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Abstract. The notion of universal re-encryption is an established prim-
itive used in the design of many anonymity protocols. It allows anyone
to randomize a ciphertext without changing its size, without first de-
crypting it, and without knowing who the receiver is (i.e., not knowing
the public key used to create it). By design it prevents the randomized
ciphertext from being correlated with the original ciphertext. We revisit
and analyze the security foundation of universal re-encryption and show
a subtlety in it, namely, that it does not require that the encryption
function achieve key anonymity. Recall that the encryption function is
different from the re-encryption function. We demonstrate this subtlety
by constructing a cryptosystem that satisfies the established definition of
a universal cryptosystem but that has an encryption function that does
not achieve key anonymity, thereby instantiating the gap in the defini-
tion of security of universal re-encryption. We note that the gap in the
definition carries over to a set of applications that rely on universal re-
encryption, applications in the original paper on universal re-encryption
and also follow-on work. This shows that the original definition needs to
be corrected and it shows that it had a knock-on effect that negatively
impacted security in later work. We then introduce a new definition that
includes the properties that are needed for a re-encryption cryptosys-
tem to achieve key anonymity in both the encryption function and the
re-encryption function, building on Goldwasser and Micali’s “semantic
security” and the original “key anonymity” notion of Bellare, Boldyreva,
Desai, and Pointcheval. Omitting any of the properties in our definition
leads to a problem. We also introduce a new generalization of the Deci-
sion Diffie-Hellman (DDH) random self-reduction and use it, in turn, to
prove that the original ElGamal-based universal cryptosystem of Golle et
al is secure under our revised security definition. We apply our new DDH
reduction technique to give the first proof in the standard model that
ElGamal-based incomparable public keys achieve key anonymity under
DDH. We present a novel secure Forward-Anonymous Batch Mix as a
new application.

1 Introduction

Nowadays, perhaps more then ever, anonymity tools are crucial for maintaining
basic civil liberties. For example, as a result of the whistle-blowing by Edward



Snowden, Americans and others have a better understanding of surveillance
states and the privacy risks they pose. This reinforces the need for anonymity
of communication, which, in fact, has been an active area of cryptographic re-
search since the 1980s with numerous propositions and tools, suitable for various
scenarios.

Having a sound theoretical foundation for anonymity systems is a critical
component in achieving privacy of users in the same way that message security
is achieved by having a sound theoretical foundation for encryption. Camenisch
and Lysyanskaya, for example, presented a formal treatment of onion routing [5]
where prior work was comparatively informal with ad-hoc security justifications.
Onion routing falls into a class of anonymity systems known as “decryption
mixes”, since layers of ciphertext are shed as the onion makes its way to the
receiver.

In this paper we present a formal treatment of a different fundamental class
of anonymous communication protocols, namely, those based on universal re-
encryption. A shortened version of this paper is in Security and Cryptography
for Networks—SCN 2018 [30]. Universal re-encryption forms the basis of what
has been called “re-encryption mixes”.

Golle et al presented the definition of a universal cryptosystem that permits
re-encryption without knowledge of the public key. They called this definition
UCS [11]. By extending the ElGamal public key cryptosystem [7], they instanti-
ated a UCS, hereafter referred to as the UCS construction. They also defined what
it means for a UCS to be secure. This they called universal semantic security
under re-encryption, abbreviated USS. They used UCS as a basis to construct a
re-encryption mix and an anonymized RFID tag application, hereafter referred
to as GJJSMix and GJJSRFID, respectively.

A ciphertext of UCS has the property that it can be efficiently re-encrypted
by anyone without knowledge of the receiver’s public key. This re-encryption is
accomplished without decrypting the ciphertext, without adding a new encryp-
tion layer, and without changing the size of the ciphertext. Using re-encryption
randomness, the mapping is “lost” between the ciphertext that is supplied to
the re-encryption operation and the resulting output ciphertext. Therefore, the
notion of universal re-encryption propelled anonymous communication protocols
into the area of “end-to-end encryption” systems that do not rely on servers to
maintain secret keys, thereby exhibiting the forward-secrecy property. Forward-
secrecy and end-to-end encryption are becoming increasingly important in in-
dustrial systems in the post-Snowden era.

Whereas the USS definition has an anonymity test after the re-encryption
operation, there is no anonymity test after the initial encryption operation.
This means that USS does not require that the encryption function achieve key
anonymity. This gap has had a knock-on effect on follow-on works, causing them
to exhibit the same gap. We show that the key anonymity gap that is present
in the definition of security of a universal cryptosystem (as defined by USS) is
inherited by the security definitions of six applications that rely on universal re-
encryption as a black-box. All six applications did not introduce new problems
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per se, but inherently assume that the encryption function is key anonymous,
thereby potentially exposing ciphertexts produced by the encryption function to
the adversary.

However, the gap did not only affect applications in follow-on work to [11].
We show that the security definitions of the applications GJJSMix and GJJS-
RFID that appear in [11] exhibit this gap as well, allowing instantiations of
the encryption function that compromise user anonymity. Since these two ap-
plication security definitions are in [11], we show that USS does not sufficiently
capture what is necessary for security.

What is needed is a formal foundation of the field as was done in other ar-
eas such as message encryption. To this end, we put forth a model of what is
required for re-encryption in the context of systems that require key anonymity.
In particular, our new definition requires that the re-encryption function and
the encryption function achieve key anonymity. Our definition requires that the
re-encryption function and the encryption function achieve message indistin-
guishability. Our contributions are as follows:

1. We identify a gap in the definition of a universal re-encryption cryptosystem,
namely, the missing requirement that the encryption function achieve key
anonymity.

2. We cryptanalyze this gap and formally prove that it exists using a carefully
constructed encryption function that achieves all that is required in the
original work.3

3. Due to black-box use of the primitive, we point out that the gap applies
to the following applications: GJJSMix, a mix network with defense against
unwanted messages [16], GJJSRFID, Klein bottle routing protocol [21], the
mobile private microblogging protocol [26], and an additional RFID pro-
tocol [25]. For all of these protocols: failure of the encryption function to
achieve key anonymity (as not required by the original work) results in pri-
vacy loss/compromised receiver anonymity.

4. We then present what we call semantically secure anonymity that defines
the complete set of security properties that assure key anonymity.

5. Construction: We generalize the well-known DDH random self-reduction and
then use this generalization to prove that the UCS construction is secure un-
der DDH in our new model.4 The proof may point at how to correct the
derived applications, while the new reduction technique may have indepen-
dent applications.

6. Example application: We present a new forward-anonymous batch mix and
prove that it is secure (as modeled here) under DDH.

7. A notion related to universal re-encryption is that of incomparable public
keys. The proof of key anonymity of the ElGamal-based incomparable public

3 See Theorem 1. The gap pertains to the “initial” encryption function, not the re-
encryption function.

4 i.e., that key anonymity holds for the encryption and re-encryption functions and
that message indistinguishability holds for the encryption and re-encryption func-
tions.
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key cryptosystem [28] is in the random oracle model. We give the first proof
of key anonymity for incomparable public keys in the standard model and it
is a direct reduction with respect to DDH.

Due to its flexibility, we anticipate that our new reduction technique will aid
in future concrete and workable designs that use number theoretic and elliptic
curve groups where DDH holds, since anonymity of channels is a central issue in
cryptography and privacy applications and since sound foundations and correct
proofs are needed. In fact, our new application of a forward-anonymous batch
mix is an example of such an application, giving an end-to-end secure anonymous
communication system.

Organization:

Related work is presented in Section 2. Notation and definitions are covered in
Section 3. In Section 4 we review UCS and USS and show that there is a gap in USS.
We use the gap in Section 5 to break the security definitions of six cryptographic
applications. We define semantically secure anonymity in Section 6. We review
the UCS construction in Section 7 with adjusted input/output specifications to
accommodate our proofs of security. The new DDH reduction technique is given
in Section 8 and we use it to prove the security of the UCS construction in Section
9. The forward-secure batch mix is presented and proven secure in Section 10.
We conclude in Section 11. A security analysis of incomparable public keys is
given in Appendix A.

2 Related Work

We first review the literature that leverages universal re-encryption as a prim-
itive. UCS is a 4-tuple of algorithms: a key generator, an encryption algorithm,
a re-encryption algorithm, and a decryption algorithm. A ciphertext produced
using this cryptosystem can be re-encrypted by anyone without first decrypting
it. In GJJSRFID, an RFID tag is set to be a universal ciphertext that contains
an underlying ID as the plaintext. The ciphertext is re-randomized periodically
to prevent the tag from being tracked over time, e.g., as the object that contains
the tag moves from place to place. With the private decryption key the ID can be
obtained. Without the private key the ID in the ever changing RFID ciphertext
is intractable to obtain, making it difficult to track the object. GJJSMix applies
the UCS construction to produce a hybrid universal mix that leverages a pub-
lic bulletin board. The mix is based on uploading and downloading ciphertexts
to/from a bulletin board as opposed to leveraging a cascade of mix servers.

Fairbrother sought a more efficient hybrid universal cryptosystem based on
UCS [8]. Universal re-encryption was used in a protocol to control anonymous in-
formation flow, e.g., to prevent spam from being injected into the anonymization
network [16]. Onion-based routing and universal re-encryption were leveraged
to form hybrid anonymous communication protocols [12, 17]. A circuit-based
anonymity protocol was presented based on universal re-encryption [18]: in the

4



first stage a channel is established through the network between Alice and Bob
along with the keys needed for re-encryption and in the second stage Alice and
Bob communicate with one another. Weaknesses in [16, 17, 12, 18] were presented
in [6]. Golle presented a reputable mix network construction based on universal
re-encryption [10]. A reputable mix has the property that the mix operator can
prove that he or she did not author the content output by the mix.

Issues about key anonymity have been noticed or absent in other works on
re-encryption: First, Groth presented a re-randomizable and replayable cryp-
tosystem based on DDH achieving adaptive chosen ciphertext security [13]. The
construction and security arguments do not address key anonymity. Secondly,
Prabhakaran and Rosulek presented a construction for a rerandomizable en-
cryption scheme [22] that aims to be CCA-secure under DDH. It extends the
Cramer-Shoup public key cryptosystem. They define RCCA receiver-anonymity
in detail but state that their scheme does not achieve it and that it is an open
problem. The approach was later extended to combine computability features
with non-malleability of ciphertexts. The construction enables anyone to change
an encryption of an unknown message m into an encryption of T (m) (a feature),
for a set of specific allowed functions T , but is non-malleable with respect to
all other operations [23]. They indicate that their construction does not achieve
HCCA-anonymity and leave the anonymity problem as open.

There has been more recent work on proxy encryption [15]. In proxy en-
cryption a ciphertext of a message m encrypted under Alice’s public key is
transformed (re-encrypted) into a ciphertext of m under Bob’s public key. Note
that our setting is different since the receiver’s public key does not change in our
re-encryption operation.

Re-encryption mix networks are utilized in actual electronic voting systems
such as Helios [1]. They are also used in GR.NET’s Zeus system.5

Having surveyed the literature it became apparent to us that numerous works
have utilized universal re-encryption as a basic building block. This forms the
motivation for a clean and correct foundation for this area. While we fully appre-
ciate the pioneering work on this concept (a trailblazing step which is necessary),
we believe that the time has come to treat anonymity with the same formal care
and level of provability (i.e., the same “respect“) as, say, message security in
public key cryptosystems. We believe that our work shows that identifying sub-
tleties and producing necessary revisions of models is relevant, even for works
that are older than 10 years, especially in areas that are becoming increasingly
important to real-world applications and systems.

The important notion of key privacy (also called key anonymity) was intro-
duced by Bellare, Boldyreva, Desai, and Pointcheval [2]. They formally defined
public key cryptosystems that produce ciphertexts that do not reveal the receiver
and showed that ElGamal and Cramer-Shoup achieve key anonymity. The folk-
lore at the time was that Indeed ElGamal where all keys are drawn from the
same group has a property which is similar to what was formally modeled and

5 github.com/grnet/zeus
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proved in that paper, yet the correct model and work as a whole is, nowadays,
considered fundamental to privacy.

The present paper was published in 2016 on e-print [29]. It influenced the
privacy-preserving user-auditable pseudonym system of Camenisch and Lehmann
[4] who leverage our security definition for incomparable public keys and cite
the applicability of our reduction technique from Section 8. The present paper
was also mentioned as a needed building block for universal re-encryption for
AppeCoin.6

3 Notation and Definitions

If T is a finite set then x ∈U T denotes sampling x uniformly at random from
T . Define Zp to be {0, 1, 2, ..., p− 1}. Let Z∗n be the set of integers from Zn that
are relatively prime to n. [1, t] denotes the set of integers {1, 2, ..., t}. |G| denotes
the size of the group G, i.e., number of elements in G. We may omit writing
“mod p” when reduction modulo p is clear from the context. Pr[A] denotes the
probability that A is true. Let a ← b denote the assignment of b to a. For
example, a ← M(x) denotes the execution of Turing machine M on input x
resulting in output a.

A function negl is negligible if for all polynomials p(·) there exists an α such
that for all integers n > α it is the case that negl(n) < 1

p(n) . We use negl to

denote a negligible function.
The following definition of DDH is directly from [3]. A group family G is a

set of finite cyclic groups G = {Gp} where p ranges over an infinite index set. We
denote by |p| the size of the binary representation of p. We assume that there
is a polynomial time (in |p|) algorithm that given p and two elements in Gp

outputs their sum. An instance generator, IG, for G is a randomized algorithm
that given an integer n (in unary), runs in time polynomial in n and outputs
some random index p and a generator g of Gp. In particular, (p, g) ← IG(n).
Note that for each n, the instance generator induces a distribution on the set of
indices p. The index p encodes the group parameters.

A DDH algorithm A for G is a probabilistic polynomial time Turing machine
satisfying, for some fixed α > 0 and sufficiently large n:

|Pr[A(p, g, ga, gb, gab) = “true”] − Pr[A(p, g, ga, gb, gc) = “true”]| > 1
nα

where g is a generator of Gp. The probability is over the random choice of 〈p, g〉
according to the distribution induced by IG(n), the random choice of a, b, and
c in the range [1, |Gp|] and the random bits used by A. The group family G
satisfies the DDH assumption if there is no DDH algorithm for G.

We now review the well-known random-self reduction for DDH [3, 27, 20].
DDHRerand((p, q), g, x, y, z) randomizes a DDH problem instance by choosing
u1, u2, v ∈U [1, q] and computing,

6 blog.coinfabrik.com/review-appecoin-alternative-anonymous-cryptocurrency
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(x′, y′, z′)← (xvgu1 , ygu2 , zvyu1xvu2gu1u2)

When (x, y, z) is a valid Diffie-Hellman 3-tuple then the output is a random
Diffie-Hellman 3-tuple. When (x, y, z) is not a valid Diffie-Hellman 3-tuple then
the output is a random 3-tuple.

4 Gap in Universal Re-encryption Definition

4.1 Review of UCS and USS

UCS is a 4-tuple of algorithms (UKG,UE,URe,UD), where UKG is the key gen-
erator, UE is the encryption algorithm, URe is the re-encryption algorithm, and
UD is the decryption algorithm.

UKG outputs a public key PK (Golle et al do not have it return a key pair
in the definition of their experiment). UE(m, r, PK) denotes the encryption of
message m using public key PK and r is a re-encryption factor. It outputs a
universal ciphertext C. URe(C, r) denotes the re-encryption of C using a re-
encryption factor r. Golle et al assume an implicit parameterization of UCS
under security parameter k. The decryption algorithm UD(SK,C) takes as input
a private key SK and ciphertext C and returns the corresponding plaintext (or
an indicator for failure).

Let M be a message space and let R be a set of encryption factors. Let A
be a stateful adversarial algorithm. Below is the verbatim definition of USS:

Experiment Expuss
A (UCS, k)

PK0 ← UKG;PK1 ← UKG;
(m0,m1, r0, r1)← A(PK0, PK1,“specify ciphertexts”);
if m0,m1 /∈M or r0, r1 /∈ R then output ‘0’;
C0 ← UE(m0, r0, PK0);C1 ← UE(m1, r1, PK1);
r′0, r

′
1 ∈U R;

C ′0 ← URe(C0, r
′
0);C ′1 ← URe(C1, r

′
1);

b ∈U{0, 1};
b′ ← A(C ′b, C

′
1−b,“guess”);

if b = b′ then output ‘1’ else output ‘0’;

An instantiation of UCS is said to be semantically secure under re-encryption
(i.e., achieve USS) if for any adversary A with resources polynomial in K, the
probability given by pr[Expuss

A (UCS, k) = ‘1’]− 1/2 is negligible in k.
The UCS construction is as follows. Let p = (p, q) be a group family where p

is prime and p− 1 is divisible by a large prime q. The group Gp is the subgroup
of Z∗p having order q. Let g be a generator for Gp. The key generator outputs
(PK,SK) = (y, x) where x ∈U Zq and y = gx mod p.

The encryption operation is denoted by UE(m, (k0, k1), y). It encrypts mes-
sage m ∈ Gp using y. (k0, k1) ∈U Zq × Zq are random encryption nonces. The
encryption operation outputs the ciphertext c ← ((α0, β0), (α1, β1)) ← ((myk0

mod p, gk0 mod p), (yk1 mod p, gk1 mod p)).
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The universal re-encryption algorithm URe(((α0, β0), (α1, β1)), (k′0, k
′
1)) out-

puts a re-randomized ciphertext C ′. (k′0, k
′
1) ∈U Zq×Zq is a random re-encryption

factor. Generate k′0, k
′
1 ∈U Zq. The output C ′ is defined as ((α′0, β

′
0), (α′1, β

′
1))

which is equal to ((α0α
k′0
1 , β0β

k′0
1 ), (α

k′1
1 , β

k′1
1 )).

The decryption algorithm UD(x, ((α0, β0), (α1, β1))) takes as input the pri-
vate key x followed by a universal ciphertext under public key y. First it verifies
that all 4 values in the universal ciphertext are in Gp and if not the special
symbol ⊥ is output. Compute m0 = α0/β

x
0 and m1 = α1/β

x
1 . If m1 = 1 then

the output is m = m0. Otherwise, output ⊥ indicating decryption failure.

4.2 Missing key anonymity requirement for UE in USS definition

We now prove that USS as defined by Golle et al accepts as valid cryptosys-
tems that, in fact, contain encryption algorithms UE that do not produce key
anonymous ciphertexts. Consider the following modification of UE called UE’:

1. let b1 be the least significant bit of y
2. generate random encryption nonces (k0, k1) ∈U Zq × Zq
3. set (α0, β0)← (myk0 mod p, gk0 mod p)
4. set (α1, β1)← (yk1 mod p, gk1 mod p)
5. set c← ((α0, β0), (α1, β1))
6. let b2 be the least significant bit of β0
7. if b1 6= b2 then goto step 2 otherwise output c

Cryptosystem A: Cryptosystem A is the same as the UCS construction except
that UE is replaced with UE’.

DDHRerand5 in the proof of Theorem 1 is covered in Section 8.

Theorem 1. If DDH is hard then Cryptosystem A is secure in the sense of USS.

Proof. Suppose for the sake of contradiction that there exists a successful prob-
abilistic polynomial time USS distinguishing adversary A for Cryptosystem A.
Adversary A is stateful. Consider algorithm AlgRA that takes as input a Deci-
sion Diffie-Hellman problem instance ((p, q), g, a0, b0, c0).

AlgRA((p, q), g, a0, b0, c0):
1. (θ′j , θj , yj , µj , µ

′
j)← DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1

2. PK0 ← y0, PK1 ← y1
3. (m0,m1, r0, r1)← A(PK0, PK1,“specify ciphertexts”);
4. if m0,m1 /∈M or r0, r1 /∈ R then output ‘0’;
5. C0 ← ((α0,0, β0,0), (α0,1, β0,1))← UE′(m0, r0, PK0)
6. C1 ← ((α1,0, β1,0), (α1,1, β1,1))← UE′(m1, r1, PK1)
7. C ′0 ← ((α0,0µ0, β0,0θ0), (µ′0, θ

′
0))

8. C ′1 ← ((α1,0µ1, β1,0θ1), (µ′1, θ
′
1))

9. b ∈U {0, 1}
10. b′ ← A(C ′b, C

′
1−b,“guess”)

11. if b = b′ then output ‘1’ else output ‘0’;
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Consider the case that the input is a DH 3-tuple. Clearly Cj is the ciphertext
under public key PKj as specified by A for j = 0, 1. It follows from the definition
of DDHRerand5 that C ′j is a re-encryption of Cj in accordance with URe for
j = 0, 1. Therefore, the input to A is drawn from the same set and probability
distribution as the input to A in USS. Since A distinguishes with non-negligible
advantage, it follows that b = b′ with probability greater than or equal to 1

2 + γ
where γ is non-negligible in the security parameter.

Now consider the case that the input is not a DH 3-tuple. It follows from def-
inition of DDHRerand5 that the 5-tuple (θ′j , θj , yj , µj , µ

′
j) is uniformly distributed

in G5
p for j = 0, 1. Therefore, C ′j is uniformly distributed in G2

p×G2
p for j = 0, 1.

Let p1 be the probability that A responds with b′ = 0. Then the probability
that b = b′ is 1

2p1 + 1
2 (1− p1) = 1

2 . It follows that A has negligible advantage to
distinguish in this case. ut

We have therefore proven that Cryptosystem A is “secure” under USS. Let
y0 and y1 be two public keys. Suppose that y0 and y1 have differing least sig-
nificant bits. An adversary can break the anonymity of UE’ by extracting the
least significant bit of β0 and correlating it with the public key with matching
least significant bit. This proves that Cryptosystem A satisfies USS yet has an
encryption algorithm that does not achieve key anonymity. This, in turn, proves
that USS admits cryptosystems wherein URe is key anonymous but UE is not
key anonymous.

USS is devoid of a requirement that the output of UE be key anonymous.
It has a test of anonymity of URe but there is no test of anonymity of UE.
This is the only definition of security spelled out for UCS in [11]. Therefore,
the foundation put forth by Golle et al for universal re-encryption “accepts”
as secure encryption algorithms UE that are not key anonymous as proven by
Cryptosystem A. There may exist other constructions in which the failure of UE
to achieve key anonymity is subtle, yet like Cryptosystem A satisfy USS.

Practically, this means that cryptographers can construct universal cryp-
tosystems that satisfy the USS definition but that have encryption algorithms
that compromise the identity of the receiver without violating USS. This could
potentially place the users of a universal cryptosystem in harms way.

Consequently, defining security for universal re-encryption in a way that
achieves key anonymity for ciphertexts output by UE has been left open. In
addition, the properties of message indistinguishability for encryption and re-
encryption were claimed to hold under DDH but no proof for this was given.

5 Systemic problem caused by the USS definition

An insufficient definition in security modeling may migrate to other construc-
tions. Thus the risk of potentially getting an insecure system due to varying
the underlying cryptographic tools is magnified. We have identified six crypto-
graphic applications that leverage UCS and USS that, merely due to copying the
component of the original work, have gaps in their security definitions. These
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applications advocate the use of UCS to instantiate the applications. UCS is secure
and does provide key anonymity of the encryption function and re-encryption
function. However, the point we are making is that these six applications inherit
USS as part of their security definitions, they rely on UE achieving key anonymity,
but there is nothing in the security definitions that require UE to achieve key
anonymity. From the perspective of having sound security definitions, the defini-
tions of security for these six applications is broken. We emphasize the difference
between a definition of security of a cryptosystem vs. an instantiation that must
be proven to adhere to the definition. Our goal here is to provide a remedy to
these applications that employ UE in a blackbox fashion. We elaborate on these
important applications in details in order to demonstrate cases where anonymity
of users is very crucial and must be modeled correctly.

The definition of security of GJJSMix is missing a crucial key anonymity
requirement. Let U be a universal cryptosystem that has an encryption algorithm
UE that outputs ciphertexts that are not key anonymous. GJJSMix has, in
the first step called “submission of inputs”, users post ciphertexts produced by
UE to a public bulletin board. When U is used in this universal mix network
construction, the anonymity of receivers is compromised. This places users of
this mix (e.g., activists, journalists) in harms way.

We now analyze the mix network protocol that leverages signatures to protect
against unwelcome messages such as spam [16]. Their solution leverages UCS and
relies on USS. In the Admission Protocol, each message that enters the system
is encrypted using the public key of the recipient. The resulting ciphertexts are
received by a server from a pool of servers. This exposes ciphertexts produced
by UE to the first server. This Admission Protocol application therefore assumes
that UE provides key anonymity even though this security requirement is not
captured anywhere.

In GJJSRFID, the data contained in RFID tags is encrypted using a UCS. An
example is given that leverages a key pair owned by a transit agency and a key
pair owned by a department store. The description of this application permits the
initial RFID ciphertext to be the output of UE. When UE is not key anonymous
it follows that the RFID tag can be correlated with the associated public key.
This compromises privacy.

A protocol for RFID privacy that leverages a UCS and that relies on USS is
given in [25]. Their protocol has the RFID tag regularly emit ID information
in the form of a universal ciphertext C produced using UE. When UE does not
achieve key anonymity, this means that receiver anonymity is compromised. This
constitutes a perpetual window of attack.

The use of a UCS to achieve compliance with RFID privacy legislation, ad-
dressing the EU RFID Privacy and Data Protection working document in par-
ticular, is proposed in [24]. The proposal presumes that USS encapsulates the
privacy assurances that are needed. We cannot overstate the importance of a
proper definition of security for RFID applications. The correct frame of mind
is not RFIDs in products in grocery stores. The correct frame of mind is RFID
chips in people, e.g., VeriChip [14] that cites the use of UCS.
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The Klein bottle routing protocol [21] leverages a UCS with a slight change.
They add to a UCS n-out-of-n decryption. We will not reiterate the Klein bottle
routing protocol but will provide enough points to show that the security def-
inition of it is broken since it directly relies on USS. The protocol leverages a
set of routers. Let the routers be labeled Alice, Bob, and Carol, each of whom
has a key pair for the routing. There is a sender Sally and receiver Rick. Sally
announces that she will create and send out Klein bottles. She states that she
will only ever use two possible routes: Sally → Alice → Bob → Rick, or Sally
→ Alice → Carol → Rick. She further announces that she uses the following
algorithm to decide which route to use for a given bottle: flip a fair coin. If the
result is heads, use the route that goes through Bob. If the result is tails, use the
route that goes through Carol. Let y0 denote the public key that is the product
of Alice’s public key and Bob’s public key (mod p). Let y1 denote the public key
that is the product of Alice’s public key and Carol’s public key (mod p). The
second value in the encrypted route list is encrypted under either y0 or y1 using
UE. Consider a distinguishing adversary that obtains the bottle right after it
leaves Sally. When UE does not achieve key anonymity then the adversary has
a non-negligible advantage in determining whether y0 or y1 was used to com-
pute this second value. It follows that the adversary knows with non-negligible
advantage whether the bottle will go to Bob or Carol before it even arrives at
Alice.

A mobile private microblogging protocol MoP-2-MoP [26] that leverages a
UCS and that relies on USS is another important application. The implementa-
tion as given exposes the ciphertexts produced by UE.7 UE needs to achieve
key anonymity for security to hold. When UE does not achieve key anonymity,
receiver anonymity is compromised.

We have shown that these six applications all assume that UE achieves key
anonymity yet nowhere is this cryptographic requirement asserted. We pointed
out the above to demonstrate the harmful knock-on effect that the insufficient
USS security definition has had. These multiple important examples show that
this gap was and continues to be a systemic problem (risk) in the design of new
application protocols since UE is an important building block. We have therefore
further shown that the requirement for UE to achieve key anonymity is indeed
necessary.

In hindsight, we believe that UCS and USS provide great insight into laying
a proper foundation for universal re-encryption. In particular, we commend the
approach of having the adversary fully specify the ciphertexts (messages and
nonces) that are used in forming the re-encryption challenge ciphertexts. How-
ever, the USS definition is certainly not sufficient!

6 Semantically Secure Anonymity

We now present the first definition of security for a universal cryptosystem that
requires that the encryption algorithm provide key anonymity. We made slight

7 Per Section 2.1 of [26].
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adjustments to the input/output specifications of UCS. For example, the original
UCS key generator does not take a security parameter as input, ours does. We
define the algorithms in the cryptosystem to take auxiliary information such as
group parameters as input. We remark that the adjustments to the input/output
specifications of the algorithms are superficial. We made them to support the
full proofs of security that we provide.

Definition 1. A universal cryptosystem Π is a 4-tuple of probabilistic polyno-
mial time algorithms (UKG,UE,URe, UD) together with auxiliary information
λ (e.g., group parameters) such that:

1. The key generation algorithm UKG(n, λ) takes as input a security parameter
n (in unary) and λ and outputs (pk, sk) where pk is a public key and sk is
the corresponding private key.

2. The encryption algorithm UEpk(m, k, λ) is deterministic and it takes as in-
put a public key pk, a message m from the underlying plaintext space, an
encryption nonce k, and λ. It outputs a ciphertext c. The operation is ex-
pressed as c← UEpk(m, k, λ).

3. The re-encryption algorithm URe(c, k, λ) is deterministic and it takes as
input a ciphertext c, a re-encryption nonce k, and λ. It outputs a ciphertext
c′. The operation is expressed as c′ ← URe(c, k, λ).

4. The decryption algorithm UDsk(c, λ) takes as input a private key sk, a ci-
phertext c, and λ. It outputs a message m and a Boolean s. s is true if and
only if decryption succeeds. The operation is expressed as (m, s)← UDsk(c).

It is required that, for all m, the ordered execution of c0 ← UEpk(m, k0, λ),
ci+1 ← URe(ci, ki, λ) for i = 0, 1, 2, ..., t−1, (m′, s)← UDsk(ct, λ) with (m′, s) =
(m,true) except with possibly negligible probability over (pk, sk) that is output by
UKG(n, λ) and the randomness used by the nonces for UE and URe. Here t is
bounded from above by uα for some fixed α > 0 and sufficiently large u.

Definition 2 for message indistinguishability has been adapted from [9, 19].

Definition 2. The experiment for eavesdropping indistinguishability for the en-
cryption operation is PubKEnceavA,Π(n, λ):

1. UKG(n, λ) is executed to get (pk, sk).
2. Stateful adversary A(n, λ, pk) outputs a pair of messages (m0,m1) where m0

and m1 have the same length. These messages must be in the plaintext space
associated with pk.

3. A random bit b ∈U{0, 1} and random nonce k are chosen. Then ciphertext
c ← UEpk(mb, k, λ) is computed and provided to A. This is the challenge
ciphertext.

4. A(c) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 3. The experiment for eavesdropping indistinguishability for the re-
encryption operation is PubKReEnceavA,Π(n, λ):

12



1. UKG(n, λ) is executed to get (pk, sk).
2. Stateful adversary A(n, λ, pk) outputs ((m0, k0), (m1, k1)) where (mi, ki) is

a message/nonce pair for i = 0, 1. The messages must be of the same length.
These messages must be in the plaintext space associated with pk.

3. A random bit b ∈U{0, 1} and random nonce k are chosen. Then ciphertext
c ← UEpk(mb, kb, λ) is computed. Then c′ ← URe(c, k, λ) is computed and
provided to A. This is the challenge ciphertext.

4. A(c′) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 4 is key anonymity [2]. Definition 5 is key anonymity adapted for
re-encryption.

Definition 4. The experiment for key anonymity of the encryption operation is
denoted by AnonEnceavA,Π(n, λ) and is as follows:

1. UKG(n, λ) is executed twice to get (pk0, sk0) and (pk1, sk1).
2. Stateful adversary A(n, λ, pk0, pk1) outputs a message m. This message must

be in the plaintext space associated with pk0 and pk1.
3. A random bit b ∈U{0, 1} and random nonce k are chosen. Then ciphertext

c ← UEpkb(m, k, λ) is computed and provided to A. This is the challenge
ciphertext.

4. A(c) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 5. The experiment for key anonymity of the re-encryption operation
is denoted by AnonReEnceavA,Π(n, λ) and is as follows:

1. UKG(n, λ) is executed twice to get (pk0, sk0) and (pk1, sk1).
2. Stateful adversary A(n, λ, pk0, pk1) outputs (m, k) where m is a message and

k is an encryption nonce k. The message m must be in the plaintext space
associated with pk0 and pk1.

3. A random bit b ∈U{0, 1} and random nonce k′ are chosen. Then c ←
UEpkb(m, k, λ) is computed. Then c′ ← URe(c, k′, λ) is computed and pro-
vided to A. This is the challenge ciphertext.

4. A(c′) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 6. A universal cryptosystem Π is secure in the sense of seman-
tically secure anonymity for security parameter n (in unary) and auxiliary
information λ if it satisfies the following:

1. Pr[PubKEnceavA,Π(n, λ) = 1] ≤ 1
2 + negl(n)

2. Pr[PubKReEnceavA,Π(n, λ) = 1] ≤ 1
2 + negl(n)

3. Pr[AnonEnceavA,Π(n, λ) = 1] ≤ 1
2 + negl(n)

4. Pr[AnonReEnceavA,Π(n, λ) = 1] ≤ 1
2 + negl(n)
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We recap and say that correctness of decryption is obviously a must and we
have demonstrated that message security must be required for the encryption
and the re-encryption operations in order to maintain the security of the mes-
sage throughout the system. Further, as the examples above demonstrated, key
anonymity is required for these two operations as well. Intuitively, any viola-
tion of message security will render the encryption useless. Also, any tracing via
the re-encryption operation due to message or key linkability will violate strict
anonymity. Similarly, any tracing via the encryption operation due to message
or key linkability will violate strict anonymity.

7 Universal Re-Encryption Cryptosystem

We adjusted the input/output specifications of UCS (see Section 6) to facilitate
our proofs. But, we preserved the original cryptosystem entirely. For clarity, we
now present the cryptosystem in full.

Let n be a security parameter (in unary) and let p = (p, q) be a group family
where p is prime and p− 1 is divisible by a large prime q. The group Gp is the
subgroup of Z∗p having order q. For key anonymity, the single group ((p, q), g)
is generated once using IG(n) and is then used by all users. The auxiliary in-
formation λ is defined to be ((p, q), g). We define the following to be universal
cryptosystem Ψ .

Key Generation: Key generation is denoted by (y, x) ← UKG(n, λ). Here y ←
gx mod p where x ∈U [1, q]. The public key is pk = y and the private key is
sk = x.

Encryption: Encryption is denoted by UEpk(m, (k0, k1), λ). It encrypts message
m ∈ Gp using y. (k0, k1) ∈U [1, q] × [1, q] is a random encryption nonce. The
operation outputs the ciphertext c← ((α0, β0), (α1, β1))← ((myk0 mod p),(gk0

mod p),((yk1 mod p), (gk1 mod p)).

Decryption: The following decryption operation is denoted by UDsk(c, λ). Here
c is the ciphertext ((α0, β0), (α1, β1)). Compute m1 ← α1/β

x
1 mod p. If m1 = 1

then set s = true else set s = false. If s = true set m0 = α0/β
x
0 mod p else set m0

to be the empty string. s = true indicates successful decryption. Return (m0, s).

Universal Re-encryption: The universal re-encryption operation is denoted
by URe(((α0, β0), (α1, β1)), (`0, `1), λ). The pair c = ((α0, β0), (α1, β1)) is a uni-
versal ciphertext and (k′0, k

′
1) ∈U [1, q]× [1, q] is a re-encryption nonce. Compute

(α′0, β
′
0)← (α0α

k′0
1 mod p, β0β

k′0
1 mod p) and compute (α′1, β

′
1)← (α

k′1
1 mod p, β

k′1
1

mod p). Output the ciphertext c′ ← ((α′0, β
′
0), (α′1, β

′
1)).

8 The New Construction: Expanded DDH Self-Reduction

We now generalize the DDH random self-reduction to output five values instead
of three. This allows us to transform a DDH problem instance into either two
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DH 3-tuples with a common “public key” or a random 5-tuple, depending on
the input problem instance. We utilize this property in our proofs of security
in Section 9 (granted, this new reduction is given for pragmatic and proof sim-
plicity reasons, and not as an essential issue as are the modeling issues and
their correction presented above). We define algorithm DDHRerand5 as follows.
DDHRerand5((p, q), g, x, y, z) randomizes a DDH problem instance by choosing
the values u1, u2, v, v

′, u′1 ∈U [1, q] and computing,

(x′′, x′, y′, z′, z′′)← (xv
′
gu

′
1 , xvgu1 , ygu2 , zvyu1xvu2gu1u2 , zv

′
yu

′
1xv

′u2gu
′
1u2)

Case 1. Suppose (x, y, z) is a valid Diffie-Hellman (DH) 3-tuple. Then x = ga,
y = gb, z = gab for some a, b. It follows that (x′, y′, z′) is also a valid DH 3-tuple.
It is straightforward to show that (x′′, y′, z′′) is a valid DH 3-tuple as well.

Case 2. Suppose (x, y, z) is not a valid DH 3-tuple. Then x = ga, y = gb,
z = gab+c for some c 6= 0. In this case, x′ = ga

′
, y′ = gb

′
, z′ = ga

′b′gcv.
Since c 6= 0 it follows that gc is a generator of Gp. Also, x′′ = ga

′′
, y′ = gb

′
,

z′′ = ga
′′b′gcv

′
.

So, when (x, y, z) is a valid DH 3-tuple then (x′, y′, z′) and (x′′, y′, z′′) are
random DH 3-tuples with y′ in common and when (x, y, z) is not a valid DH
3-tuple then the output is a random 5-tuple.

9 Security of Universal Cryptosystem Ψ

We now give the theorems for the proofs of security for our construction. These
are the first proofs of security for universal re-encryption that constitute direct
reductions with respect to DDH and prove all the properties that are necessary
(in the sense of the fact that any missing property implies potential breaks).

Theorem 2. If DDH is hard then Pr[AnonEnceavA,Ψ (n, λ) = 1] ≤ 1
2 + negl(n).

Proof. Suppose there exists a probabilistic polynomial time adversary A for
AnonEnceavA,Ψ , an α > 0, and a sufficiently large κ, such that A succeeds with

probability greater than or equal to 1
2 + 1

κα . Consider algorithm AlgR3 that takes
as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR3((p, q), g, a0, b0, c0):
1. set (θ′j , θj , yj , µj , µ

′
j)← DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1

2. m← A(n, λ, y0, y1)
3. generate u ∈U {0, 1}
4. set c← ((α0, β0), (α1, β1))← ((mµu, θu), (µ′u, θ

′
u))

5. u′ ← A(c)
6. if u = u′ then output “true” else output “false”
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Consider the case that the input is a DH 3-tuple. It follows from the definition
of DDHRerand5 in Section 8 that c is an encryption of m in accordance with UE

using yu as the public key. Therefore, the input to A is drawn from the same
set and probability distribution as the input to A in Definition 4. It follows
that u = u′ with probability greater than or equal to 1

2 + 1
κα . So, for random

exponents a and b in [1, q], Pr[AlgR3((p, q), g, ga, gb, gab) = “true”] ≥ 1
2 + 1

κα .
Define ψ = Pr[AlgR3((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from
the definition of DDHRerand5 that the 5-tuple (θ′u, θu, yu, µu, µ

′
u) is uniformly

distributed in G5
p. Therefore, c is uniformly distributed in G2

p × G2
p. Let p1 be

the probability that A responds with u′ = 0. Then the probability that u = u′ is
1
2p1 + 1

2 (1− p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the

probability Pr[AlgR3((p, q), g, ga, gb, gc) = “true”] = q2

q3ψ+(1− q2

q3 ) 1
2 = 1

2 + 2ψ−1
2q

which is overwhelmingly close to 1
2 . ut

Theorem 3. If DDH is hard then Pr[AnonReEnceavA,Ψ (n, λ) = 1] ≤ 1
2 + negl(n).

Proof. Suppose there exists a probabilistic polynomial time adversary A for
AnonReEnceavA,Ψ , an α > 0, and a sufficiently large κ such that A succeeds with

probability greater than or equal to 1
2 + 1

κα . Consider algorithm AlgR4 that takes
as input a Decision Diffie-Hellman problem instance ((p, q), g, a0, b0, c0).

AlgR4((p, q), g, a0, b0, c0):
1. (θ′j , θj , yj , µj , µ

′
j)← DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1

2. (m, (k0, k1))← A(n, λ, y0, y1)
3. u ∈U {0, 1}
4. ((α0, β0), (α1, β1))← UEyu(m, (k0, k1), λ)
5. c′ ← ((α′0, β

′
0), (α′1, β

′
1))← ((α0µu, β0θu), (µ′u, θ

′
u))

6. u′ ← A(c′)
7. if u = u′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly ((α0, β0), (α1, β1)) is
the ciphertext under public key yu as specified byA. It follows from the definition
of DDHRerand5 in Section 8 that c′ is a re-encryption of ((α0, β0), (α1, β1)) in
accordance with URe. Therefore, the input to A is drawn from the same set and
probability distribution as the input to A in Definition 5. It follows that u = u′

with probability greater than or equal to 1
2 + 1

κα . So, for random exponents a
and b in [1, q], Pr[AlgR4((p, q), g, ga, gb, gab) = “true”] ≥ 1

2 + 1
κα . Define the value

ψ to be Pr[AlgR4((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple. It follows from

definition of DDHRerand5 that the 5-tuple (θ′u, θu, yu, µu, µ
′
u) is uniformly dis-

tributed in G5
p. Therefore, c′ is uniformly distributed in G2

p ×G2
p. Let p1 be the

probability that A responds with u′ = 0. Then the probability that u = u′ is
1
2p1 + 1

2 (1− p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the

probability Pr[AlgR4((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . ut
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Theorem 4. If DDH is hard then Pr[PubKEnceavA,Ψ (n, λ) = 1] ≤ 1
2 + negl(n).

Proof. Suppose there exists a probabilistic polynomial time adversary A for
PubKEnceavA,Ψ , an α > 0 and a sufficiently large κ, such that A succeeds with

probability greater than or equal to 1
2 + 1

κα . Consider algorithm AlgR1 that takes
as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR1((p, q), g, a0, b0, c0):
1. set (θ′, θ, y, µ, µ′)← DDHRerand5((p, q), g, a0, b0, c0)
2. (m0,m1)← A(n, λ, y)
3. b ∈U {0, 1}
4. c← ((α0, β0), (α1, β1))← ((mbµ, θ), (µ

′, θ′))
5. b′ ← A(c)
6. if b = b′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. It follows from the definition
of DDHRerand5 in Section 8 that c is an encryption of mb according to UE using
y as the public key. Therefore, the input to A is drawn from the same set and
probability distribution as the input to A in Definition 2. It follows that b = b′

with probability greater than or equal to 1
2 + 1

κα . So, for random exponents a
and b in [1, q], Pr[AlgR1((p, q), g, ga, gb, gab) = “true”] ≥ 1

2 + 1
κα . Define ψ =

Pr[AlgR1((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple. It follows from

the definition of DDHRerand5 that (θ′, θ, y, µ, µ′) is uniformly distributed in G5
p.

Therefore, c is uniformly distributed in G2
p × G2

p. Let p1 be the probability

that A responds with b′ = 0. Then the probability that b = b′ is 1
2p1 + 1

2 (1 −
p1) = 1

2 . So, for randomly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR1((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . ut

Theorem 5. If DDH is hard then Pr[PubKReEnceavA,Ψ (n, λ) = 1] ≤ 1
2 +negl(n).

Proof. Suppose there exists a probabilistic polynomial time adversary A for
PubKReEnceavA,Ψ , an α > 0, and a sufficiently large κ, such that A succeeds with

probability greater than or equal to 1
2 + 1

κα . Consider algorithm AlgR2 that takes
as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR2((p, q), g, a0, b0, c0):
1. set (θ′, θ, y, µ, µ′)← DDHRerand5((p, q), g, a0, b0, c0)
2. ((m0, r0), (m1, r1))← A(n, λ, y)
3. b ∈U {0, 1}
4. ((α0, β0), (α1, β1))← UEy(mb, rb, λ)
5. c′ ← ((α0µ, β0θ), (µ

′, θ′))
6. b′ ← A(c′)
7. if b = b′ then output “true” else output “false”
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Consider the case that the input is a DH 3-tuple. Clearly ((α0, β0), (α1, β1))
is the ciphertext of mb as specified by adversary A. It follows from the defini-
tion of DDHRerand5 in Section 8 that c′ is a re-encryption of ((α0, β0), (α1, β1))
according to URe. Therefore, the input to A is drawn from the same set and
probability distribution as the input to A in Definition 3. It follows that b = b′

with probability greater than or equal to 1
2 + 1

κα . So, for random exponents a
and b in [1, q], Pr[AlgR2((p, q), g, ga, gb, gab) = “true”] ≥ 1

2 + 1
κα . Define the value

ψ to be Pr[AlgR2((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple. It follows from the

definition of DDHRerand5 that (θ′, θ, y, µ, µ′) is uniformly distributed in the set
G5

p. Therefore, c′ is uniformly distributed in G2
p ×G2

p. Let p1 be the probability

that A responds with b′ = 0. Then the probability that b = b′ is 1
2p1 + 1

2 (1 −
p1) = 1

2 . So, for randomly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR2((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . ut

Theorems 2, 3, 4, and 5 show that Theorem 6 holds.

Theorem 6. If DDH is hard then Ψ is secure in the sense of semantically secure
anonymity.

10 Batch Mixing

GJJSMix uses a universal cryptosystem to form a forward anonymous mix cen-
tered around the use of a bulletin board. The number of ciphertexts on the
board can vary over time. Servers download the ciphertexts from the board, re-
randomize them, and then upload them in permuted order. We instead chose to
analyze a batch mix that mixes a fixed number of ciphertexts. We consider this
case since: (1) it is concrete in the sense that a fixed size vector of ciphertexts
needs to be anonymized and this gives a precise level of anonymity (fixed-size
random permutation), and (2) we achieve low-latency since once the batch forms
at the first mix the ciphertexts are pushed through the cascade of mixes rapidly.

We point out that the security arguments of GJJSMix are flawed:

1. Not tied to DDH: None of the proofs in the paper take a DDH problem
instance as input. It follows that they did not prove that security holds under
DDH.

2. Not randomized reductions: None of the input problem instances in
the paper are randomized. It is well-known that randomized reductions are
stronger than non-randomized ones.

Consequently the security of their mixes were not tied to the DDH problem
as claimed. This left as open the problem of proving the security of universal
re-encryption batch mixing. We solve this problem in this section. In particular,
we define a re-encryption batch mix protocol FBMIX together with a definition
of security for it that assures anonymity of receivers. We prove that it is secure
using direct reductions with respect to DDH.
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Informally, the problem we consider is to establish an externally anonymous
communication channel. A set of w senders s1, s2, ..., sw want to send messages
m1,m2, ...,mw respectively, to a target set of w receivers r1, r2, ..., rw. Consider
the case that si sends a message to sj where i, j ∈ {1, 2, ..., w}. We want an
eavesdropper to have negligible advantage in correlating the initial ciphertext
that si sends out with the public key of rj . In other words, the eavesdropper has
negligible advantage over guessing the receiver.

The solution must be forward-anonymous: an adversary that compromises a
mix server cannot break the anonymity of previously transmitted ciphertexts.
The solution must be robust in that anonymity holds as long as there is at least
one mix server not compromised by the adversary.

Note that a receiver of a message can determine who the sender of the message
is. The receiver is able to decipher the ciphertext right when the sender transmits
it to the first mix. Anonymity is against external adversaries.

10.1 Definition of security

Definition 7. A forward-anonymous batch mix protocol, denoted by FBMIX,
is a 4-tuple of algorithms FBGEN, FBENCR, FBMIXER, and FBDECR where FBGEN

generates a key pair for each receiver, where FBENCR encrypts the messages of
the senders, where the FBMIXER servers are connected in series and they mix
received ciphertexts and forward them on, that satisfies the following properties
for all probabilistic polynomial-time passive adversaries A:

1. FBENCR Confidentiality: The ciphertexts output by algorithm FBENCR satisfy
the message indistinguishability property with respect to A (Definition 10).

2. FBMIXER Confidentiality: The ciphertexts output by FBMIXER satisfy message
indistinguishability with respect to A (Definition 11)

3. FBENCR Anonymity: The ciphertexts output by FBENCR satisfy key anonymity
with respect to A (Definition 8).

4. FBMIXER Anonymity: The ciphertexts output by algorithm FBMIXER satisfy
anonymity with respect to A (Definition 9).

5. Forward-Anonymity: The FBMIXER servers have no secret key material.

6. Robustness: Anonymity of FBMIX holds provided at least one FBMIXER server
is not compromised by A.

7. Completeness: ∀ i ∈ {1, 2, ..., w}, when sender si sends mi to rj where j ∈
{1, 2, ..., w} then rj receives mi.

8. Low-Latency: Once w ciphertexts arrive at the first FBMIXER server, the batch
moves through the mix at a speed limited only by the time to re-encrypt,
permute, and forward.

10.2 Forward-anonymous batch mix construction

We instantiate the mix using security parameter n as follows.
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FBGEN(n, ((p, q), g)):
1. (yi, xi)← UKG(n, ((p, q), g)) for i = 1, 2, ..., w
2. output ((y1, x1), (y2, x2), ..., (yw, xw))

Let σi be the index of the receiver of the message of sender i. For example,
if s1 sends to s3 then σ1 = 3.

FBENCR((m1, (k1,0, k1,1), σ1), ..., (mw, (kw,0, kw,1), σw), y1, y2, ..., yw, ((p, q), g)):
1. ci ← UEyσi (mi, (ki,0, ki,1), ((p, q), g)) for i = 1, 2, ..., w

2. output (c1, c2, ..., cw)

Define set S to be {1, 2, ..., w}. Let π be a permutation from S onto S. Define
fp(π, c1, c2, ..., cw) to be a function that outputs (cπ(1), cπ(2), ..., cπ(w)). Let the
algorithm fpinv(π, cπ(1), cπ(2), ..., cπ(w)) be a function that uses π−1 to output
the tuple (c1, c2, ..., cw).

FBMIXER(π, (c1,(`1,0, `1,1)), (c2, (`2,0, `2,1)), ..., (cw, (`w,0, `w,1)), ((p, q), g)):
1. c′i ← URe(ci, (`i,0, `i,1), ((p, q), g)) for i = 1, 2, ..., w
2. output fp(π, c′1, c

′
2, ..., c

′
w)

The break statement terminates the execution of the nearest enclosing for

loop in which break appears.

FBDECR(c1, c2, ..., cw, x1, x2, ..., xw, ((p, q), g)):
1. let L be the empty list
2. for i in 1 to w:
3. for j in 1 to w:
4. (m, s)← UDxj (ci, ((p, q), g))
5. if s = true
6. append (m, j) to L
7. break

8. output L

There are four stages in the mix protocol. The mix protocol leverages N mix
servers labeled 1, 2, ..., N and they are connected in series.

Stage 1: rj generates a key pair (yj , xj) using UKG and publishes yj for j =
1, 2, ..., w. This stage is effectively FBGEN.

Stage 2: Sender si formulates a message mi to send to receiver rj . si generates
(ki,0, ki,1) ∈U [1, q]× [1, q] and computes ci ← UEyσi (mi, (ki,0, ki,1), ((p, q), g)). si
sends ci to Mix 1 for i = 1, 2, ..., w. This stage is effectively FBENCR.

Stage 3: Mix k where 1 ≤ k ≤ N operates as follows. It waits until a full batch
of w ciphertexts c1, c2, ..., cw arrive. It then generates (`i,0, `i,1) ∈U [1, q]× [1, q]
for i = 1, 2, ..., w. It generates a permutation π from S onto S uniformly at
random. It then computes,

(c′π(1), c
′
π(2), ..., c

′
π(w))← FBMIXER(π,

(c1, (`1,0, `1,1)), (c2, (`2,0, `2,1)), ..., (cw, (`w,0, `w,1)), ((p, q), g))
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If k < N then (c′π(1), c
′
π(2), ..., c

′
π(w)) is sent to mix k + 1. If k = N then

(c′π(1), c
′
π(2), ..., c

′
π(w)) is posted to a public bulletin board. Each of these mixes

is effectively FBMIXER.

Stage 4: rj for j = 1, 2, ..., w downloads all w ciphertexts from the bulletin
board. rj attempts decryption of every single one of the ciphertexts using xj .
In so doing, rj receives zero or more messages. If there is no i for which σi = j
then rj receives no messages. This stage is effectively FBDECR.

We can improve the performance of Stage 4 in the case that every receiver
gets only one message from a sender. In this scenario, a receiver can pull down the
ciphertexts from the bulletin board one by one and then stop when a ciphertext
is received that properly decrypts. The batch mix provides external anonymity
thereby breaking the link between senders and receivers. This use case would fail
completely were the senders to post their key anonymous ciphertexts directly to
the bulletin board. To see this, note that a passive eavesdropper would know the
sender of each ciphertext on the bulletin board. The eavesdropper would then
know who the receiver is of a given ciphertext based on when the receiver stops
pulling down ciphertexts.

10.3 Security of FBMIX

Where possible we allow the adversary to choose the receivers of messages in
FBMIX. For example, the adversary can have Alice and Bob send messages to
the same receiver, Carol. Consequently, many senders can send messages to the
same receiver. As a result we need to generalize DDHRerand5 from Section 8. It
generalizes to produce more DH 3-tuples with a common “public key” in the
same way that the DDH random self-reduction generalized to form DDHRerand5.

To make the pattern clear we define DDHRerand7 as follows. The algorithm
DDHRerand7((p, q), g, x, y, z) randomizes a DDH problem instance by choosing
the exponents u1, u2, v, v

′, v′′, u′1, u
′′
1 ∈U [1, q] and computing,

(x′′′, x′′, x′, y′, z′, z′′, z′′′)← (xv
′′
gu

′′
1 , xv

′
gu

′
1 , xvgu1 , ygu2 ,

zvyu1xvu2gu1u2 , zv
′
yu

′
1xv

′u2gu
′
1u2 , zv

′′
yu

′′
1 xv

′′u2gu
′′
1 u2)

and so on for ever more “v primes” and “u1 primes”.
For ease of use we parameterize this DDH generalization as follows. Let

DDHRerandN((p, q), g, x, y, z, t) be a DDH self-reduction algorithm that outputs
a set T containing t 3-tuples. Define, the set T = {(A1, B1, R1),(A2, B2, R2),
...,(At, Bt, Rt)}.

The algorithm has these properties: (1) when the input (x, y, z) is a DH 3-
tuple then all t output 3-tuples are random DH 3-tuples but with the middle
term in common, and (2) when the input (x, y, z) is not a DH 3-tuple then
A1,A2,...,At,B1,R1,R2,...,Rt ∈U Gp and B1 = B2 = ... = Bt.

DDHRerandN((p, q), g, x, y, z, 2) is logically equivalent to DDHRerand5. To see
this, note that the algorithm DDHRerandN((p, q), g, x, y, z, 2) outputs the set of
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tuples T = {(A1, B1, R1), (A2, B2, R2)} which, rearranging and dropping the B2

yields the 5-tuple (A1, A2, B1, R2, R1). Observe that B1 = B2.

Let GetMiddle(T ) to be a function that on input a set T that is output by
DDHRerandN, selects a tuple in T and returns the middle value in it. All middle
values are the same so it doesn’t matter which tuple is selected. We now address
key anonymity for FBENCR.

Definition 8. If ∀ probabilistic polynomial time adversaries A, ∀ α > 0, ∀ i ∈
{1, 2, ..., w}, and ∀ sufficiently large n, after the following,

1. generate ((p, q), g)← IG(n)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN(n, ((p, q), g))
3. (m1,m2, ...,mw)← A(((p, q), g), y1, y2, ..., yw, “specify messages”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then output “false” and halt
5. (kj,0, kj,1) ∈U [1, q]× [1, q] for j = 1, 2, ..., w
6. σj ∈U {1, 2, ..., w} for j = 1, 2, ..., w
7. (c1, c2, ..., cw)← FBENCR((m1, (k1,0, k1,1), σ1), ...,

(mw, (kw,0, kw,1), σw), y1, y2, ..., yw, ((p, q), g))
8. (σ′1, σ

′
2, ..., σ

′
w)← A(c1, c2, ..., cw,“guess”)

9. if σi = σ′i then output “true” else output “false”

the output of the experiment is “true” with probability less than 1
w + 1

nα then
FBENCR is secure in the sense of key anonymity.

Theorem 7. If DDH is hard then algorithm FBENCR is secure in the sense of
key anonymity.

Proof. Suppose there exists a probabilistic polynomial time adversary A, an
α > 0, an i ∈ {1, 2, ..., w}, and a sufficiently large n, such that A succeeds with
probability greater than or equal to 1

w + 1
nα . Consider algorithm AlgR9 that

takes as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR9((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w) for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. (m1,m2, ...,mw)← A(((p, q), g), y1, y2, ..., yw, “specify messages”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then output “false” and halt
5. σj ∈U {1, 2, ..., w} for j = 1, 2, ..., w
6. for j in 1..w do:
7. extract a tuple (A0, B0, R0) without replacement from Tσj
8. extract a tuple (A1, B1, R1) without replacement from Tσj
9. cj ← ((mjR0, A0), (R1, A1))
10. (σ′1, σ

′
2, ..., σ

′
w)← A(c1, c2, ..., cw,“guess”)

11. if σi = σ′i then output “true” else output “false”’
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Consider the case that the input is a DH 3-tuple. It follows from the definition
of DDHRerandN that cj is a proper encryption of mj using public key yσj for
j = 1, 2, ..., w under FBENCR. Therefore, the input to A is drawn from the same
set and probability distribution as the input to A in Definition 8. It follows
that σi = σ′i with probability greater than or equal to 1

w + 1
nα . So, for random

exponents a and b in [1, q], Pr[AlgR9((p, q), g, ga, gb, gab) = “true”] ≥ 1
w + 1

nα .
Define ψ = Pr[AlgR9((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from
the definition of DDHRerandN that cj is uniformly distributed in G2

p ×G2
p and yj

is uniformly distributed in Gp for j = 1, 2, ..., w. Let pj be the probability that
A responds with σ′i = j for j = 1, 2, ..., w. Then the probability that σi = σ′i
is 1

wp1 + 1
wp2 + ... + 1

wpw = 1
w . So, for randomly chosen exponents a, b, and

c in [1, q], Pr[AlgR9((p, q), g, ga, gb, gc) = “true”] = q2

q3ψ + (1 − q2

q3 ) 1
w which is

overwhelmingly close to 1
w . ut

We now address key anonymity for FBMIXER.

Definition 9. If ∀ probabilistic polynomial time adversaries A, ∀ α > 0, ∀ i ∈
{1, 2, ..., w}, and ∀ sufficiently large n, after the following,

1. generate ((p, q), g)← IG(n)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN(n, ((p, q), g))
3. ((m1, r1, σ1), (m2, r2, σ2), ..., (mw, rw, σw))← A(((p, q), g),

y1, y2, ..., yw,“specify ciphertexts and receivers”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that rj /∈ [1, q]× [1, q] then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ S then output “false” and halt
7. (c1, c2, ..., cw)← FBENCR((m1, r1, σ1), ..., (mw, rw, σw), y1, y2, ..., yw, ((p, q), g))
8. µj ∈U [1, q]× [1, q] for j = 1, 2, ..., w
9. select a permutation π from S onto S uniformly at random
10. (c′π(1), c

′
π(2), ..., c

′
π(w))← FBMIXER(π, (c1, µ1), (c2, µ2), ..., (cw, µw), ((p, q), g))

11. π′ ← A(c′π(1), c
′
π(2), ..., c

′
π(w),“guess”)

12. if π′(i) = π(i) then output “true” else output “false”

the output of the experiment is “true” with probability less than 1
w + 1

nα then
FBMIXER is secure in the sense of anonymity.

Theorem 8. If DDH is hard then FBMIXER is secure in the sense of anonymity.

Proof. Suppose there exists a probabilistic polynomial time adversary A, an
α > 0, an i ∈ {1, 2, ..., w}, and a sufficiently large n, such that A succeeds with
probability greater than or equal to 1

w + 1
nα . Consider algorithm AlgR10 that

takes as input a DDH problem instance ((p, q), g, a0, b0, c0).
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AlgR10((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w) for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. ((m1, r1, σ1), (m2, r2, σ2), ..., (mw, rw, σw))← A(((p, q), g), y1, y2, ..., yw,

“specify ciphertexts and receivers”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that rj /∈ [1, q]× [1, q] then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ S then output “false” and halt
7. (c1, c2, ..., cw)← FBENCR((m1, r1, σ1), ..., (mw, rw, σw), y1, y2, ..., yw, ((p, q), g))
8. for j in 1..w do:
9. extract a tuple (A0, B0, R0) without replacement from Tσj
10. extract a tuple (A1, B1, R1) without replacement from Tσj
11. ((α0, β0), (α1, β1))← cj
12. c′j ← ((α0R0, β0A0), (α1R1, β1A1))
13. select a permutation π from S onto S uniformly at random
14. (c′π(1), c

′
π(2), ..., c

′
π(w))← fp(π, c′1, c

′
2, ..., c

′
w)

15. π′ ← A(c′π(1), c
′
π(2), ..., c

′
π(w),“guess”)

16. if π′(i) = π(i) then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly the ciphertexts
c1, c2, ..., cw are as specified by A. It follows from the definition of DDHRerandN
that c′j is a proper re-encryption of cj under FBMIXER for j = 1, 2, ..., w. There-
fore, the input to A is drawn from the same set and probability distribution
as the input to A in Definition 9. It follows that π′(i) = π(i) with probabil-
ity greater than or equal to 1

w + 1
nα . So, for random exponents a and b in

[1, q], Pr[AlgR10((p, q), g, ga, gb, gab) = “true”] ≥ 1
w + 1

nα . Define the value ψ =
Pr[AlgR10((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from the
definition of DDHRerandN that yj is uniformly distributed in Gp for j = 1, 2, ..., w
and that c′j is uniformly distributed in G2

p × G2
p for j = 1, 2, ..., w. Let pj be

the probability that A responds with π′(i) = j for j = 1, 2, ..., w. Then the
probability that π′(i) = π(i) is 1

wp1 + 1
wp2 + ... + 1

wpw = 1
w . So, for randomly

chosen exponents a, b, and c in [1, q], Pr[AlgR10((p, q), g, ga, gb, gc) = “true”]

= q2

q3ψ + (1− q2

q3 ) 1
w which is overwhelmingly close to 1

w . ut

We now address message indistinguishability.

Definition 10. If ∀ probabilistic polynomial time adversaries A, ∀ α > 0, ∀ i ∈
{1, 2, ..., w}, and ∀ sufficiently large n, after the following,

1. generate ((p, q), g)← IG(n)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN(n, ((p, q), g))
3. ((m1,0,m1,1, σ1), (m2,0,m2,1, σ2), ..., (mw,0,mw,1, σw))

← A(((p, q), g), y1, y2, ..., yw, “specify messages and receivers”)
4. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or mj,1 /∈ Gp)

then output “false” and halt
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5. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then output “false” and halt
7. (kj,0, kj,1) ∈U [1, q]× [1, q] for j = 1, 2, ..., w
8. bj ∈U {0, 1} for j = 1, 2, ..., w
9. (c1, c2, ..., cw)← FBENCR((m1,b1 , (k1,0, k1,1), σ1), ...,

(mw,bw , (kw,0, kw,1), σw), y1, y2, ..., yw, ((p, q), g))
10. (b′1, b

′
2, ..., b

′
w)← A(c1, c2, ..., cw,“guess”)

11. if bi = b′i then output “true” else output “false”

the output of the experiment is “true” with probability less than 1
2 + 1

nα then
FBENCR is secure in the sense of message indistinguishability.

Theorem 9. If DDH is hard then FBENCR is secure in the sense of message
indistinguishability.

Proof. Suppose there exists a probabilistic polynomial time adversary A, an
α > 0, an i ∈ {1, 2, ..., w}, and a sufficiently large n, such that A succeeds with
probability greater than or equal to 1

2 + 1
nα . Consider algorithm AlgR7 that takes

as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR7((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w) for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. ((m1,0,m1,1, σ1), (m2,0,m2,1, σ2), ..., (mw,0,mw,1, σw))

← A(((p, q), g), y1, y2, ..., yw, “specify messages and receivers”)
4. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or

mj,1 /∈ Gp) then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then output “false” and halt
7. bj ∈U {0, 1} for j = 1, 2, ..., w
8. for j in 1..w do:
9. extract a tuple (A0, B0, R0) without replacement from Tσj
10. extract a tuple (A1, B1, R1) without replacement from Tσj
11. cj ← ((mj,bjR0, A0), (R1, A1))
12. (b′1, b

′
2, ..., b

′
w)← A(c1, c2, ..., cw,“guess”)

13. if bi = b′i then output “true” else output “false”’

Consider the case that the input is a DH 3-tuple. It follows from the definition
of DDHRerandN that cj is a proper encryption of mj,bj using public key yσj for
j = 1, 2, ..., w under FBENCR. Therefore, the input to A is drawn from the same
set and probability distribution as the input to A in Definition 10. It follows
that bi = b′i with probability greater than or equal to 1

2 + 1
nα . So, for random

exponents a and b in [1, q], Pr[AlgR7((p, q), g, ga, gb, gab) = “true”] ≥ 1
2 + 1

nα .
Define ψ = Pr[AlgR7((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from
the definition of DDHRerandN that cj is uniformly distributed in G2

p × G2
p and
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yj is uniformly distributed in Gp for j = 1, 2, ..., w. Let p1 be the probability
that A responds with b′i = 0. Then the probability that bi = b′i is 1

2p1 + 1
2 (1 −

p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR7((p, q), g, ga, gb, gc) = “true”] = q2

q3ψ+(1− q2

q3 ) 1
2 which is overwhelmingly

close to 1
2 . ut

Definition 11. If ∀ probabilistic polynomial time adversaries A, ∀ α > 0, ∀ i ∈
{1, 2, ..., w}, and ∀ sufficiently large n, after the following,

1. generate ((p, q), g)← IG(n)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN(n, ((p, q), g))
3. (π, (m1,0,m1,1, r1,0, r1,1, σ1), (m2,0,m2,1, r2,0, r2,1, σ2),

..., (mw,0,mw,1, rw,0, rw,1, σw))← A(((p, q), g), y1, y2,
..., yw,“specify ciphertexts, receivers, and π”)

4. if π is not a permutation from S onto S then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or mj,1 /∈ Gp)

then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then output “false” and halt
7. if ∃ j ∈ {1, 2, ..., w} such that (rj,0 /∈ [1, q]× [1, q] or

rj,1 /∈ [1, q]× [1, q]) then output “false” and halt
8. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then output “false” and halt
9. bj ∈U {0, 1} for j = 1, 2, ..., w
10. (c1, c2, ..., cw)← FBENCR((m1,b1 , r1,b1 , σ1), ...,

(mw,bw , rw,bw , σw), y1, y2, ..., yw, ((p, q), g))
11. rj ∈U [1, q]× [1, q] for j = 1, 2, ..., w
12. (c′π(1), c

′
π(2), ..., c

′
π(w))← FBMIXER(π, (c1, r1), (c2, r2), ..., (cw, rw), ((p, q), g))

13. (c′1, c
′
2, ..., c

′
w)← fpinv(π, c′π(1), c

′
π(2), ..., c

′
π(w))

14. (b′1, b
′
2, ..., b

′
w)← A(c′1, c

′
2, ..., c

′
w,“guess”)

15. if bi = b′i then output “true” else output “false”

the output of the experiment is “true” with probability less than 1
2 + 1

nα then
FBMIXER is secure in the sense of message indistinguishability.

Theorem 10. If DDH is hard then FBMIXER is secure in the sense of message
indistinguishability.

Proof. Suppose there exists a probabilistic polynomial time adversary A, an
α > 0, an i ∈ {1, 2, ..., w}, and a sufficiently large n, such that A succeeds with
probability greater than or equal to 1

2 + 1
nα . Consider algorithm AlgR8 that takes

as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR8((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w) for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
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3. (π, (m1,0,m1,1, r1,0, r1,1, σ1), (m2,0,m2,1, r2,0, r2,1, σ2),
..., (mw,0,mw,1, rw,0, rw,1, σw))← A(((p, q), g), y1, y2,

..., yw,“specify ciphertexts, receivers, and π”)
4. if π is not a permutation from S onto S then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or

mj,1 /∈ Gp) then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then output “false” and halt
7. if ∃ j ∈ {1, 2, ..., w} such that (rj,0 /∈ [1, q]× [1, q] or

rj,1 /∈ [1, q]× [1, q]) then output “false” and halt
8. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then

output “false” and halt
9. bj ∈U {0, 1} for j = 1, 2, ..., w
10. (c1, c2, ..., cw)← FBENCR((m1,b1 , r1,b1 , σ1), ...,

(mw,bw , rw,bw , σw), y1, y2, ..., yw, ((p, q), g))
11. for j in 1..w do:
12. extract a tuple (A0, B0, R0) without replacement from Tσj
13. extract a tuple (A1, B1, R1) without replacement from Tσj
14. ((α0, β0), (α1, β1))← cj
15. c′j ← ((α0R0, β0A0), (α1R1, β1A1))
16. (b′1, b

′
2, ..., b

′
w)← A(c′1, c

′
2, ..., c

′
w,“guess”)

17. if bi = b′i then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly the ciphertexts
c1, c2, ..., cw are as specified by A. It follows from the definition of DDHRerandN
that c′j is a proper re-encryption of cj under FBMIXER for j = 1, 2, ..., w. There-
fore, the input to adversary A is drawn from the same set and probability dis-
tribution as the input to A in Definition 11. It follows that bi = b′i with prob-
ability greater than or equal to 1

2 + 1
nα . So, for random exponents a and b in

[1, q], Pr[AlgR8((p, q), g, ga, gb, gab) = “true”] ≥ 1
2 + 1

nα . Define the value ψ =
Pr[AlgR8((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from the
definition of DDHRerandN that yj is uniformly distributed in Gp for j = 1, 2, ..., w
and that c′j is uniformly distributed in G2

p ×G2
p for j = 1, 2, ..., w. Let p1 be the

probability that A responds with b′i = 0. Then the probability that bi = b′i is
1
2p1 + 1

2 (1− p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the

probability Pr[AlgR8((p, q), g, ga, gb, gc) = “true”] = q2

q3ψ + (1 − q2

q3 ) 1
2 which is

overwhelmingly close to 1
2 . ut

Theorems 7, 8, 9, and 10 show that properties 1, 2, 3, and 4 of a forward-
anonymous batch mix hold, respectively. The FBMIXER servers store no keys at
all so the forward-anonymity property holds (property 5). Theorem 8 proves that
anonymity holds from a single honest mix. Therefore, the robustness property
holds (property 6). Completeness and low-latency are straightforward to show
(properties 7 and 8). Theorem 11 therefore holds.

Theorem 11. If DDH is hard then FBMIX is a forward-anonymous batch mix.
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11 Conclusion

We showed that the definition of security of universal re-encryption, USS, is
missing the requirement that the encryption algorithm produce key anonymous
ciphertexts, thereby forming a gap. We leveraged this gap to show that the se-
curity definitions of multiple applications of universal re-encryption contain the
gap as well, breaking anonymity. Two of these applications are in the original
paper on universal re-encryption by Golle et al, showing that the original se-
curity definition of re-encryption, namely, USS, is in err. We then presented a
new definition of security for universal re-encryption that requires that mes-
sage indistinguishability and key anonymity hold for both the encryption and
re-encryption operations. We proved that the original ElGamal-based univer-
sal cryptosystem is secure under our new definition of security. We presented a
forward-anonymous batch mix that is secure under DDH. Finally, we applied our
new DDH reduction technique to give the first proof in the standard model that
ElGamal-based incomparable public keys achieve key anonymity under DDH.
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A Security of Incomparable Public Keys

We now review incomparable public keys from [28] using their definitions. G is a
common key generator that given a security parameter k will produce the com-
mon key I. I serves as a global parameter for key generation. In the construction
the receivers share the global parameters p and q. p and q are both primes and
q = (p−1)/2. K is the private key generation algorithm that on input I outputs
a random private key. L is an algorithm that on input the private key will out-
put a random corresponding incomparable public key. In the construction the
private key is the randomly generated exponent a and the corresponding public
key is (g, ga) where g is a randomly chosen quadratic residue in Z∗p.

29



The key privacy property of the ElGamal-based incomparable public key
cryptosystem relies on the random oracle model. The random oracle model
proof is given in Appendix B of [28]. We improve upon this by proving that
key anonymity of ElGamal-based incomparable public keys holds in the stan-
dard model under DDH.

We remark that Waters et al give a proof of security for a two-key implemen-
tation in Appendix C. Whereas the proof does not use the random oracle model,
the underlying incomparable public key cryptosystem relies on a symmetric ci-
pher that if broken compromises key anonymity. The symmetric cipher is not
specified (i.e., it is generic). So, the anonymity of the construction in Appendix
C relies not only on DDH but the security of an unspecified symmetric cipher.

A.1 Defining the Security of Incomparable Public Keys

The definition of incomparability is tied to the public key cryptosystem that uses
the incomparable public key. Although it is a minor point, this dependency is
not necessary. In practice the adversary may only have an incomparable public
key of Alice, and incomparable public key of Bob, and a challenge incomparable
public key. There are no messages and no ciphertexts here. Also, in a given
protocol one may want to produce a new incomparable public key given not the
corresponding private key but a given instance of the incomparable public key.
We use these small observations to stream-line the definition of incomparability.

The key generator is IGEN((p, q), g) that outputs the tuple ((gk, yk), x) where
y = gx mod p and k, x ∈U [1, q]. Let (a, b) denote the incomparable public key
(gk, yk). The corresponding private key is x. The public key re-randomization
algorithm for incomparable public keys is IRR((p, q), (a, b)) and it outputs (ar

mod p, br mod p) where r ∈U [1, q].

Definition 12. If ∀ probabilistic polytime adversaries A, ∀ α > 0, and ∀ suffi-
ciently large κ, after the following,

1. generate ((p, q), g)← IG(κ)
2. ((ai, bi), xi)← IGEN((p, q), g) for i = 0, 1
3. t ∈U {0, 1}
4. (a2, b2)← IRR((p, q), (at, bt))
5. t′ ← A((p, q), g, (a0, b0), (a1, b1), (a2, b2))
6. if t = t′ then output “true” else output “false”

the output of the experiment is “true” with probability less than 1
2 + 1

κα then
(IGEN, IRR) is secure in the sense of incomparability.

A.2 Proving the Security of Incomparable Public Keys

We now give the first proof in the standard model that incomparability holds
under DDH.8

8 This was covered in the March 2016 and May 2016 versions of this ePrint.
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Theorem 12. If DDH is hard then (IGEN, IRR) is secure in the sense of incom-
parability.

The below is the proof of Theorem 12.

Proof. Suppose there exists a probabilistic polynomial time adversary A, an
α > 0, and a sufficiently large κ, such that A succeeds with probability greater
than or equal to 1

2 + 1
κα . Consider algorithm AlgB that takes as input a DDH

problem instance ((p, q), g, a0, b0, c0).

AlgB((p, q), g, a0, b0, c0):
1. (A′0, A0, y0, R0, R

′
0)← DDHRerand5((p, q), g, a0, b0, c0)

2. (A′1, A1, y1, R1, R
′
1)← DDHRerand5((p, q), g, a0, b0, c0)

3. t ∈U {0, 1}
4. t′ ← A((p, q), g, (A0, R0), (A1, R1), (A′t, R

′
t))

5. if t = t′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. It follows from the def-
inition of DDHRerand5 that (Ai, Ri) is a proper incomparable public key with
corresponding ElGamal public key yi under IGEN for i = 0, 1.

It also follows that (A′t, R
′
t) is a proper re-randomization of (At, Rt) un-

der IRR. Therefore, the input to A is drawn from the same set and proba-
bility distribution as the input to A in Definition 12. It follows that t = t′

with probability greater than or equal to 1
2 + 1

κα . So, for random exponents
a and b in [1, q], Pr[AlgB((p, q), g, ga, gb, gab) = “true”] ≥ 1

2 + 1
κα . Define ψ =

Pr[AlgB((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple. It follows from the

definition of DDHRerand5 that (A0, R0, A1, R1, A
′
t, R
′
t) is uniformly distributed in

G6
p. Let p1 be the probability that A responds with t′ = 0. Then the probability

that t = t′ is 1
2p1 + 1

2 (1− p1) = 1
2 . So, for randomly chosen exponents a, b, and

c in [1, q], the probability Pr[AlgB((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . ut
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