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Abstract. The unavoidable transition to post-quantum cryptography
requires dependable quantum-safe digital signature schemes. Hash-based
signatures are well-understood and promising candidates, and the object
of current standardization efforts. In the scope of this standardization
process, the most commonly raised concern is statefulness, due to the use
of one-time signature schemes. While the theory of hash-based signatures
is mature, a discussion of the system security issues arising from the
concrete management of their state has been lacking. In this paper,
we analyze state management in N -time hash-based signature schemes,
considering both security and performance, and categorize the security
issues that can occur due to state synchronization failures. We describe
a state reservation approach that loosens the coupling between volatile
and nonvolatile storage, and show that it can be naturally realized in a
hierarchical signature scheme. To protect against unintentional copying
of the private key state, we consider a hybrid stateless/stateful scheme,
which provides a graceful security degradation in the face of unintentional
copying, at the cost of increased signature size. Compared to a completely
stateless scheme, the hybrid approach realizes the essential benefits, with
smaller signatures and faster signing.

Keywords: Post-quantum cryptography, Hash-based signatures, Statefulness,
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1 Introduction

Security protocols routinely rely on digital signatures for authentication. Common
examples are code signing for software updates, server authentication for TLS,
and S/MIME for secure email. The most common cryptographic schemes for
digital signatures (RSA [26], DSA [8], and ECDSA [17]) are all susceptible to
quantum computer cryptanalysis using Shor’s algorithm [28]. While the concrete
realization of quantum computers still is an object of ongoing research, substantial
efforts in this area are ongoing [23,27].



Independently of the actual realization of quantum computing, governmental
and standardization organizations are encouraging the transition to post-quantum
cryptography, i.e. cryptographic schemes not known to be vulnerable to quantum
computer attacks. Notably, the NSA recently announced its transition from
the Suite B set of cryptographic algorithms towards post-quantum cryptogra-
phy [16]. Standardization efforts are also underway, for instance by NIST [6] and
ETSI [9]. As more stakeholders are required to heed official recommendations,
the deployment of post-quantum cryptography becomes inevitable.

Fortunately, post-quantum cryptographic schemes exist, and some are al-
ready well-understood. In particular, hash-based signatures have been thoroughly
analyzed [2, 3, 7, 13, 19,22] and are currently undergoing standardization [14,21].

Motivation One major obstacle to the widespread use of hash-based signatures
is the fact that the signing algorithm is stateful. That is, with each message
being signed, the private key must change. There are stateless hash-based sig-
nature schemes [1, 12] that address state concerns, but their signature sizes are
significantly higher. Tab. 1 shows the signature size of two stateful schemes
(LMS [21], XMSSMT [15]) and stateless SPHINCS [1] for parameters that lead to
260 signed messages and a security level of 128-bits. For LMS we are considering
LMS_SHA256_N32_H10 with LMOTS_SHA256_N32_W16 with a supertree
height of l = 6. For XMSS, we use XMSSMT_SHA2-256_M32_W16_H60_D6
and XMSSMT_SHA2-256_M32_W16_H60_D12 with n = 32 respectively. For
SPHINCS, the parameters h = 60, d = 12, w = 16 and n = 32 are considered. It
is clear that stateless SPHINCS has significantly larger signatures, which could
make it impractical in some scenarios. The public key size of the stateful schemes
are in the range of 70B. The SPHINCS public key is in the 1000B range.

Stateful Stateless
LMS XMSSMT SPHINCS

Signature size (KB) 5 15 28 41

Table 1. Signature sizes (in KB) of hash-based signature schemes (128-bit security
level, 260 messages).

In a stateful scheme, when a private key is long-lived, it must be stored
in nonvolatile memory, and the version of the private key in memory must
continuously be synchronized with that in volatile memory (e.g. Random Access
Memory, or RAM). State synchronization is especially important because it is
critical to the security of the system; if two distinct messages are signed with
the same private key, then an attacker can use those signatures to construct a
forgery. Thus, after signing one message, the signer must update the state so the
same key is not reused. Key synchronization also requires a time delay between
signatures that can lead to a significant performance penalty.



In this paper, we consider the design of N -time signature schemes and
the system engineering considerations needed to ensure that they avoid the
problems outlined above. To the best of our knowledge, no work addressing
state management strategies for stateful hash-based signatures exists so far. We
describe a simple state management scheme for hierarchical signature schemes
that minimizes synchronization delay and reduces the chance of synchronization
failure. It works by storing only the root (or topmost) level(s) of the signature
hierarchy in nonvolatile storage, and having the remaining levels exist only in
volatile memory. However, this scheme does not address the cloning problem,
which occurs when a system, e.g. a virtual machine may be copied and reveal
sensitive cryptographic data; to address that point, we then consider a hybrid
scheme: a hierarchical signature scheme in which the root level consists of a
stateless N -time scheme, while the other levels are stateful.

Outline The remainder of this paper is organized as follows. We recall one-time
signature schemes as well as N -time and hierarchical signature schemes, and
establish some notation (Sec. 2). We then review the security and performance
issues with stateful signature schemes, notably the impact of volatile and non-
volatile cloning (Sec. 3). Next, we cover the basics of synchronization between
volatile and nonvolatile storage (Sec. 4), including possible mitigation for caching
mechanisms, illustrated with concrete examples. We proceed by describing a
strategy for loosening the coupling between those data stores by having the
signer ‘reserve’ the state needed to sign multiple messages (Sec. 5). We show that
hierarchical signature schemes naturally support this state reservation strategy, in
a way that benefits security and performance. These techniques provide the best
possible security for stateful signature schemes, but they do not address scenarios
in which a private key may be unintentionally cloned. To address those cases, we
outline a hybrid approach, in which the root level scheme of a hierarchical scheme
is stateless — ensuring inadvertent nonvolatile cloning does not compromise the
whole structure — but the lower levels are stateful (Sec. 6). We then offer our
conclusions and sketch future work (Sec. 7).

2 Stateful Hash-Based Signature Schemes

One-time signature schemes Hash-based signatures use one-time signature
schemes as a fundamental building block. One-time signature schemes, unlike
most other signature schemes, require only a secure cryptographic hash function
and no other hardness assumption (about a number-theoretic problem) and are
not known to be vulnerable to Shor’s algorithm. Secure here refers to either
collision resistance or mere second-preimage resistance, depending on the specific
one-time signature used. Common examples of one-time signature schemes are
the seminal one by Lamport [19], the Winternitz scheme [7], and its recent
variant W-OTS+ [13]. In one-time signatures, the private key is usually randomly
generated and the public key is a function of the private key, involving the under-
lying hash function. Advanced one-time signature schemes feature a parameter



enabling a time/memory trade-off, e.g. the Winternitz parameter. These schemes
are inadequate on their own in practice, since each one-time private key can only
be used to securely sign a single message.

N-time signature schemes Stateful N -time signature schemes, introduced by
Merkle [22] and often improved since (e.g. [2, 3, 20]), are built out of one-
time signature schemes. They make one-time signatures practical by combining
N = 2H of them in a single structure — a complete binary tree of height
H. Let ΥN = (K,S, V ) denote an N -time signature scheme that consists of a
key generation algorithm K, a signing algorithm S, and a signature validation
algorithm V . The private key Ψ for the N -time scheme ΥN consists of the set of
N private keys of the underlying one-time scheme. An integer counter has to keep
track of the advancement of the key, as with each signature generation another
one-time private key has to be used. A simple way to reduce the size of thatN -time
key is to instead define it to be a short string, and then use a cryptographically
secure pseudorandom function to generate the keys of the underlying one-time
scheme [22]. Formally speaking, this strategy changes the algorithms K and S by
creating an additional preprocessing step. The private state is thus reduced down
to the short private key and the integer counter, simplifying state management
somewhat through a reduction in scale. Nonetheless, the correct management of
the counter across multiple invocations of S is critical to security, as any one-time
private key must not be used twice.

Hierarchical Signatures A hierarchical signature scheme is an N -time signature
scheme that uses other hash-based signatures in its construction. Let Γ =
(ΥN0 , ΥN1 , . . . , ΥNl−1) denote a hierarchical signature scheme with l levels. The
public key Z for Γ is the output of K0 (that is, the key generation algorithm of
the top level). The private key for Γ consists of the private keys of each level:
Ψ0, Ψ1, . . . , Ψl−1. A signature for Γ consists of the public keys Z1, . . . , Zl−1 of
levels 1 through l − 1, along with the signatures Y0(Z1), Y1(Z2), . . . , Yl−2(Zl−1)
of the ith level’s public key by the (i− 1)th level private key, and the signature
Yl−1(M) of the message M with the private key of the last level. If the signature
scheme ΥNi at the ith level of Γ can sign Ni signatures, then Γ is an N -time
signature scheme with N =

∏l−1
i=0 Ni. Hierarchical signatures allow for shorter

signing time of a message M by a Nl−1 -time (instead of
∏l−1

i=0 Ni-time) signature
while offering a higher total number (

∏l−1
i=0 Ni) of signed messages. Concrete

examples of hierarchical hash-based signatures include XMSSMT [15], a scheme
by Leighton and Micali [20] and SPHINCS [1]. XMSSMT and SPHINCS define
parameter d as the number of layers in the hierarchical structure. Additionally,
the LMS [21] specification describes a hierarchical hash-based signature variant
based on Leighton and Micali’s scheme.

3 State Synchronization Security Risks
We identified several distinct issues with stateful signature schemes, which we
consider here. Ensuring the correct synchronization of the private key between a



storage unit and the execution unit requires a carefully engineered system. In
most cases, the synchronization cost is likely to add to the time required for
signature generation. We call this additional latency the synchronization delay.
We say that a synchronization failure occurs if the private key or counter in
nonvolatile storage fails to advance at or before the time that the private key
in RAM advances. This could be caused by the crash of an application or an
operating system, by a power outage, by the corruption of the nonvolatile state,
or by a software bug. Another issue with statefulness is the cloning problem: the
situation arising when a private key is copied and then used without coordination
by two or more execution units. This can for instance happen through Virtual
Machine (VM) image cloning, or by the restoration of a key file to a previous state
from a backup system. Cloning will cause multiple signatures to be generated
from the same system state, thus undermining security. The most important issue
is nonvolatile cloning, as outlined above. A related but distinct problem is that
of volatile cloning, which is the copying of a private key from volatile memory, as
discussed below.

In a well-designed stateful signature system, synchronization failure can
be avoided, but also synchronization delay will greatly impact performance.
Nonvolatile cloning may not be a consideration on a system that is dedicated
to signature generation, but it is a significant risk on general-purpose software
systems.

Volatile cloning in VM environments There is a low risk of volatile cloning, except
in VM environments. Most contemporary VM environments (e.g. VMware Virtual
Center, Oracle Virtual Box, KVM or Xen) support live cloning. This is usually
achieved by first capturing a system snapshot. Such environments introduce
several other risks for cryptography and security protocols. Pseudorandom number
generators are at risk, since their state can be cloned, too. The exact risk to
pseudorandom number generation depends on the method of entropy collection
(possibly causing state divergence), but the risk is great enough that volatile
cloning should be avoided. Generally speaking, values that may only be used once
are at risk from live VM cloning. In addition to random numbers, this includes
“initialization vectors, counters for encryption, seeds for digital signatures, and one-
time passwords” [10]. Issues with such primitives can result in catastrophic failures
for classic (pre-quantum) digital signature schemes such as DSA, and even on the
level of security protocols such as TLS [25]. These vulnerabilities relate to random
number generators caching randomness far in advance. Many other systems are at
risk from live virtual machine cloning, including the S/KEY one-time password
system and the TCP protocol [11], for which initial sequence numbers could be
reused for hijacking. Volatile cloning therefore appears problematic to such an
extent that the vulnerability of hash-based signature to this scenario is by no
means a special case.

In our view, stateful hash-based signature techniques can be safely imple-
mented in some scenarios, such as dedicated cryptographic hardware, which can
then benefit from their smaller signatures and signing times. On the other hand,
there is also a need for techniques that are secure even when nonvolatile cloning



occurs, for use in general purpose software environments. The hybrid approach
of Sec. 6 addresses the latter need.

4 State Synchronization Considerations

State synchronization can be delayed by caching, or interfered with by other
processes on the used system. Of course, it is neither possible nor reasonable
to avoid caching and therefore the resulting delay completely. Multiple levels of
caches coexist on typical systems, both in hardware and software, helping the
system to function quickly and properly, by making frequently used data easily
accessible. Nevertheless, partially mitigating measures can be applied by forcing
cache flushing, or by deactivating it. As dealing with the state synchronization is
highly dependent on several factors like the used operating system or hardware
specifics, no universal approach exists. In the following, we present diverse options
to cope with state synchronization.

The access to nonvolatile storage deserves more detailed consideration as the
essential operation in our case is storing the new key state held in the main or
volatile memory on that nonvolatile storage (as shown in Fig. 1). To minimize
I/O operations e.g. on hard disks for frequently used or written data, caches
provide recently used or repeatedly accessed data based on prior operations. So
data supposed to be written to the disk may stay in the cache rather than being
written to the actual disk memory. Hard disks and other nonvolatile storage
devices often feature a (disk) cache that holds the data before actually writing to
disk. Most modern operating systems offer a page cache which behaves similarly
to the memory caches of hard disks but remains in the main memory of the
system. Usually data that is read or written for the first time is held in the page
cache which gets synchronized to the disk or disk cache in fixed intervals, by
exceeding thresholds e.g. a limit for non-synchronized data or due to system calls.
Data sometimes can be swapped between both caches. In most cases the use
of those caches is transparent and therefore unknown to applications running
in userspace. In matters of key state synchronization, a write-through is ideal.
In such a scenario using stateful schemes it is desirable to use state-of-the-art
techniques to overwrite the sections of the main memory with random values if
they hold cryptographic data that is not needed after writing to disk. Mechanisms
that come with the operating system (and may be applied automatically) should
be preferred over self-made implementations which need special attention i.e.
regarding compiler optimizations.

In terms of file I/O, on POSIX environments, the O_SYNC flag (for the open()
system call) will cause invocations of the write() system call to block the calling
process until the data has been written to the underlying hardware. Equivalent
flags (e.g. FILE_FLAG_WRITE_THROUGH for CreateFile() on Win32 API) exist
on other platforms. Modern Linux systems offer writeback or flusher threads
(formerly pdflush) for the page cache that may be optimized. Synchronization
may be triggered manually by the sync or fsync system calls. However, if
hardware has its own memory cache, it must be separately dealt with using an



Fig. 1. A simplified view of the data flow from signing engine to nonvolatile storage,
via cache layers.

operating system- or device-specific tool such as hdparm to flush the on-drive
cache, or to deactivate write caching for that drive. The secure way to ensure that
the data was written is to read it again and compare it to what was expected,
which requires the data to be written to disk without cache interruption and
would add to the synchronization delay.

4.1 Overhead for hash-based signatures

The synchronization latency introduced earlier depends on the chosen hash-
based signature scheme and its implementation. A typical example following the
specification of XMSS [14] merely requires updating the leaf index in the secret
key, a 4-byte value; or an 8-byte value for XMSSMT . This assumes that all data
including the one-time keys and all nodes are stored in the global secret key. The
LMS [21] specification also requires updating a 16 or 32-byte random private key
value. Of course, generating 16 or 32-byte values can be avoided by generating
them from a seed and index with a pseudorandom number generator (PRNG),
which would reduce the state update of a few byte long index.

A PRNG is often used to help generating the one-time signature (OTS)
keys [5]. That way one is able to reduce the size of the scheme’s secret key by
storing only a part of it and rebuilding the necessary information on the fly. A



sequence of 2h seeds is computed from a single initial seed, iteratively (Fig. 2).
In that case, the one-time key pairs (2h in total) are not all stored in the overall
secret key but are generated successively instead. This generation takes place
twice: for the generation of the overall public key and for signing4. The very basic
data to be synchronized are the index and the succeeding seed. This would be
just 36 bytes with n = 32 and XMSS or 72 bytes with n = 64 and XMSSMT .

Fig. 2. Iterative generation of successive PRNG seeds (si) from an initial one (seed), and
OTS signing key generation. The OTS signing keys are Σi = σi[0] . . . σi[len− 1], i ≤ 2h,
where len is the number of n-byte string elements in a W-OTS+ secret key, public key,
and signature. As part of the state synchronization, after the generation of the ith OTS
signing key, the next seed si+1 (in red) must be stored.

The total size of the state data to be updated then depends on the used
parameters and implementation choices. In particular, different methods to
update the authentication path5 involve the storage of different elements (e.g.
nodes for the next authentication path or precomputed nodes) as part of the
state.

4 This allows for forward-secure constructions if used with the right schemes, e.g.
special instantiations of XMSS using a forward-secure PRNG as shown by [2]. That
way an attacker may get access to the secret key on a system but is not able to forge
signatures using previous keys. A hash-based secret key is then to be seen just as
secure as any other signing key that an attacker gets access to.

5 The authentication path is the sequence of tree nodes that a verifier needs to
reconstruct the path to reach the root of the tree from a leaf.



We now consider this case where a PRNG is used. When nodes are computed
on the fly like this, an important concern is the worst case running time. Without
precomputation, the large variation in node computing time (depending on
how many already known nodes can be reused) would lead to unbalanced node
computations and unacceptable delays in signing speed. By precomputation,
modern tree traversal algorithm proposals strive to mitigate these variations by
balancing the number of leaves computed in each computation of an authentication
path [4]. Besides the index and the seed, the next authentication path and some
nodes, which are needed in the near future, must be stored in the meantime (while
some older nodes may be deleted). As more data has to be written one should also
consider the impact of interrupts to the storing procedure. A generated signature
must not be handed out before a new state, in this case including additional data
by tree traversal algorithms, is available in storage. That way the old key state
does not get compromised in case of an outage or other harmful events.

To give a sense of the size of the state to be synchronized in this case, we
consider the following typical (plain) XMSS parameter set: tree height h = 16,
message length m = 32 bytes, node length n = 32 bytes, Winternitz parameter
w = 166. For LMS [21], the parameter set are equivalent. They are provided in
the specification’s Table 1.

A number of different tree traversal algorithms exist (e.g. [4, 18]), and the
choice of this algorithm defines the exact node precomputation method. In turn,
the total size of the state depends on the chosen node precomputation method.
The choice of a tree traversal algorithm does not affect the security of the overall
signature scheme, but has a massive impact on performance. As an example,
consider the BDS tree traversal algorithm [4]. We assume the value K = 2
for the BDS parameter. The state of the BDS algorithm comprises the current
authentication path, an array of nodes used for the efficient computation of
left authentication nodes, a single right authentication node, tail nodes on the
stack and nodes for the treehash algorithm. Buchmann, Dahmen and Schneider
showed [4] that the total space requirement of this algorithm depends only on
the height of the tree and the size of the nodes: it is bounded by (3.5h − 4)n
bytes for that algorithm, i.e. 1664 bytes for our chosen concrete parameter set,
which have to be written to the nonvolatile storage in addition. The algorithm
computes h−1

2 leaves and h−3
2 inner nodes on average for each authentication

path.
Storing therefore adds to each signing operation by several milliseconds, but

using the techniques introduced in the following section helps reducing the need
for storing each update of the key.

5 A State Reservation Strategy

When an N -time signature system’s private key is read from nonvolatile storage
into RAM, it can use a state reservation approach by writing back into storage
6 Recall that the Winternitz parameter is used as a trade-off setting for the underlying
one-time signature scheme.



the private key that is u signatures ahead of the current signature. In this way,
the execution unit reserves the next u signatures for use, and avoids the need to
write the updated private key u times into nonvolatile storage.

We formalize this idea by introducing a new reserve operation R : [0, N ]→
{0, 1}K , which takes as input the number of private keys to reserve for use, and
returns their values after it has updated the nonvolatile storage. We define an
N -time signature system with reservation as an N -time system Υ = (K,R, S, V )
in which the signing algorithm cannot directly access any private key information,
and must first call the reserve function to obtain that key. For example, to sign
the next X messages with X ≤ N the signer will receive X one-time signature
keys from the reserve function R (or i.e. a key that may be advanced for up to X
signatures, depending on the implementation). These keys are not sequentially
synchronized in nonvolatile storage. They are delivered to the signing function
only after the key state of the last key in the reservation is synchronized by R. If
the signer crashes while it is using the X keys to sign the messages, the remaining
keys in the reservation will not be used, which reduces the maximum number
of signed messages, but there is no change of key reuse since the key state has
already been updated in nonvolatile storage.

Given any N -time signature system, it is easy to define a signature system
with reserve by introducing the appropriate function and a counter. Multiple
signing engines can be accommodated by calling the reserve function to obtain
a distinct private key range for each signing engine. The key still is a critical
resource with this approach, but access to it is accelerated, as an engine calling
the reserve function does not have to wait for another engine or process to finish
signing first.

The reserve strategy minimizes the number of write operations to nonvolatile
storage, which significantly reduces synchronization delay. The larger the interval
u is, the less storage overhead is necessary. It also incurs a small penalty. In-
terrupting the update process of the reserve function is not a problem, as the
key may not be written to nonvolatile storage but also will not be handed to
a signing engine. However, any interruption of the signing process — including
a crash, a graceful shutdown or the signing process simply not using all the
signatures available — will reduce the number of messages that can be signed by
the long-term key.

To offer an optimal coverage on diverse keys for addressing different use cases,
for example with keys using different parameter sets or to provide backup keys
if the current key’s compromised somehow, a key provider tool may be used,
holding a key pool P = (Ψ0, Ψ1, . . . , Ψp−1) where p is the number of different keys.
Each private key Ψ can be accessed via a reserve function.

Even though a reservation function introduces extra processing to generates
a series of keys, key generation is less costly than signing. When decoupled
from signing, a reservation function does not introduce a performance high risk
factor. Several ways to improve the performance of N -time signature schemes
in practice exist. As mentioned above, one common strategy is to generate the
one-time signature key pairs by using a PRNG, instead of creating each key



pair randomly following a uniform distribution. That way a seed s is used to
feed the PRNG, which returns output for the key generation as well as the
successor seed s′. In this case the nature of N -time signature schemes can be
used in favor of more security. Instead of creating all one-time signature key
pairs using one initial seed that is employed iteratively by the PRNG, one may
reseed the PRNG for every fixed interval u and limit the reserve function to a
maximum limit of u signatures per call of the function by an engine. That way a
signing engine receives several signing keys, but cannot get any information about
the remainder of the long-term key. One then has to consider the compatibility
with the used tree traversal algorithm and call that one correctly. As mentioned
above, a tree traversal algorithm may precalculate further nodes to allow for a
balanced average signing time. If using different seeds, a tree traversal algorithm
used by the signing engine must be compatible with that behavior. To simplify
implementation and streamline operation, the interval u should be a divisor of
the number of leafs of a (bottom-layer) subtree so subtree boundaries are not
crossed. The reserve function does have access to all secret key information and
therefore has no problem updating the secret key using several seeds.

Another way to improve security is to introduce volatile and nonvolatile levels
within the signature scheme Υ . This approach is detailed next.

5.1 Volatile and nonvolatile levels

A hierarchical signature scheme very naturally supports a reserve operation of all
r = Nl−1 signatures associated with level l − 1. We formalize this notion in this
section with the idea of a volatile level. In a hierarchical signature system, the
first k ≤ l levels can be maintained in nonvolatile storage, while the remaining
l − k levels can be volatile (Fig. 3).

Without essential loss of generality, we consider a signature chain with exactly
two levels7; Υ0 is nonvolatile, and Υ1 is volatile. The overall scheme is an N0N1
time signature scheme that naturally supports a reserve of exactly r = N1. The
only time that Υ0 needs to sign is when the reserve operation is invoked and
when Υ1 is exhausted (that is, it has produced all N1 of its signatures). Each
invocation of the reserve operation invokes the top level signing algorithm and
the bottom level key generation algorithm. The key generation process may take
a long time, but the system could generate bottom-level private keys in advance
of when they are needed, and bring them into Υ at that time.

When a bottom level public/private key pair is generated, any public data
(such as the components of a Merkle hash tree) can be cached in nonvolatile
storage without raising any security issues. Furthermore, a private key could
be kept in nonvolatile storage for some period of time pending its use in a
volatile level, as long as it is erased from nonvolatile storage before it is used.
That is to say, the private key of a volatile level may be temporarily stored in
nonvolatile memory between the time that it is generated and the time that
it is linked into Υ by signing its public key with the top level. We emphasize,
7 Note that either of these two levels could themselves be hierarchical signature schemes.



Fig. 3. Combined volatile/nonvolatile hierarchical signature scheme with l = 3 and
k = 2. r is the multitree root, i.e. the public key of the entire scheme. Each subtree can
be a stateful N − time signature scheme like XMSS or LMS.

however, that all private keys at the volatile level must not be synchronized with
nonvolatile storage. A system that uses this volatile key precomputation strategy
must carefully avoid synchronization issues that might cause a cached private
key to be used in multiple levels.

A hierarchical signature scheme with a volatile bottom level enforces the
reservation property; since the private key of the volatile level is not synchronized
in nonvolatile storage, it avoids synchronization problems. Of course, the root
level must be nonvolatile, but it only rarely performs signing, and thus rarely
changes its state. This is a benefit because synchronization delay is no longer an
issue, and there is less chance of a synchronization problem (in the reasonable
model that problems occur when there is a crash or power outage during a write
operation).

We conjecture that a nonvolatile level with 220 signatures is sufficient to
provide security in general-purpose software environments, since that number of
keys can be used to sign once per hour for over a century, or once per second
for nearly two years. This is enough time to allow for almost all types of system



failures to be detected and corrected. Even 216 signatures may be sufficient if
a signature is associated with an hourly re-initialization, considering that it is
enough to last for seven years.

However, the reservation strategy and hierarchical signature schemes do not
address the nonvolatile cloning problem. If a root level private key is copied and
then used by multiple execution units, an attacker could forge a signature on
a bottom level public key, and thus perpetrate Nl−1 forgeries. This limits the
scenarios in which signature scheme could be used.

6 Stateless and Hybrid Approaches

The SPHINCS hash-based signature scheme [1] is stateless, and thus avoids the
synchronization delay and cloning problems outlined above. It can sign a nearly
arbitrary number of messages, but unfortunately, it is less efficient than stateful
hash-based signatures; its signatures are over 40KB in length, and they take a
relatively long time to generate.

Ideally, we would like to have a signature scheme that has the shorter signa-
tures and quicker signing of a stateful method, but which has the advantages of
the stateless methods. A reasonable compromise is the following hybrid scheme: a
hierarchical signature scheme with a stateless N0-time scheme at the root level of
Υ , while the other levels are stateful (i.e. XMSS, LMS). Such a structure is shown
in Fig. 4 (which is similar to Fig. 3) with k = 1 and the top tree (nonvolatile
level) being a stateless signature scheme. This hybrid approach provides security
against nonvolatile cloning, because it does not require any state synchronization
at the root level. It also avoids synchronization delay.

A stateless N -time signature scheme can sign up to N signatures at a certain
security level. If more than N signatures are generated, its security will degrade,
but this degradation can be graceful. The Hash to Obtain Random Subset (HORS)
scheme [24] is a good example of this type of system. Each distinct message that
is signed reveals a small subset of the private state, i.e. a few-time signature
scheme is used instead of a one-time signature scheme as a cornerstone of the
system. In order to perpetrate a forgery, an attacker would need to collect the
private state that is revealed from many different signatures. HORS is further
improved by HORST which is used in SPHINCS.

The hybrid approach described above can bring worthwhile advantages, be-
cause it can make use of a stateless signature scheme that can sign only a limited
number of signatures, e.g. 64K or 1M. It does not entirely eliminate all of the
issues surrounding state management. Even with a stateless N -time signature
scheme, there is still a need to limit the number of signatures created with the
scheme, and the enforcement of that limit might require some state synchroniza-
tion. Of course, this need to restrict the number of signatures is fundamental to
any N -time signature scheme. However, there may be some natural bounds on
the number of signatures that a system could create with a nonvolatile private
key. If those signatures are associated with the initialization of an application or
an operating system, for example, then even if a restart or reboot occurs every



Fig. 4. A hybrid approach combining a stateless signature scheme like HORST [1] at
the root level and stateful schemes like LMS and XMSS at the lower levels.

hour, it would take seven years to reach N = 216 root-level signatures and over a
century to reach N = 220 signatures. In a backup scenario, either of those root
level schemes would be adequate, since the restoration of an operating system
or application from backup does not change the number of execution units. In
a VM scenario, however, each cloning would produce multiple execution units;
we do not recommend the hybrid approach for the volatile part of the hybrid
structure for such environments. As discussed earlier (Sec. 3), there are several
other security issues with the cloning of VMs, so it is not clear how important
this limitation is in practice.

If volatile private keys are cached in nonvolatile storage, it is essential to
make sure that they are not cloned. For instance, it is acceptable to have the
private key stored in swap memory (assuming that there are adequate security
protections in place), but it is not acceptable to cache those keys in a file that
might be cloned in a VM or backed up.

In practice, with a hybrid scheme, if one never performs more than N restarts
(for some reasonable N), all issues with state management are eliminated. One
would regenerate the volatile state after every reboot (and generate a signature



of that volatile state based on the stateless scheme); one would then generate
signatures based on the volatile state. If the volatile signature scheme is designed
to be able to generate enough signatures, one can avoid regenerating that state
until the next reboot.

7 Conclusions

As the transition to post-quantum cryptography moves forward — notably with
standardization efforts at NIST, the IETF, and other organizations — existing
schemes must be evaluated for real-world scenarios. In particular, hash-based
signature schemes such as LMS and XMSS/XMSSMT are good candidates for
the post-quantum era, with minimal security requirements, but their statefulness
is often mentioned when adoption is discussed.

We have taken a closer look at concrete cloning and state management sce-
narios, considered examples with typical parameter sets, and shown that the
security-critical issues can be avoided using relatively simple measures. We dis-
cussed the effects of caching on state synchronization delays, and measures to
mitigate these effects. It was shown how the size of the state to be synchronized
depends not only on the chosen scheme and its parameters, but also on implemen-
tation choices — such as the tree traversal algorithm selection — which directly
impact performance. A trade-off between performance and the (quantifiable) risk
of slower state synchronization is therefore available to signing engines.

The state reservation strategy is essential for practical implementations. It
makes sense to formalize this fact by defining it into the interface. The only way
to avoid the reserve scheme is to accept the inefficiency of synchronizing state
with nonvolatile storage, or to have N be so large that it could not be exceeded by
the signing systems in use. Hierarchical signatures are a practical and reasonably
simple scheme. The hybrid approach could be useful in general-purpose software
environments, and deserves further exploration.

Currently specifications of hash-based signature schemes do not allow reserve
parameters to be set. Since the reserve operation is not scheme-dependent, it
can be specified generically. To offer an optimal granularity of reserve parame-
ter choices for end users, feedback from stakeholders on this matter would be
beneficial. Since hash-based signature schemes normally already require a large
number of parameters to be set, additional complexity may impede usability.

While the statefulness of hash-based signature schemes must be carefully
managed, it can be seen that a number of trade-offs are available to accelerate
state synchronization if need be. This flexibility underscores the need to select
parameters according to use case constraints, instead of always simply opting
for maximal speed. We consider a detailed analysis of use case requirements for
widespread security protocols relying on digital signatures as the next step in
this direction. This study of use case requirements would pave the way for the
standardization of state management strategies for typical applications.
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