as follows. In Section 2, we give the
basics of Walsh-Hadamard transform. In Section 3, we present the com-
mon application of Walsh-Hadamard transform in cryptanalysis, i.e., the
regular bias computing problem. Our generalized bias computing prob-
lem is studied in Section 4. In Section 5, we give an application to answer
an open problem in correlation attacks on combiners with memory. In
Section 6, we propose the notion of weakly biased distribution, and give
Walsh analysis for the bias approximation. We give concluding remarks
in Section 7.

8 LFSR stands for Linear Feedback Shift Registers, see [31, Sect. 6.2.1, P195-8] for
introduction.
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2 The Basics of Walsh-Hadamard Transform

Given a real-valued function f : GF (2)n → R, which is defined on an n-
bit vector, the Walsh-Hadamard transform of f , denoted by f̂ , is another
real-valued function defined as

f̂(x) =
∑

y∈GF (2)n

(−1)<x,y>f(y), (1)

for all x ∈ GF (2)n, where < x, y > denotes the inner product between two
n-bit vectors x, y. Below, we give properties of Walsh-Hadamard trans-
form, which will be used later. These properties can be derived from the
definition in (1). The reader can refer to [39] for newly-found interesting
properties, [20] for new interpretation on energy and power of general
discrete statistical signals and [14, P32] for more.

Property 1. ∑
y∈GF (2)n

f(y) = f̂(0) (2)

∑
y∈GF (2)n

f̂(y) = 2nf(0) (3)

For Property 1, note that (2) and (3) are duals.
As stated by the second property, Walsh-Hadamard transform can be

considered as an involution if we ignore the multiplicative factor 2n.

Property 2. ̂̂f(y) = 2nf(y), for all y ∈ GF (2)n.

Property 3 (Parseval’s Theorem). Given f : GF (2)n → R, we always
have ∑

x∈GF (2)n

(
f̂(x)

)2
= 2n ·

∑
x∈GF (2)n

f2(x).

Given two arbitrary real-valued functions f, g : GF (2)n → R, the
convolution of f, g, denoted by f ⊗ g, is another real-valued function
defined by

f ⊗ g(x) =
∑

y∈GF (2)n

f(y) · g(x⊕ y), (4)

for all x ∈ GF (2)n. Note that the right side of (4) is equivalent to∑
y∈GF (2)n g(y) · f(x ⊕ y) and convolution is symmetric in f, g, i.e., we

have f ⊗ g = g ⊗ f for any f, g.
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Computing the convolution function alone needs operations O(22n)
in time domain by definition. Here, we do not take into consideration
the time to evaluate the underlying functions. Note that the issue of
evaluation is a sampling problem [20] in signal processing.

The following property ensures that this can be done with three times
of Walsh-Hadamard transforms, i.e., in time O(3n · 2n) in transform do-
main.

Property 4.

2n · (f ⊗ g)(x) =
̂̂
f · ĝ(x), (5)

for all x ∈ GF (2)n.

For convolution with three functions f, g, h : GF (2)n → R, using

the convolution property with two functions, we have ̂((f ⊗ g)⊗ h)(x) =
̂(f ⊗ g)(x) · ĥ(x) = f̂(x) · ĝ(x) · ĥ(x) for all x. This can be extended to

convolution with multiple functions f1, . . . , fk : GF (2)n → R,

̂(f1 ⊗ · · · ⊗ fk)(x) = f̂1(x) · f̂2(x) · · · f̂k(x), (6)

for all x ∈ GF (2)n.

3 Common Application in Bias Computing

In design of symmetric crypto-systems, Walsh-Hadamard transform has
been a useful tool, which is often associated with bent function [38]. The
subject of Walsh-Hadamard transform and bent function has stimulated
long-term research efforts (e.g., [4,13,28,33–35]). In cryptanalysis, one of
the most common applications of Walsh-Hadamard transform (cf. [3] for
another application), which sometimes bears the name of Fourier trans-
form9, is given below.

Let s be the n-bit output (sub-)string of a target function. Let f(·)
be the probability distribution of s, assuming that the input to the tar-
get function is random and uniformly distributed. Then, for any n-bit
m 6= 0, f̂(m) is the bias of the bit < m, s > and we usually call m the
output mask. Here, the bias (also termed as imbalance [12] or normalized
correlation [29]) of a binary random variable A, is defined by E[(−1)A].
Note that A is called balanced if the bias is zero. This property is used

9 In spite of the similarities and common properties between the two transforms, note
that they are derived from two different topologic groups and are not interchangeable
in general (see [36]).
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as a routine to check for potential weakness of the core functions in a
target cryptographic system. That is, it is used to check for existence of
any (nonzero) biases for the target function. Once such a bias is found, it
is then possible to perform further cryptanalysis to examine the security
of the full system. As a matter of fact, trying to find a bias as large as
possible constitutes one of the main foundations and challenges in linear
cryptanalysis.

It is worth pointing out the computational advantage with Walsh-
Hadamard transform here. With FWT, we get the biases for all masks
(corresponding to all the Walsh coefficients) simultaneously; otherwise, we
have to compute the bias for each mask (corresponding to each individual
Walsh coefficient) one by one. In next section, we present application
of Walsh-Hadamard transform to a class of generalized bias computing
problems with linearly-dependent inputs due to Lu and Desmedt [21].

4 Our Generalized Bias Computing Problem

4.1 Our Problem

Given arbitrary f1, f2 : GF (2)n → GF (2), consider this new target func-
tion f1(a)⊕f2(b). We start with the problem of computing its bias, assum-
ing that the inputs a, b are random and independent with uniform distri-
bution. Let d1, d2 be the bias of (the output bit of) f1, f2, assuming uni-
formly distributed inputs respectively. Due to independence of inputs, it is
known that the bias of the target function is d1·d2, because the probability
that the target function takes value 0 is 1+d1

2 ·
1+d2
2 + 1−d1

2 ·
1−d2
2 = 1

2 + d1d2
2 .

It can be easily extended when the target function is composed of an
arbitrary number of single functions, assuming that all the inputs are in-
dependent. This is the famous Piling-up Lemma [25]. Nevertheless, this is
an idealized assumption to assume the inputs involved are all independent
always.

In practice, it is often the case that the inputs, though random and
uniformly distributed individually, are often jointly dependent in a rather
complicated manner. In the recent work of Lu and Desmedt [21], an im-
portant step is taken to formally study the bias problem of this compound
function for a simple form of input dependence, i.e., when the inputs are
linearly dependent. More specifically, with the additional constraint on
the inputs, i.e., the variable of their sum (modulo 2) follows a given dis-
tribution, a very simple form of expression can be obtained for the bias
of the compound function. Our motivation for this bias problem with
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linearly-dependent inputs was drawn from a long-standing open prob-
lem in correlation attacks on LFSR-based stream ciphers (see Section 5),
i.e., to give a more precise correlation estimate associated with a given
multiple polynomial. Note the conventional approach of Piling-up lemma
approximation is based on the naive assumption that the inputs are all
independent. Meanwhile, our model will also be useful to help analyze
large building blocks of symmetric crypto-systems, which exhibit strong
linear dependence on inputs.

Theorem 1 (Lu-Desmedt 2011, [21]). Given f1, f2 : GF (2)n → GF (2)
and a distribution D over GF (2)n, assume that the uniformly distributed
n-bit a, b satisfy that 1) a and a ⊕ b are independent, and 2) a ⊕ b com-
plies with the given distribution D. Then, the bias δ of f1(a)⊕ f2(b) can
be expressed by

δ =
1

22n

∑
x∈GF (2)n

ĝ1(x) · ĝ2(x) · D̂(x),

where g1, g2 : GF (2)n → {1,−1} are derived from f1, f2 respectively by
g1(x) = (−1)f1(x), g2(x) = (−1)f2(x).

Theorem 2 extends Theorem 1 to an arbitrary number of Boolean
functions over the same binary vector space. It means that we need time
O(kn · 2n) to compute the total bias if all fi’s are distinct, according to
Property 4 in Sect. 2. The runtime grows linearly in k and is practical
for modest n. In contrast, under the independence assumption, we need
time O(k · 2n) to compute the bias by Piling-up lemma.

Theorem 2 (Lu-Desmedt 2011, [21]). Given f1, f2, . . . , fk : GF (2)n →
GF (2) and a distribution D over GF (2)n, assume that the uniformly dis-
tributed n-bit a1, a2, . . . , ak satisfy that 1) a1, a2, . . . , ak−1 and (a1 ⊕ a2 ⊕
· · · ⊕ ak) are all independent, and 2) a1 ⊕ a2 ⊕ · · · ⊕ ak complies with the
given distribution D. Then, the bias δ of f1(a1) ⊕ f2(a2) ⊕ · · · ⊕ fk(ak)
can be expressed by

δ =
1

2kn

∑
x∈GF (2)n

ĝ1(x) · ĝ2(x) · · · ĝk(x) · D̂(x), (7)

where gi : GF (2)n → {1,−1} is derived from fi by gi(x) = (−1)fi(x) for
i = 1, 2, . . . , k.
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Proof. For a Boolean function F : GF (2)n → GF (2), let d be the bias of
F (x) with random and uniformly distributed x. It is easy to see that

2n · d =
∑

x∈GF (2)n

(−1)F (x). (8)

From the independence assumption of a1, . . . , ak−1 and (a1⊕· · ·⊕ak) and
the uniform distribution assumption of the ai’s, we directly calculate the
bias δ,

2(k−1)n · δ (9)

=
∑
a1

· · ·
∑
ak−1

∑
s

(−1)f1(a1)⊕···⊕fk−1(ak−1)⊕fk(s⊕a1⊕···⊕ak−1) ·D(s)

=
∑
a1

· · ·
∑
ak−1

∑
s

g1(a1) · · · gk−1(ak−1) · gk(s⊕ a1 ⊕ · · · ⊕ ak−1) ·D(s)

For any fixed a1, . . . , ak−1, we know∑
s

gk(s⊕ a1 ⊕ · · · ⊕ ak−1) ·D(s) =
∑
ak

gk(ak) ·D(a1 ⊕ · · · ⊕ ak)

always holds. So, we rewrite (9) by

2(k−1)n · δ =
∑
a1

· · ·
∑
ak

g1(a1) · · · gk(ak) ·D(a1 ⊕ · · · ⊕ ak)

=
∑
a1

· · ·
∑
ak−1

g1(a1) · · · gk−1(ak−1) · (gk ⊗D)(a1 ⊕ · · · ⊕ ak−1)

= (g1 ⊗ g2 ⊗ · · · ⊗ gk ⊗D)(0) (10)

Using Property 1, we have

2n · (g1 ⊗ · · · ⊗ gk ⊗D)(0) =
∑
x

̂(g1 ⊗ · · · ⊗ gk ⊗D)(x). (11)

By convolution property for multiple functions in (6), we know

̂(g1 ⊗ · · · ⊗ gk ⊗D)(x) = ĝ1(x) · · · ĝk(x) · D̂(x), (12)

for all x. So, we continue with (11)

2n · (g1 ⊗ · · · ⊗ gk ⊗D)(0) =
∑
x

ĝ1(x) · · · ĝk(x) · D̂(x). (13)

Finally, putting (10) and (13) together, we complete our proof. ut

9



4.2 More Results on Our Assumptions

In this section, we give deep insights on assumptions behind our main
theorems (Theorem 1 and Theorem 2) in Sect. 4.1.

Let the set E = {a1, . . . , ak} denote the set of all inputs (with fixed k).
Let Ei = E−{ai} (for i = 1, . . . , k), denote the subset of E of cardinality
(k− 1) with only one element ai absent. Clearly, following our proof, the
assumption in Theorem 2 that a1, . . . , ak−1 and (a1 ⊕ · · · ⊕ ak) are all
independent, can be substituted by the assumption that all the elements
of Ei (for fixed i) together with (a1⊕· · ·⊕ak) are all independent. However,
given a biased D, we can show that a1, . . . , ak are not all independent
by contradiction. Assume that they were all independent otherwise. By
the assumption that ai’s are all uniformly distributed respectively, we
deduce that (a1 ⊕ · · · ⊕ ak) is uniformly distributed, i.e., D is a uniform
distribution, which leads to contradiction.

Here, we give a toy example to illustrate the assumption setting of
our theorems on the inputs ai’s. We consider k = 2 and the two input
random variables a1, a2 are always equal, while the ai’s are uniformly
distributed respectively. Thus, the variable of the total sum a1⊕a2 = 0 is
actually a constant, and we have D(0) = 1. As a result, a1 and a1⊕a2 are
independent, and so are a2 and a1⊕a2, yet a1 and a2 are not independent.

As will be shown next, in our generalized bias problem with linearly
dependent inputs in Sect. 4.1, our assumptions on the input variables
ai’s can be considered minimal. Put other way, subject to the constraint
that the variable of the total sum (modulo 2), i.e., a1 ⊕ · · · ⊕ ak, follows
a given distribution, we can ask to have 1) the independence assump-
tion: any subset of {a1, . . . , ak} with cardinality (k−1) together with the
variable of the total sum are all independent; 2) the uniform distribution
assumption: the ai’s are uniformly distributed respectively. Additionally,
as we have just explained, we cannot expand the list of above indepen-
dence assumption to the set {a1, . . . , ak} with(out) the variable of the
total sum.

Before we translate the minimalism requirements of the input vari-
ables into an information-theoretic result, we first recall some basic defi-
nitions of Shannon entropy [8]. The entropy H(X) of a discrete random
variable X with alphabet X and probability mass function p(x) is defined
by

H(X) = −
∑
x∈X

p(x) log2 p(x).

The joint entropy H(X1, . . . , Xn) of a collection of discrete random vari-
ables (X1, . . . , Xn) with a joint distribution p(x1, x2, . . . , xn) is defined
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by

H(X1, . . . , Xn) = −
∑

x1,x2,...,xn

p(x1, x2, . . . , xn) log2 p(x1, x2, . . . , xn).

Theorem 3. Given k and n, let A1, . . . , Ak be n-bit random variables.
Let the n-bit random variable S denote the sum (modulo 2) A1 ⊕ A2 ⊕
. . . ⊕ Ak for short. Assume that S is associated with a given probability
mass function D over support of n-bit vectors. We let HD be the Shannon
entropy H(S) of S. Then, we have inequality

H(A1, . . . , Ak) ≤ n(k − 1) +HD,

with equality if and only if 1) A1, . . . , Ak−1, S are all independent, and 2)
Ai’s are uniformly distributed respectively.

Proof. There exists a one-to-one relation between the two k-tuples a1,
. . . ,ak−1, ak and a1, . . . , ak−1, (a1 ⊕ · · · ⊕ ak). So, by definition of entropy
we deduce that

H(A1, . . . , Ak) = H(A1, . . . , Ak−1, S) (14)

≤ HD +

k−1∑
i=1

H(Ai) (15)

≤ HD + n · (k − 1), (16)

equality in (15) holds if and only if A1, A2, . . . , Ak−1 and S are all in-
dependent, and equality in (16) holds if and if A1, A2, . . . , Ak−1 are all
uniformly distributed. We are left to show that Ak is uniformly distributed
to finish our proof. It can be done by replacing H(A1, . . . , Ak−1, S) in (14)
by H(A2, . . . , Ak, S) and repeating above proof. ut

Remark 1. In Theorem 3, each random variable Ai corresponds to the
input ai in Theorem 2. Theorem 3 tells that, subject to the linear depen-
dency constraint on the input variables, the joint entropy of input vari-
ables is maximized if and only if the aforementioned two input require-
ments (i.e., the independence assumption and the uniform distribution
assumption) are met. In the spirit of the maximum entropy principle10,
our generalized bias problem assumes the setting of the maximum entropy
for the inputs, as shown in Theorem 1 and Theorem 2.

10 It originated in statistical mechanics in the nineteenth century and has been advo-
cated for use in a broader context (cf. [8, Chapter 12, P425]).
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Below, we give further results on the input assumptions behind The-
orem 1 and Theorem 2.

Theorem 4. Given k and n, let A1, . . . , Ak be n-bit random variables.
Let the n-bit random variable S denote the sum (modulo 2) A1 ⊕ A2 ⊕
. . .⊕Ak for short. Assume that 1) S is associated with a given probability
mass function D over support of n-bit vectors, 2) A1, . . . , Ak−1, S are all
independent, and 3) Ai’s are uniformly distributed respectively. Then, if
D is a uniform distribution, we have that A1, . . . , Ak are all independent,
and vice versa.

Proof. We prove the first part of the results. Assume that D is a uni-
form distribution. We have HD = n. By Theorem 3, we deduce that
H(A1, . . . , Ak) = n(k − 1) +HD = nk. As Ai’s are uniformly distributed
respectively, we conclude that A1, . . . , Ak are all independent by property
of entropy.

The equivalent of the opposite (i.e., if D is biased, then, A1, . . . , Ak
are not all independent), is proved in Sect. 4.2. ut

Next, we examine two extreme cases for our generalized bias problem
with special D.

4.3 Two Extreme Cases

Case One: D is a uniform distribution.

Property 5. If D is a uniform distribution, then, we have

δ =
1

2kn
ĝ1(0) · ĝ2(0) · · · ĝk(0). (17)

Remark 2. Let δi denote the bias of fi. By (8) and Property 1, we have
δi = 1

2n
∑

x gi(x) = 1
2n ĝi(0). By (17), we deduce δ = δ1 · · · δk. On the

other hand, because D is a uniform distribution, we know that ai’s are all
independent and uniformly distributed by Theorem 4. Piling-up lemma
directly tells us that δ = δ1 · δ2 · · · δk. Consequently, Piling-up lemma is a
very special case of our result when D is a uniform distribution.

Case Two: D is a delta function11. Here, we examine δ when the
inputs are subject to the constraint of a GF (2)-linear relation12, i.e.,
a1 ⊕ a2 ⊕ · · · ⊕ ak = constant.

11 The delta function is defined by δ(x− n) = 1 if x = n and δ(x− n) = 0 otherwise,
for the discrete x.

12 Because of this special case, we refer to the general case as linearly-dependent inputs.
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Property 6. If D(a0) = 1 for a fixed n-bit a0, then, we have

δ =
1

2kn

( ∑
x∈GF (2)n:
<a0,x>=0

ĝ1(x) · · · ĝk(x)−
∑

x∈GF (2)n:
<a0,x>=1

ĝ1(x) · · · ĝk(x)
)
. (18)

Further, if a0 = 0, we have

δ =
1

2kn

∑
x∈GF (2)n

ĝ1(x) · · · ĝk(x). (19)

Note that the result of Molland and Helleseth [32] corresponds to
f1 = f2 = · · · = fk and D(0) = 1 here. In next section, we discuss the
application of Theorem 2 with identical fi’s and a strongly biased D.

5 The Open Problem of Precise Correlation Estimation

We aim to answer a long-standing open problem in correlation attacks on
LFSR-based stream ciphers13, i.e., give a more precise correlation esti-
mate for a given multiple polynomial. We refer to [30] for a recent review
on correlation attacks on stream ciphers.

We assume a model of generalized combiners with memory by Lu
and Vaudenay [24, Sect. 2]. The combiner consists of k regularly-clocked
LFSRs with m-bit memory (m ≥ 0). The keystream output of the com-
biner is generated by zt = yt⊕ut, for t ≥ 0, where yt = x1t ⊕· · ·⊕xkt is the
sum (modulo 2) of the outputs (denoted by xit for i = 1, . . . , k) of LFSRs,
and ut is one bit generated14 by the internal state. Further, yt can be pro-
duced by the output of a single equivalent LFSR (see [17, Theorem 6.57,
P218]) and we denote its feedback polynomial by g0(x) with degree L.
Without loss of generality, assume that there exists known correlation15

(called bias in our context) δ0 with mask γ = (γ0, γ1, . . . , γr)2 (in binary
form) for

< γ, ut0ut0+1 . . . ut0+r >, (20)

for all t0. Let the normalized multiple polynomial of g0(x) of low weight
w with degree d, be denoted by, Q(x) =

∑w
i=1 x

qi with 0 = q1 < q2 <
· · · < qw = d. We now state the open problem as follows.

13 see [31, Sect. 6.3, P203-5] for a review on LFSR-based stream ciphers.
14 The details of how ut is generated are not relevant in our context and we omit here.
15 In the context of correlation attacks on LFSR-based stream ciphers, we often

say that there exists correlation δ0 with mask γ between keystream outputs
{zt} and the equivalent LFSR outputs {yt}, i.e., < γ, zt0zt0+1 . . . zt0+r > ⊕ <
γ, yt0yt0+1 . . . yt0+r >, which is equal to < γ, ut0ut0+1 . . . ut0+r >, has bias δ0.
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Open Problem: subject to the constraint on the LFSR outputs,

⊕wi=1 x
j
t+qi

,⊕wi=1x
j
t+qi+1, . . . ,⊕

w
i=1x

j
t+qi+r

= 0, (21)

for all t and j = 1, . . . , k, where 0 denotes the zero vector, what is the
bias δ for

⊕wi=1 < γ, zt0+qizt0+qi+1 . . . zt0+qi+r >

= ⊕wi=1 < γ, ut0+qiut0+qi+1 . . . ut0+qi+r >, (22)

given t0?

Remark 3. Based on the convenient assumption that the w addends on
the right side of (22) are all independent, Piling-up lemma yields the
estimate

δ ≈ (δ0)
w. (23)

Unfortunately, this independence assumption does not hold due to the
effect of the multiple polynomial in (21).

5.1 Our Closed-Form Exact Solution

Fix t0 and r, let Fi (for i = 1, . . . , w) be the function that outputs the
sequence ut0+qiut0+qi+1 . . .ut0+qi+r. The n-bit input (denoted by ai) of Fi
consists of the m-bit memory at time t0+qi and LFSRs outputs involved.
For convenience, we let the least significant m bits of ai be the memory
bits. Given γ with length r + 1, let fi(ai) =< γ, Fi(ai) >. Thus, we see
that (22) is equal to f1(a1)⊕· · ·⊕fw(aw). Before we proceed to calculate
the correlation δ for (22), we make a few comments. First, we always
have f1 = . . . = fw (denoted by f). Second, for each fi, the input ai is
uniformly distributed. Third, by (21), we deduce that the sum (modulo
2) of ai’s assumes a special distribution D that satisfies:

D(0) = D(1) = . . . = D(2m − 1) =
1

2m
. (24)

Let LSBm(x) = 0 denote that the least significant m bits of x are all
zeros. By (24), we have

D̂(x) =
{1 if LSBm(x) = 0,

0 otherwise.
(25)

Fourthly, the naive independence assumption on a1, . . . , aw no longer
holds due to (24); yet, we assume that a1, . . . , aw−1 and the sum of ai’s
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are all independent. Therefore, the open problem of correlation estimate
fits well into our generalized bias problem. We apply Theorem 2 with
g1 = . . . = gw = (−1)f (denoted by g), and obtain a closed-form exact
solution δ for (22):

δ =
1

2wn

∑
x∈GF (2)n:
LSBm(x)=0

(
ĝ(x)

)w
(26)

5.2 Detailed Numerical Analysis

Define α = maxLSBm(x)=0
|ĝ(x)|
2n . Define the disjoint set S+, S− by

S+ = {x : LSBm(x) = 0, and ĝ(x) = +α · 2n} (27)

S− = {x : LSBm(x) = 0, and ĝ(x) = −α · 2n} (28)

It is clear that (|S+| + |S−|) ≤ 2n−m. According to (7), we approximate
δ by δappx,

δ ≈ δappx =
{ (|S+|+ |S−|) · αw, (for even w)

(|S+| − |S−|) · αw, (for odd w)
(29)

We now compare the the bias δ with the Piling-up lemma estimate δ′,
which satisfies δ′ = (δ0)

w =
( ĝ(0)

2n

)w
. In general, we have α 6= |ĝ(0)|

2n , that is,

α > |ĝ(0)|
2n . Thus, it results in αw > |δ′|. So, if w is even, we have |δ| > |δ′|

generally; if w is odd and |S+| 6= |S−|, we have |δ| > |δ′| generally.
Additionally, for odd w and |S+| = |S−|, we have δ = 0 < |δ′|, which
indicates that sometimes it is too optimistic to use Piling-up lemma.

With respect to the signs of δ, δ′, clearly, both are non-negative for
even w. For odd w, the signs of δ′, ĝ(0) are the same. By (29), dependent
on the sign of |S+| − |S−|, the signs of δ, α are not necessarily the same,
and the signs of δ, |S+| − |S−| are the same actually. This implies that
for odd w, the signs of δ, δ′ may not be the same, and it is possible that
they have distinct signs. Here, we observe an interesting phenomenon on
δ, δ′ (with respect to the magnitudes and/or the signs) for odd w, i.e.,
Piling-up lemma approximation could give misleading results sometimes.

From our comparison, we see that for even w, δ is stable and |δ| ≥ |δ′|,
i.e., Piling-up lemma underestimates the result. For odd w, it is possible
that |δ| < |δ′| (e.g., δ = 0), and the signs of δ, δ′ are not related. Con-
sequently, even w is desirable for the purpose of finding a larger bias
δ.
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5.3 Practical Example: Bluetooth E0 Combiner

Our analysis technique is applied to Bluetooth E0 combiner with 4-bit
memory [1]. It is known (cf. [19, 23, 24]) that of all mask γ’s up to 26
bits, the maximum of the bias |δ0| for (20), is 2−3.3, which is obtained
with two choices of γ, i.e., (11111)2 and (100001)2. Note that the binary
function g as well as f are associated with a fixed γ. For each mask γ of
up to 8 bits, we compute ĝ(x) subject to the constraint LSB4(x) = 0.
Interestingly, our computations find that of all these γ’s, the maximum
of α, is also 2−3.3, and it is achieved with four choices of γ, i.e., (11111)2,
(100001)2, (10111)2, (110001)2. In Table 1, for each of the four γ’s, we
give the detailed analysis results on ĝ(·), where ‘-’ denotes bias 0. For the
two known masks, i.e., (11111)2, (100001)2, we have equality α = |δ0|,
which is not typical in general as we have just mentioned. For the other
two new masks, we see that α� |δ0|; in particular, for γ = (110001)2, we
have δ0 = 0, yet it is remarkable to have α = 2−3.3, which is among one
of the four largest. Also, subject to the constraint LSB4(x) = 0, we have
the sum |S+|+ |S−| = 8 for each of the four masks.

Table 1. Analysis results on ĝ(·) with γ = (11111)2, (100001)2, (10111)2,
(110001)2

γ δ0 = ĝ(0)
2n

α |S+| |S−|

(11111)2 −2−3.3 2−3.3 6 2

(100001)2 2−3.3 2−3.3 2 6

(10111)2 −2−6 2−3.3 4 4

(110001)2 - 2−3.3 4 4

Table 2 to Table 5 compare the exact bias δreal as calculated by Theo-
rem 2, the approximated bias δappx by (29), and Piling-up lemma approx-
imation δ′. As reference, we give the exact bias for the single function f
associated with γ in the column w = 1.

With the two known masks, we see that δreal
.
= δappx for w ≥ 3 in

Table 2 (w ≥ 4 in Table 3 resp.); for small w, |δreal| is slightly greater than
|δappx|, because the sum of those addends

(
ĝ(x)

)w
in (7), which all satisfy

LSB4(x) = 0 and |ĝ(x)|2n < α, is not ignorable. The signs of δreal, δappx are
always the same. Regarding δ′, we notice from Table 2 and Table 3 that
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δ′ does give the erroneous sign for odd w as we mentioned in Sect. 5.2.
Further, as we have α = |δ0| here, from the values of |S+|, |S−| in Table
1, we can check that |δappx| = 8 · |δ′| for even w and |δappx| = 4 · |δ′| for
odd w, as shown in Table 2 and Table 3.

For the new mask (10111)2, in Table 4, it is interesting to notice the
following new bias phenomenon that is associated with even (or odd) w
as discussed in Sect. 5.2. For odd w, the exact bias δreal all vanishes, and
our approximation yields the correct estimate because |S+| = |S−| by
Table 1; for even w, |δreal| is not small and is almost the same as for the
two known masks with the same w. Similarly as the two known masks, we
find that δreal

.
= δappx by Table 4. But, unlike the case of the two known

masks, as α� |δ0|, it is no surprise to see that δreal, δ
′ differ significantly.

For the other new mask (110001)2, we observe similar bias phenomenon
that the exact bias δreal behaves differently for even w and odd w respec-
tively. That is, for even w, δreal behaves almost the same as in the case of
above new mask; for odd w, our approximation estimates that the bias
should vanish (i.e., δappx = 0) as |S+| = |S−|, while δreal is not strictly
zero, but it decreases much more quickly than in the case of even w. Fi-
nally, regardless of the value of |δ0|, it is remarkable to note that for even
w, δreal could be one of the largest, which is counter-intuitive.

Table 2. Comparison of δreal, δappx, δ
′ for w = 2, . . . , 6 with γ = (11111)2

Ref. Value

w (1) 2 3 4 5 6

δreal −2−3.3 2−3 2−8 2−10.5 2−14.7 2−17

δappx 2−3.7 2−8 2−10.4 2−14.7 2−17

δ′ = (δ0)w 2−6.7 −2−10 2−13.4 −2−16.7 2−20

Based on our detailed analysis, an improved key-recovery attack on
E0 core with pre-processing, time and data complexities O(237) was ob-
tained in [21]. Further, using the recent coding theoretic technique [18],
the complexities of finding the multiple polynomial of weight 4 can be im-
proved, compared with using the generalized birthday problem [40]. This
allows to use a slightly different strategy to improve the attack results,
i.e., to recover the 31-bit R2 first, rather than the shortest 25-bit R1 as
usual (see Appendix for details). Table 6 gives the new results to recover
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Table 3. Comparison of δreal, δappx, δ
′ for w = 2, . . . , 6 with γ = (100001)2

Ref. Value

w (1) 2 3 4 5 6

δreal 2−3.3 2−2.6 −2−7 2−10.4 −2−14.7 2−17

δappx 2−3.7 −2−8 2−10.4 −2−14.7 2−17

δ′ = (δ0)w 2−6.7 2−10 2−13.4 2−16.7 2−20

Table 4. Comparison of δreal, δappx, δ
′ for w = 2, . . . , 6 with γ = (10111)2

Ref. Value

w (1) 2 3 4 5 6

δreal −2−6 2−3 − 2−10.2 − 2−17

δappx 2−3.7 − 2−10.4 − 2−17

δ′ = (δ0)w 2−12 −2−18 2−24 −2−30 2−36

the full key, i.e., the 128-bit initial state of the LFSRs (and we omit the
ignorable complexities of recovering R3, R4 at the last step). We compare
the new results with the best previous attacks [21, 23] in Table 7. We
comment that the time cost 236 is optimal in the sense that the Walsh-
Hadamard transform technique [23] gives the lower time bound ` ·2`. And
it seems that our new results approach the near-optimum bounds on the
real security strength of E0 core.

6 Further Discussions

In this section, we extend our approximation idea for δ with special D
(in Sect. 5) by Walsh analysis technique to a more general D. We first in-
troduce the concept of weakly biased distribution according to the largest
Walsh coefficient(s) of the distribution. Given D, define

β = max
x 6=0
|D̂(x)|,

to be the largest (nontrivial) Walsh coefficient of D and we always have
0 ≤ β ≤ 1. We assume that β < 1 holds for a general D throughout
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Table 5. Comparison of δreal, δappx, δ
′ for w = 2, . . . , 6 with γ = (110001)2

Ref. Value

w (1) 2 3 4 5 6

δreal − 2−2.6 2−12.1 2−10.2 2−22.7 2−17

δappx 2−3.7 − 2−10.4 − 2−17

δ′ = (δ0)w − − − − −

Table 6. The new key-recovery attack complexities on E0 core

weight degree # effective data pre-proc. time space

bits max(d, n)

R2 4 233 227 233 236 236 233

R1 4 224 227 227 227 230 227

total - - - 233 236 236 233

the rest of this paper (unless otherwise mentioned). We call D a weakly
biased distribution, if the following are satisfied:

β2 · |{x 6= 0 : D̂(x) = ±β}| � 1, (30)∑
−β<D̂(x)<β

(
D̂(x)

)2
≈ 0. (31)

Note that the special D defined by (24) in Sect. 5, is not weakly biased,
because the left side of (30) equals 2n−m (� 1) by (25).

By Theorem 2, we have

δ =
1

2kn

(
ĝ1(0) · · · ĝk(0) +

∑
x6=0:

|D̂(x)|>0

ĝ1(x) · · · ĝk(x) · D̂(x)
)
. (32)

Generally speaking, we can approximate δ by the first addend in (32),
i.e.,

δ ≈ 1

2kn
ĝ1(0) · · · ĝk(0) = δ1 · · · δk. (33)

From (33), we see that for a weakly biasedD, Piling-up lemma approxima-
tion is still a valid estimate for our bias problem with linearly-dependent
inputs. Below, we give a formal proof for (33).
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Table 7. Comparison of our new results with the best previous attacks
[21,23]

attack pre-proc. data time

[23] 237 239 239

[21] 237 237 237

this paper 236 233 236

Proof. Given a distribution D over support of n-bit vectors, we use this
result ∑

x∈GF (2)n

(
D(x)

)2
≥ 1

2n
, (34)

with equality if and only if D is a uniform distribution. We show this by
induction. Let yi denote D(i) for all n-bit vector i. For n = 1, it is trivial
to see (y0 + y1)

2 ≤ 2(y20 + y21), with equality if and only if y0 = y1. For
n = 2, we have(

(y0 + y1) + (y2 + y3)
)2
≤ 2
(

(y0 + y1)
2 + (y2 + y3)

2
)
≤ 4(y20 + . . .+ y23),

with equality if and only if yi’s are all equal. Similarly, for arbitrary n,
we have

1 =
(2n−1∑
i=0

yi

)2
≤ 2n

2n−1∑
i=0

y2i ,

with equality if and only if yi’s are equal. Thus, it leads to (34).
Next, combining Parseval’s theorem (i.e., Property 3) and (34), we

have ∑
x∈GF (2)n

(
D̂(x)

)2
≥ 1,

with equality if and only if D is a uniform distribution. On the other
hand, we have ∑(

D̂(x)
)2
≈ 1 + b · β2 ≈ 1,

by (30) and (31), where b = |{x 6= 0 : D̂(x) = ±β}|. And we deduce that
D is approximately a uniform distribution. ut

Remark 4. The concept of weakly biased distribution implies that the
sum of squares of (nontrivial) Walsh coefficients can be approximated by
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considering the largest Walsh coefficient(s) only, whose sum is small. In
this case, the inputs ai’s in our main theorems can be assumed to be all
independent, and we can use Piling-up lemma to approximate the real
bias δ. If D is not weakly biased, it is not appropriate to estimate δ by
Piling-up lemma.

As a practical example, our generalized bias problem with the weakly
biased distribution can be best illuminated by a recent synchronous stream
cipher Shannon [37]. It has been designed by Qualcomm according to Pro-
file 1A of ECRYPT call for stream cipher primitives [9]. The internal state
uses a single nonlinear feedback shift register. This shift register state at
time t ≥ 0 consists of 16 elements st+i of 32 bits for i = 0, . . . , 15. The
critical observable variable v ∈ GF (2)32 can be summarized by the sum
of three independent addends in the following form (cf. [21]),

v =
(
f1(st+21 ⊕ st+22 ⊕K)⊕ f1(st+25 ⊕ st+26 ⊕K)︸ ︷︷ ︸

distribution of sum (modulo 2) of inputs ∼D

)
⊕

(
f2((st+11 ⊕ st+24) ≪ 1)⊕ f2((st+15 ⊕ st+28) ≪ 1)︸ ︷︷ ︸

distribution of sum (modulo 2) of inputs ∼D′

)
⊕

(
f2((st+3 ⊕ st+16) ≪ 1)⊕ f2(st+19 ⊕ st+32)︸ ︷︷ ︸

distribution of sum (modulo 2) of inputs ∼D′′

)
. (35)

Herein, f1, f2 : GF (2)32 → GF (2)32 are defined in [37],K is a 32-bit secret

constant, and D̂, D̂′, D̂′′ are defined in [21]. Assuming that each of the
six addends in (35) uses independently and uniformly distributed input
(i.e., D,D′, D′′ all were uniform distributions), one can perform Walsh-
Hadamard transform f̂1, f̂2 and compute maxm 6=0(2f̂1(m) + 4f̂2(m)). As
done in [11], this allows to find out the best output mask(s) m such that
the bias δ′ for the bit < m, v > in (35) is the largest, i.e., δ′ = 2−56

with m = 0x410a4a1 in hexadecimal form. With our proposed notion of
weakly biased distributions, we have computed D̂, D̂′, D̂′′ separately. We
confirm that D,D′, D′′ can be considered weakly biased. Consequently, we
conclude that Piling-up lemma would produce a fairly good estimate for
the total combined bias δ (i.e., δ ≈ 2−56) and so the complexity estimate
of [11] is valid. And our result is consistent with [21], which directly uses
Theorem 1 to calculate the exact bias δ given the mask m = 0x410a4a1.
We refer to [21] for analysis details on Shannon cipher and Shannon cipher
variant based on above critical variable v in (35).
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7 Concluding Remarks

We study the generalized bias problem for a broad class of compound
functions by the Walsh analysis technique. The compound functions are
in the form of the sum (modulo 2) of an arbitrary number of Boolean
functions over the same binary vector space. Assume that the input sum
follows a given distribution D. We show that in the setting of the maxi-
mum input entropy, the bias of the compound function can be expressed in
a simple form, due to Walsh-Hadamard transform. We give deep insights
on assumptions behind our bias problem. Notably, two extreme cases of
the problem are already known. As application, we answer a long-standing
open problem in correlation attacks on combiners with memory. Based
on Walsh analysis, we uncover a new bias phenomenon. Meanwhile, we
also study the bias approximation for a more general case by Walsh anal-
ysis. We introduce the concept of weakly biased distribution. It allows
to formally show that if D is weakly biased, the Piling-up lemma is still
valid.

As Piling-up lemma has been used almost exclusively in linear crypt-
analysis, it is interesting and useful to compare the real bias δ of our
generalized bias problem with Piling-up lemma estimate δ′. We note that
when D is not weakly biased, δ can differ significantly from δ′ with respect
to the magnitudes and/or the signs. First, if δi = 0 for some i ∈ {1, . . . , k},
or equivalently fi is balanced, then, δ′ = 0. And we always have |δ| ≥ |δ′|.
Secondly, if δi 6= 0 for all i = 1, . . . , k, i.e., δ′ 6= 0, then, it is possible
to have |δ| < |δ′|. This implies that the independence assumption, which
is so often used for convenience, sometimes would over-estimate the real
bias. This is somehow counter-intuitive. Thirdly, for identical fi’s and
even k, we always have δ′ ≥ 0; in contrast, it is possible to have δ < 0.
Fourthly, δ could behave differently for odd and even k respectively (e.g.,
δ = 0 for odd k and δ is the largest for even k), while we know that it is
never the case for δ′. As practical examples with strongly biased D and
weakly biased D, our technique has been successfully demonstrated for
E0 and Shannon cipher respectively.

Obviously, input dependency can serve as a measure to increase the
security of the crypto-systems from complexity-theoretic approach. Our
work to consider the linearly-dependent input constraint sheds new light
on practical bias analysis. On the other hand, the simplicity of Walsh
transform, has stimulated growing research efforts in cryptanalytic opti-
mization techniques (e.g., [6,7,22,23]). Our work shows that Walsh anal-
ysis is very useful and effective to a broad class of cryptanalysis prob-
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lems. Currently, we are working on practical large dimensional Walsh-
Hadamard transform.
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18. C. Löndahl, T. Johansson, Improved algorithms for finding low-weight polyno-
mial multiples in F2[x] and some cryptographic applications, Designs, Codes and
Cryptography, vol. 73, pp. 625-640, Springer (2014)

19. Y. Lu, Applied stream ciphers in mobile communications, Ph.D. Thesis, EPFL,
http://dx.doi.org/10.5075/epfl-thesis-3491 (2006)

20. Y. Lu, Walsh Sampling with Incomplete Noisy Signals, arXiv:1602.00095, 2016.

21. Y. Lu, Y. Desmedt, Bias analysis of a certain problem with applications to E0 and
Shannon cipher, ICISC 2010, LNCS vol. 6829, pp. 16-28, Springer-Verlag, 2011.

22. Y. Lu, Y. Desmedt, Improved Davies-Murphy’s attack on DES revisited, FPS 2013,
LNCS vol. 8352, Springer-Verlag, pp. 264-271, 2014.

23. Y. Lu, S. Vaudenay, Faster correlation attack on Bluetooth keystream generator
E0, CRYPTO 2004, LNCS vol. 3152, pp. 407-425, Springer-Verlag, 2004.

24. Y. Lu, S. Vaudenay, Cryptanalysis of an E0-like combiner with memory, Journal
of Cryptology, vol. 21, pp. 430-457, Springer (2008)

25. M. Matsui, Linear cryptanalysis method for DES cipher, EUROCRYPT 1993,
LNCS vol. 765, pp. 386-397, Springer-Verlag, 1994.

26. A. Maximov, T. Johansson, Fast computation of large distributions and its crypto-
graphic applications, ASIACRYPT 2005, LNCS vol. 3788, pp. 313-332. Springer-
Verlag, 2005.

27. W. Meier, O. Staffelbach, Fast correlation attacks on certain stream ciphers, Jour-
nal of Cryptology, vol. 1, pp. 159-176, Springer (1989)

28. W. Meier, O. Staffelbach, Nonlinearity criteria for cryptographic functions, EU-
ROCRYPT 1989, LNCS vol. 434, pp. 549-562, Springer-Verlag, 1990.

29. W. Meier, O. Staffelbach, Correlation properties of combiners with memory in
stream ciphers, Journal of Cryptology, vol. 5, pp. 67-86, Springer (1992)

30. W. Meier, Fast correlation attacks: methods and countermeasures, FSE 2011,
LNCS vol. 6733, pp. 55-67, Springer-Verlag, 2011.

31. A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press (1996)

32. H. Molland, T. Helleseth, An improved correlation attack against irregular clocked
and filtered keystream generators, CRYPTO 2004, LNCS vol. 3152, pp. 373-389,
Springer-Verlag, 2004.

33. K. Nyberg, Perfect nonlinear S-boxes, EUROCRYPT 1991, LNCS vol. 547, pp.
378-386, Springer-Verlag, 1991.

34. K. Nyberg, Constructions of Bent functions and difference sets, EUROCRYPT
1990, LNCS vol. 473, pp. 151-160, Springer-Verlag, 1991.

35. J. Olsen, R. Scholtz, L. Welch, Bent-function sequences, IEEE Transactions on
Information Theory, IT-28 (6): 858-864, Nov. 1982.

36. J. Pearl, Application of Walsh transform to statistical analysis, IEEE Transactions
on Systems, Man, and Cybernetics, SMC-1 (2): 111-119, Apr. 1971.

37. G. Rose, P. Hawkes, M. Paddon, C. McDonald, M. Vries, Design and Primitive
Specification for Shannon, Symmetric Cryptography, 2007.

38. O. S. Rothaus, On “Bent” functions, Journal of Combinatorial Theory, Series A
20 (3), pp. 300-305 (1976)

39. R. Scheibler, S. Haghighatshoar, M. Vetterli, A Fast Hadamard Transform for
Signals With Sublinear Sparsity in the Transform Domain, IEEE Transactions on
Information Theory, vol. 61, No. 4, pp. 2115 - 2132, 2015.

24

http://dx.doi.org/10.5075/epfl-thesis-3491


40. D. Wagner, A generalized birthday problem, CRYPTO 2002, LNCS vol. 2442, pp.
288-304, Springer-Verlag, 2002.

41. L. P. Yaroslavsky, Digital Picture Processing - An Introduction, Springer-Verlag,
Berlin (1985)

42. B. Zhang, C. Xu, W. Meier, Fast correlation attacks over extension fields, large-
unit linear approximation and cryptanalysis of SNOW 2.0, CRYPTO 2015, LNCS
vol. 9215, pp. 643-662, Springer, 2015.

Appendix: Intermediate Attack Results on E0 Core

Let pi(x) be the feedback polynomial of Ri (for i = 1, . . . , 4) with degree
L1 = 25, L2 = 31, L3 = 33, L4 = 39 respectively. We use the unusual at-
tack strategy to recover the 31-bit R2 first, rather than recover the short-
est 25-bit R1. The main reason is that we want to find the multiple poly-
nomial of p1(x)p3(x)p4(x) (which has lower degree 25+33+39 = 97) with
weight w = 4, rather than find the multiple polynomial of p2(x)p3(x)p4(x)
(which has relatively higher degree 31 + 33 + 39 = 103) as done in usual.
By the recent coding theoretic technique [18], the complexities of find-
ing the multiple polynomial of weight 4 can be improved, compared with
using the generalized birthday problem [40]. We thus expect to find the
multiple polynomial with minimal degree 297/3 ≈ 233 with estimated time
236.

For the data complexity, based on one largest bias |δ0| = 2−3.3 with
γ = (100001)2, the basic distinguisher works with the exact bias δ =
2−10.4 when using the multiple polynomial of p1(x)p3(x)p4(x) with weight
w = 4 by Table 3. Thus, the basic distinguisher needs a total number
n = (4L2 ln 2) · δ2 ≈ 227 of effective bits to successfully recover R2.

After recovering R2, we aim to reconstruct R1. We want to find the
multiple polynomial of p3(x)p4(x) (which has degree 33 + 39 = 72) with
weight w = 4. By [18], we expect to find the multiple polynomial with
minimal degree 272/3 = 224 with estimated effort 227. Again, the basic
distinguisher works with the same bias δ = 2−10.4 when using the multiple
polynomial with weight 4. It needs a total number n = (4L1 ln 2) · δ2 ≈
227 of effective bits to successfully recover R1. Table 6 summarizes these
results to recover R1, R2.
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